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Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This
has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show
that artificial intelligence (Al) can provide an unbiased alternative to this paradigm for phases with subtle, or even
unknown, patterns. Long- and short-range spin correlations spontaneously emerge in filters of a convolutional

neural network trained on snapshots of single atomic species. In the less well-understood strange metallic phase
of the model, we find that a more complex network trained on snapshots of local moments produces an effective
order parameter for the non-Fermi-liquid behavior. Our technique can be employed to characterize correlations
unique to other phases with no obvious order parameters or signatures in projective measurements, and has
implications for science discovery through Al beyond strongly correlated systems.
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I. INTRODUCTION

Strongly correlated phases of matter are often described
in terms of relatively simple real space order parameters,
which are theoretically understood using Landau symmetry-
breaking theory [1]. For instance, ferromagnetism on a square
lattice involves a uniform arrangement where the electrons’
spins align and create a magnetic state with a wave vector
q = 0. Antiferromagnetism, slightly more complex, is re-
vealed by a q = 7 alternation of the electrons’ spin state on
two sublattices. These choices, and incommensurate (spiral)
order which bridges them at general q, can be characterized
in a unified way through the magnetic structure factor, S(q),
and further generalized to include time-domain patterns via
the dynamic susceptibility, x(q, w). Similar statements apply
to charge density wave and other phases involving diagonal
long-range order.

While many of our theoretical and experimental probes
of interacting quantum systems have been constructed with
coupling to these patterns in mind, there is an increasing
realization that the most interesting strongly correlated phases
might not be immediately accessible via such observables.
Cuprate and iron pnictide superconductors, which combine
closely entwined conventional phases with well-established
order parameters, and much less well-understood non-Fermi-
liquid (NFL) or pseudogap phases with so far “hidden orders”
are examples [2—4], as is the zoo of orbital ferromagnetism,
superconductivity, and Mott-insulating behavior in twisted
bilayer graphene [5,6]. The community of strongly correlated
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quantum systems is thus faced with the challenge of develop-
ing new means of identifying complex phases.

Here, we introduce an unbiased approach in which artifi-
cial intelligence (AI) is used to extract hidden features from
raw images of quantum many-body systems. We test our ap-
proach using projective measurements on a two-dimensional
(2D) Fermi-Hubbard model, obtained through quantum gas
microscopy of ultracold fermionic atoms in an optical lattice.
We find that filters of a convolutional neural network (CNN),
trained to recognize snapshots of fermions, capture features
at different densities that have clear interpretation in terms
of short- and long-range magnetic correlations. We further
show that a more complex CNN can produce an effective
order parameter for the NFL phase, based on the interplay
of multiple types of density fluctuations, reflecting the more
enigmatic nature of the correlations in this phase.

In the experiment, the 2D Fermi-Hubbard model is realized
using a spin-balanced mixture of the first and third lowest
energy states of °Li loaded into a square optical lattice. We
work at a magnetic field of 615 G in the vicinity of the
Feshbach resonance near 690 G, which gives a scattering
length of 1056(10)ag, where ay is the Bohr radius. The lattice
depth is 7.25(2)ER, where Ey is the lattice recoil energy and
Er/h = 14.66 kHz. For these parameters we obtain t/h =
850(20) Hz and U/t = 8.0(1). Here, t and U are the nearest-
neighbor hopping matrix element and the strength of on-site
repulsive interaction, respectively, in the Hubbard model (see
Appendix A).

Using quantum gas microscopy techniques [7], we image
the atoms in the lattice with single site resolution with a
fidelity of 98%. When a fluorescence image is taken, atoms
on doubly occupied sites undergo light-assisted collisions and
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FIG. 1. Phase diagram, sample snapshots, and CNN architecture.
(a) Schematic phase diagram of cuprate high-temperature supercon-
ductors in the space of temperature and hole doping. AF, PG, and
SC stand for antiferromagnetic, pseudogap, and superconducting
phases, respectively. (b) Sample experimental (left) and determinant
quantum Monte Carlo (right) snapshots taken for U = 8¢ at the
density n ~ 0.82 at different temperatures. The bottom row shows
the lower-temperature snapshots whose pixels have been randomly
shuffled, i.e., “fake” snapshots. (c) The main convolutional neural
network architecture used in this study. It contains a convolutional
layer with one filter and one feature map followed by a global
pooling layer, a hidden layer with eight fully connected neurons,
and an output softmax layer with two neurons, each associated with
a temperature limit. We use the rectified linear unit (ReLU) as the
activation function in all but the output layer. In our experiments we
observe that the presence of the fully connected layer accelerates the
training of the neural network.

appear empty. An image taken this way allows us to extract the
local moment on each site. Alternatively, we can apply a short
pulse of resonant light prior to taking an image to eject atoms
of one of the two hyperfine states. This allows us to measure
the single component density of the remaining hyperfine state.

