
Privacy Accounting and Quality Control in the

Sage Differentially Private ML Platform

Mathias Lécuyer, Riley Spahn, Kiran Vodrahalli, Roxana Geambasu, and Daniel Hsu
Columbia University

Abstract

Companies increasingly expose machine learning (ML)
models trained over sensitive user data to untrusted domains,
such as end-user devices and wide-access model stores. This
creates a need to control the data’s leakage through these
models. We present Sage, a differentially private (DP) ML
platform that bounds the cumulative leakage of training data
through models. Sage builds upon the rich literature on DP
ML algorithms and contributes pragmatic solutions to two of
the most pressing systems challenges of global DP: running
out of privacy budget and the privacy-utility tradeoff. To ad-
dress the former, we develop block composition, a new privacy
loss accounting method that leverages the growing database
regime of ML workloads to keep training models endlessly on
a sensitive data stream while enforcing a global DP guarantee
for the stream. To address the latter, we develop privacy-
adaptive training, a process that trains a model on grow-
ing amounts of data and/or with increasing privacy parame-
ters until, with high probability, the model meets developer-
configured quality criteria. Sage’s methods are designed to
integrate with TensorFlow-Extended, Google’s open-source
ML platform. They illustrate how a systems focus on charac-
teristics of ML workloads enables pragmatic solutions that
are not apparent when one focuses on individual algorithms,
as most DP ML literature does.

1 Introduction

Machine learning (ML) introduces a dangerous double
standard in how companies protect user data. In traditional
applications, sensitive data is siloed and its accesses are care-
fully controlled. Consider a messaging application: you do
not expect everyone to have access to your messages. Indeed,
there is access control logic programmed within that applica-
tion that mediates all accesses to the messages and determines
who should see which messages. But in an ML-driven applica-
tion, the messages are not just used for the main functionality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6873-5/19/10. . . $15.00
https://doi.org/10.1145/3341301.3359639

but also to train various models, such as an auto-complete
model, a chat bot, or a recommendation model. These mod-
els can leak what you wrote [8] and despite that, they issue
predictions to everyone in the world, are often shipped to
end-user devices for faster predictions [5, 24, 33, 43], and
sometimes are shared across teams within the company more
liberally than the data [24, 33, 47].

There is perhaps a sense that because ML models aggre-
gate data from multiple users, they obfuscate individuals’
data and therefore warrant weaker protection than the data
itself. However, increasing evidence, both theoretical and em-
pirical, suggests that ML models can indeed leak specifics
about individual entries in their training sets. Language mod-
els trained over users’ emails for auto-complete have been
shown to encode not only commonly used phrases but also so-
cial security numbers and credit card numbers that users may
include in their private communications [8]. Collaborative
filtering models, as used in recommenders, have been shown
to leak specific information across users [7]. Membership in
a training set was shown to be inferable even when the at-
tacker only has access to a model’s external predictions [48].
Finally, it has long been established theoretically that access
to too many accurate linear statistics from a dataset – as an
adversary might have by observing periodic releases of mod-
els, which often incorporate statistics used for featurization –
fundamentally allows reconstruction of the dataset [13].

As companies continue to disseminate many versions of
models into untrusted domains, controlling the risk of data
exposure becomes critical. We present Sage, an ML platform
based on Google’s TensorFlow-Extended (TFX) that uses dif-
ferential privacy (DP) to bound the cumulative exposure of in-
dividual entries in a company’s sensitive data streams through
all the models released from those streams. DP randomizes a
computation over a dataset (e.g. training one model) to bound
the leakage of individual entries in the dataset through the
output of the computation (the model). Each new DP com-
putation increases the bound over data leakage, and can be
seen as consuming part of a privacy budget that should not be
exceeded; Sage makes the process that generates all models
and statistics preserve a global DP guarantee.

Sage builds upon the rich literature on DP ML algorithms
(e.g., [2, 34, 37]) and contributes pragmatic solutions to two
of the most pressing systems challenges of global DP: (1) run-
ning out of privacy budget and (2) the privacy-utility tradeoff.
Sage expects to be given training pipelines explicitly pro-
grammed to satisfy a parameterized DP guarantee. It acts as a

181

new access control layer in TFX that mediates data accesses
by these pipelines and accounts for the cumulative privacy
loss from them to enforce the global DP guarantee against the
stream. At the same time, Sage provides the developers with:
control over the quality of the models produced by the DP
training pipelines (addresses challenge (2)); and the ability
to release models endlessly without running out of privacy
budget for the stream (addresses challenge (1)).

The key to addressing both challenges is the realization
that ML workloads operate on growing databases, a model of
interaction that has been explored very little in DP, and only
with a purely theoretical and far from practical approach [12].
Most DP literature, largely focused on individual algorithms,
assumes either static databases (which do not incorporate
new data) or online streaming (where computations do not
revisit old data). In contrast, ML workloads – which consist of
many algorithms invoked periodically – operate on growing
databases. Across invocations of different training algorithms,
the workload both incorporates new data and reuses old data,
often times adaptively. It is in that adaptive reuse of old
data coupled with new data that our design of Sage finds the
opportunity to address the preceding two challenges in ways
that are practical and integrate well with TFX-like platforms.

To address the running out of privacy budget challenge,
we develop block composition, the first privacy accounting
method that both allows efficient training on growing databases
and avoids running out of privacy budget as long as the data-
base grows fast enough. Block composition splits the data
stream into blocks, for example by time (e.g., one day’s worth
of data goes into one block) or by users (e.g., each user’s
data goes into one block), depending on the unit of protection
(event- or user-level privacy). Block composition lets training
pipelines combine available blocks into larger datasets to train
models effectively, but accounts for the privacy loss of releas-
ing a model at the level of the specific blocks used to train
that model. When the privacy loss for a given block reaches
a pre-configured ceiling, the block is retired and will not be
used again. However, new blocks from the stream arrive with
zero privacy loss and can be used to train future models. Thus,
as long as the database adds new blocks fast enough relative
to the rate at which models arrive, Sage will never run out of
privacy budget for the stream. Finally, block composition al-
lows adaptivity in the choice of training computation, privacy
parameters, and blocks to execute on, thereby modeling the
most comprehensive form of adaptivity in the DP literature,
including [44] which only considers the first two choices.

To address the privacy-utility tradeoff we develop privacy-
adaptive training, a training procedure that controls the utility
of DP-trained models by repeatedly and adaptively training
them on growing data and/or DP parameters available from
the stream. Models retrain until, with high probability, they
meet programmer-specified quality criteria (e.g. an accuracy
target). Privacy-adaptive training uses block composition’s

o¥

6WUHDP�OHYHO�$&/V
GDWDVHWUHTXHVW�GDWDVHW

�IDLO
QRWLI\�WKH�GHYHORSHU7UDLQLQJ�3LSHOLQH

PRGHO�IHDWXUHV3UH�
SURFHVVLQJ

*URZLQJ�'DWDEDVH

7UDLQLQJ 9DOLGDWLRQ
�VXFFHVV

7R
�Z
LG
H�
DF
FH
VV
�0
RG

HO
�

	
�)
HD
WX
UH
�6
WR
UH
�D
QG
�WR
�

Z
RU
OG
�Z
LG
H�
6H

UY
LQ
J�

,Q
IU
DV
WU
XF
WX
UH

�'DWD�6WUHDP���

Fig. 1. Typical Architecture of an ML Platform.

support for adaptivity and integrates well with TFX’s design,
which includes a model validation stage in training pipelines.

2 Background

Our effort builds upon an opportunity we observe in to-
day’s companies: the rise of ML platforms, trusted infrastruc-
tures that provide key services for ML workloads in produc-
tion, plus strong library support for their development. They
can be thought of as operating systems for ML workloads.
Google has TensorFlow-Extended (TFX) [5]; Facebook has
FBLearner [24]; Uber has Michelangelo [33]; and Twitter
has DeepBird [32]. The opportunity is to incorporate DP into
these platforms as a new type of access control that constrains
data leakage through the models a company disseminates.
2.1 ML Platforms

Fig. 1 shows our view of an ML platform; it is based
on [5, 24, 33]. The platform has several components: Train-
ing Pipelines (one for each model pushed into production),
Serving Infrastructure, and a shared data store, which we call
the Growing Database because it accumulates data from the
company’s data streams. The access control policies on the
Growing Database are exercised through Stream-level ACLs
and are typically restrictive for sensitive streams.

The Training Pipeline trains a model on data from the
Growing Database and verifies that it meets specific quality
criteria before it is deployed for serving or shared with other
teams. It is launched periodically (e.g., daily or weekly) on
datasets containing samples from a representative time win-
dow (e.g., logs over the past month). It has three customizable
modules: (1) Pre-processing loads the dataset from the Grow-
ing Database, transforms it into a format suitable for training
and inference by applying feature transformation operators,
and splits the transformed dataset into a training set and a
testing set; (2) Training trains the model on a training set; and
(3) Validation evaluates one or more quality metrics – such
as accuracy for classification or mean squared error (MSE)
for regression – on the testing set. Validation checks that the
metrics reach specific quality targets to warrant the model’s
release. The targets can be fixed by developers or can be
values achieved by a previous model. If the model meets all
quality criteria, it is bundled with its feature transformation
operators (a.k.a. features) and pushed into serving.

The Serving Infrastructure manages the online aspects
of the model. It distributes the model+features to inference
servers around the world and to end-user devices and contin-
uously evaluates and partially updates it on new data. The

182

model+features bundle is also often pushed into a company-
wide Model & Feature Store, from where other teams within
the company can discover it and integrate into their own mod-
els. Twitter and Uber report sharing embedding models [47]
and tens of thousands of summary statistics [33] across teams
through their Feature Stores. To enable such wide sharing,
companies sometimes enforce more permissive access control
policies on the Model & Feature Store than on the data itself.
2.2 Threat Model

We are concerned with the increase in sensitive data ex-
posure that is caused by applying looser access controls to
models+features than are typically applied to data. This in-
cludes placing models+features in company-wide Model &
Feature Stores, where they can be accessed by developers
not authorized to access the data. It includes pushing mod-
els+features to end-user devices and prediction servers that
could be compromised by hackers or oppressive governments.
And it includes releasing predictions from these models to the
world – either as part of applications or through prediction
APIs – which can be used to infer specifics about training
data [48, 51]. Our goal is to “neutralize” the wider exposure
of models+features by making the process of generating them
DP across all models+features ever released from a stream.

