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1 Introduction

We consider regularized minimization problems that are a sum of a block-
wise Lipschitz-continuously differentiable term and a regularization term that
is convex and block-separable but possibly nondifferentiable. Many regular-
ized empirical risk minimization (ERM) problems in machine learning have
this structure with each block containing more than one coordinate; see, for
example, [1–6].

We describe randomized block-coordinate-descent (BCD) type methods
for minimizing this regularized problem, where only one block of variables
is updated at each iteration. Moreover, we define subproblems with varying
quadratic terms, and use possibly non-uniform sampling to select the block
to be updated. To accommodate general quadratic terms and complicated
regularizers, we also allow inexactness in computation of the update step.

Methods of this type have been discussed in existing works [7–9], but un-
der various assumptions that may be impractical for some problems. In [7],
it is required that the blockwise Lipschitz constants are known, and that the
subproblem is solved to optimality, which is usually possible only when the
regularizer possesses some simple structure and the quadratic approximation
is diagonal. In [8], the quadratic terms are required to be fixed over iterations.
The extension described in [9] is close to our framework, but (as they point
out) their subproblem solver termination condition may be expensive to check
except for specific choices of the regularizer. By contrast, we aim for more gen-
eral applicability by requiring only that the subproblem is solved inexactly, in
a sense defined below in (6), that does not even need to be checked. More-
over, these works consider only uniform sampling for the regularized problem.1

Since [7] showed possible advantages of non-uniform sampling in the non-
regularized case, we wish to consider non-uniform sampling in the regularized
setting too. Others studied the cyclic version of the block-coordinate approach
under various assumptions [10–13]. (The cyclic variant is significantly slower
than the randomized one in the worst case [14].)

This paper contributes to both theory and practice. From the practical
angle, we extend randomized BCD for regularized functions to a more flexible
framework, involving variable quadratic terms and line searches, recovering
existing BCD algorithms as special cases. Knowledge of blockwise Lipschitz
constants is not assumed. Our algorithms are thus more practical, applicable
to wider problem classes (including nonconvex ones), and significantly faster
in practice. The theoretical contributions are as follows.

1. For convex problems, our analysis reflects a phenomenon that is widely
observed in practice for BCD on convex problems: a kind of Q-linear con-
vergence in the early stages of the algorithm, until a modest degree of
suboptimality is attained. This result can be used to strongly weaken the
dependency of the iteration complexity on the initial objective value.

1 For the special case of non-regularized problem in which the regularizer is not present,
works including [8] considered arbitrary samplings.
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2. We show that global linear convergence holds under the quadratic growth
condition, which is significantly weaker than strong convexity.

3. Our convergence analysis allows arbitrary sampling probabilities for the
blocks, and we show that non-uniform distributions can reduce the iteration
complexity significantly in some cases.

4. Inexactness in the subproblem solution affects the bounds on the number
of iterations of the main algorithm in a benign way. It follows that if ap-
proximate solutions can be obtained cheaply for the subproblems, overall
running time of the algorithm can be reduced significantly.

Special cases of our algorithm with a diagonal quadratic term extend existing
analysis for regularized problems, showing that for the regularized problem,
sampling with probability proportional to the value of the blockwise Lipschitz
constants enjoys the same improvement of the iteration bound as the non-
regularized case (by a factor of the maximum blockwise Lipschitz constant
divided by the average of these Lipschitz constants) over uniform sampling.
We believe this result to be novel in the regularized setting. The same sampling
strategy produces similar advantages for nonconvex problems, an observation
that is novel even for the non-regularized case.

We introduce the problem setting, our assumptions, and the proposed al-
gorithm in Section 2. Section 3 provides detailed convergence analysis for vari-
ous classes of problems, including nonconvex problems and problems for which
our algorithm enjoys global linear convergence. The special case of traditional
BCD (in which the quadratic terms are multiples of identity matrices) with
non-uniform sampling is studied in Section 4. We discuss related works in
Section 5 and efficient implementation of our algorithm for a wide class of
problems in Section 6. Computational results are shown in Section 7, with
concluding remarks in Section 8.

2 The Algorithm

We consider the following regularized minimization problem in this work:

min
x

F (x) := f (x) + ψ (x) , (1)

where f is blockwise Lipschitz-continuously differentiable (defined below) but
not necessarily convex, and the regularizer ψ is convex, extended-valued, proper,
closed, and block-separable, but possibly nondifferentiable. We assume F is
lower-bounded and denote the solution set by Ω, which is assumed to be
nonempty. For simplicity, we assume x ∈ Rn, but our methods can be applied
to matrix variables, too. We decompose x ∈ Rn into N blocks such that

x = (x1, x2, . . . , xN ) ∈ Rn, xi ∈ Rni , ni ∈ N,
N∑
i=1

ni = n,
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and assume throughout that the function ψ can be decomposed as

ψ(x) =
N∑
i=1

ψi(xi),

where all ψi have the properties claimed for ψ above.
For the block-separability of x, we use the column submatrices of the iden-

tity denoted by U1, U2, . . . , UN , where Ui ∈ Rn×ni corresponds to the indices
in the ith block of x. Thus, we have

xi = U>i x, x =
N∑
i=1

Uixi, and ∇if = U>i ∇f.

The blockwise Lipschitz-continuously differentiable property is that there exist
constants Li > 0, i = 1, 2, . . . , N , such that2

‖∇if(x+ Uih)−∇if(x)‖ ≤ Li‖h‖, ∀h ∈ Rni , ∀x ∈ Rn. (2)

In our description, the following parameters are used extensively.

Lmax := max
1≤i≤N

Li, Lavg :=
1

N

N∑
i=1

Li, Lmin := min
1≤i≤N

Li. (3)

The kth iteration of the “exact” version of our approach proceeds as fol-
lows. Given the current iterate xk, we pick a block i, according to some discrete
probability distribution over {1, . . . , N}, and minimize a quadratic approxima-
tion of f plus the function ψi for that block, to obtain the update direction
dki . That is, we have

dk∗i := arg min
di∈Rni

Qki (di), (4)

where

Qki (di) := ∇if
(
xk
)>
di + 1

2d
>
i H

k
i di + ψi

(
xki + di

)
− ψi

(
xki
)
, (5)

and Hk
i ∈ Rni×ni is some positive-definite matrix that can change over itera-

tions. A backtracking line search along dki is then performed to determine the
step.

We focus on the case in which (4) is difficult to solve in closed form, so is
solved inexactly by an iterative method, such as coordinate descent, proximal
gradient, or their respective accelerated variants. We assume that dki is an
η-approximate solution to (4), for some η ∈ [0, 1[ fixed over all k and all i,
satisfying the following condition:

− ηQk∗i = η
(
Qki (0)−Qk∗i

)
≥ Qki

(
dki
)
−Qk∗i , (6)

where Qk∗i := infdi Q
k
i (di) = Qki (dk∗i ). Note that the setting η = 0 corresponds

to the special case in which the subproblems are solved exactly. In general, we

2 We use the Euclidean norm throughout the paper.
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Algorithm 1 Inexact variable-metric block-coordinate descent for (1)

1: Given β, γ ∈]0, 1[, η ∈ [0, 1[, and x0 ∈ Rn;
2: for k = 0, 1, 2, . . . do
3: Pick a probability distribution pk1 , . . . , p

k
N > 0,

∑
i p

k
i = 1, and sample ik accordingly;

4: Compute ∇ikf(xk) and choose a positive-definite Hk
ik

;

5: Approximately solve (4) for i = ik to obtain a solution dkik satisfying (6);

6: Compute ∆ik by (8), with i = ik; Set αk
ik
← 1;

7: while (7) is not satisfied do
8: αk

ik
← βαk

ik
;

9: end while
10: xk+1 ← xk + αk

ik
Uikd

k
ik

;

11: end for

do not need to know the value of η or to verify the condition (6) explicitly; we
merely need to know that such a value exists. For example, if the algorithm
used to solve (4) has a global Q-linear convergence rate, and if we run this
method for a fixed number of iterations, then we know that (6) is satisfied for
some value η ∈ [0, 1[, even if we do not know this value explicitly. Further dis-
cussions on how to achieve this condition can be found in, for example, [15,16].
Our analysis can be extended easily to variable, adaptive choices of η, which
might lead to better iteration complexities, but for the sake of interpretability
and simplicity, we fix η independent of k and i in our discussion throughout.

Our algorithm is summarized as Algorithm 1. At the current iterate xk,
a block ik is chosen according to some discrete probability distribution over
{1, 2, . . . , N}, with strict positive probabilities pk1 , p

k
2 , . . . , p

k
N . For the selected

block ik, we compute the partial gradient ∇ikf(xk) and choose a positive-
definite Hk

ik
, thus defining the subproblem objective (5). The selection of Hk

ik
is application-dependent; possible choices include the (generalized) Hessian, 3

its quasi-Newton approximation, and a diagonal approximation to the Hes-
sian. A diagonal damping term may also be added to Hk

ik
. After finding an

approximate solution dkik to (4) that satisfies (6) for some η ∈ [0, 1[, we con-

duct a backtracking line search, as in [12]: Given β, γ ∈]0, 1[, we let αkik be
the largest value in {1, β1, β2, . . . } such that the following sufficient decrease
condition is satisfied:

F
(
xk + αkikUikd

k
ik

)
≤ F

(
xk
)

+ αkikγ∆
k
ik
, (7)

where

∆k
i := ∇if

(
xk
)>
dki + ψi

(
xki + dki

)
− ψi

(
xki
)
. (8)

Then the iterate is updated to xk + αkikUikd
k
ik

.