Our lattice beams produce a harmonic trapping potential,
which if uncompensated leads to significant variations of the
local density. To study regions of uniform density, we flatten
the potential using light shaped using a spatial light modulator
[8]. In the subsequent analysis, we work with a flattened
region of 20 x 20 lattice sites.

Figure 1 shows two randomly chosen samples of binarized
occupancy snapshots at an average density of n = 0.82(2) at
two extreme temperatures of 7 ~ U ~ 8¢ and T ~ 0.35¢.
These parameters place us within the NFL region of a typical

n=— 0.97 0.835 0.82 0.735 0.70 0.64 0.58
Spin-up/spin-down 402 216
Singles 201 281 5023 290 342 281 330

cuprate phase diagram [see Fig. 1(a)]. Thermometry is per-
formed using averages of various correlation functions taken
over such snapshots [8].

The increasingly large number of snapshots taken in quan-
tum gas microscope experiments in various regions of the
parameter space lends itself to data-driven approaches for
science discovery, such as the enlisting of Al (see Table I
for the number of snapshots used in this study). In fact, early
implementations of machine learning techniques for the study
of quantum many-body systems demonstrated great potential
[9-15]. Recent applications to experimental data have directly
led to the discovery of new physics [16-20], modeling of
their distribution [21], or the optimization of experimental
processes [22,23], including those related to quantum gas
microscopy.

CNNs offer an ideal platform for the detection of patterns
in the experimental snapshots. Not only can they efficiently
compress the information in images and use them for classifi-
cation, but also their trained filters provide a window into the
relevant features observed [24]. Figure 1(c) shows the main
CNN architecture we have used. After labeling them accord-
ing to their temperature, hundreds of snapshots taken at the
extreme temperatures along with their labels are provided to
the CNN for training. During the training, the network adjusts
its free parameters to minimize the difference between given
labels and its prediction (see Appendix B). The convolutional
layer in our CNN interacts directly with the input snapshots
and, therefore, examining the filter after the completion of
training can teach us about the most important feature the
network has picked up.

II. RESULTS

Figure 2(a) shows a sample 5 x 5 filter for a CNN that
is trained to distinguish experimental snapshots of a single
species of fermions at the highest temperature (T ~ 2.5¢)
from those at the lowest temperature (T ~ 0.35¢) whenn ~ 1.
If we expect mostly random behavior at high temperature,
of the same order as the largest energy scale in the system,
the features that spontaneously develop in the filters during
training will most likely represent patterns found in the low-
temperature snapshots. We find that the CNN consistently
makes the distinction with more than 91% accuracy, and it
does so using filters showing a distinctive pattern indicative of
long-range antiferromagnetic (AF) correlations.

Training the CNN using similar snapshots obtained for
n=0.82 at T ~ 7.5¢t and 0.35¢ results in filters that reflect
a shorter-range anticorrelation between neighboring fermions
of the same species [see Fig. 2(b)]. The nearest-neighbor
checkerboard pattern emerging in the filters is consistent with
the fact that the correlation length in the NFL region is about
one lattice spacing [25]. We find that this feature appears
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FIG. 2. Analysis of single-species snapshots using CNNs with
one filter. Sample 5 x 5 trained filters for (a) n ~ 1 and (b) n = 0.82.
The CNN architecture is shown in Fig. 1(c). The testing accuracies
are between 91% and 96%. The visual pattern in (a) is consistent
with recognizing long-range antiferromagnetic (AF) order near half
filling. The filter in (b) indicates a pattern capturing short-range AF
correlations. (c), (d) Similar sample filters evolved from training
runs using determinant quantum Monte Carlo (DQMC) simulations
at T = 0.1¢ and 0.44¢, with testing accuracies of 91% and 68%,
respectively. (e), (f) Theory data for the nearest-neighbor spin-spin
correlation for U = 8¢ vs density at different temperatures (numer-
ical linked cluster expansion), and vs distance for n = 0.81 and
n=1.00 at T =0.44r (DQMC). These results illustrate that Al
can capture the correct trends in magnetic behavior of the Hubbard
model, and that the trained filters carry a clear physical interpretation.