We assume the following components are trusted and imple-
mented correctly: Growing Database; Stream-level ACLs; the
ML platform code running a Training Pipeline. We also trust
the developer that instantiates the modules in each pipeline
as long as the developer is authorized by Stream-level ACLs
to access the data stream(s) used by the pipeline. However,
we do not trust the wide-access Model & Feature Store or the
locations to which the serving infrastructure disseminates the
model+features or their predictions. Once a model/feature is
pushed to those components, it is considered released to the
untrusted domain and accessible to adversaries.

We focus on two classes of attacks against models and sta-
tistics (see Dwork [22]): (1) membership inference, in which
the adversary infers whether a particular entry is in the train-
ing set based on either white-box or black-box access to the
model, features, and/or predictions [3, 23, 25, 48]; and (2) re-
construction attacks, in which the adversary infers unknown
sensitive attributes about entries in the training set based on
similar white-box or black-box access [8, 13, 22].
2.3 Differential Privacy

DP is concerned with whether the output of a computation
over a dataset – such as training an ML model – can reveal
information about individual entries in the dataset. To prevent
such information leakage, randomness is introduced into the
computation to hide details of individual entries.

Definition 2.1 (Differential Privacy (DP) [20]). A random-
ized algorithm Q : D ! V is (�,�)-DP if for any D,D0

with |D � D 0 |  1 and for any S ✓ V, we have: P(Q(D) 2
S)  e�P(Q(D0) 2 S) + � .

The � > 0 and � 2 [0, 1] parameters quantify the strength
of the privacy guarantee: small values imply that one draw
from such an algorithm’s output gives little information about
whether it ran on D or D 0. The privacy budget � upper bounds
an (�,�)-DP computation’s privacy loss with probability (1-�).
� is a dataset distance (e.g. the symmetric difference [38]). If
|D � D 0 |  1, D and D 0 are neighboring datasets.

Multiple mechanisms exist to make a computation DP.
They add noise to the computation scaled by its sensitiv-
ity s, the maximum change in the computation’s output when
run on any two neighboring datasets. Adding noise from a
Laplace distribution with mean zero and scale s

� (denoted
laplace(0, s�)) gives (�, 0)-DP. Adding noise from a Gaussian

distribution scaled by s
�

q
2 ln(1.25�) gives (�,�)-DP.

DP is known to address the attacks in our threat model [8,
22, 26, 48]. At a high level, membership and reconstruction
attacks work by finding data points that make the observed
model more likely: if those points were in the training set, the
likelihood of the observed output increases. DP prevents these
attacks, as no specific data point can drastically increase the
likelihood of the model outputted by the training procedure.

DP literature is very rich and mature, including in ML.
DP versions exist for almost every popular ML algorithm,
including: stochastic gradient descent (SGD) [2, 54]; various
regressions [10, 30, 40, 50, 56]; collaborative filtering [37];
language models [36]; feature selection [11]; model selec-
tion [49]; evaluation [6]; and statistics, e.g. contingency ta-
bles [4], histograms [53]. The privacy module in Tensor-
Flow v2 implements several SGD-based algorithms [34].

A key strength of DP is its composition property, which in
its basic form, states that the process of running an (�1,�1)-
DP and an (�2,�2)-DP computation on the same dataset is
(�1 + �2,�1 + �2)-DP. Composition enables the development
of complex DP computations – such as DP Training Pipelines
– from piecemeal DP components, such as DP ML algorithms.
Composition also lets one account for the privacy loss result-
ing from a sequence of DP-computed outputs, such as the
release of multiple models+features.

A distinction exists between user-level and event-level pri-
vacy. User-level privacy enforces DP on all data points con-
tributed by a user toward a computation. Event-level privacy
enforces DP on individual data points (e.g., individual clicks).
User-level privacy is more meaningful than event-level pri-
vacy, but much more challenging to sustain on streams. Al-
though Sage’s design can in theory be applied to user-level
privacy (§4.4), we focus most of the paper on event-level
privacy, which we deem practical enough to be deployed in
big companies. §7 discusses the limitations of this semantic.

3 Sage Architecture

The Sage training platform enforces a global (�� ,��)-DP
semantic over all models+features that have been, or will ever
be, released from each sensitive data stream. The highlighted
portions in Fig. 2 show the changes Sage brings to a typical

183

�

�3ULYDF\�$GDSWLYH�7UDLQLQJ

6WUHDP�OHYHO�$&/V
GDWDVHW��İ��įUHTXHVW�GDWDVHW

QRWLI\�WKH�GHYHORSHU

�$&&(37

6DJH�$FFHVV�&RQWURO
��İJ�įJ��'3�DFURVV�DOO�SLSHOLQHV�

�5(75<

�'DWD�
6WUHDP���

�İ�į��'3�7UDLQLQJ�3LSHOLQH
�İ������'3

3UH�
SURFHVVLQJ

�İ���į��'3
7UDLQLQJ

�İ������'3
6/$HG�

9DOLGDWLRQ

0
RG

HO
�I
HD
WX
UH
V�
VH
QW
�WR
�

0
RG

HO
�	
�)
HD
WX
UH
�6
WR
UH
�D
QG
�

6H
UY
LQ
J�
,Q
IU
DV
WU
XF
WX
UH
�

5(-(&7�WLPHRXW

WLPH

'�
� � '� '�

SULYDF\�EXGJHW��XVHG��GDUN��DQG�DYDLODEOH��FOHDU� İJ�įJ
'� '�

EORFNV

'� '� '�

*URZLQJ�'DWDEDVH

Fig. 2. Sage DP ML Platform. Highlights changes from non-DP version.

ML platform. First, each Training Pipeline must be made to
individually satisfy (�,�)-DP for some privacy parameters
given by Sage at runtime (box (�,�)-DP Training Pipeline,
§3.1). The developer is responsible for making this switch to
DP, and while research is needed to ease DP programming,
this paper leaves that challenge aside.

Second, Sage introduces an additional layer of access con-
trol beyond traditional stream-level ACLs (box Sage Ac-
cess Control, §3.2). The new layer splits the data stream
into blocks and accounts for the privacy loss of releasing a
model+features bundle at the level of the specific blocks that
were used to train that bundle. In theory, blocks can be defined
by any insensitive attribute, with two attributes particularly
relevant here: time (e.g., one day’s worth of data goes into
one block) and user ID (e.g., all of a user’s data goes into one
block). Defining blocks by time provides event-level privacy;
defining them by user ID accommodates user-level privacy.
Because of our focus on the former semantic, this section as-
sumes that blocks are defined by time; §4.4 discusses sharding
by user ID and other attributes.

When the privacy loss for a block reaches the (�� ,��)
ceiling, the block is retired (blocks D1,D2,D7 are retired
in Fig. 2). However, new blocks arrive with a clean budget
and can be used to train future models. Thus, as long as the
database grows fast enough in new blocks, the system will
never run out of privacy budget for the stream. Perhaps sur-
prisingly, this privacy loss accounting method, which we call
block composition, is the first practical approach to avoid run-
ning out of privacy budget while enabling effective training of
ML models on growing databases. §3.2 gives the intuition of
block composition; §4 formalizes it and proves it (�� ,��)-DP.

Third, Sage provides developers with control over the qual-
ity of models produced by the DP Training Pipelines. Such
pipelines can produce less accurate models that fail to meet

1 def preprocessing_fn(inputs, epsilon):
2 dist_01 = tft.scale_to_0_1(inputs["distance"],0,100)
3 speed_01 = tft.scale_to_0_1(inputs["speed"],0,100)
4 hour_of_day_speed = group_by_mean
5 sage.dp_group_by_mean(
6 inputs["hour_of_day"], speed_01, 24, epsilon, 1.0)
7 return {"dist_scaled": dist_01,
8 "hour_of_day": inputs["hour_of_day"],
9 "hour_of_day_speed": hour_of_day_speed,

10 "duration": inputs["duration"]}
11
12 def trainer_fn(hparams, schema, epsilon, delta): [...]
13 feature_columns = [numeric_column("dist_scaled"),
14 numeric_column("hour_of_day_speed"),
15 categorical_column("hour_of_day", num_buckets=24)]
16 estimator = \
17 tf.estimator.DNNRegressorsage.DPDNNRegressor(
18 config=run_config,
19 feature_columns=feature_columns,
20 dnn_hidden_units=hparams.hidden_units,
21 privacy_budget=(epsilon, delta))
22 return tfx.executors.TrainingSpec(estimator,...)
23
24 def validator_fn(epsilon):
25 model_validator = \
26 tfx.components.ModelValidatorsage.DPModelValidator(
27 examples=examples_gen.outputs.output,
28 model=trainer.outputs.output,
29 metric_fn = _MSE_FN, target = _MSE_TARGET,
30 epsilon=epsilon, confidence=0.95, B=1)
31 return model_validator
32
33 def dp_group_by_mean(key_tensor, value_tensor, nkeys,
34 epsilon, value_range):
35 key_tensor = tf.dtypes.cast(key_tensor, tf.int64)
36 ones = tf.fill(tf.shape(key_tensor), 1.0)
37 dp_counts = group_by_sum(key_tensor, ones, nkeys)\
38 + laplace(0.0, 2/epsilon, nkeys)
39 dp_sums = group_by_sum(
40 key_tensor,value_tensor,nkeys)\
41 + laplace(0.0, value_range * 2/epsilon, nkeys)
42 return tf.gather(dp_sums/dp_counts, key_tensor)

List. 1. Example Training Pipeline. Non-DP TFX (stricken through)
and DP Sage (highlighted) versions. TFX API simplified for exposition.

their quality targets more often than without DP. DP pipelines
can also push in production low-quality models whose val-
idations succeed by mere chance. Both situations lead to
operational headaches: the former gives more frequent noti-
fications of failed training, the latter gives dissatisfied users.
The issue is often referred to as the privacy-utility tradeoff of
running under a DP regime. Sage addresses this challenge by
wrapping the (�,�)-DP Training Pipeline into an adaptive pro-
cess that invokes training pipelines repeatedly on increasing
amounts of data and/or privacy budgets to reduce the effects
of DP randomness until with high probability models reach
their quality criteria (box Privacy-Adaptive Training, §3.3).
3.1 Example (�,�)-DP Training Pipeline

Sage expects each pipeline submitted by the ML developer
to satisfy a parameterized (�,�)-DP. Acknowledging that DP
programming abstractions warrant further research, List. 1
illustrates the changes a developer would have to make at
present to convert a non-DP training pipeline written for TFX
to a DP training pipeline suitable for Sage. Removed/replaced
code is stricken through and the added code is highlighted.
The pipeline processes New York City Yellow Cab data [41]
and trains a model to predict the duration of a ride.