3 Since ∇ikf is Lipschitz continuous, it is differentiable almost everywhere. Therefore, we
can at least define a generalized Hessian as suggested by [17].
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3 Convergence Analysis

Our convergence analysis extends that of [16], which can be considered as a
special case of our framework in which there is just one block (N = 1). Non-
trivial modifications are needed to allow for multiple blocks and non-uniform
sampling. In the results of this section we often focus on a particular iteration
k, but rather than considering the consequences of updating the chosen block
ik at that iteration, we examine what would happen for all possible choices of
i = 1, 2, . . . , N , if each of these values happened to be chosen as ik. Since the
actual update block ik is chosen randomly from among these N possibilities,
we obtain results about the expected change in F by taking expectations over
all these hypothetical choices.

The following result tracks [16, Corollary 4] and its proof is therefore omit-
ted. Note that we focus on iteration k, and obtain lower bounds for each
possible choice of update block i = 1, 2, . . . , N .

Lemma 3.1 At the kth iteration, suppose that Hk
i � miI for some mi > 0,

for i = 1, 2, . . . , N , and that the subproblem solution dki satisfies (6), for each
i = 1, 2, . . . , N . Then we have

∆k
i ≤ −

1

1 +
√
η

(
dki
)>
Hk
i d

k
i ≤ −

mi

1 +
√
η
‖dki ‖2. (9)

Moreover, the backtracking line search procedure in Algorithm 1 terminates
finitely, with the step size αki lower bounded by

αki ≥ ᾱi := min

{
1,

2β (1− γ)mi

Li
(
1 +
√
η
) } . (10)

The bound ᾱi in (10) is a worst-case guarantee. For properly selected Hk
i

(for example, when Hk
i includes true second-order information about f con-

fined to the ith block), the steps will usually be closer to 1 because the last
inequality in (9) is typically loose.

We proceed to deal with the cases in which F is convex and not necessarily
convex, respectively.

3.1 Convex Case

We first state the optimal set strong convexity condition, proposed in [16],
that will be used in showing global linear convergence of Algorithm 1.

Definition 3.1 Given any function F whose minimum value F ∗ is attainable,
and for any x, define PΩ(x) to be the (Euclidean-norm) projection of x onto
the optimal set Ω. We say that F satisfies the optimal set strong convexity
(OSSC) condition with parameter µ ≥ 0, if for any x and any λ ∈ [0, 1], the
following holds.

F (λx+(1− λ)PΩ(x))

≤ λF (x) + (1− λ)F ∗ − 1
2µλ (1− λ) ‖x− PΩ (x)‖2 . (11)
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The following technical lemma is crucial for both the convergence rate
proofs and for motivating the choice of pi, i = 1, 2, . . . , N . We will use this
result to bound the expected improvement of the objective value over one step,
which leads to convergence rates for the algorithm.

Lemma 3.2 Let f and ψ be convex with F satisfying (11) for some µ ≥ 0.
At iteration k, we consider matrices Hk

i � 0 with Hk
i ∈ Rni×ni , i = 1, . . . , N ,

probability distribution {pki }Ni=1 > 0, and step sizes {αki }Ni=1 > 0. We define

Pk := diag (pk1In1
, . . . , pkNInN ), Ak := diag (αk1In1

, . . . , αkNInN ),

Hk := diag (Hk
1 , . . . ,H

k
N ).

Then for Qki defined by (5), the following holds for all λ ∈ [0, 1] and all θ such
that 0 ≤ θ ≤ αki pki , i = 1, . . . , N :

Ei
[
αkiQ

k∗
i

∣∣xk] ≤ θλ (F ∗ − F (xk))− 1
2µθλ (1− λ)

∥∥xk − PΩ (xk)∥∥2
+

1
2θ

2λ2
(
xk − PΩ

(
xk
))> P−1

k A
−1
k Hk

(
xk − PΩ

(
xk
))
. (12)

Proof Given any d ∈ Rn, let d̃ := AkPkd ∈ Rn. We obtain by change of
variables that

Ei
[
αkiQ

k∗
i

∣∣xk]
= min

d
∇f

(
xk
)>AkPkd+ 1

2d
>HkAkPkd+

N∑
i=1

αki p
k
i

(
ψi
(
xki + di

)
− ψi

(
xki
))

= min
d̃∈Rn

∇f
(
xk
)>
d̃+ 1

2 d̃
>P−1

k A
−1
k Hkd̃

+
N∑
i=1

αki p
k
i

(
ψi

(
xki +

d̃i
αki p

k
i

)
− ψi

(
xki
))

≤ min
d̃∈Rn

min
θ∈[0,1] s.t. θ

αk
i
pk
i

≤1,∀i
∇f

(
xk
)> (

θd̃
)

+ 1
2

(
θd̃
)>
P−1
k A

−1
k Hk

(
θd̃
)

+

N∑
i=1

αki p
k
i

(
ψi

(
xki +

θd̃i
αki p

k
i

)
− ψi

(
xki
))

, (13)

where each d̃i ∈ Rni . In (13), we used the fact that θd̃ is also a feasible point for
the left-hand side, hence its objective value is no smaller than the minimizer.

Next, from the convexity of f , we have

∇f
(
xk
)>
θd̃ = θ

(
∇f

(
xk
)>
d̃
)
≤ θ

(
f
(
xk + d̃

)
− f

(
xk
))
,

and from θ/(αki p
k
i ) ≤ 1 for all i and the convexity of ψ, we obtain

ψi

(
xki +

θd̃i
αki p

k
i

)
≤
(

1− θ

αki p
k
i

)
ψi
(
xki
)

+
θ

αki p
k
i

ψi

(
xki + d̃i

)
=

θ

αki p
k
i

(
ψi

(
xki + d̃i

)
− ψi

(
xki
))

+ ψi
(
xki
)
.
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Therefore, we have

min
d̃

 min
θ∈[0,1] s.t. θ

αk
i
pk
i

≤1,∀i
∇f

(
xk
)> (

θd̃
)

+ 1
2

(
θd̃
)>
P−1
k A

−1
k Hk

(
θd̃
)

+
N∑
i=1

αki p
k
i

(
ψi

(
xki +

θd̃i
αki p

k
i

)
− ψi

(
xki
))}

≤ min
d̃

 min
θ∈[0,1] s.t. θ

αk
i
pk
i

≤1,∀i
θ
(
F (xk + d̃)− F (xk)

)
+
θ2

2
d̃>P−1

k A
−1
k Hkd̃


≤ min

λ∈[0,1]

 min
θ∈[0,1] s.t. θ

αk
i
pk
i

≤1,∀i
θ
(
F
(
xk + λ

(
PΩ
(
xk
)
− xk

))
− F

(
xk
))

+
θ2λ2

2

(
PΩ
(
xk
)
− xk

)> P−1
k A

−1
k Hk

(
PΩ
(
xk
)
− xk

)}
. (14)

The result (12) then follows from combining (13), (14), and (11). ut

By positive semidefiniteness of Hk
i for all i and all k, (7) implies that

F
(
xk + αkikUikd

k
ik

)
− F

(
xk
)
≤ γαkik

(
∆k
ik

+ 1
2

(
dkik
)>
Hk
ik
dkik

)
= γαkikQ

k
ik

(dkik) ≤ (1− η)γαkikQ
k∗
ik
. (15)

Thus Lemma 3.2 can be applied to the right-hand side of this bound to obtain
an estimate of the decrease in F at the current step.

Given any x0, we define

R0 := sup
x:F (x)≤F (x0)

‖x− PΩ(x)‖ . (16)

For the case of general convex problems, we make the assumption that for
any x0, the value of R0 defined in (16) is finite. We are ready to state results
concerning the rate of convergence. Part 1 of the following result shows that
when the objective function optimality gap F (xk) − F ∗ is above a certain
threshold, a linear convergence rate applies. Part 2 identifies an iteration k0

such that for k ≥ k0, and for a fixed probability distribution {pi} for the choice
of index to update, a sublinear “1/k” convergence rate applies. Part 3 shows
that when a fixed probability distribution {pi} is used throughout, an initial
linear phase of decrease in the expected objective function optimality gap is
followed by a 1/k sublinear phase, and the change point of the phase is based
on the expected value of F (xk)−F ∗ instead, making the iteration complexity
calculable.

Theorem 3.1 Assume that f and ψ are convex and (2) holds. Suppose that
at all iterations k of Algorithm 1, and for any choice i = ik of the update block
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at iteration k, we have that (6) is satisfied with a fixed η ∈ [0, 1[, with Hk
i

chosen such that

Hk
i � miI, k = 0, 1, . . . , (17)

for some mi > 0 for all i. Then the following are true.