at different locations in the filter for different training runs,
which points to a redundancy: on average the filter must reflect
the translational symmetry of the underlying system. These
findings suggest that the network effectively uses the strength
of AF correlations as a measure for classifying snapshots
of a single species of fermions. Figures 2(e) and 2(f) show
that the density, distance, and temperature dependence of the
magnetic correlations of the model, C(r) (see Appendix A),
which are calculated here on a 10 x 10 cluster using the
determinant quantum Monte Carlo (DQMC) method [26], or
in the thermodynamic limit using the numerical linked clus-
ter expansion (NLCE) [27,28], support this observation. We
note that the unbiased quantum Monte Carlo simulations also
provide a platform to corroborate these findings. However,
except in one spatial dimension, these simulations cannot
provide projective measurements in the density basis. Instead,

theory “snapshots” can be constructed via expectation values
of local charge or spin density using instances of auxiliary
field variables during a simulation; for example, the ith pixel
of a spin-up DQMC snapshot is (7i;1), = 1 — Giiy (h), where
Giir (h) is the ith diagonal element of the spin-up equal time
Green’s function matrix for the auxiliary field instance 4. We
perform the simulations for a 10 x 10 site Hubbard system
with U = 8¢ at several average average densities and temper-
atures (see Appendix D).

At high temperatures, of the order of 3¢, we find that
density snapshots are fuzzy with no clear empty sites; mostly
fluctuations about an average background density can be seen.
This fuzziness is less of a concern for single-species snapshots
[see Fig. 1(b)], although they too lose their pixelated character
at higher temperatures. For this reason, to eliminate fuzziness
as an obvious feature for the CNN to learn, instead of high-
temperature snapshots, we use low-temperature images whose
pixels have been randomly shuffled, effectively destroying any
physical correlations. In the following, we refer to the latter as
fake (as opposed to real) snapshots.

Figures 2(c) and 2(d) show sample filters from training
experiments using theory snapshots of single species at half
filling and n = 0.82. Despite reduced accuracies of about 68%
for the latter, which we believe is due to the exacerbation of
the issue with the nonprojective nature of simulated images at
this density, we find that the trained features are in excellent
agreement with those obtained with quantum gas microscope
snapshots. Together, they demonstrate that relevant spin corre-
lations can be captured in an unbiased fashion through CNNs.

Studies of the origin of the NFL behavior, a central ques-
tion in any theory of high-temperature superconductivity [29],
have for decades been focused on its possible connections to
the order parameter fluctuations of a magnetic quantum crit-
ical point [29-35]. Here, we are in a position to ask whether
any such fluctuations manifest themselves in charge correla-
tions too, and to what extent they can be inferred from the
other type of snapshots available in the experiment, those of
local moments.

A similar analysis using images at the two extreme tem-
peratures, however, is largely affected by the abundance of
doubly occupied sites at 7 ~ 7.5¢, and their lack of repre-
sentation in the snapshots of local moments. Upon lowering
the temperature to T ~ 0.35¢, the fraction of doubly occupied
sites at 18% doping reduces roughly by a factor of 4, from
12% to about 3% [28], providing the CNN again with an
obvious feature with which to perform classification. Remov-
ing this bias by randomly populating pixels to create “fake”
replacements for high-temperature snapshots in the training
brings the accuracy down dramatically when n = 0.82.

Figure 3 shows that the accuracy of CNNs trained on
snapshots of local moments largely depends on the strength
of short-range correlations between the moments. The largest
accuracies (almost 90%) are typically achieved near quarter
filling, where the correlations are the most negative. Patterns
observed in filters trained in this region are also consistent
with the anticorrelation of neighboring moments [Fig. 3(a)].
The accuracy drops to around 60% at n = 0.82, near the zero
crossing of the correlator, which is shown in Fig. 3(b). Typical
trained filters do not display any immediately recognizable
patterns either [see Fig. 3(c)]. Near half filling, the correla-
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(a) (c)

FIG. 3. Analysis of local moment snapshots using CNNs with
one filter. Representative 5 x 5 filters for runs at (a) n = 0.58, (c)n =
0.82, and (d) n = 0.97 using the same CNN architecture as one
used for snapshots of single species. (b) The nearest-neighbor local
moment correlation function from DQMC (solid line) on an 8 x 8
cluster at 7 = 0.3 and from the experiment (circles) at similar low
temperatures. The testing accuracy reaches (a) 89%, (c) 62%, and
(d) 60%.

tions between local moments are positive due to the bunching
of holes and doubly occupied sites [36]. Here, we find that,
despite the relatively low accuracies (< 65%), trained filters
often do reflect the bunching of empty sites [Fig. 3(d)].