184

Fig. 3. Characteristics of Data Interaction in ML.

To integrate with TFX (non-DP version), the developer im-
plements three TFX callbacks. (1) preprocessing_fn
uses the dataset to compute aggregate features and make user-
specified feature transformations. The example model has
three features: the distance of the ride; the hour of the day;
and an aggregate feature representing the average speed of cab
rides each hour of the day. (2) trainer_fn specifies the
model: it configures the columns to be modeled, defines hy-
perparameters, and specifies the dataset. The example model
trains with a neural network regressor. (3) validator_fn
validates the model by comparing test set MSE to a constant.

To integrate with Sage (DP version), the developer: (a)
switches library calls to DP versions of the functions (which
ideally would be available in the DP ML platform) and (b)
splits the (�,�) parameters, which are assigned by Sage at run-
time, across the DP function calls. (1) preprocessing_fn
replaces one call with a DP version from Sage: the mean speed
per day uses Sage’s dp_group_by_mean. This function
(lines 33-42) computes the number of times each key appears
and the sum of the values associated with each key. It makes
both DP by adding draws from appropriately-scaled Laplace
distributions to each count. Each data point has exactly one
key value so the privacy budget usage composes in parallel
across keys [38]. The privacy budget is split across the sum
and count queries. We envision common functions like this
being available in the DP ML platform. (2) trainer_fn
switches the call to the non-private regressor with the DP im-
plementation, which in Sage is a simple wrapper around Ten-
sorFlow’s DP SGD-based optimizer. (3) validator_fn
invokes Sage’s DP model validator (§3.3).
3.2 Sage Access Control

Sage uses the composition property of DP to rigorously ac-
count for (and bound) the cumulative leakage of data from sen-
sitive data streams across multiple releases of models+features
learned from these streams. Specifically, for each sensitive
stream, Sage maintains a pre-specified, event-level (�� ,��)-
DP guarantee across all uses of the stream. Unfortunately,
traditional DP composition theory considers either: (a) a
static database regime, whose adaptation to growing databases
leads to wasteful privacy loss accounting; or (b) purely on-
line streaming, which is inefficient for many ML workloads,
including deep neural network training. We thus developed
our own composition theory, called block composition, which
leverages characteristics of ML workloads running on grow-
ing databases to permit both efficient privacy loss accounting
and efficient learning. §4 formalizes the new theory. This
section describes the limitations of existing DP composition

for ML and gives the intuition for block composition and how
Sage uses it as a new form of access control in ML platforms.
Characteristics of Data Interaction in ML. Fig. 3 shows
an example of a typical workload as seen by an ML platform.
Each training pipeline, or query in DP parlance, is denotedQi .
We note three characteristics. First, a typical ML workload
consists of multiple training pipelines, training over time
on overlapping data subsets of various sizes from an ever-
growing database. For instance, Q2 may train a large deep
neural network requiring massive amounts of data to reach
good performance, while Q3 may train a linear model with
smaller data requirements, or even a simple statistic like the
mean of a feature over the past day. The pipelines are typically
updated or retrained as new data is collected, with old data
eventually deemed irrelevant and ignored.

Second, the data given to a training pipeline – and for a DP
model, its DP parameters – are typically chosen adaptively.
Suppose the model trained in Q1 on data from D1,2 with
budget �1 gives unsatisfactory performance. After a new block
D3 is collected, a developer may decide to retrain the same
model in query Q2 on data from D1,2,3, and with a higher
DP budget �2. Adaptivity can also happen indirectly through
the data. Suppose Q2 successfully trained a recommendation
model. Then, future data collected from the users (e.g., in D4)
may depend on the recommendations. Any subsequent query,
such as Q3, is potentially influenced by Q2’s output.

Third, ML workloads are dynamic and continuous. New
models are introduced and expected to be trained within a
reasonable amount of time; some models are run periodically
with new data, others are removed from production; and this
dynamic workload continues as long as new data is collected.

These characteristics imply three requirements for a com-
position theory suitable for ML. It must support:

R1 Queries on overlapping data subsets of diverse sizes.
R2 Adaptivity in the choice of: queries, DP parameters,

and data subsets the queries process.
R3 Endless execution on a growing database.

Limitations of Existing Composition Theory for ML. No
previous DP composition theory supports all three require-
ments. DP has mostly been studied for static databases, where
(adaptively chosen) queries are assumed to compute over the
entire database. Consequently, composition accounting is typ-
ically made at query level: each query consumes part of the
total available privacy budget for the database. Query-level ac-
counting has carried over even in extensions to DP theory that
handle streaming databases [19] and partitioned queries [38].
There are multiple ways to apply query-level accounting to
ML, but each trades off at least one requirement.

First, one can query overlapping data subsets (R1) and
allow adaptivity across these queries (R2) by accounting for
composition at the query level against the entire stream. In
Fig. 3, after executing queries Q1�3, the total privacy loss for
the stream would be �1+�2+�3. This approach wastes privacy

185

budget and leads to the problem of “running out of budget.”
Once �� = �1 + �2 + �3, enforcing a global leakage bound of
�� means that one must stop using the stream after query Q3.
This is true even though (1) not all queries run on all the data
and (2) there will be new data in the future (e.g., D5). This
violates requirement (R3) of endless execution on streams.

Second, one can restructure the queries to enable finer
granularity with query-level accounting. The data stream is
partitioned in blocks, as in Fig. 3. Each query is split into
multiple sub-queries, each running DP on an individual block.
The DP results are then aggregated, for instance by averaging
model updates as in federated learning [36]. Since each block
is a separate dataset, traditional composition can account
for privacy loss at the block level. This approach supports
adaptivity (R2) and endless execution on streams (R3) as new
data blocks incur no privacy loss from past queries. However,
it violates requirement (R1), resulting in unnecessarily noisy
learning [14, 15]. Consider computing a feature average. DP
requires adding noise once, after summing all values on the
combined blocks. But with independent queries over each
block, we must add the same amount of noise to the sum over
each block, yielding a more noisy total. As another example,
several DP training algorithms [2, 36] fundamentally rely on
sampling small training batches from large datasets to amplify
privacy, which cannot be done without combining blocks.

Third, one can consume the data stream online using stream-
ing DP. A new data point is allocated to one of the waiting
queries, which consumes its entire privacy budget. Because
each point is used by one query and discarded, DP holds over
the entire stream. New data can be adaptively assigned to any
query (R2) and arrives with a fresh budget (R3). However,
queries cannot use past data or overlapping subsets, violating
R1 and rendering the approach impractical for large models.
Block Composition. Our new composition theory meets all
three requirements. It splits the data stream into disjoint blocks
(e.g., one day’s worth of data for event-level privacy), form-
ing a growing database on which queries can run on over-
lapping and adaptively chosen sets of blocks (R1, R2). This
lets pipelines combine blocks with available privacy budgets
to assemble large datasets. Despite running on overlapping
data sets, our theoretical analysis (§4) shows that we can still
account for the privacy loss at the level of individual blocks,
namely that each query only impacts the blocks it actually
uses, not the entire data stream. In Fig. 3, the first three blocks
each incur a privacy loss of �1 + �2 while the last block has
�2 + �3. The privacy loss of these three queries over the entire
data stream will only be the maximum of these two values.
Moreover, when the database grows (e.g. block D5 arrives),
the new blocks’ privacy loss is zero. The system can thus run
endlessly by training new models on new data (R3).
Sage Access Control. With block composition, Sage controls
data leakage from a stream by enforcing DP on its blocks.
The company configures a desirable (�� ,��) global policy

1 class DPLossValidator(sage.DPModelValidator):
2 def validate(loss_fn, target, epsilon, conf, B):
3 if _ACCEPT_test(..., epsilon, (1-conf)/2, B):
4 return ACCEPT
5 if _REJECT_test(..., epsilon, (1-conf)/2, B):
6 return REJECT
7 return RETRY
8
9 def _ACCEPT_test(test_labels, dp_test_predictions,

10 loss_fn, target, epsilon, eta, B):
11 n_test = dp_test_predictions.size()
12 n_test_dp = n_test + laplace(2/epsilon)
13 n_test_dp_min = n_test_dp -\
14 2*log(3/(2*eta))/epsilon
15 dp_test_loss = clip_by_value(loss_fn(test_labels,
16 dp_test_predictions), 0, B)+laplace(2*B/epsilon)
17 corrected_dp_test_loss = dp_test_loss +
18 2*B*log(3/(2*eta))/epsilon
19 return bernstein_upper_bound(
20 corrected_dp_test_loss / n_test_dp_min,
21 n_test_dp_min, eta/3, B) <= target
22
23 def bernstein_upper_bound(loss, n, eta, B):
24 return loss+sqrt(2*B*loss*log(1/eta)/n)+\
25 4*log(1/eta)/n

List. 2. Implementation of sage.DPLossValidator.

for each sensitive stream. The Sage Access Control compo-
nent tracks the available privacy budget for each data block.
It allows access to a block until it runs out of budget, after
which ML access to the block will forever be denied. When
the Sage Iterator (described in §3.3) for a pipeline requests
data, Sage Access Control only offers blocks with available
privacy budget. The Iterator then determines the (�,�) privacy
parameters it would like to try for its next iteration and re-
quests that budget from Sage Access Control, which deducts
(�,�) from the available privacy budgets of those blocks (as-
suming they are still available). Finally, the Iterator invokes
the developer-supplied DP Training Pipeline, trusting it to
enforce the chosen (�,�) privacy parameters. §4 proves that
this access control policy enforces (�� ,��)-DP for the stream.