1. At iteration k, given any probability distribution {pki }Ni=1 > 0 for choosing
the update block ik, denote by {αki }Ni=1 > 0 the step sizes generated by the
backtracking line search for each possible choice i = 1, 2, . . . , N . (These
step sizes are guaranteed to be bounded away from zero, by Lemma 3.1.)
Define

πk := min
1≤i≤N

αki p
k
i , (18)

and let Pk, Ak, and Hk be defined as in Lemma 3.2. If

F
(
xk
)
− F ∗ ≥

(
xk − PΩ

(
xk
))> P−1

k A
−1
k Hk

(
xk − PΩ

(
xk
))
πk,

then the expected improvement in objective optimality gap at this iteration
is bounded away from 1, as follows:

Eik
[
F
(
xk+1

)
− F ∗

∣∣ xk]
(F (xk)− F ∗)

≤
(

1− (1− η) γπk

2

)
. (19)

2. Given Mi ≥ mi, i = 1, . . . , N, and define

M := diag (M1In1
, . . . ,MNInN ), Ā := diag (ᾱ1In1

, . . . , ᾱNInN ), (20)

where ᾱi are defined in Lemma 3.1. For a given probability distribution
{pi}Ni=1 > 0, we define

P := diag (p1In1
, . . . , pNInN ), π̄ := min

1≤i≤N
ᾱipi, (21)

and let

k0 := arg min
{
k : F

(
xk
)
− F ∗ < ‖P−1Ā−1M‖π̄R2

0

}
. (22)

Suppose that for all k ≥ k0, the sampling of ik follows the distribution {pi},
which does not depend on k, and

MiI � Hk
i � miI, i = 1, . . . , N. (23)

Then for k ≥ k0, the expected objective follows a sublinear convergence
rate, as follows:

Eik0
,ik0+1,...,ik−1

[
F
(
xk
)∣∣ xk0

]
− F ∗ ≤ 2‖P−1Ā−1M‖R2

0

2N + (1− η)γ(k − k0)
. (24)
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3. Suppose that a fixed probability distribution {pi}Ni=1 > 0 is used throughout
to sample the blocks and that (23) holds for all k. Then, defining

k̄0 :=

max

0,
log

F(x0)−F∗

‖P−1Ā−1M‖π̄R2
0

log
(

2
2−(1−η)γπ̄

)

 , (25)

(with π̄ defined in (21) and dxe representing the least integer that is larger
or equal to x), we have for all k < k̄0 that the expected objective satisfies

Ei0,...,ik−1

[
F
(
xk
)
− F ∗

]
≤
(

1− (1− η)γπ̄

2

)k (
F
(
x0
)
− F ∗

)
, (26)

while for all k ≥ k̄0, we have

Ei0,...,ik−1

[
F
(
xk
)
− F ∗

]
≤

2
∥∥P−1Ā−1M

∥∥R2
0

2N + (1− η)γ(k − k̄0)
. (27)

Proof We first prove Part 1. Consider Lemma 3.2. For the general convex case,
we have µ = 0 in the OSSC condition (11), so (12) reduces to

Eik
[
αkikQ

k∗
ik

∣∣xk] (28)

≤ θλ
(
F ∗ − F

(
xk
))

+
θ2λ2

2

(
xk − PΩ

(
xk
))> P−1

k A
−1
k Hk

(
xk − PΩ

(
xk
))
,

for all λ ∈ [0, 1] and all θ ∈ [0, πk]. Setting θ = πk, we note that the right-hand
side of (28) is a strongly convex function of λ for x /∈ Ω, so by minimizing
explicitly with respect to λ, we obtain

λ = min

{
1,

F
(
xk
)
− F ∗

(xk − PΩ (xk))
> P−1

k A
−1
k Hk (xk − PΩ (xk))πk

}
. (29)

With this setting of λ, when

F
(
xk
)
− F ∗ ≥

(
xk − PΩ

(
xk
))> P−1

k A
−1
k Hk

(
xk − PΩ

(
xk
))
πk,

we have λ = 1 and (28) becomes

Eik
[
αkikQ

k∗
ik

∣∣xk] ≤ 1
2π

k
(
F ∗ − F

(
xk
))
. (30)

By combining (30) and (15), we have proved (19).
Next, we prove Part 2. Consider (28) with αkik replaced by ᾱik (so that Ak

is replaced by Ā) and pkik replaced by pik (so that Pk is replaced by P). For
any k ≥ k0, we define

δk := Eik0
,...,ik−1

[
F
(
xk
)
− F ∗

∣∣xk0
]
.
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By applying the definition (16) and the bound (23) on the right-hand side of
the updated (28), and then taking expectations on both sides over ik0 , . . . , ik−1

conditional on xk0 , we have that

Eik0
,...,ik

[
ᾱikQ

k∗
ik

∣∣xk0
]
≤ −θλδk +

θ2λ2

2

∥∥P−1Ā−1M
∥∥R2

0, (31)

for all λ ∈ [0, 1] and all θ ∈ [0, π̄]. Setting θ = π̄ in (31), we have from (22)
that since Algorithm 1 is a descent method, δk < π̄

∥∥P−1Ā−1M
∥∥R2

0, for all
k ≥ k0. Therefore, we can use

λ =
δk

π̄
∥∥P−1Ā−1M

∥∥R2
0

in (31) to obtain

Eik0
,...,ik

[
ᾱikQ

k∗
ik

∣∣xk0
]
≤ − π̄ δ2

k

2π̄
∥∥P−1Ā−1M

∥∥R2
0

= − δ2
k

2
∥∥P−1Ā−1M

∥∥R2
0

. (32)

Therefore, by taking expectation on (15) over ik0
, . . . , ik conditional on xk0 ,

and using (32), we obtain

δk+1 ≤ δk −
(1− η) γδ2

k

2
∥∥P−1Ā−1M

∥∥R2
0

. (33)

By dividing both sides of (33) by δkδk+1 and noting from (7) and Lemma 3.1
that {F (xk)} and therefore {δk} is descending, we obtain

1

δk
≤ 1

δk+1
− (1− η) γδk

2δk+1

∥∥P−1Ā−1M
∥∥R2

0

≤ 1

δk+1
− (1− η) γ

2
∥∥P−1Ā−1M

∥∥R2
0

. (34)

By summing and telescoping (34), we obtain

1

δk
≥ 1

δk0

+ (k − k0)
(1− η) γ

2
∥∥P−1Ā−1M

∥∥R2
0

. (35)

Finally, note that because ᾱi ∈ [0, 1] for i = 1, . . . , N , (22) implies that

1

δk0

≥ 1

π̄
∥∥P−1Ā−1M

∥∥R2
0

≥ 1

mini pi
∥∥P−1Ā−1M

∥∥R2
0

. (36)

Next, it is straightforward that the solution to

min
p1,...,pN

1

min1≤i≤N pi
subject to

N∑
i=1

pi = 1, pi ≥ 0, i = 1, . . . , N
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is pi ≡ 1/N , and the corresponding objective value is N . Therefore, (36)
further implies that

1

δk0

≥ N∥∥P−1Ā−1M
∥∥R2

0

.

By combining this inequality with (35), we obtain (24).
For Part 3, we again start from (28) and replace αkik with ᾱi in (28) to

obtain

Eik
[
ᾱikQ

k∗
ik

∣∣xk] (37)

≤ θλ
(
F ∗ − F

(
xk
))

+
θ2λ2

2

(
xk − PΩ

(
xk
))> P−1Ā−1Hk

(
xk − PΩ

(
xk
))
,

for all λ ∈ [0, 1] and all θ ∈ [0, π̄]. By applying (16) and (23), we have

Eik
[
ᾱikQ

k∗
ik

∣∣xk]
≤ θλ

(
F ∗ − F

(
xk
))

+
θ2λ2

2

∥∥xk − PΩ (xk)∥∥ ‖P−1Ā−1M‖
∥∥xk − PΩ (xk)∥∥

≤ θλ
(
F ∗ − F

(
xk
))

+
θ2λ2

2
‖P−1Ā−1M‖R2

0.

Now we take expectation over i0, . . . , ik−1 on both sides of this inequality
(noting that the last term on the right-hand side are all constants that do not
depend on ik) to obtain

Ei0,...,ik
[
ᾱikQ

k∗
ik

]
≤ −θλEi0,...,ik−1

[
F ∗ − F

(
xk
)]

+
θ2λ2

2

∥∥P−1Ā−1M
∥∥R2

0.

By defining

δ̂k := Ei0,...,ik−1

[
F
(
xk
)
− F ∗

]
and setting θ = π̄, we have that

Ei0,...,ik
[
ᾱikQ

k∗
ik

]
≤ −π̄λδ̂k +

π̄2λ2

2

∥∥P−1Ā−1M
∥∥R2

0. (38)

The minimum of the right-hand side happens when

λ = min

{
1,

δ̂k
π̄‖P−1Ā−1M‖R2

0

}
.

When the expected function value satisfies

δ̂k ≥ π̄‖P−1Ā−1M‖R2
0, (39)

the minimizer is λ = 1, and the bound becomes

Ei0,...,ik
[
ᾱikQ

k∗
ik

]
≤ −π̄δ̂k +

π̄2

2

∥∥P−1Ā−1M
∥∥R2

0 ≤ −
π̄δ̂k
2
.
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Now we consider (15) and take expectation over i0, . . . , ik on both sides. Note
that Qk∗ik ≤ 0 so the upper bound is still valid if we replace αkik with ᾱik . Thus
we obtain

δ̂k+1 − δ̂k = Ei0,...,ik
[
F
(
xk+1

)
− F

(
xk
)]
≤ (1− η)γEi0,...,ik

[
ᾱikQ

k∗
ik

]
(40)

≤ − (1− η)γπ̄δ̂k
2

.

By rearranging the inequality above, we get the linear convergence of

δ̂k+1 ≤ δ̂k
(

1− (1− η)γπ̄

2

)
.

Therefore, we always get the bound

δ̂k ≤
(

1− (1− η)γπ̄

2

)k (
F (x0)− F ∗

)
until δ̂k−1 < π̄‖P−1Ā−1M‖R2

0. Note that k̄0 is obtained as the first value of
k such that(

1− (1− η)γπ̄

2

)k (
F
(
x0
)
− F ∗

)
≤ π̄‖P−1Ā−1M‖R2

0.