The comparison of Fig. 3(c) (n = 0.82) with Figs. 3(a) and
3(d) (n =0.58,0.97) makes it clear that snapshots of local
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moments in the NFL region of the Hubbard model do not
contain a single dominant ordering pattern and that a more
advanced treatment may be necessary to capture the physics.
In Fig. 4, we show results of a training with a CNN, modi-
fied to include six 7 x 7 filters in its convolutional layer (see
Appendix B). The bigger data set we have available for snap-
shots of local moments at this density allows us to experiment
with different filter sizes and numbers of filters. We find that
including more than one filter in the CNN improves the best
accuracies only marginally in this case, up to around 65%,
and having too many and/or much larger filters can still result
in overfitting. We also find that using a deeper CNN with
two convolutional layers does not significantly improve the
accuracy.

Figure 4(a) shows six filters of a sample CNN trained on
the local moment snapshots. Their fuzzy patterns offer some
insight into possible spatial arrangements of local moments
at low temperatures. As we see below, patterns in filters m =
1, 4, 5, and 6 are more frequently associated by the network
with real low-temperature snapshots at this filling, whereas
patterns in filter m = 2 are more frequently associated with
fake snapshots.

By transferring the knowledge of the CNN to other den-
sities, we find that the network is the most sensitive to
correlations around the NFL region. Figure 4(b) shows the dif-
ference in probabilities that a snapshot and its fake counterpart
are categorized as belonging to the NFL region, effectively
eliminating density itself as a factor in the signal. We find this
quantity to be maximal in the vicinity of n = 0.8, suggesting
that the CNN as a whole is in fact focusing on local moment
correlations more unique to the NFL region and slightly lower
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FIG. 4. Analysis of local moment snapshots using CNNs with multiple filters. (a) The six filters of a trained CNN. Training is performed
with the 5023 experimental local moment snapshots taken at n = 0.82 and T' ~ 0.35. The testing accuracy remains at 62% with less than 1%
variation over the last 20 epochs (see Appendix B). (b) The difference in the average network output for 7 ~ 0.35¢ real and fake snapshots
as a function of the density when all six filters are present: A (Network Output"’) = (Network Output” (X™)) — (Network Output? (X)),
Superscript (1) indicates the value at the output neuron responsible for real low-temperature snapshots (see Appendix B). This quantity indicates
roughly the percentage of the output attributable to factors other than the density. (c) Similar to (b) at n = 0.82 when the CNN has access to
one filter at a time. (d) Four representative filters of a CNN with sixteen 5 x 5 filters trained using DQMC snapshots of local moments (see
Appendix D). (e), (f) Same as (b) and (c), but obtained using the CNN in (d).
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While the contribution of individual filters to the CNN’s
decision making cannot be completely isolated, we can study
what the network output would be if each filter were to act
alone (see Appendix B). Figure 4(c) shows this quantity av-
eraged over samples at n = 0.82, after subtracting the value
for the corresponding fake snapshot, for each of the six filters
shown in Fig. 4(a). The results suggest that filters 1 and 6,
if acting alone, would have the largest effect on the decision
making at this average density, followed by filters 2, 4, and 5,
while filter 3 plays almost no role at all. The negative value for
filter 2 indicates that the network signal is larger on average
for fake snapshots in that case.

Using DQMC, we verify that similar trends can be ob-
served in simulated snapshots of local moments. However,
unlike with the experimental snapshots, here, we find that the
accuracy generally increases with increasing the number of
filters in the CNN, while increasing the filter size does not
necessarily improve the performance. We attribute these to
the fundamental difference between the two types of snap-
shots (projective vs nonprojective). Figure 4(d) highlights a
representative sample of 5 x 5 filters of a CNN with 16 such
filters, trained on simulated snapshots reaching to an accuracy
of 87% (see Appendix C). They appear to measure a variety
of short-range correlations to assist the network in making
decisions. Figure 4(e) shows the overall signal of the CNN for
correlations unique to the NFL phase, plotted across densities.
It has a broad peak around the NFL region. As shown in
Fig. 4(f), patterns in the first three filters seem to be mostly
associated with real snapshots in the NFL region, while the
pattern in the m = 4 filter is mostly associated with the fake
snapshots. We find that including the information about dou-
bly occupied sites, i.e., using full density snapshots, generally
improves the diversity of features seen in the trained filters
while yielding the same basic trends.