The preceding operation is a DP-informed retention pol-
icy, but one can use block composition to define other access
control policies. Suppose the company is willing to assume
that its developers (or user devices and prediction servers
in distinct geographies) will not collude to violate its cus-
tomers’ privacy. Then the company could enforce a separate
(�� ,��) guarantee for each context (developer or geography)
by maintaining separate lists of per-block available budgets.
3.3 Privacy-Adaptive Training

Sage gives developers control over the quality of the mod-
els it pushes into production, which can be affected by DP
randomness. We describe two techniques: (1) SLAed vali-
dation accounts for the effect of randomness in the valida-
tion process to ensure a high-probability guarantee of cor-
rect assessment (akin to a quality service level agreement, or
SLA); and (2) privacy-adaptive training launches the (�,�)-
DP Training Pipeline on increasing amounts of data from
the stream, and/or with increased privacy parameters, to im-
prove the model’s quality adaptively until validation succeeds.
Privacy-adaptive training thus leverages adaptivity support in
block composition to address DP’s privacy-utility tradeoff.

186

SLAed DP Validation. Fig. 2 shows the three possible out-
comes of SLAed validation: ACCEPT, REJECT/timeout, and
RETRY. If SLAed validation returns ACCEPT, then with high
probability (e.g. 95%) the model reached its configured qual-
ity targets for prediction on new data from the same distri-
bution. In some cases, it is also possible to give statistical
guarantees that the model will never reach a target irrespec-
tive of sample size and privacy parameters, in which case
SLAed validation returns REJECT. Sage also supports timing
out a training procedure if it has run for too long. Finally, if
SLAed validation returns RETRY, it signals that more data
is needed for an assessment. Here we focus on the ACCEPT
and RETRY outcomes and refer the reader to our technical
report [31] for a discussion of REJECT tests.

We have implemented SLAed validators for three classes
of metrics: loss metrics (e.g. MSE, log loss), accuracy, and
absolute errors of sum-based statistics such as mean and vari-
ance. All validators follow the same logic. First, we compute
a DP version of the test quantity (e.g. MSE) on a testing set.
Second, we compute the worst-case impact of DP noise on
that quantity for a given confidence probability; we call this
a correction for DP impact. For example, if we add Laplace
noise with parameter 1

� to the sum of squared errors on n data
points, assuming that the loss is in [0, 1] we know that with
probability (1 � �) the sum is deflated by less than � 1

� ln(1
2�),

because a draw from this Laplace distribution has just an �
probability to be more negative than this value. Third, we use
known statistical concentration inequalities, also made DP
and corrected for worst case noise impact, to upper bound
with high probability the loss on the entire distribution. We
next detail the loss SLAed validator; [31] describes the others.
Example: Loss SLAed Validator. A loss function is a mea-
sure of erroneous predictions on a dataset (so lower is better).
Examples: mean squared error for regression, log loss for
classification, and minus log likelihood for Bayesian genera-
tive models. List. 2 shows our loss validator and details the
implementation of its ACCEPT test.

Denote: the DP-trained model f dp; the loss function range
[0,B]; the target loss �loss . Lines 11-14 compute a DP estimate
of the number of samples in the test set, corrected for the
impact of DP noise to be a lower bound on the true value with
probability (1� �

3). Lines 15-18 compute a DP estimate of the
loss sum, corrected for DP impact to be an upper bound on
the true value with probability (1 � �

3). Lines 19-21 ACCEPT
the model if the upper bound is at most �loss . The bounds
are based on a standard concentration inequality (Bernstein’s
inequality, Lines 24-25), which holds under very general
conditions [46]. We show in [31] that the Loss ACCEPT Test
satisfies (�, 0)-DP and enjoys the following guarantee:

Proposition 3.1 (Loss ACCEPT Test). With probability at
least (1 � �), the Accept test returns true only if the expected
loss of f dp is at most �loss .

Privacy-Adaptive Training. Sage attempts to improve the
quality of the model and its validation by supplying them
with more data or privacy budgets so the SLAed validator
can either ACCEPT or REJECT the model. Several ways exist
to improve a DP model’s quality. First, we can increase the
dataset’s size: at least in theory, it has been proven that one
can compensate for the loss in accuracy due to any (�,�)-DP
guarantee by increasing the training set size [28]. Second,
we can increase the privacy budget (�,�) to decrease the
noise added to the computation: this must be done within the
available budgets of the blocks involved in the training and
not too aggressively, because wasting privacy budget on one
pipeline can prevent other pipelines from using those blocks.

Privacy-adaptive training searches for a configuration that
can be either ACCEPTed or REJECTed by the SLAed validator.
We have investigated several strategies for this search. Those
that conserve privacy budget have proven the most efficient.
Every time a new block is created, its budget is divided evenly
across the ML pipelines currently waiting in the system. Al-
located DP budget is reserved for the pipeline that received
it, but privacy-adaptive training will not use all of it right
away. It will try to ACCEPT using as little of the budget as
possible. When a pipeline is ACCEPTed, its remaining budget
is reallocated evenly across the models still waiting in Sage.

To conserve privacy budget, each pipeline will first train
and test using a small configurable budget (�0,�0), and a
minimum window size for the model’s training. On RETRY
from the validator, the pipeline will be retrained, making sure
to double either the privacy budget if enough allocation is
available to the Training Pipeline, or the number of samples
available to the Training Pipeline by accepting new data from
the stream. This doubling of resources ensures that when a
model is ACCEPTed, the sum of budgets used by all failed
iterations is at most equal to the budget used by the final,
accepted iteration. This final budget also overshoots the best
possible budget by at most two, since the model with half
this final budget had a RETRY. Overall, the resources used
by this DP budget search are thus at most four times the
budget of the final model. Evaluation §5.4 shows that this
conservative strategy improves performance when multiple
Training Pipelines contend for the same blocks.

4 Block Composition Theory

This section provides the theoretical backing for block
composition, which we invent for Sage but which we believe
has broader applications (§4.4). To analyze composition, one
formalizes permissible interactions with the sensitive data in
a protocol that facilitates the proof of the DP guarantee. This
interaction protocol makes explicit the worst-case decisions
that can be made by modeling them through an adversary. In
the standard protocol (detailed shortly), an adversary A picks
the neighboring data sets and supplies the DP queries that
will compute over one of these data sets; the choice between
the two data sets is exogenous to the interaction. To prove

187

(a) QueryCompose(A, b, r , (�i ,�i)ri=1):
1: for i in 1, . . . , r do . (A depends on V b

1 , . . . , V b
i�1 in iter. i)

2: A gives neighboring datasets Di,0 & Di,1

3: A gives (�i , �i)-DP Qi
4: A receives V b

i = Qi (Di,b)
return V b = (V b

1 , . . . , V b
r)

(a) Traditional Query-level Accounting.

(b) BlockCompose(A, b, r , (�i ,�i)ri=1, (blocksi)ri=1):
1: A gives two neighboring block datasets D0 and D1

2: for i in 1, . . . , r do . (A depends on V b
1 , . . . , V b

i�1 in iter. i)
3: A gives (�i , �i)-DP Qi
4: A receives V b

i = Qi (
–

j2blocksi
Db
j)

return V b = (V b
1 , . . . , V b

r)

(b) Block Composition for Static Datasets. Change from query-level ac-
counting shown in yellow background.

(c) AdaptiveStreamBlockCompose(A, b, r , �� , �� , W):
1: A gives k , the index of the block with the adversarially chosen change
2: for i in 1, . . . , r do . (A depends on V b

1 , . . . , V b
i�1 in iter. i)

3: if create new block l and l == k then

4: A gives neighboring blocks D0
k and D1

k
5: else if create new block l and l , k then

6: Db
l = D(W, V b

1 , . . . , V b
i�1)

7: A gives blocksi , (�i , �i), and (�i , �i)-DP Qi
8: if

”
j2blocksi

AccessControlj�� ,�� (�
j
1 , �

j
1 , ..., �

j
i , �

j
i , 0, ...) then

9: A receives V b
i = Qi (

–
j2blocksi

Db
j)

10: elseA receives no-op V b
i =?

return V b = (V b
1 , . . . , V b

r)

(c) Sage Block Composition. Adds support for streams (yellow lines 1-6)
and adaptive choice of blocks, privacy parameters (green lines 7-8).

Fig. 4. Interaction Protocols for Composition Analysis. A is an algorithm
defining the adversary’s power; b 2 {0, 1} denotes two hypotheses the
adversary aims to distinguish; r is the number of rounds; (�i , �i)ri=1 the DP
parameters used at each round; (blocksi)ri=1 the blocks used at each round.
AccessControlj�� ,�� returns true if running (�i , �i)-DP query Qi on block j
ensures that with probability � (1 � ��) the privacy loss for block j is  �� .

that the interaction satisfies DP, one must show that given the
results of the protocol, it is impossible to determine with high
confidence which of the two neighboring data sets was used.