Therefore, for k < k̄0, the upper bound in (26) is larger than π̄‖P−1Ā−1M‖R2
0,

so the rate (26) remains valid. Note that if δ̂k ≤ π̄‖P−1Ā−1M‖R2
0 has already

held true for some k < k̄0, clearly this bound is still valid. On the other hand,
after k̄0, we are guaranteed that (39) must stop holding. Thus the minimizer

for (38) becomes λ = δ̂k/(π̄‖P−1Ā−1M‖R2
0). We then start from the first

inequality of (40) and get

δ̂k+1 − δ̂k ≤ −
(1− η)γδ̂2

k

2‖P−1Ā−1M‖R2
0

.

Following the same derivation we had in Part 2, we can get

1

δ̂k
≤ 1

δ̂k+1

− (1− η)γ

2‖P−1Ā−1M‖R2
0

.

By summing and telescoping the result above, we get

1

δ̂k
≥ 1

δ̂k̄0

+ (k − k̄0)
(1− η)γ

2‖P−1Ā−1M‖R2
0

.

Following the same argument in Part 2, we get the final claim in Part 3. ut
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The rate indicated by Part 1 of Theorem 3.1 has been observed frequently
in practice, and some restricted special cases without a regularizer have been
discussed in the literature [18,19]. To our knowledge, ours is the first theoretical
result for BCD-type methods on general regularized problems (1). The global
convergence bounds in other works depend on R2

0 + F (x0)− F ∗, whereas our
results significantly weaken the dependence on the initial objective value.

We can see from Part 2 of Theorem 3.1 that the optimal probability dis-
tribution after k0 iterations is the one for which ‖P−1Ā−1M‖ is minimized,
that is,

pi =
Miᾱ

−1
i∑

jMjᾱ
−1
j

. (41)

It is possible to replace ᾱi and Mi with the values αki and ‖Hk
i ‖ (respectively),

to obtain adaptive probabilities and possibly sharper rates, but we fix the
probabilities for the sake of more succinct analysis. We discuss in Section 5
some issues relating to the use of adaptive probabilities.

We now consider the case that F satisfies the quadratic growth condition

F (x)− F ∗ ≥ µ

2
‖x− PΩ (x)‖2 (42)

for some µ > 0. This condition is implied by the OSSC condition (11) but not
vice versa. The following theorem shows a global Q-linear convergence result
for this case.

Theorem 3.2 Assume that f and ψ are convex and that (2) and (42) hold
for some L1, . . . , LN , µ > 0. Suppose that at the kth iteration of Algorithm 1,
(6) is satisfied with some η ∈ [0, 1[ and Hk

i is chosen such that (17) holds
for some mi > 0 and all i = 1, 2, . . . , N , so that the step sizes αki are all
bounded away from 0, as indicated by Lemma 3.1. Then given any probability
distribution {pki } > 0, with πk defined as in (18), we have that the expected
decrease at iteration k is

Eik
[
F
(
xk+1

)
− F ∗

∣∣ xk]
F (xk)− F ∗

≤ 1− (1− η)γρk, (43)

where ρk is bounded below by the following quantities:

µ

4‖P−1
k A

−1
k Hk‖

, if
µ

2‖P−1
k A

−1
k Hk‖πk

≤ 1, (44a)

πk
(

1−
πk‖P−1

k A
−1
k Hk‖

µ

)
, otherwise. (44b)

Proof By (15), (28), the Cauchy-Schwarz inequality, and (42), we have

Eik
[
F
(
xk+1

)
− F

(
xk
)
| xk

]
≤ γ(1− η)Eik

[
αkikQ

k∗
ik

]
≤ γ(1− η)θ

(
F
(
xk
)
− F ∗

)(
−λ+

θλ2
∥∥P−1

k A
−1
k Hk

∥∥
µ

)
, (45)
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for all λ ∈ [0, 1] and all θ ∈ [0, πk]. By the same argument as in the previous
proofs, we let θ = πk. By minimizing the right-hand side of (45) over λ ∈ [0, 1],
we obtain the two cases (44a) and (44b). ut

We can improve on Theorem 3.2 for problems satisfying the OSSC condi-
tion (11).

Theorem 3.3 Assume that f and ψ are convex and that (2) and (11) hold
for some L1, . . . , LN , µ > 0. Suppose that at the kth iteration of Algorithm 1,
(6) is satisfied for some η ∈ [0, 1[ and Hk

i is chosen such that (17) holds for
some mi > 0 and all i = 1, 2, . . . , N so that the step sizes αki are all lower
bounded away from 0 as indicated by Lemma 3.1. Then given any probability
distribution {pki } > 0, and with πk defined as in (18), the expected function
decrease at iteration k is the same as (43), but with ρk lower-bounded by

ρk ≥

(
1

πk
+ max

i

∥∥Hk
i

∥∥
µαki p

k
i

)−1

. (46)

Proof We note by bounding the last term in (12) that

Ei
[
αkiQ

k∗
i

∣∣xk] ≤ θλ (F ∗ − F (xk))− 1
2µθλ (1− λ)

∥∥xk − PΩ (xk)∥∥2
+

1
2θ

2λ2
∥∥xk − PΩ(xk)

∥∥2 ‖P−1
k A

−1
k Hk‖.

Thus by setting λ = µ/(µ+‖P−1
k A

−1
k Hk‖θ) ∈ [0, 1], the last two terms cancel.

Then by setting θ = πk, we obtain

Eik
[
αikQ

k∗
ik

∣∣xk] ≤ µθ

µ+
∥∥P−1

k A
−1
k Hk

∥∥ θ (F ∗ − F (xk))
=

1

1
θ +
‖P−1

k A
−1
k Hk‖
µ

(
F ∗ − F

(
xk
))

=
1

1
πk

+ maxi
‖Hki ‖
µαki p

k
i

(
F ∗ − F

(
xk
))
. (47)

By combining (47) and (15), we obtain the desired result. ut

For problems on which Theorem 3.2 or 3.3 holds, Theorem 3.1 is also ap-
plicable, and the early linear convergence rate can be faster than the global
rates described in Theorems 3.2 and 3.3 (always better than the rate in The-
orem 3.2 and for Theorem 3.3 it depends on the value of µ and ‖Hk

i ‖). Thus,
we could sharpen the global iteration complexity for problems satisfying the
OSSC condition (11) with µ > 0 by using Theorem 3.1. We also notice that
the rate in Theorem 3.3 is faster than that in Theorem 3.2, which is why we
consider these two conditions separately.

Note too that with knowledge of αi and ‖Hk
i ‖, we could in principle mini-

mize the expected gap Eik
[
F
(
xk+1

)
− F ∗

∣∣ xk] by minimizing the denomina-
tor on the right-hand side of (46) and (44) with respect to pki over pki > 0
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and
∑
i p
k
i = 1. Such an approach is not practical except in the special cases

discussed in Section 4, as it is unclear how to find αki and ‖Hk
i ‖ in general for

the blocks not selected.
Theorems 3.2 and 3.3 suggest that larger step sizes lead to faster conver-

gence. When Hk
i incorporates curvature information of f , empirically we tend

to have much larger step sizes than the lower bound predicted in Lemma 3.1,
and thus the practical performance of using the Hessian or its approximation
usually outperforms using a multiple of the identity as Hk

i .
All the results here can be combined in a standard way with Markov’s

inequality to get high-probability bounds for the objective value. We omit
these results.

3.2 Nonconvex Case

When f is not necessarily convex, we cannot use Lemma 3.2 to estimate the
expected model decrease at each iteration, and we cannot guarantee conver-
gence to the global optima. Instead, we analyze the convergence of certain
measures of stationarity.

The first measure we consider is how fast the optimal objective of the
subproblem (4) converges to zero. Since the subproblems are strongly convex,
this measure is zero if and only if the optimal solution is the zero vector,
implying that the algorithm will not step away from this point. These claims
are verified in the following lemma.

Lemma 3.3 At iteration k, assume that in (4)-(5) we have Hk
i � miI for

some mi > 0, i = 1, 2, . . . , N , and that (2) is satisfied for some positive
values L1, L2, . . . , LN . Then for any positive step sizes {αki }Ni=1 > 0 and any
probability distribution {pki }Ni=1 > 0, we have

Ei[αkiQk∗i ] = 0 ⇔ Qk∗i = 0, i = 1, . . . , N ⇔ 0 ∈ ∂F
(
xk
)
, (48)

where ∂F (xk) = ∇f(xk) + ∂ψ(xk) is the generalized gradient of F at xk.

Proof From (9) in Lemma 3.1, by setting η = 0 we see that for all i and k
we have Qk∗i ≤ 0, proving the first equivalence in (48). To prove the second
equivalence, we first notice that since Qki are all strongly convex and Qki (0) ≡ 0,
Qk∗i = 0 if and only if dk∗i = 0, where dk∗i is defined in (4). Therefore, it suffices
to prove that

dk∗i = 0 ⇔ −∇if
(
xk
)
∈ ∂ψi

(
xki
)
, i = 1, . . . , N. (49)

From optimality of (4), we have

−
(
∇if

(
xk
)

+Hk
i d

k∗
i

)
∈ ∂ψi

(
xki + dk∗i

)
. (50)

When dk∗i = 0, (50) implies that −∇if(xk) ∈ ∂ψi(xki ). Conversely, if

−∇if(xk) ∈ ∂ψi(xki ). (51)
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We have from the convexity of ψi together with (51) and (50) that

ψi
(
xki + dk∗i

)
≥ ψi

(
xki
)
−∇if(xk)>dk∗i ,

ψi
(
xki
)
≥ ψi

(
xki + dk∗i

)
− (dk∗i )>(−∇if(xk)−Hk

i d
k∗
i ).