III. DISCUSSION

Using specially designed artificial neural networks, we
have developed algorithms for extracting organizing patterns
of correlated particles from raw quantum many-body data in
an unbiased fashion and without any prior theoretical knowl-
edge. When applied to the snapshots of one of the two species
of fermionic atoms in a 2D optical lattice, our approach yields
patterns indicative of long- and short-range AF correlation
near and away from the commensurate filling, consistent with
theory. We show that these features can be reproduced using
nonprojective measurements from DQMC simulations.

Our analysis provides a window into the signatures of the
NFL phase, one of the most mysterious and theoretically
challenging phases in correlated electron systems, in snap-
shots of local moments from the quantum gas microscope.
We show that in this case, a more complex neural network
can be constructed and trained to be sensitive to correlations
specific to the strange metallic phase. A similar analysis of
snapshots with information about both species of particles
in future experiments [37] may further reveal the interplay
between spin and charge fluctuations in this region.

Nonlinearities in the neural network model make the inter-
pretation of features seen in the filters vis-a-vis correlations in
the physical snapshots challenging since the knowledge of the

network can be divided in nontrivial ways among its different
components. An early example of this was the surprisingly
successful classification of snapshots of the Ising lattice gauge
theory at T = 0 and T = o0, despite the lack of an order pa-
rameter, using CNNs with multiple filters [10]. The procedure
we have introduced here overcomes aspects of this challenge.
We point out that the nonlinearities are key for the success
of our CNNSs; for example, the principal component analysis
[38], a linear unsupervised learning method, largely fails to
draw any meaningful distinction between sets of snapshots
(see Appendix E).

The techniques developed in this work for the Al-assisted
feature extraction in projective measurements can be adapted
to peek into other mysterious phenomena for the Fermi-
Hubbard model, such as the pseudogap phase [39], or the
magnetic polaron which has been observed closer to half
filling [40]. They can also be employed to study other mi-
croscopic models of correlated systems. Our work paves the
way for Al-related studies that go beyond mere categorization
and the quest for gaining more predictive power and focus
instead on the inner workings of the machines to advance our
understanding of complicated natural phenomena.
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APPENDIX A: THE FERMI-HUBBARD MODEL

The Hamiltonian for the 2D Fermi-Hubbard model in
particle-hole-symmetric form is expressed as

A=—t) (¢, +Hc)
(i.j)

JrUXi:<ﬁiT - %)(fm - %)

— ) (g + ), (A1)

where 6;; (¢, ) creates (annihilates) a fermion with spin o on
site i, and Ay, = ¢; ¢, is the number operator. (i, j) denotes
nearest neighbors on a square lattice, U = 8¢ is the strength of

the on-site repulsive interaction in the numerical simulations,
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and p is the chemical potential. & = O corresponds to half
filling, although density fluctuations around half filling exist in
our grand canonical ensemble. r = 1 (also i = 1 and kg = 1)
sets the energy scale. The spin correlation function is cal-
culated as C,(r) = (S‘Z,iS’Z,iH), where SZ,i = %(fm — fjy) and
(---) denotes the expectation value. The local moment cor-
relation function is calculated as C,,(r) = (rhii M2, ), where

zi+r
~2 a A \2
mzy = iy — Ay )"

APPENDIX B: TRAINING THE CONVOLUTIONAL
NEURAL NETWORK

We implement our CNNs using TENSORFLOW [41]. The
minimalistic design in Fig. 1(c) we have adopted reflects
the need to reduce the number of free parameters to avoid
overfitting given the sizes of our data sets. To train, we assign
alabel, Y, to each snapshot based on the temperature at which
it is taken, or whether it is real or fake. Each label is stored
in the one-hot format, i.e., a binary array of two numbers, one
of which is 1 and the other 0. The index for 1 indicates the
category (high or low temperature, or real or fake) to which
each snapshot belongs. Given an input image X, the value
arriving at the first of the two output neurons of the CNN
shown in Fig. 1(c), e.g., at the neuron we have associated in
our labels to the low-temperature (or real) snapshots, is

O(X) = Y O x W P (B
h

where the sum is over hidden neurons,

s

4 1
hid _ filter filter
oP4(X) = ReLU(|:N— § ReLU(W™" . X(s5) + b )]

stride:s

x Wi 4 b*,;id>, (B2)

N; is the number of strides the filter takes around the image
convolving with different sections, W is the matrix of pixel
values for the filter, X(s) is the matrix of pixel values for the
section of the image the filter is convolving with in stride
s, ReLLU is the rectified linear unit activation function, and
piilter | yyhid | phid Whom(l), and b°"'") are numbers representing
other weights and biases in the network. O™, along with the
value arriving at the second output layer O3™(X), are then
passed through the softmax activation function to obtain two
probabilities as network outputs:

[N etwork Output(l)(X), Network Output(z)(X)]
= softmax[0"(X), 09"(X)]. (B3)

The input snapshot is classified as belonging to category i if
O is the higher probability, where O = Network Output®
for brevity. The accuracy is defined as the percentage of cor-
rect classifications given known labels Y. The convolution of
the trained filter with sections of the input image as it moves
around in strides of one in every direction creates a “feature
map” in which large overlaps between patterns in the filter and
the image are highlighted.