Fig. 4 describes three different interaction protocols of in-
creasing sophistication. Alg. (4a) is the basic DP composition
protocol. Alg. (4b) is a block-level protocol we propose for
static databases. Alg. (4c) is the protocol adopted in Sage; it
extends Alg. (4b) by allowing a streaming database and adap-
tive choices of blocks and privacy parameters. Highlighted
are changes made to the preceding protocol.
4.1 Traditional Query-Level Accounting

QueryCompose (Alg. (4a)) is the interaction protocol as-
sumed in most analyses of composition of several DP inter-
actions with a database. There are three important character-
istics. First, the number of queries r and the DP parameters

(�i ,�i)ri=1 are fixed in advance. However the DP queries Qi
can be chosen adaptively. Second, the adversary adaptively
chooses neighboring datasets Di,0 and Di,1 for each query.
This flexibility lets the protocol readily support adaptively
evolving data (such as with data streams) where future data
collected may be impacted by the adversary’s change to past
data. Third, the adversary receives the results V b of running
the DP queries Qi on Di,b ; here, b 2 {0, 1} is the exogenous
choice of which database to use and is unknown to A. DP is
guaranteed if A cannot confidently learn b given V b .

A common tool to analyze DP protocols is privacy loss:

Definition 4.1 (Privacy Loss). Fix any outcome� = (�1, . . . ,�r)
and denote �<i = (�1, . . . ,�i�1). The privacy loss of an algo-
rithm Compose(A, b, r , ·) is:

Loss(�) = ln
⇣P(V 0 = �)
P(V 1 = �)

⌘
= ln

⇣ r÷
i=1

P(V 0
i = �i |�<i)

P(V 1
i = �i |�<i)

⌘

Bounding the privacy loss for any adversary A with high
probability implies DP [29]. Suppose that for any A, with
probability � (1 � �) over draws from � ⇠ V 0, we have:
| Loss(�)|  � . Then Compose(A, b, r , ·) is (�,�)-DP. This
way, privacy loss and DP are defined in terms of distinguish-
ing between two hypotheses indexed by b 2 {0, 1}.

Previous composition theorems (e.g. basic composition [17],
strong composition [21], and variations thereof [27]) analyze
Alg. (4a) to derive various arithmetics for computing the over-
all DP semantic of interactions adhering to that protocol. In
particular, the basic composition theorem [17] proves that
QueryCompose(A, b, r , (�i ,�i)ri=1) is (Õr

i=1 �i ,
Õr

i=1 �i)-DP.
These theorems form the basis of most ML DP work. How-
ever, because composition is accounted for at the query level,
imposing a fixed global privacy budget means that one will
“run out” of it and stop training models even on new data.

4.2 Block Composition for Static Datasets

Block composition improves privacy accounting for work-
loads where interaction consists of queries that run on over-
lapping data subsets of diverse sizes. This is one of the charac-
teristics we posit for ML workloads (requirement R1 in §3.2).
Alg. (4b), BlockCompose, formalizes this type of interaction
for a static dataset setting as a springboard to formalizing the
full ML interaction. We make two changes to QueryCompose.
First (line 1), the neighboring datasets are defined once and for
all before interacting. This way, training pipelines accessing
non-overlapping parts of the dataset cannot all be impacted
by one entry’s change. Second (line 4), the data is split in
blocks, and each DP query runs on a subset of the blocks.

We prove that the privacy loss over the entire dataset is the
same as the maximum privacy loss on each block, accounting
only for queries using this block:

Theorem 4.2 (Reduction to Block-level Composition). The
privacy loss of BlockCompose(A,b, r , (�i ,�i)ri=1, (blocksi)ri=1)

188

is upper-bounded by the maximum privacy loss for any block:

| Loss(�)|  max
k

�� ln ⇣ r÷
i=1

k 2blocksi

P(V 0
i = �i |�<i)

P(V 1
i = �i |�<i)

⌘��.

Proof. Let D0 and D1 be the neighboring datasets picked by
adversary A, and let k be the block index s.t. D0

l = D1
l for

all l , k, and |D0
k � D1

k |  1. For any result � of Alg. (4b):
�� Loss(�)�� = �� ln ⇣ r÷

i=1

P (V 0
i = �i |�<i)

P (V 1
i = �i |�<i)

⌘��

=
�� ln ⇣ r÷

i=1
k2blocksi

P (V 0
i = �i |�<i)

P (V 1
i = �i |�<i)

⌘
+

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠
ln

⇣ r÷
i=1

k<blocksi

P (V 0
i = �i |�<i)

P (V 1
i = �i |�<i)

⌘��

 max
k

�� ln ⇣ r÷
i=1

k2blocksi

P (V 0
i = �i |�<i)

P (V 1
i = �i |�<i)

⌘��

The slashed term is zero because if k < blocksi , then–
j 2blocksi

D0
j =

–
j 2blocksi

D1
j , hence P (V 0

i =�i |�<i)
P (V 1

i =�i |�<i) = 1. ⇤

Hence, unused data blocks allow training of other (adap-
tively chosen) ML models, and exhausting the DP budget of
a block means we retire that block of data, and not the entire
data set. This result, which can be extended to strong compo-
sition (see our technical report [31]), can be used to do tighter
accounting than query-level accounting when the workload
consists of queries on overlapping sets of data blocks (require-
ment R1). However, it does not support adaptivity in block
choice or a streaming setting, violating R2 and R3.
4.3 Sage Block Composition

Alg. (4c), AdaptiveStreamBlockCompose, addresses the
preceding limitations with two changes. First, supporting
streams requires that datasets not be fixed before interacting,
because future data depends on prior models trained and
pushed into production. The highlighted portions of lines 1-
10 in Alg. (4c) formalize the dynamic nature of data collection
by having new data blocks explicitly depend on previously
trained models, which are chosen by the adversary, in addition
to other mechanisms of the world W that are not impacted by
the adversary. Fortunately, Theorem 4.2 still applies, because
model training can only use blocks that existed at the time of
training, which in turn only depend on prior blocks through
DP trained models. Therefore, new data blocks can train new
ML models, enabling endless operation on streams (R3).

Second, interestingly, supporting adaptive choices in the
data blocks implies supporting adaptive choices in the queries’
DP budgets. For a given block, one can express query i’s
choice to use block j as using a privacy budget of either
(�i ,�i) or (0, 0). Lines 7-8 in Alg. (4c) formalize the adaptive
choice of both privacy budgets and blocks (requirement R2).
In supporting both, we leverage recent work on DP compo-
sition under adaptive DP budgets [44]. At each round, A
requests access to a group of blocks blocksi , on which to
run an (�i ,�i)-DP query. Sage’s Access Control permits the

query only if the privacy loss of each block in blocksi will
remain below (�� ,��). Applying our Theorem 4.2 and [44]’s
Theorem 3.3, we prove the following result (proof in [31]):

Theorem 4.3 (Basic Composition for Sage Block Composi-
tion). AdaptiveStreamBlockCompose(A,b,r ,�� ,�� ,W) is (�� ,��)-
DP if for all k, AccessControlk��,�� enforces:

⇣ r’
i=1

k 2blocksi

�i (�<i)
⌘
 �� and

⇣ r’
i=1

k 2blocksi

�i (�<i)
⌘
 �� .

The implication of the theorem is that under the access
control scheme described in §3.2, Sage achieves event-level
(�� ,��)-DP over the sensitive data stream. In [31] we further
analyze strong composition for block-level accounting.
4.4 Defining Blocks by User ID and Other Attributes

Block composition theory can be extended to accommodate
user-level privacy and other use cases. The theory shows that
one can split a static dataset (Theorem 4.2) or a data stream
(Theorem 4.3) into disjoint blocks, and run DP queries adap-
tively on overlapping subsets of the blocks while accounting
for privacy at the block level. The theorems are focused on
time splits, but the same theorems can be written for splits
based on any attribute whose possible values can be made
public, such as geography, demographics, or user IDs. Con-
sider a workload on a static dataset in which queries combine
data from diverse and overlapping subsets of countries, e.g.,
they compute average salary in each country separately, but
also at the level of continents and GDP-based country groups.
For such a workload, block composition gives tighter privacy
accounting across these queries than traditional composition,
though the system will still run out of privacy budget eventu-
ally because no new blocks appear in the static database.

As another example, splitting a stream by user ID en-
ables querying or ignoring all observations from a given user,
adding support for user-level privacy. Splitting data over user
ID requires extra care. If existing user IDs are not knows,
each query might select user IDs that do not exist yet, spend-
ing their DP budget without adding data. However, making
user IDs public can leak information. One approach is to use
incrementing user IDs (with this fact public), and periodically
run a DP query computing the maximum user ID in use. This
would ensure DP, while giving an estimate of the range of user
IDs that can be queried. In such a setting, block composition
enables fine-grain DP accounting over queries on any subset
of the users. While our block theory supports this use case, it
suffers from a major practical challenge. New blocks are now
created only when new users join the system, so new users
must be added at a high rate relative to the model release rate
to avoid running out of budget. This is unlikely to happen for
mature companies, but may be possible for emerging startups
or hospitals, where the stream of incoming users/patients may
be high enough to sustain modest workloads.