By adding these two inequalities, we obtain 0 ≥
(
dk∗i
)>
Hk
i d

k∗
i , so that dk∗i = 0

by the positive definiteness of Hk
i . ut

The second measure of convergence is the following:

Gk := arg min
d
∇f(xk)>d+ 1

2d
>d+ ψ(xk + d). (52)

From Lemma 3.3, it is clear that Gk = 0 if and only if 0 ∈ ∂F (xk), so Gk can
serve as an indicator for closeness to stationarity.

We show convergence rates for the two measures proposed above.

Theorem 3.4 Given any x0 in Algorithm 1, let {αki }Ni=1 > 0 be the step sizes
generated by the line search procedure for k = 0, 1, 2, . . . . If Hk

i � 0 for all i
and k, we have

min
0≤k≤T

∣∣Ei0,...,ik [αkikQkik (dkik)]∣∣ ≤ F
(
x0
)
− F ∗

γ (T + 1)
, for all T ≥ 0. (53)

Moreover, Ei0,...,ik
[
αkikQ

k
ik

(dkik)
]
→ 0 as k approaches infinity.

Proof Taking expectation on (15) over ik, we obtain

Eik
[
F
(
xk+1

)∣∣xk]− F (xk) ≤ γEik [αikQkik (dkik)∣∣xk] . (54)

By taking expectation on (54) over i0, . . . , ik−1 and summing over k = 0, 1, . . . , T ,
and noting from (6) and Lemma 3.1 that Qki (dki ) ≤ 0 for all k and all i, we
obtain

γ

T∑
k=0

∣∣Ei0,...,ik [αikQkik (dkik)]∣∣
= − γ

T∑
k=0

Ei0,...,ik
[
αikQ

k
ik

(
dkik
)]

≤
T∑
k=0

{
Ei0,...,ik−1

[
F
(
xk
)]
− Ei0,...,ik

[
F
(
xk+1

)]}
= F

(
x0
)
− Ei0,...,iT

[
F
(
xT+1

)]
≤ F

(
x0
)
− F ∗. (55)

The result now follows from

T∑
k=0

∣∣Ei0,...,ik [αikQkik (dkik)]∣∣ ≥ (T + 1) min
0≤k≤T

∣∣Ei0,...,ik [αikQkik (dkik)]∣∣
The result that

∣∣Ei0,...,ik [αikQkik (dkik)]∣∣ → 0 follows from the summability
implied by (55). ut
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Unlike previous results, the convergence speed for the right-hand side of
(53) is independent of how accurately the subproblem is solved, the probability
distributions for sampling the blocks, and the step sizes. We next consider the
second measure (52) and show that its convergence behavior depends on these
factors. We need the following lemma from [12].

Lemma 3.4 ( [12, Lemma 3]) Given xk, assume that Hk
i satisfies (23) for

some Mi ≥ mi > 0 for all i. Then we have

∥∥U>i Gk∥∥ ≤ 1 + 1
mi

+
√

1− 2 1
Mi

+ 1
m2
i

2
Mi

∥∥dk∗i ∥∥ .
By combining this lemma with Theorem 3.4, we can show a convergence

rate for min0≤k≤T Ei0,...,ik ‖Gk‖.

Corollary 3.1 Assume that Hk
i satisfies (23) for all k = 0, 1, . . . and all

i = 1, 2, . . . , N . Let {αki }Ni=1 > 0 be the step sizes generated by the line search
procedure. Then we have

min
0≤k≤T

Ei0,...,ik−1

[
‖Gk‖2

]

≤
F
(
x0
)
− F ∗

2(1− η)γ(T + 1)
max

0≤k≤T, 1≤i≤N

M2
i

(
1 + 1

mi
+
√

1− 2 1
Mi

+ 1
m2
i

)2

pki α
k
imi

. (56)

Proof We consider Theorem 3.4 and let k̄ be the iteration that achieves the
minimum on the left-hand side of (53). We have from (6) and Theorem 3.4
that

F
(
x0
)
− F ∗

γ (T + 1)
≥
∣∣∣Ei0,...,ik̄ [αk̄ik̄Qk̄ik̄ (dk̄ik̄)]∣∣∣ ≥ −(1− η)Ei0,...,ik̄

[
αk̄ik̄Q

k̄∗
ik̄

]
. (57)

Since Hk
i � miI from (23) and the ψi are convex, we have that for all i and k,

the functions Qki are mi-strongly convex and hence satisfy (42) with µ = mi.
Therefore, we have

Qki (0)−Qk∗i = −Qk∗i ≥
mi

2

∥∥dk∗i ∥∥2
, for all k and all i = 1, 2, . . . , N . (58)
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Algorithm 2 Inexact Randomized BCD with Unit Step Size for (1)

1: Given η ∈ [0, 1[ and x0 ∈ Rn;
2: for k = 0, 1, 2, . . . do
3: Pick a probability distribution pk1 , . . . , p

k
N > 0,

∑
i p

k
i = 1, and sample ik accordingly;

4: Compute ∇ikf(xk) and let Hk
ik

= LikI;

5: Approximately solve (4) to obtain a solution dkik satisfying (6);

6: xk+1 ← xk + Uikd
k
ik

;

7: end for

Algorithm 3 Inexact Randomized BCD with Short Step Size for (1)

1: Given η ∈ [0, 1[ and x0 ∈ Rn;
2: for k = 0, 1, 2, . . . do
3: Pick a probability distribution pk1 , . . . , p

k
N > 0,

∑
i p

k
i = 1, and sample ik accordingly;

4: Compute ∇ikf(xk) and let Hk
ik

= LminI;

5: Approximately solve (4) to obtain a solution dkik satisfying (6);

6: xk+1 ← xk + Lmin
Lik

Uikd
k
ik

;

7: end for

By substituting (58) into (57) and using Lemma 3.4, we obtain

F
(
x0
)
− F ∗

(1− η)γ (T + 1)

≥ 1

2

N∑
i=1

pk̄i α
k̄
imiEi0,...,ik̄−1

[∥∥∥dk̄∗i ∥∥∥2
]

(59)

≥ 2

N∑
i=1

pk̄i α
k̄
imi

M2
i

(
1 + 1

mi
+
√

1− 2 1
Mi

+ 1
m2
i

)2Ei0,...,ik̄−1

[∥∥U>i Gk̄∥∥2
]

≥ 2Ei0,...,ik̄−1

[
‖Gk̄‖

2
]

min
1≤i≤N

pk̄i α
k̄
imi

M2
i

(
1 + 1

mi
+
√

1− 2 1
Mi

+ 1
m2
i

)2 , (60)

where in (60), we used the fact that ‖x‖2 =
∑N
i=1 ‖U>i x‖2 for any x ∈ Rn.

The result (56) is then proved by noting that

min
0≤k≤T

Ei0,...,ik−1
‖Gk‖2 ≤ Ei0,...,ik̄−1

‖Gk̄‖2. ut

Corollary 3.1 reveals that line search can help improve the convergence
speed as larger values of αki make the right-hand side of (56) smaller, and
non-uniform sampling can possibly lead to faster convergence.

4 Randomized Block Coordinate Descent
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Non-uniform sampling in coordinate descent for smooth convex objectives
was discussed in [7]. In this section, we extend these results to the regularized
objective function (1), using results from Section 3. In the non-regularized
case, the update for the ith block described in [7] is −∇if(x)/Li, which can
be viewed as either the solution of

min
di

∇if(x)>di + 1
2Lid

>
i di

with unit step size, or equivalently as the solution of

min
di

∇if(x)>di + 1
2Lmind

>
i di

with step size Lmin/Li (so that the step size is no larger than 1). As in [7], we do
not consider backtracking, but assume that Li is available, and thus an appro-
priate choice for αi can be made. When these step calculations are adapted to
the regularized case (1), as in (4)-(5) with Hk

i = LiI and Hk
i = LminI, respec-

tively, they lose their equivalence to each other and give different directions.
The resulting special cases of Algorithm 1 are shown as Algorithms 2 and 3.

We show in the following result that both approaches achieve a guaranteed
decrease in the objective.

Lemma 4.1 Assume that (2) holds, and consider iteration k of Algorithm 1.
If the ith block is selected for updating, and Hk

i � ciI in (5) for some ci ∈
]0, Li], then α̂i := ci/Li satisfies

F (xk +αUid
k
i )−F (xk) ≤ αQki (dki ), for all dki ∈ Rni and all α ∈ [0, α̂i]. (61)

Proof Because ci ∈]0, Li], we have α̂i = ci/Li ∈]0, 1]. Thus from (2) and the
convexity of ψ, we have for any α ∈ [0, α̂i] that

F
(
xk + αUid

k
i

)
= f

(
xk + αUid

k
i

)
+ ψ

(
xk + αUid

k
i

)
≤ f

(
xk
)

+ α∇if
(
xk
)>
dki + 1

2Liα
2
∥∥dki ∥∥2

+ αψ
(
xk + Uid

k
i

)
+ (1− α)ψ

(
xk
)

= f
(
xk
)

+ ψ
(
xk
)

+ α
[
∇if(xk)>dki + 1

2Liα
∥∥dki ∥∥2

+ ψ
(
xk + Uid

k
i

)
− ψ

(
xk
)]

≤ F
(
xk
)

+ αQki
(
dki
)
.