For training, we use the Adam optimizer, which is an
extension of stochastic gradient descent, to minimize the
cross-entropy cost function, defined as

1 2
= 3Y () [0 X))
X =1

+[1 = %X)ln[1 - 07 (X)]), (B4)

where N, is the number of data. During the training, we keep
between 10% and 20% of the snapshots from the CNN and
use them to perform unbiased testing of the accuracy.

1. CNN with more than one filter

In cases where we have more than one filter in the con-
volutional layer, we have modified the architecture to have
no fully connected hidden layer in order to reduce the total
number of network parameters; the output of each filter after
pooling is instead fully connected to the output layer. The
value arriving at the output neuron that is responsible for firing
when a real snapshot X is provided to the input, O"'(X), can
then be expressed as a linear combination of contributions
from individual filters:

o (X) =Y F(X), (BS)
m=1

S stride:s

1 i i
F#yx):[ﬁ'E:I%UJ“QW-X@)+HTW

boul(l)
Ny

x Wn‘l’“t(l)j| + : (B6)

where Ny is the number of filters, and W) and b}
are again numbers representing other weights and biases in
the network. As in the case of the CNN with one filter, the
network output is obtained using Eq. (B3).

2. Effect of individual filters

To estimate the effect of filter m on the outcome, we replace
01 2(X) with F1?(X) before the softmax function,

[N etwork Outputfn1 ) (X), Network Outputf,f) (X)]
= softmax[F"(X), F2 (X)), (B7)

so that we can interpret [Network Output P (X" — Network
Output'D(Xke)] as the percentage the network output for X,
based on the action of filter m alone, has to do with factors
other than the density itself.

3. Augmentation of data

We augment [42] our data for the experimental single-
species snapshots before training [Figs. 2(a) and 2(b)] by
applying point-group symmetries of the square lattice to each
snapshot. This will increase the data by a factor of 8, and in
these cases helps make the training smoother and/or faster.
However, we find that generally, such augmentation of data,
or breaking the 20 x 20 images into smaller subregions, does
not significantly affect the final accuracy. This is consistent
with the fact that the network architectures we have used in
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FIG. 5. Progression of CNN accuracy during training with
single-species snapshots. (a) Training and unbiased testing ac-
curacies, along with the value of the loss function when using
experimental snapshots at n ~ 1 to train the CNN with one filter,
leading to the filter shown in Fig. 2(a). (b—d) Same as (a), but for
trainings leading to filters in Figs. 2(b)-2(d). DQMC snapshots are
used in (c) and (d). (a) and (c) correspond to trainings near half filling
and (b) and (d) correspond to trainings at n = 0.82.

this work are not deep and do not show serious overfitting
even before the data augmentation.

4. Training progression

To monitor the training progression and look for signs of
overfitting, especially in the case of CNNs with more than one
filter, we track the training and the unbiased testing accuracies
as well as the loss function, defined in Eq. (B4), over epochs.
An epoch is when the network has gone over the entire data
set once.

Figure 5 shows the results for various trainings using
single-species snapshots that lead to filters presented in Fig. 2.
In each case, we stop the training roughly when the loss
function reaches a plateau. As can be seen, the training and
the unbiased testing accuracies, which agree throughout the
training process, also settle to their maxima.

Figure 6(a) shows similar results for the sample training
with snapshots of local moments that lead to the filter pre-
sented in Fig. 3(c). For this case, we find that it takes longer

(a) (b)
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FIG. 6. Progression of CNN accuracy during training with local
moment snapshots. (a) Same as Fig. 5(a), but for the training with
snapshots of local moments at n = 0.82 leading to the filter shown in
Fig. 3(c). (b) The average of maximum testing accuracies, obtained
through four or five separate trainings, vs density.