189

Taxi Regression Task

Pipelines: Configuration:

Linear
Regression
(LR)

DP Alg. AdaSSP from [52], (�, �)-DP
Config. Regularization param � : 0.1
Budgets (�, �) 2 {(1.0, 10�6), (0.05, 10�6)}
Targets MSE 2 [2.4 ⇥ 10�3, 7 ⇥ 10�3]

Neural
Network
(NN)

DP Alg. DP SGD from [2], (�, �)-DP
ReLU, 2 hidden layers (5000/100 nodes)

Config. Learning rate: 0.01, Epochs: 3
Batch: 1024, Momentum: 0.9

Budgets (�, �) 2 {(1.0, 10�6), (0.5, 10�6)}
Targets MSE 2 [2 ⇥ 10�3, 7 ⇥ 10�3]

Avg.Speed x3* Targets Absolute error 2 {1, 5, 7.5, 10, 15} km/h

Criteo Classification Task

Pipelines: Configuration:

Logistic
Regression
(LG)

DP Alg. DP SGD from [35], (�, �)-DP
Config. Learning rate: 0.1, Epochs: 3 Batch: 512
Budgets (�, �) 2 {(1.0, 10�6), (0.25, 10�6)}
Targets Accuracy 2 [0.74, 0.78]

Neural
Network
(NN)

DP Alg. DP SGD from [35], (�, �)-DP
ReLU, 2 hidden layers (1024/32 nodes)

Config. Learning rate: 0.01, Epochs: 5
Batch: 1024

Budgets (�, �) 2 {(1.0, 10�6), (0.25, 10�6)}
Targets Accuracy 2 [0.74, 0.78]

Counts x26** Targets Absolute error 2 {0.01, 0.05, 0.10}
Tab. 1. Experimental Training Pipelines. *Three time granularities: hour
of day, day of week, week of month. **Histogram of each categorical feature.

5 Evaluation

We ask four questions: (Q1) Does DP impact Training
Pipeline reliability? (Q2) Does privacy-adaptive training in-
crease DP Training Pipeline reliability? (Q3) Does block
composition help over traditional composition? (Q4) How do
ML workloads perform under Sage’s (�� ,��)-DP regime?
Methodology. We consider two datasets: 37M-samples from
three months of NYC taxi rides [41] and 45M ad impressions
from Criteo [1]. On the Taxi dataset we define a regression
task to predict the duration of each ride using 61 binary fea-
tures derived from 10 contextual features. We implement
pipelines for a linear regression (LR), a neural network (NN),
and three statistics (average speeds at three time granularities).
On the Criteo dataset we formulate a binary classification
task predicting ad clicks from 13 numeric and 26 categorical
features. We implement a logistic regression (LG), a neural
network (NN), and histogram pipelines. Tab. 1 shows details.

Training: We make each pipeline DP using known algo-
rithms, shown in Tab. 1. Validation: We use the loss, accuracy,
and absolute error SLAed validators on the regression, classi-
fication, and statistics respectively. Experiments: Each model
is assigned a quality target from a range of possible values,
chosen between the best achievable model, and the perfor-
mance of a naïve model (predicting the label mean on Taxi,
with MSE 0.0069, and the most common label on Criteo,
with accuracy 74.3%). Most evaluation uses privacy-adaptive
training, so privacy budgets are chosen by Sage, with an
upper-bound of � = 1. While no consensus exists on what a

Dataset � No SLA NP SLA UC DP SLA Sage SLA

Taxi 0.01 0.379 0.0019 0.0172 0.0027
0.05 0.379 0.0034 0.0224 0.0051

Criteo 0.01 0.2515 0.0052 0.0544 0.0018
0.05 0.2515 0.0065 0.0556 0.0023

Tab. 2. Target Violation Rate of ACCEPTed Models. Violations are across
all models separately trained with privacy-adaptive training.

reasonable DP budget is, this value is in line with practical
prior work [2, 36]. Where DP budgets must be fixed, we use
values indicated in Tab. 1 which correspond to a large bud-
get (� = 1), and a small budget that varies across tasks and
models. Other defaults: 90%::10% train::test ratio; � = 0.05;
� = 10�6. Comparisons: We compare Sage’s performance to
existing DP composition approaches described in §3.2. We
ignore the first alternative, which violates the endless execu-
tion requirement R3 and cannot support ML workloads. We
compare with the second and third alternatives, which we call
query composition and streaming composition, respectively.
5.1 Unreliability of DP Training Pipelines in TFX (Q1)

We first evaluate DP’s impact on model training. Fig. 5
shows the loss or accuracy of each model when trained on
increasing amounts data and evaluated on 100K held-out sam-
ples from their respective datasets. Three versions are shown
for each model: the non-DP version (NP), a large DP budget
version (� = 1), and a small DP budget configuration with �
values that vary across the model and task. For both tasks, the
NN requires the most data but outperforms the linear model in
the private and non-private settings. The DP LRs catch up to
the non-DP version with the full dataset, but the other models
trained with SGD require more data. Thus, model quality is
impacted by DP but the impact diminishes with more training
data. This motivates privacy-adaptive training.

To evaluate DP’s impact on validation, we train and validate
our models for both tasks, with and without DP. We use TFX’s
vanilla validators, which compare the model’s performance
on a test set to the quality metric (MSE for taxi, accuracy for
Criteo). We then re-evaluate the models’ quality metrics on a
separate, 100K-sample held-out set and measure the fraction
of models accepted by TFX that violate their targets on the
re-evaluation set. With non-DP pipelines (non-DP training
and validation), the false acceptance rate is 5.1% and 8.2%
for the Taxi and Criteo tasks respectively. With DP pipelines
(DP training, DP validation), false acceptance rates hike to
37.9% and 25.2%, motivating SLAed validation.
5.2 Reliability of DP Training Pipelines in Sage (Q2)

Sage’s privacy-adaptive training and SLAed validation are
designed to add reliability to DP model training and valida-
tion. However, they may come at a cost of increased data
requirements over a non-DP test. We evaluate reliability and
sample complexity for the SLAed validation ACCEPT test.

Tab. 2 shows the fraction of ACCEPTed models that violate
their quality targets when re-evaluated on the 100K-sample
held-out set. For two confidences �, we show: (1) No SLA,

190

 2

 2.5

 3

 3.5

 4

10K 100K 1M 10M

M
S

E
 (

*0
.0

0
1

)

Training Samples

LR NP
LR ε=1.00
LR ε=0.05

(a) Taxi LR MSE

 2

 2.5

 3

 3.5

 4

10K 100K 1M 10M

M
S

E
 (

*0
.0

0
1

)

Training Samples

NN NP
NN ε=1.00
NN ε=0.10

(b) Taxi NN MSE

 0.73
 0.74
 0.75
 0.76
 0.77
 0.78
 0.79

10K 100K 1M 10M

A
cc

u
ra

cy

Training Samples

LG NP
LG ε=1.00
LG ε=0.25

(c) Criteo LG Accuracy

 0.73
 0.74
 0.75
 0.76
 0.77
 0.78
 0.79

10K 100K 1M 10M

A
cc

u
ra

cy

Training Samples

NN NP
NN ε=1.00
NN ε=0.25

(d) Criteo NN Accuracy

Fig. 5. Impacts on TFX Training Pipelines. Impact of DP on the overall performance of training pipelines. 5a, and 5b show the MSE loss on the Taxi regression
task (lower is better). 5c; 5d show the accuracy on the Criteo classification task (higher is better). The dotted lines are naïve model performance.

10K

100K

1M

10M

 2 3 4 5 6 7R
e

q
u

ir
e

d
 S

a
m

p
le

 S
iz

e

MSE Target (*0.001)

No SLA
NP SLA

UC DP SLA
Sage SLA

(a) Taxi LR ACCEPT

10K

100K

1M

10M

 2 3 4 5 6 7R
e

q
u

ir
e

d
 S

a
m

p
le

 S
iz

e

MSE Target (*0.001)

No SLA
NP SLA

UC DP SLA
Sage SLA

(b) Taxi NN ACCEPT

10K

100K

1M

10M

0.70 0.72 0.74 0.76 0.78R
e

q
u

ir
e

d
 S

a
m

p
le

 S
iz

e

Accuracy Target

No SLA
NP SLA

UC DP SLA
Sage SLA

(c) Criteo LG ACCEPT

10K

100K

1M

10M

0.70 0.72 0.74 0.76 0.78R
e

q
u

ir
e

d
 S

a
m

p
le

 S
iz

e

Accuracy Target

No SLA
NP SLA

UC DP SLA
Sage SLA

(d) Criteo NN ACCEPT

Fig. 6. Number of Samples Required to ACCEPT models at achievable quality targets. For MSE targets (Taxi regression 6a, and 6b) small targets are harder to
achieve and require more samples. For accuracy targets (Criteo classification 6c, and 6d) high targets are harder and require more samples.

the vanilla TFX validation with no statistical rigor, but where
a model’s quality is computed with DP. (2) NP SLA, a non-
DP but statistically rigorous validation. This is the best we
can achieve with statistical confidence. (3) UC DP SLA, a
DP SLAed validation without the correction for DP impact.
(4) Sage SLA, our DP SLAed validator, with correction. We
make three observations. First, the NP SLA violation rates
are much lower than the configured � values because we use
conservative statistical tests. Second, Sage’s DP-corrected
validation accepts models with violation rates close to the NP
SLA. Slightly higher for the loss SLA and slightly lower for
the accuracy SLA, but well below the configured error rates.
Third, removing the correction increases the violation rate by
5x for the loss SLA and 20x for the accuracy SLA, violating
the confidence thresholds in both cases, at least for low �.
These results confirm that Sage’s SLAed validation is reliable,
and that correction for DP is critical to this reliability.

The increased reliability of SLAed validation comes at
a cost: SLAed validation requires more data compared to
a non-DP test. This new data is supplemented by Sage’s
privacy-adaptive training. Fig. 6a and 6b show the amount of
train+test data required to ACCEPT a model under various loss
targets for the Taxi regression task. Fig. 6c and 6d show the
same for accuracy targets for the Criteo classification task. We
make three observations. First, unsurprisingly, non-rigorous
validation (No SLA) requires the least data but has a high
failure rate because it erroneously accepts models on small
sample sizes. Second, the best model accepted by Sage’s SLA
validation are close to the best model accepted by No SLA.
We observe the largest difference in Taxi LR where No SLA
accepts MSE targets of 0.0025 while the Sage SLA accepts as

low as 0.0027. The best achievable model is slightly impacted
by DP, although more data is required. Third, adding a sta-
tistical guarantee but no privacy to the validation (NP SLA)
already substantially increases sample complexity. Adding
DP to the statistical guarantee and applying the DP correction
incurs limited additional overhead. The distinction between
Sage and NP SLA is barely visible for all but the Taxi LR.
For Taxi LR, adding DP accounts for half of the increase over
No SLA requiring twice as much data (one data growth step
in privacy-adaptive training). Thus, privacy-adaptive training
increases reliability of DP training pipelines for reasonable
increase in sample complexity.