In the last inequality, we used the fact that for the term Hi appearing in
Qki (dki ), we have

Hi � ciI = α̂iLiI � αLiI. ut

With the help of Lemma 4.1, we can discuss the iteration complexities of
randomized BCD (Algorithms 2 and 3) with different sampling strategies. We
first consider the interpretation in Algorithm 2, starting from the case in which
f is convex. The results below are direct applications of Theorem 3.1.

Corollary 4.1 Consider Algorithm 2 applied to (1) with convex f , and as-
sume that (2) holds. The expected objective value satisfies the following.
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1. With uniform sampling pki ≡ 1/N , we have the following.

1.1. If F
(
xk
)
− F ∗ ≥

(
xk − PΩ

(
xk
))> L (xk − PΩ (xk)), where

L := diag (L1In1
, . . . , LNInN ), (62)

we have

Eik
[
F
(
xk+1

)
− F ∗ | xk

]
≤
(

1− (1− η)

2N

)(
F
(
xk
)
− F ∗

)
.

1.2. For all k ≥ k0, where k0 := arg min{k : F
(
xk
)
− F ∗ < LmaxR

2
0}, we

have

Eik0
,...,ik−1

[
F
(
xk
)
| xk0

]
− F ∗ ≤ 2NLmaxR

2
0

2N + (1− η)(k − k0)
.

2. When pki are defined as

pki =
Li

NLavg
, i = 1, 2, . . . , N, (63)

we have the following.

2.1. If F
(
xk
)
− F ∗ ≥ Lmin

∥∥xk − PΩ (xk)∥∥2
, then

Eik
[
F
(
xk+1

)
− F ∗ | xk

]
≤
(

1− Lmin (1− η)

2NLavg

)(
F
(
xk
)
− F ∗

)
.

2.2. For all k ≥ k0, where k0 := arg min{k : F
(
xk
)
− F ∗ < LminR

2
0}, we

have

Eik0
,...,ik−1

[
F
(
xk
)
| xk0

]
− F ∗ ≤ 2NLavgR

2
0

2N + (1− η)(k − k0)
.

The strategy (63) is referred to henceforth as “Lipschitz sampling.” In both
Algorithms 2 and 3, we have

‖Hk
i ‖

αki
= Li.

Recalling the definitions of Mi from (23) andM from (20), we have that since
Hk
i are fixed over k for all i, both algorithms have ‖Hk

i ‖ ≡ Mi. Therefore,
(63) matches the optimal probability distribution (41), resulting in

‖P−1A−1M‖ = NLavg. (64)

We next consider the case in which the OSSC condition (11) holds for some
µ > 0.
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Corollary 4.2 Consider Algorithm 2 and assume that (2) holds. For prob-
lems satisfying (11) with µ ∈]0, Lmin], the iteration complexity for the expected
objective value to reach

Ei0,...,ik−1
F
(
xk
)
− F ∗ ≤ ε

for any given ε > 0 is as follows. When pki ≡ 1/N , i = 1, 2, . . . , N , we have
complexity

O

(
NLmax

(1− η)µ
log(1/ε)

)
,

while if the pki are defined by (63), we have complexity

O

(
NLavg

(1− η)µ
log(1/ε)

)
.

Proof As shown in Lemma 4.1, this choice of Hi and αi satisfies (15) with γ =
1. Thus the case of uniform sampling is directly obtained from Theorem 3.3
and the known fact that for Q-linear convergence rate of 1−τ with τ ∈]0, 1[, the
iteration complexity for obtaining an ε-accurate solution is O(τ−1 log(1/ε)).

For (63), we use (12) to derive a different result. Since ‖P−1
k A

−1
k Hk‖ =

NLavg (from (64)), and by letting λ = 1/2 and θ = µ/(NLavg), (12) leads to

Eik
[
αikQ

k∗
ik

∣∣xk] ≤ µ

2NLavg

(
F ∗ − F

(
xk
))
. (65)

The remainder of the proof tracks the proof of Theorem 3.3 to get a Q-linear
convergence rate. ut

When η = 0 (so that the solutions of the subproblems are exact), the
rates in Corollaries 4.1 and 4.2 are similar to Nesterov’s result [7] for the
non-regularized case with the same sampling strategies, if we interpret this
result in the Euclidean norm. The advantage of Lipschitz sampling over uni-
form sampling is seen clearly. Note that [7] discusses the case of constrained
optimization, which can be treated as a special case of regularized optimiza-
tion. In this special case, Nesterov shows a O(1/k) convergence rate of the
objective value when the objective is convex, but the convergence speed de-
pends on (R2

0/2 +F (x0)−F ∗). Here, we weaken the dependency on the initial
objective value by showing linear convergence in the early stages of iteration.
The case in which F satisfies (42) can also provide linear convergence for Al-
gorithm 2, but the consequent rates do not suggest clear advantages of the
Lipschitz sampling, and the derivations are trivial. We therefore omit these
results.

When f is not necessarily convex, Algorithm 2 still benefits from Lipschitz
sampling, as we now discuss.
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Corollary 4.3 Consider Algorithm 2 and assume that (2) holds. Suppose that
a fixed probability distribution is used for the choice of blocks, that is, pki ≡ pi
for all k ≥ 0 and all i = 1, 2, . . . , N . Then we have that

min
0≤k≤T

Ei0,...,ik−1
‖Gk‖2 ≤

2(F
(
x0
)
− F ∗)

(1− η)(T + 1)
max

1≤i≤N

Li
pi
.

Therefore, when uniform sampling is used, we obtain

min
0≤k≤T

Ei0,...,ik−1
‖Gk‖2 ≤

2NLmax(F
(
x0
)
− F ∗)

(1− η)(T + 1)
,

whereas when Lipschitz sampling is used, we obtain

min
0≤k≤T

Ei0,...,ik−1
‖Gk‖2 ≤

2NLavg(F
(
x0
)
− F ∗)

(1− η)(T + 1)
.

Our result here for the case of uniform sampling is similar to that in [20],
but we show that Lipschitz sampling can improve the convergence rate by
considering a slightly different measure of stationarity.

We turn now to Algorithm 3, which can also be viewed as an extension of
the algorithm in [7] to the regularized problem (1).

Corollary 4.4 Consider Algorithm 3 and assume that (2) holds. Suppose that
a fixed probability distribution is used for the choice of blocks, that is, pki ≡ pi
for all k ≥ 0 and all i = 1, 2, . . . , N . Then the following claims hold.

1. For uniform sampling (pi = 1/N , i = 1, 2, . . . , N), we have

min
0≤k≤T

Ei0,...,ik−1
‖Gk‖2 ≤

2NLmax(F
(
x0
)
− F ∗)

(1− η)(T + 1)
.

2. If f is convex, then for uniform sampling, we have the following results.
2.1. When

F (xk)− F ∗ ≥ (1/Lmax)(xk − PΩ(xk))>L(xk − PΩ(xk)), (66)

where L is defined in (62), the convergence of the expected objective
value is Q-linear:

Eik
[
F
(
xk+1

)
− F ∗

∣∣ xk] ≤ (1− (1− η)

2NLmax

)(
F
(
xk
)
− F ∗

)
.

2.2. For all k ≥ k0, where k0 := arg min{k : F
(
xk
)
− F ∗ < R2

0}, the
expected objective follows a sublinear convergence rate

Eik0
,...,ik−1

[
F
(
xk
)∣∣ xk0

]
− F ∗ ≤ 2NLmaxR

2
0

2N + (1− η)(k − k0)
.
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3. If F satisfies the OSSC condition (11) for some µ > 0, then for uniform
sampling, we have

Eik
[
F (xk+1)− F ∗

∣∣ xk] ≤ (1− (1− η)(1 + 1/µ)−1

NLmax

)(
F (xk)− F ∗

)
.

4. With pi chosen from (63), results in Parts 1 and 3 hold, with Lmax improved
to Lavg. For Part 2, for convex f , we obtain the same improvement from
Lmax to Lavg for all rates, but the condition for early linear convergence
becomes F (xk)− F ∗ ≥ ‖xk − PΩ(xk)‖2 rather than (66).

Whether the OSSC condition (11) holds or not, the bounds indicate a
potential improvement of Lmax/Lavg in iteration bounds when (63) is used.

An advantage of Algorithm 2 over Algorithm 3 is that when the solution
exhibits some partial smoothness structure, Algorithm 2 may be able to iden-
tify the low-dimensional manifold on which the solution lies, as it is the case
for the cyclic variant described in [21]. We can see that the convergence rate
bounds for ‖Gk‖ are the same in both algorithms, and the convergence in the
general convex case after k0 iterations is the same as well, although the defi-
nition of k0 can be different and the early linear convergence conditions and
rates also differ slightly. Thus, except when partial smoothness is present, the
convergence behaviors of the two algorithms appear to be similar.

5 Related Work

One of the (serial, deterministic) algorithms considered in our recent paper [16]
is a special case of Algorithm 1 with only one block (N = 1). The technique
for measuring inexactness is borrowed from [16], but the extension described
above, to randomized BCD and arbitrary sampling probabilities, requires novel
convergence analysis.

The case in which (4) is solved exactly is discussed in [12]. This paper uses
the same boundedness condition for the Hk

i as ours, and the blocks can be
selected under a cyclic manner (with an arbitrary order), or a Gauss-Southwell
fashion. For the cyclic variant, the convergence rate of the special case in which
Q forms an upper bound of the objective improvement is further sharpened
by [11, 22]. The relaxation to approximate subproblem solutions, with an in-
exactness criterion different from ours, is analyzed in [10]. The latter paper
shows linear or sublinear convergence rates of a certain type, but the relation
between the convergence rates and either the measure of inexactness or the
choice of Hk

i is unclear. We note too that the cyclic ordering of blocks is ineffi-
cient in certain cases: [14] showed that the worst case of cyclic BCD is O(N2)
times slower than the expected rate of randomized BCD.