D
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FIG. 7. Progression of accuracy of CNNs with multiple filters
during trainings with local moment snapshots. Same as Fig. 5, except

that (a) experimental and (b) DQMC snapshots of local moments are
used to train CNNs with 6 and 16 filters, showcased in Fig. 4.

for any training to be achieved and that the fluctuations in
the accuracies are larger. Figure 6(b) shows the average of
maximum accuracies achieved through four or five different
training runs with different random number seeds over the
range of densities for which snapshots of local moments were
available. We see that as the strength of local correlations
decreases by increasing the density towards half filling [shown
in Fig. 3(b)], the maximum accuracies we can achieve also
generally decrease.

Figure 7 shows the same training progressions for the case
of CNNs with multiple filters, trained on snapshots of local
moments at n = 0.82, leading to results shown in Fig. 4. De-
spite the deviation of the average of two accuracies from each
other beyond ~1000 epochs when experimental snapshots are
used [Fig. 7(a)], signaling the beginning of overfitting due to
the relatively large number of free parameters in the CNN,
large fluctuations in the accuracies cause overlapping of the
two curves even after 5000 epochs. When DQMC snapshots
are used, the signs of overfitting are observed only after in-
creasing the number of 5 x 5 filters to about 60.

APPENDIX C: CNN WITH 16 FILTERS FOR THEORY
SNAPSHOTS OF LOCAL MOMENTS

Figure 8 shows the result of training a CNN with 16 filters
using 15 000 10 x 10 theory snapshots of local moments. This
is the same CNN whose filters are featured in Fig. 4(d). To
obtain the snapshots in the DQMC approach, we note that
for a particular auxiliary field, the expectation value of the
local double occupancy reduces to its uncorrelated value: the
product of the expectation values for spin-up and spin-down
occupancies. Therefore, the local moment at site i can be
written as (7i4) + (i) — 2(fip) (Aiy ).

Figure 8(a) shows the general improvement of the test-
ing accuracy by increasing the number of filters. Figure 8(b)
shows the 16 trained filters, which similarly to what we find
for spin, point to only short-range fluctuations. One can find
many redundancies. However, a few representative patterns
[those features in Fig. 4(d)] emerge. Figure 8(c) shows the
average network output when the network trained at n = 0.82
is tested on configurations across a range of densities. We also
test the network on fake snapshots. A nonmonotonic behavior
emerges in both cases. Subtracting the average network output
for the real and fake snapshots at each density results in a
curve that has a broad peak around n = 0.85 and showcases
the extent of learned correlations between local moments in
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FIG. 8. Analysis of DQMC local moment snapshots using a CNN with 16 filters. (a) The general improvement in the prediction accuracy
of the CNN by increasing the number of filters. (b) Trained filters when n = 0.82 and T = 0.44¢. Note that pixel values or their range in one
filter should not be compared with those in other filters since a filter-dependent bias is added to the result of the convolution before it is passed
through the ReLLU activation function (see Appendix B). The testing accuracy is around 87%. (c) Average network output when a real or fake
DQMC snapshot is provided as input, as a function of average density for this CNN. Here, 1 means all the snapshots are classified as likely
to be real n = 0.82 snapshots, 0 means all the snapshots are classified as likely to be fake n = 0.82 snapshots, and 0.5 means neither of the
two options is preferred. (d) The difference between the two curves in (c), representing the average percentage the decisions made by the CNN
have to do with factors other than the density itself. (¢) Similar to (d) when the CNN has access to one filter at a time (see Appendix B).
(f) Same as in (e), but at n = 0.82.

this CNN that have to do with factors other than the average

density itself [Fig. 8(d)]. See Appendix B for more details.
To attribute certain features seen in trained filters in

Fig. 8(b) to correlations unique to the NFL region, we have to

rule out their dominance at other densities. Figure 8(e) shows
the performance of individual filters over the same range of
densities we used to study the network output. Figure 8(f)
further highlights the values in Fig. 8(e) at n = 0.82. Based on
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FIG. 9. PCA of the experimental snapshots. (a), (b) Eigenvalues
of the covariance matrix of data for single-species snapshots at
n ~ 1 and their projection to the space of the two largest principal
components. The same 402 snapshots at each of the two extreme
temperatures, used for Fig. 2, are also used here. Although the data
points corresponding to the lower temperature [green (dark gray)
circles in (b)] are slightly less spread out than their high-temperature
counterparts [red (light gray) circles in (b)], there is no obvious
clustering of data based on temperature. (c), (d) The same as (a) and
(b), except for n = 0.82 and that 216 available snapshots at each of
the two extreme temperatures are used. (e), (f) The same as (c) and
(d), except that 400 real and 400 fake snapshots of local moments are
used. No discernible patterns emerge in these projections either.

these results, filters that significantly contribute to the CNN’s
decision-making process and are unique to the NFL phase
and, therefore, are the best candidates for offering insight into
local moment fluctuations are m = 1, 3, 6, 7, and 10. The
most frequently seen correlation seems to be the one between
two neighboring empty sites. Filters m = 6 and 13 signal that
the network also partly uses the information about the density
gradient near local moments to make a decision.