5.3 Benefit of Block Composition (Q3)

Block composition lets us combine multiple blocks into a
dataset, such that each DP query runs over all used blocks
with only one noise draw. Without block composition a DP
query is split into multiple queries, each operating on a single
block, and receiving independent noise. The combined results
are more noisy. Fig. 7a and 7c show the model quality of the
LR and NN models on the Taxi dataset, when operating on
blocks of different sizes, 100K and 500K for the LR, and 5M
for the NN. Fig. 7b and 7d show the SLAed validation sample
complexity of the same models. We compare these configu-
rations against Sage’s combined-block training that allows
ML training and validation to operate on their full relevance
windows. We can see that block composition helps both the
training and validation stages. While LR training (Fig. 7a)
performs nearly identically for Sage and block sizes of 100K
or 500K (6h of data to a bit more than a day), validation is
significantly impacted. The LR cannot be validated with any

191

 2

 2.5

 3

 3.5

 4

10K 100K 1M 10M

M
S

E
 (

*0
.0

0
1

)

Training Samples

Block Comp.
Query Comp. 500K
Query Comp. 100K

(a) Taxi LR MSE

10K

100K

1M

10M

 2 3 4 5 6 7

R
e

q
u

ir
e

d
 S

a
m

p
le

 S
iz

e

MSE Target (*0.001)

Block Comp.
Query Comp. 500K
Query Comp. 100K

(b) Taxi LR ACCEPT

 2

 2.5

 3

 3.5

 4

10K 100K 1M 10M

M
S

E
 (

*0
.0

0
1

)

Training Samples

Block Comp.
Query Comp. 5M

(c) Taxi DNN MSE

10K

100K

1M

10M

 2 3 4 5 6 7R
e

q
u

ir
e

d
 S

a
m

p
le

 S
iz

e

MSE Target (*0.001)

Block Comp.
Query Comp. 5M

(d) Taxi DNN ACCEPT

Fig. 7. Block-level vs. Query-level Accounting. Block-level query accounting provides benefits to model quality and validation.

MSE better than 0.003 with block sizes of 500K, and 0.0044
for blocks of size 100K. Additionally, those targets that can
be validated require significantly more data without Sage’s
block composition: 10x for blocks of size 500K, and almost
100x for blocks of 100K. The NN is more affected at training
time. With blocks smaller than 1M points, it cannot even be
trained. Even with an enormous block size of 5M, more than
ten days of data (Fig. 7c), the partitioned model performs 8%
worse than with Sage’s block composition. Although on such
large blocks validation itself is not much affected, the worse
performance means that models can be validated up to an
MSE target of 0.0025 (against Sage’s 0.0023), and requires
twice as much data as with block composition.
5.4 Multi-pipeline Workload Performance (Q4)

Last is an end-to-end evaluation of Sage with a workload
consisting of a data stream and ML pipelines arriving over
discrete time steps. At each step, a number of new data points
corresponding approximately to 1 hour of data arrives (16K
for Taxi, 267K for Criteo). The time between new pipelines
is drawn from a Gamma distribution. When a new pipeline
arrives, its sample complexity (number of data points required
to reach the target) is drawn from a power law distribution,
and a pipeline with the relevant sample complexity is chosen
uniformly among our configurations and targets (Tab. 1). Un-
der this workload, we compare the average model release in
steady state for four different strategies. This first two leverage
Query Composition and Streaming Composition from prior
work, as explained in methodology and § 3.3. The other two
take advantage of Sage’s Block Composition. Both strategies
uniformly divide the privacy budget of new blocks among all
incomplete pipelines, but differ in how each pipeline uses its
budget. Block/Aggressive uses as much privacy budget as is
available when a pipeline is invoked. Block/Conserve (Sage)
uses the Privacy-Adaptive Training strategy defined in § 3.3.

Fig. 8 shows each strategy’s average model release time
under increasing load (higher model arrival rate), as the sys-
tem enforces (�� ,��) = (1.0, 10�6)-DP over the entire stream.
We make two observations. First, Sage’s block composition
is crucial. Query Composition and Streaming Composition
quickly degrade to off-the-charts release times: supporting
more than one model every two hours is not possible and
yields release times above three days. On the other hand,
strategies leveraging Sage’s block composition both provide

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
vg

.
M

o
d

e
l R

e
le

a
se

 T
im

e

Arrival Rate

Streaming Composition
Query Composition
Block/Aggressive
Block/Conserve (Sage)

(a) Taxi Dataset

 0

 20

 40

 60

 80

 100

0.1 0.3 0.5 0.7 0.9

A
vg

.
M

o
d

e
l R

e
le

a
se

 T
im

e

Arrival Rate

Streaming Composition
Block/Aggressive
Block/Conserve (Sage)

(b) Criteo Dataset

Fig. 8. Average Model Release Time Under Load.

lower release times, and can support up to 0.7 model arrivals
per hour (more than 15 new models per day) and release them
within a day. Second, we observe consistently lower release
times under the privacy budget conserving strategy. At higher
rates, such as 0.7 new models per hour, the difference starts
to grow: Block/Conserve has a release time 4x and 2x smaller
than Block/Aggressive on Taxi (Fig. 8a) and Criteo (Fig. 8b)
respectively. Privacy budget conservation reduces the amount
of budget consumed by an individual pipeline, thus allowing
new pipelines to use the remaining budget when they arrive.

6 Related Work

Sage’s main contribution – block composition – is related
to DP composition theory. Basic [17] and strong [21, 27]
composition theorems give the DP guarantee for multiple
queries with adaptively chosen computation. McSherry [38]
and Zhang, et.al. [55] show that non-adaptive queries over
non-overlapping subsets of data can share the DP budget.
Rogers, et.al. [44] analyze composition under adaptive DP
parameters, which is crucial to our block composition. These
works all consider fixed datasets and query-level accounting.

Compared to all these works, our main contribution is to
formalize the new block-level DP interaction model, which
supports ML workloads on growing databases while enforc-
ing a global DP semantic without running out of budget. This
model sits between traditional DP interaction with static data,
and streaming DP working only on current data. In proving
our interaction model DP we leverage prior theoretical results
and analysis methods. However, the most comprehensive prior
interaction model [44] did not support all our requirements,
such as interactions with adaptively chosen data subsets, or
future data being impacted by previous queries.

192

Streaming DP [9, 16, 18, 19] extends DP to data streams
but is restrictive for ML. Data is consumed once and assumed
to never be used again. This enables stronger guarantees, as
data need not even be kept internally. However, training ML
models often requires multiple passes over the data.

Cummings, et.al. [12] consider DP over growing databases.
They focus on theoretical analysis and study two setups. In the
fist setup, they also run DP workloads on exponentially grow-
ing data sizes. However, their approach only supports linear
queries, with a runtime exponential in the data dimension and
hence impractical. In the second setup, they focus on train-
ing a single convex ML model and show that it can use new
data to keep improving. Supporting ML workloads would re-
quire splitting the privacy budget for the whole stream among
models, creating a running out of privacy budget challenge.

A few DP systems exist, but none focuses on streams or ML.
PINQ [38] and its generalization wPINQ [42] give a SQL-like
interface to perform DP queries. They introduce the parti-
tion operator allowing parallel composition, which resembles
Sage’s block composition. However, this operator only sup-
ports non-adaptive parallel computations on non-overlapping
partitions, which is insufficient for ML. Airavat [45] pro-
vides a MapReduce interface and supports a strong threat
model against actively malicious developers. They adopt a
perspective similar to ours, integrating DP with access control.
GUPT [39] supports automatic privacy budget allocation and
lets programmers specify accuracy targets for arbitrary DP
programs with a real-valued output; it is hence applicable to
computing summary statistics but not to training ML models.
All these works focus on static datasets and adopt a generic,
query-level accounting approach that applies to any work-
load. Query-level accounting would force them to run out
of privacy budget if unused data were available. Block-level
accounting avoids this limitation but applies to workloads
with specific data interaction characteristics (§3.2).

7 Summary and Future Work

As companies disseminate ML models trained over sensi-
tive data to untrusted domains, it is crucial to start controlling
data leakage through these models. We presented Sage, the
first ML platform that enforces a global DP guarantee across
all models released from sensitive data streams. Its main con-
tributions are its block-level accounting that permits endless
operation on streams and its privacy-adaptive training that
lets developers control DP model quality. The key enabler of
both techniques is our systems focus on ML training work-
loads rather than DP ML’s typical focus on individual training
algorithms. While individual algorithms see either a static
dataset or an online training regime, workloads interact with
growing databases. Across executions of multiple algorithms,
new data becomes available (helping to renew privacy budgets
and allow endless operation) and old data is reused (allowing
training of models on increasingly large datasets to lessen the
effect of DP noise on model quality).

We believe that this systems perspective on DP ML presents
other opportunities worth pursuing in the future. One of them
is to allocate the multiple resources in a DP ML system: data,
privacy budgets, and compute resources. Sage proposes a
specific heuristic for allocating the first two resources (§3.3)
but leaves unexplored tradeoffs between data and compute
resources. To conserve budgets, we use as much data as is
available in the database when a model is invoked, with the
lowest privacy budget. This gives us the best utilization of
the privacy resource. But training on more data consumes
more compute resources. Identifying principled approaches
to perform these allocations is an open problem that systems
researchers are uniquely positioned to address given the rich
resource allocation literature developed by this community.

A key limitation of this work is the focus on event-level
privacy, a semantic that is insufficient when groups of cor-
related observations can reveal sensitive information. The
best known example of such correlation happens when a user
contributes multiple observations, but other examples include
repeated measurements of a phenomenon over time, or users
and their friends on a social network. In such cases, observa-
tions are all correlated and can reveal sensitive information,
such as a user’s demographic attributes, despite event-level
DP. To increase protection, an exciting area of future work is
to add support for and evaluate user-level privacy. Our block
accounting theory is amenable to this semantic (§4.4), but
finding settings where the semantic can be sustained without
running out of budget is an open challenge.