The Gauss-Southwell variant discussed in [12] can be extended to the inex-
act case via straightforward modification of the analyses for inexact variable-
metric methods (see for example [15,16,23–25]), giving results similar to what
we obtain here with uniform sampling. It may be possible to utilize techniques
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for single-coordinate descent in [26] to obtain better rates by considering a
norm other than the Euclidean norm, as was done in [27], but such extensions
are beyond the scope of the current paper.

The special case of Algorithm 2 discussed in Section 4 has received much at-
tention in the literature. As mentioned earlier, the non-regularized case (ψ ≡ 0
in (1)) was first analyzed in [7] for convex and strongly convex f . That paper
uses a quadratic approximation of f that is invariant over iterations, together
with a fixed step size. Since it is relatively easy to solve the subproblem to
optimality in the non-regularized case, inexactness is not considered. The sam-
pling strategy of using the probability pi = Lαi /

∑
j L

α
j for any α ∈ [0, 1] was

analyzed in [7]. The two extreme cases of α = 0 and α = 1 correspond to
uniform sampling and (63), respectively. The ith block update in either case
is di = −∇if(x)/Li, so we obtain from the blockwise Lipschitz continuity of
∇f that

Ei [f (x+ Uidi)− f (x)] ≤
∑
i

pif (x)− pi
2Li
‖∇if(x)‖2 − f (x)

≤ −min
i

pi
2Li
‖∇f(x)‖2 .

This bound suggests that if we use pi = 1/N , the complexity will be related
to NLmax, whereas when pi is proportional to Li, the complexity is related to
the smaller quantity NLavg, consistent with our discussion in Section 4. The
case in which ψ is an indicator function of a convex set is also analyzed in [7],
with an extension in [28] to convex and strongly convex regularized problems,
but both these analyses are limited to Algorithm 2 with uniform sampling.
The case in which f in (1) is not necessarily convex is analyzed in [20], again
under uniform sampling. Our results allow broader choices of algorithm, and
show that non-uniform sampling can accelerate the optimization process.

The special case of Algorithm 2 applied to the dual of convex regularized
ERM, where each ψi is strongly convex, with non-uniform samplings for the
blocks, is analyzed in [29]. Some primal-dual properties of these problems are
used to derive the optimal probability distribution for the primal suboptimal-
ity. It is unclear how to generalize this analysis to other classes of problems.
Our recent work [30] shows a convergence rate of o(1/k) of Algorithm 2 when
f is convex, under arbitrary non-uniform sampling of the blocks, and without
the assumption of finite R2

0. However, this work does not show convergence
improvement for non-uniform sampling, like the improvement shown above for
(63). Moreover, our earlier paper does not address the early linear convergence
rates in the convex case.

He et al. [31] consider the case of adaptive probability distributions that
change every iteration for sampling the coordinates or the blocks, for an algo-
rithm slightly different from the BCD framework considered here. They show
that suitable choices for adaptive probabilities may further improve the conver-
gence. Although our framework allows for adaptive probability distributions
as well, most of our convergence results are for fixed probabilities. Moreover,
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most works considering adaptive probabilities do not yield an empirical ad-
vantage for the adaptive distribution that give better theoretical convergence,
because updating the probabilities followed by sampling can incur an addi-
tional per-iteration cost of O(N) (and a cost of O(N2) per “epoch” of n suc-
cessive iterations). For high-dimensional problems, these works usually rely
on heuristics to work in practice; see the discussion in [31] and the references
therein.

The paper [8] describes inexact extensions of [7] to convex versions of (1).
This paper uses a different inexactness criterion from ours, and their framework
fixes Hk

i over all iterations, using small steps based on Li rather than a line
search. Thus, their algorithm requires knowledge of the parameters Li. In the
regularized case of ψ 6= 0, their algorithm is compatible only with uniform
sampling. [9] allows variable Hi and backtracking line search, but under a
different sampling strategy in which a predefined number of blocks is sampled
at each iteration from a uniform distribution. The other difference between our
algorithm and that of [9] is that their inexactness condition can be expensive to
check except for special cases of ψ (see their Remark 5). Our improvements over
[9] include (1) an inexactness framework that allows more general ψ, (2) non-
uniform sampling that may lead to significant acceleration when additional
information is available, (3) sharper convergence rates, and (4) convergence
rate results for nonconvex f .

6 Efficient Implementation for Algorithm 1

An important concern in assessing the practicality of Algorithm 1 is whether
the operations of partial gradient evaluation and line search can be carried
out efficiently, and whether there are natural choices of the variable metrics
Hk
i that can be maintained efficiently. In this section and the computational

section to follow, we consider problems in which f has the form

f(x) = g(Ax) (67)

for a given matrix A ∈ R`×n and a function g : R` → R that is block-separable,
and the evaluation of g(z) costs O(`) operations. This structure includes many
problems seen in applications, including the regularized ERM problem in ma-
chine learning and its Lagrange dual. We also discuss the practicality of non-
uniform sampling in this section.

One key to efficient implementation of Algorithm 1 is to maintain explicitly
the matrix-vector product Ax, updating it during each step. The updates have
the form

A(x+ Uidi) = Ax+Aidi,

where di ∈ Rni is the update to the ith block and Ai := AUi is the column
submatrix of A that corresponds to this block. The partial gradient has the
form

∇if(x) = A>i ∇g(Ax),
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so it can be evaluated at the cost of evaluating ∇g (costs O(`) operations as
evaluating g costs O(`)) together with a matrix-vector product involving Ai.

To perform the line search in Algorithm 1, we need to evaluate ψi(xi+αdi)
for each value of α, along with f(x+ αUidi) = g(Ax+ αAidi). Once Aidi has
been calculated (once), the marginal cost of performing this operation for
each α is the O(`) operations needed to calculate Ax + αAidi and the O(`)
operations needed to evaluate g.

A natural choice for the quadratic term Hk
i in subproblem (5) is the ith

diagonal block of the true Hessian, which is

[∇2f(x)]ii = A>i ∇2g(Ax)Ai. (68)

(Note that the subscript is the (i, i) block, not the (i, i) entry.) The block-
separability of g makes∇2g(Ax) block-diagonal, and actually diagonal in many
applications. Thus the matrix (68) has a particularly simple form. We note
moreover that when iterative methods are used to (approximately) minimize
(5), we do not need to know this matrix explicitly, but only to be able to com-
pute matrix-vector products of the form Hk

i vi (for various vi) efficiently. This
operation can be done at the cost of two matrix-vector multiplications involv-
ing Ai, together with the (typically O(`)) cost of multiplying by ∇2g(Ax).

There are two concerns in implementing non-uniform samplings such as
the Lipschitz sampling. The first is simply the cost of sampling from a non-
uniform distribution, for which a naive method may cost O(N) operations.
Fortunately, there are efficient methods such as that proposed in [32] for non-
uniform samplings such that given a fixed distribution, after a O(N) cost of
initialization, each run costs the same as sampling two points uniformly ran-
domly. Note that the overhead incurred in changing probability distributions
{pki } between iterations can nullify any efficiencies gained; the sampling can
then become the bottleneck especially when the update itself is inexpensive.
For completeness, we give details of our implementation of non-uniform sam-
pling in the Appendix.

The second concern is that the cost per iteration is different under different
sampling strategies. Especially when the data are sparse, the value of Li may
be positively correlated to the density of the corresponding data point. In this
case, sampling according to Li may increase the cost per iteration significantly.
However, if one can estimate each norm ‖Hi‖, the step sizes, and the cost of
updating different blocks in advance, it is not hard to compare the expected
cost increase and the expected convergence improvement to decide if non-
uniform sampling should be considered. When such information is unavailable
or hard to obtain, uniform sampling can still be used.

7 Computational Results

This section reports on the empirical performance of Algorithms 1-3 on three
sets of experiments. In the first set of problems, which are convex, we compare
uniform sampling and the Lipschitz sampling for the traditional randomized
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Fig. 1: Comparison of different sampling strategies using fixed step sizes in terms of epochs.
The prefix “H” refers to the choice Hi = LiI, while “I” means H = I.

Table 1: Data sets used in the LASSO problem.

Data set #instances n Lmax/Lavg C
cpusmall scale 8, 192 12 1.29 .001
covtype.binary.scale 581, 012 54 8.58 .001
epsilon normalized 400, 000 2, 000 5.49 .2

BCD approaches discussed in Section 4, on both Algorithms 2 and 3. In the
second set of experiments, also on convex objectives, we investigate a version of
Algorithm 1 in which the ith diagonal block of the true generalized Hessian is
used as Hk

i in (5). In both experiments, we report the relative objective value
difference to the optimum, defined as (F (x) − F ∗)/F ∗, where F ∗ is obtained
by running our algorithm with a tight termination condition. The third set
of experiment considers a nonconvex problem, and therefore the algorithms
are not guaranteed to find F ∗. We report the measure ‖Gk‖2 of stationarity
instead.

7.1 Traditional Coordinate Descent

We first illustrate the speedup of Lipschitz sampling over uniform sampling
using the simple LASSO problem [33]

min
x∈Rn

C

2

l∑
i=1

(a>i x− bi)2 + ‖x‖1, (69)

where (ai, bi) ∈ Rn×R, i = 1, . . . , l, are the training data points and C > 0 is a
parameter to balance the two terms. In the subproblem, each “block” consists
of only one coordinate and therefore n = N . Note that the corresponding
subproblem (4) has a closed-form solution when H is a multiple of identity, so
we have η = 0 in (6).