APPENDIX D: DETERMINANT QUANTUM MONTE
CARLO SNAPSHOTS

The implementation of DQMC used in the work proceeds
via the exact rewriting of the interacting electron-electron

problem as independent electrons moving in a space-
imaginary time auxiliary field A(r, ). This reformulation
involves first expressing the partition function 2 for the orig-
inal Hubbard Hamiltonian as a path integral, and then the
use of a Hubbard-Stratonovich transformation to decouple the
electrons. The original fermionic degrees of freedom are then
traced out analytically, leaving an equivalent expression for 2
as an integral over A(r, 7). Detailed descriptions can be found
in Refs. [26,43,44].

Here we focus on aspects of DQMC which have specific
implications to the machine learning process. The most cru-
cial is that, unlike world-line quantum Monte Carlo methods
or cold-atom experiments, which directly sample the O or 1
occupation of sites r by the fermions, at any point (snapshot)
in a DQMC simulation, the fermionic occupation is repre-
sented by a real number giving the probability of occupation
of that site in the specific h(r, 7) currently being sampled. As
the temperature is lowered below 7, sharper images containing
pixels more closely resembling binary pixels in the experi-
mental snapshots emerge. In fact, one can show that in the
atomic limit, local expectation values approach step functions
as T — 0. This “smearing” of the occupation makes some
aspects of machine learning via these snapshots more chal-
lenging. However, whether individual snapshots present (0,1)
fermion occupations or not, the strong correlation physics
(magnetism, superconductivity, strange metallicity) of the
Hubbard model needs to be built up from many thousands of
snapshots. It is the task of uncovering these many-body effects
that is shared by the theoretical and experimental images
investigated here with Al

The presence of the fermion “sign problem” [45-47] in
DQMC simulations can complicate the interpretation of the
theory snapshots. To avoid this complication to the extent
possible, at n = 0.82, we work at temperatures where the
problem is not severe, where at least 90% of the auxiliary
field configurations have a positive sign. We also treat the
network output during the testing process the same way we
treat the expectation value of a conventional observable, O, by
computing (0.} /{.) in place of (O), where . is the sign
associated with the auxiliary field configuration resulting in a
snapshot [11]. Like the network output, O is often a nonlinear
function of the auxiliary field.

APPENDIX E: PRINCIPAL COMPONENT ANALYSIS

We have employed the linear principal component analysis
(PCA) [38], an unsupervised learning algorithm, to perform
dimensional reduction on the experimental data and examine
whether any features emerge in the low-dimensional space,
revealing any potential linear relation between pixels as an
indicator for identifying low-temperature snapshots.

In the PCA, one forms a matrix of data, X, by flattening the
matrix of pixel values for each snapshot and placing them as
an array of 400 binary numbers in each row (of x). In the next
step, the covariance matrix of data is composed as x” - x. Di-
agonalizing the 400 x 400 matrix, we obtain its eigenvalues,
whose magnitudes are a measure for the variance of the data
along the principal axes, determined by the corresponding
eigenvectors. As demonstrated for the two-dimensional Ising
model in a pioneering application in physics [48], a dominant
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eigenvalue is indicative of a clear distinguishing pattern in the
snapshots that can be represented as a linear combination of
its pixels (their projection to the corresponding principal axis).

Figure 9 shows our results for both single-species (n ~ 1
and n = 0.82) and local moment (n = 0.82) snapshots. The
PCA does not seem to be able to draw any particular dis-
tinction between low and high temperature or real and fake
snapshots in any of the cases as there are no clear signs of
clustering of data points based on temperature or whether or
not they correspond to real snapshots. Figures 9(a) and 9(b)
show, respectively, the eigenvalues of the covariance matrix
of data for snapshots of single species near half filling and

their projections to the space formed by the first two principal
axes, representing the directions of the largest variance in data.
A large gap between the first few eigenvalues and the rest
of them would indicate that there are clear linear indicators
for distinguishing sets of data [48], something we do not
observe here. This is also inferred from the projection of data
in Fig. 9(b), where, other than a slightly larger spread of data
points at the lower temperature, no clear separation between
the hot and cold data points is formed in the space of the first
two principal components. Figures 9(c)-9(f) show a similar
trend for both the single species and local moment snapshots
atn = 0.82.
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