8 Acknowledgements

We thank our shepherd, Thomas Ristenpart, and the anony-
mous reviewers for the valuable comments. This work was
funded through NSF CNS-1351089, CNS-1514437, and CCF-
1740833, two Sloan Faculty Fellowships, a Microsoft Fac-
ulty Fellowship, a Google Ph.D. Fellowship, and funds from
Schmidt Futures and Columbia Data Science Institute.

References

[1] Kaggle display advertising challenge dataset. https://www.kaggle.
com/c/criteo-display-ad-challenge, 2014.

[2] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang. Deep learning with differential privacy. In Proc.
of the ACM Conference on Computer and Communications Security
(CCS), 2016.

[3] M. Backes, P. Berrang, M. Humbert, and P. Manoharan. Membership
privacy in microRNA-based studies. In Proc. of the ACM Conference
on Computer and Communications Security (CCS), 2016.

[4] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar.
Privacy, accuracy, and consistency too: a holistic solution to contingency
table release. In Proc. of the ACM SIGMOD International Conference
on Management of Data, 2007.

[5] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque,
S. Haykal, M. Ispir, V. Jain, L. Koc, C. Y. Koo, L. Lew, C. Mewald,
A. N. Modi, N. Polyzotis, S. Ramesh, S. Roy, S. E. Whang, M. Wicke,
J. Wilkiewicz, X. Zhang, and M. Zinkevich. TFX: A Tensorflow-
based production-scale machine learning platform. In Proc. of the
International Conference on Knowledge Discovery and Data Mining
(KDD), 2017.

193

[6] K. Boyd, E. Lantz, and D. Page. Differential privacy for classifier
evaluation. In Proc. of the ACM Workshop on Artificial Intelligence
and Security, 2015.

[7] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and
V. Shmatikov. “You Might Also Like:” Privacy risks of collabora-
tive filtering. In Proc. of IEEE Symposium on Security and Privacy
(S&P), 2011.

[8] N. Carlini, C. Liu, U. Erlingsson, J. Kos, and D. Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks.
arXiv:1802.08232, 2018.

[9] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of
statistics. ACM Transactions on Information Systems Security, 2011.

[10] K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression.
In Proc. of the Conference on Neural Information Processing Systems
(NeurIPS), 2008.

[11] K. Chaudhuri, A. D. Sarwate, and K. Sinha. A near-optimal algorithm
for differentially-private principal components. Journal of Machine
Learning Research (JMLR), 14, 2013.

[12] R. Cummings, S. Krehbiel, K. A. Lai, and U. Tantipongpipat. Differ-
ential privacy for growing databases. In Proc. of the Conference on
Neural Information Processing Systems (NeurIPS), 2018.

[13] I. Dinur and K. Nissim. Revealing information while preserving privacy.
In Proc. of the International Conference on Principles of Database
Systems (PODS), 2003.

[14] J. Duchi and R. Rogers. Lower bounds for locally private estimation
via communication complexity. arXiv:1902.00582, 2019.

[15] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Minimax optimal
procedures for locally private estimation. Journal of the American
Statistical Association, 2018.

[16] C. Dwork. Differential privacy in new settings. In Proc. of the ACM
Symposium on Discrete Algorithms (SODA), 2010.

[17] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise
to sensitivity in private data analysis. In Proc. of the Conference on
Theory of Cryptography (TCC), 2006.

[18] C. Dwork, M. Naor, T. Pitassi, , and S. Yekhanin. Pan-private streaming
algorithms. In Proc. of The Symposium on Innovations in Computer
Science, 2010.

[19] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy
under continual observation. In Proc. of the ACM Symposium on Theory
of Computing (STOC), 2010.

[20] C. Dwork and A. Roth. The algorithmic foundations of differential
privacy. Foundations and Trends® in Theoretical Computer Science,
2014.

[21] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential
privacy. In Proc. of the IEEE Symposium on Foundations of Computer
Science (FOCS), 2010.

[22] C. Dwork, A. Smith, T. Steinke, and J. Ullman. Exposed! A survey of
attacks on private data. Annual Review of Statistics and Its Application,
2017.

[23] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Robust
traceability from trace amounts. In Proc. of the IEEE Symposium on
Foundations of Computer Science (FOCS), 2015.

[24] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang. Applied machine learning
at Facebook: A datacenter infrastructure perspective. In Proc. of In-
ternational Symposium on High-Performance Computer Architecture
(HPCA), 2018.

[25] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,
J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W.
Craig. Resolving individuals contributing trace amounts of DNA to
highly complex mixtures using high-density SNP genotyping microar-
rays. PLoS Genetics, 2008.

[26] B. Jayaraman and D. Evans. Evaluating differentially private machine
learning in practice. In Proc. of USENIX Security, 2019.

[27] P. Kairouz, S. Oh, and P. Viswanath. The composition theorem for
differential privacy. In International Conference on Machine Learning
(ICML), 2015.

[28] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith. What can we learn privately? SIAM Journal on Computing,
2011.

[29] S. P. Kasiviswanathan and A. Smith. On the’semantics’ of differential
privacy: A bayesian formulation. Journal of Privacy and Confidential-
ity, 2014.

[30] D. Kifer, A. Smith, and A. Thakurta. Private convex empirical risk
minimization and high-dimensional regression. In Proc. of the ACM
Conference on Learning Theory (COLT), 2012.

[31] M. Lecuyer, R. Spahn, K. Vodrahalli, R. Geambasu, and D. Hsu. Privacy
accounting and quality control in the sage differentially private ML
platform. Online Supplements (also available on https://arxiv.org/abs/
1909.01502), 2019.

[32] N. Leonard and C. M. Halasz. Twitter meets tensorflow.
https://blog.twitter.com/engineering/en_us/topics/insights/
2018/twittertensorflow.html, 2018.

[33] L. E. Li, E. Chen, J. Hermann, P. Zhang, and L. Wang. Scaling machine
learning as a service. In Proc. of The International Conference on
Predictive Applications and APIs, 2017.

[34] H. B. McMahan and G. Andrew. A general approach to adding dif-
ferential privacy to iterative training procedures. arXiv:1812.06210,
2018.

[35] H. B. McMahan and G. Andrew. A general approach to adding dif-
ferential privacy to iterative training procedures. arXiv:1812.06210,
2018.

[36] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differ-
entially private recurrent language models. In Proc. of the International
Conference on Learning Representations (ICLR), 2018.

[37] F. McSherry and I. Mironov. Differentially private recommender sys-
tems: Building privacy into the Netflix prize contenders. In Proc. of the
International Conference on Knowledge Discovery and Data Mining
(KDD), 2009.

[38] F. D. McSherry. Privacy integrated queries: An extensible platform
for privacy-preserving data analysis. In Proc. of the ACM SIGMOD
International Conference on Management of Data, 2009.

[39] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. GUPT: Privacy
preserving data analysis made easy. In Proc. of the 2012 ACM SIGMOD
International Conference on Management of Data, 2012.

[40] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft. Privacy-preserving ridge regression on hundreds of millions of
records. In Proc. of IEEE Symposium on Security and Privacy (S&P),
2013.

[41] NYC Taxi & Limousine Commission - trip record data. http://www.
nyc.gov/html/tlc/html/about/trip_record_data.shtml, 2018.

[42] D. Proserpio, S. Goldberg, and F. McSherry. Calibrating data to sen-
sitivity in private data analysis: a platform for differentially-private
analysis of weighted datasets. Proc. of the International Conference on
Very Large Data Bases (VLDB), 2014.

[43] S. Ravi. On-device machine intelligence. https://ai.googleblog.com/
2017/02/on-device-machine-intelligence.html, 2017.

[44] R. M. Rogers, A. Roth, J. Ullman, and S. Vadhan. Privacy odometers
and filters: Pay-as-you-go composition. In Proc. of the Conference on
Neural Information Processing Systems (NeurIPS), 2016.

[45] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. Airavat: Se-
curity and privacy for MapReduce. In Proc. of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2010.

[46] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. Appendix B. Cambridge University
Press, New York, NY, USA, 2014.

194

[47] D. Shiebler and A. Tayal. Making machine learning easy with embed-
dings. SysML http://www.sysml.cc/doc/115.pdf, 2010.

[48] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership
inference attacks against machine learning models. In Proc. of IEEE
Symposium on Security and Privacy (S&P), 2017.

[49] A. Smith and A. Thakurta. Differentially private model selection via
stability arguments and the robustness of lasso. Journal of Machine
Learning Research, 2013.

[50] K. Talwar, A. Thakurta, and L. Zhang. Nearly-optimal private LASSO.
In Proc. of the Conference on Neural Information Processing Systems
(NeurIPS), 2015.

[51] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing
machine learning models via prediction apis. In Proc. of USENIX
Security, 2016.

[52] Y.-X. Wang. Revisiting differentially private linear regression: op-
timal and adaptive prediction & estimation in unbounded domain.

arXiv:1803.02596, 2018.
[53] J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett. Differen-

tially private histogram publication. In Proc. of the IEEE International
Conference on Data Engineering (ICDE), 2012.

[54] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex. Differentially private
model publishing for deep learning. In Proc. of IEEE Symposium on
Security and Privacy (S&P), 2019.

[55] D. Zhang, R. McKenna, I. Kotsogiannis, M. Hay, A. Machanavajjhala,
and G. Miklau. Ektelo: A framework for defining differentially-private
computations. In Proc. of the ACM SIGMOD International Conference
on Management of Data, 2018.

[56] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. Functional
mechanism: Regression analysis under differential privacy. In Proc. of
the International Conference on Very Large Data Bases (VLDB), 2012.

195