Our goal here is not to propose an optimal BCD algorithm for (69) but
merely to compare sampling strategies. We choose C so that among the final
solutions generated by different variants we compare, the sparsest one has a
sparsity of around 50%. Statistics of the data sets and the value of C are
listed in Table 1. We test both Algorithms 2 and 3, and both uniform and
Lipschitz samplings. We present convergence in terms of epochs, where each
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Fig. 2: Comparison of fixed and variable quadratic terms for solving (70) with C = 1. Left
column: epochs; Right column: running time.

epoch is a group of N successive iterations. Most of the results in Figure 1
show a clear advantage for Lipschitz sampling, consistent with our convergence
analysis. The only exception is Algorithm 3 on the data set epsilon, where
the two sampling strategies give similar performance. The major reason for
this exception is that different sampling strategies identified the correct active
set at different stages, and these differences affect the overall convergence
behavior.
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We also observe that because of the effects of active set identification,
Algorithm 2 often outperforms Algorithm 3, but when n is small (as in cpus-
mall scale), the two perform quite similarly. Early fast convergence can be
observed empirically in all examples, as suggested by Theorem 3.1.

7.2 Variable Metric Approach

We show the advantage of using variable quadratic terms Hk
i in (5), in com-

parison with a fixed term. For this purpose, we consider a group-LASSO reg-
ularized squared-hinge loss problem defined by

min
x∈Rn

C
l∑
i=1

max
{

1− bia>i x, 0
}2

+

dn/5e∑
i=1

√√√√min{5,n−5(i−1)}∑
j=1

x2
5(i−1)+j , (70)

where (ai, bi) ∈ Rn × {−1, 1}, i = 1, . . . , l are the training data points and
C > 0 is a parameter to balance the two terms. Each set of five consecutive
coordinates is grouped into a single block to form the regularizer. We compare
the following algorithms.

– VM-t: our variable metric approach of Algorithm 1, with H being the
generalized Hessian with 10−10I added to ensure that the condition (23)
is satisfied with mi > 0. We use uniform sampling of the blocks and the
SpaRSA approach of [34] to solve the subproblem, with t ∈ {5, 10, 20}
being the number of SpaRSA iterations applied to each subproblem.

– FM: the fixed metric approach considered in [8]. We use a global upper
bound of the generalized Hessian as the fixed metric. As Hi are precom-
puted, we consider both uniform sampling and the sampling scheme of
(41) using the largest eigenvalue of each Hi. We solve each subproblem
inexactly using 10 SpaRSA iterations.

– RCD: Algorithm 2 with η = 0. We use both Lipschitz sampling (63) and
uniform sampling.

– FISTA [35]: the accelerated proximal gradient approach that does not ex-
ploit the block-separable nature of the regularization term.

The FISTA approach is included as a comparison with state of the art for
problems without block separability.

We consider the data sets in Table 2, obtained from the LIBSVM website,4

and set C = 1 in (70). Results are shown in Figure 2. Note that the varying
number of SpaRSA iterations used in VM-5, VM-10, and VM-20 have little
impact on the convergence in terms of both epochs and running time, and
that all these variants are significantly faster than their competitors, showing
the advantages of solving the subproblems with variable metrics inexactly. For
news20, Lipschitz sampling with both the fixed metric approach and Algo-
rithm 2 are the fastest in terms of epochs, but the running times are much

4 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 2: Data sets used in the group-LASSO regularization experiment.

Data set #instances n
w8a 49, 749 300
real-sim 72, 309 20, 958
news20 19, 996 1, 355, 191
rcv1 test 677, 399 47, 236

slower than the proposed variable metric approach. The reason is that news20
is a very sparse data set, with the size of the Lipschitz constants highly corre-
lated to the density of each coordinate, making the average number of nonzero
elements processed per epoch much higher when Lipschitz sampling is consid-
ered.

We also observe that for both the fixed metric approach and Algorithm 2,
Lipschitz sampling is always faster than uniform sampling in terms of epochs,
confirming our analysis. But in terms of running time, the situation may differ.
We also observe that FISTA performs better in running time than in epochs,
mainly because it updates the variables and the gradient less frequently, and
its memory access is always sequential and therefore faster. Finally, we observe
the early linear convergence in the variable metric approach, the fixed metric
approach, and Algorithm 2, verifying the result in Theorem 3.1 empirically.

We also notice that although the variable metric approach is the only one
that requires line search, it is still the fastest in terms of running time, showing
that line search does not occupy a significant portion of the running time.

7.3 A Nonconvex Problem

We now consider a nonconvex problem. Following the setting of [36], we con-
sider the smooth biweight loss by [37]:

f(x) = C
l∑
i=1

φ
(
a>i x− bi

)
, where φ (z) =

z2

1 + z2
, (71)

for some C > 0, with (ai, bi) ∈ Rn × R for i = 1, . . . , l. Through simple
calculation, we can see that the Hessian of φ is

φ′′(z) = −
2
(
3z2 − 1

)
(z2 + 1)3

.

Its value lies in [−0.5, 2], showing that f is nonconvex. For the regularization
term, we consider both the `1 norm used in the first set of experiments and
the group-LASSO regularization used in the second set of experiments.

For the `1-regularized problem, we compare different sampling strategies
of RCD. In the previous results, Algorithm 2 tends to perform better than
Algorithm 3, so we apply only the former in this experiment. As this nonconvex
problem is harder than LASSO, we consider the first two smaller data sets in
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Fig. 3: Comparison of different sampling strategies on the nonconvex biweight problem with
`1 regularization.

Table 1. Results are shown in Figure 3. We see that as predicted by our theory,
sampling according to (63) yields faster convergence than uniform sampling.

For the group-LASSO-regularized part, different from the previous experi-
ment, we do not include FISTA in our comparison because it is not applicable
to nonconvex problems. The FM approach obtains the global upper bound for
the Hessian through using the upper bound 2 for φ′′(a>i x−bi) for all i. For the
VM approach, the Hessian block may be indefinite so we obtain Hk

i by adding
a multiple of identity as needed to make it positive definite. In particular, we
compute the eigenvalues of the Hessian block, and when the smallest eigen-
value is smaller than 10−10, we add a multiple of identity to Hk

i to make the
smallest eigenvalue exactly 10−10, and otherwise we do not modify Hk

i . Note
that since the size of each Hk

i is at most 5 × 5, computing its eigenvalues is
cheap. We conduct the comparison using the first three data sets in Table 2.
The comparison between the variable metric approach and the fixed metric
approach with different samplings is shown in Figures 4. All approaches use
10 SpaRSA iterations for each subproblem. On all three data sets, the variable
metric approach converges faster than the fixed metric approach with uniform
sampling. As in the previous experiment, Lipschitz sampling has much better
convergence on news20 in terms of epochs. An interesting difference is that
Lipschitz sampling does not work well on the other two data sets. A further
examination indicates that on those two data sets, the Lipschitz sampling
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strategy identifies the correct sparsity pattern much later, possibly affecting
the convergence behavior.

With regard to running time, the fixed metric approach with uniform sam-
pling tends to be the fastest. The reason is that on this nonconvex problem,
the convergence advantage of the variable metric approach is not significant
enough to counterbalance the higher per-iteration cost. The less strong conver-
gence advantage is likely from the damping term being added to the variable
metric. There are various ways to modify the indefinite Hessian to make it
positive definite, but so far there is no conclusion which approach is most
effective. Comparing various Hessian modification strategies is an interesting
future work.

This set of experiments shows that when we are dealing with nonconvex
problems, variable metric approach based on the Hessian might be less effec-
tive because of the indefiniteness of the Hessian. On the other hand, Lipschitz
sampling has better convergence speed on three out of the five data sets, indi-
cating that when the sparsity pattern identification is not a problem, Lipschitz
sampling has better convergence speed.

8 Conclusions

Starting with a strategy for regularized optimization using regularized quadratic
subproblems with variable quadratic terms, we have described a stochastic
block-coordinate-descent scheme that is well suited to large-scale problems
with general structure. We provide detailed iteration complexity analysis, al-
lowing for arbitrary sampling schemes. A special case of our theory extends
known results for a sampling strategy based on blockwise Lipschitz constants
for randomized gradient-coordinate descent from the non-regularized setting
to the regularized problem (1) and from convex problems to nonconvex prob-
lems. Computational experiments show empirical advantages for our variable
metric approaches.
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Appendix: Efficient Implementation of Non-uniform Sampling

We describe our implementation of non-uniform sampling. The O(N) initialization step is
described in Algorithm 4. After the initialization, each time to sample a point from the
given probability distribution, it takes only 2 independent uniform sampling as described in
Algorithm 5.

Algorithm 4 Initialization for non-uniform sampling

1: Given a probability distribution p1, . . . , pN > 0;
2: i← 1;
3: Construct U ← {u | pu > 1/N}, L← {l | pl ≤ 1/N};
4: while L 6= φ do
5: Pop an element l from L;
6: Pop an element u from U ;
7: upperi ← u, loweri ← l, thresholdi ← pl/(1/N);
8: pu ← pu − (1/N − pl);
9: if pu > 1/N then

10: U ← U ∪ {u};
11: else
12: L← L ∪ {u};
13: end if
14: i← i+ 1;
15: end while

Algorithm 5 Non-uniform sampling after initialization by Algorithm 4

1: Sample i and j independently and uniformly from {1, . . . , N};
2: if j/N ≥ thresholdi then
3: Output upperi;
4: else
5: Output loweri;
6: end if
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