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a b s t r a c t

The Kuramoto–Sivashinsky equations (KSE) arise in many diverse scientific areas, and are of much
mathematical interest due in part to their chaotic behavior, and their similarity to the Navier–Stokes
equations. However, very little is known about their global well-posedness in the 2D case. Moreover,
regularizations of the system (e.g., adding large diffusion, etc.) do not seem to help, due to the lack
of any control over the L2 norm. In this work, we propose a new ‘‘reduced’’ 2D model that modifies
only the linear part of (the vector form of) the 2D KSE in only one component. This new model shares
much in common with the 2D KSE: it is 4th-order in space, it has an identical nonlinearity which
does not vanish in energy estimates, it has low-mode instability, and it lacks a maximum principle.
However, we prove that our reduced model is globally well-posed. We also examine its dynamics
computationally. Moreover, while its solutions do not appear to be close approximations of solutions
to the KSE, the solutions do seem to hold many qualitative similarities with those of the KSE. We
examine these properties via computational simulations comparing solutions of the new model to
solutions of the 2D KSE.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The Kuramoto–Sivashinsky equation (KSE) appears frequently
n diverse areas such as the study of instabilities in laminar flame
ronts [1], plasmas [2,3], reaction–diffusion systems [4,5], and the
low of fluid films on inclined planes [6]. Indeed, under somewhat
eneric assumptions, it was shown in [7] that the dynamics of
uite general physical systems obeying certain symmetries can
e described in part by the KSE if a certain bifurcation point is
xceeded, explaining the ubiquitous appearance of the equation.
espite its prevalence, very little progress has been made in
erms of its mathematical analysis for large times in dimensions
igher than one, and major questions remain unanswered even
n one dimension. In this paper, we propose and analyze a hybrid
ersion of the higher-dimensional KSE and Burgers equations
hat may shed light on the original system. This new system
as many characteristic features in common with the KSE: it is
ourth-order in space, it has a low-mode instability, it has an
dvective-type nonlinearity, and the solution is not divergence-
ree. However, unlike for the higher-dimensional KSE, we are able
o provide a proof that this new system is globally well-posed,
hich is the main purpose of the present work. We also provide
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computational simulations that compare the dynamics of the 2D
KSE to the new 2D system.

The KSE was first derived in [1,5] (see also [6,8,9]). They are
given in a domain Ω ⊂ Rn by

∂tu + (u · ∇)u = −λ△u − △
2u in Ω × (0, T ), (1.1a)

u(x, 0) = uin(x) in Ω, (1.1b)

with boundary conditions discussed below. Here, λ > 0 is
a dimensionless constant. One may also consider the scalar or
‘‘integrated’’ form given by

∂tϕ +
1
2 |∇ϕ|

2
= −λ△ϕ − △

2ϕ. (1.2)

Note that by setting u := ∇ϕ, one formally recovers a solution to
(1.1a).

In the one-dimensional case, with either periodic (Ω = T :=

R/2πZ) or full-space (Ω = R) boundary conditions, (1.1) is glob-
ally well posed, and in the periodic case has a finite-dimensional
global attractor and an inertial manifold (see, e.g., [10–25] and the
references therein). In particular, the existence and uniqueness
of the solution in the one-dimensional case is shown in [26]; we
also refer to [27] for a result on the finite-dimensionality result
using the notion of determining modes. Large-time behavior was
also studied for the so-called ‘‘Burgers–Sivashinsky’’ equation,
ut + u · ∇u = u + △u in [18,28]. It was also shown in [29]
that the only steady-state solutions to (1.1) in either Rn or Tn,
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n = 1, 2, are constant functions. The question of the global well-
posedness of (1.1) for n ≥ 2 in the periodic case, or Rn is still open
n general; however, in dimensions n = 2 and 3 for the case of
adially symmetric initial data in an annular domain, global well-
osedness was proved in [30], assuming homogeneous Neumann
oundary conditions. On the other hand, in [31] (see also [32]) it
as shown that, under a certain (seemingly non-physical) choice
f third-order boundary conditions, for any dimension n ≥ 1,
olutions to (1.1) develop a singularity in finite time for a certain
lass of initial conditions. These issues were discussed in [33],
here it was also shown that global well-posedness holds in
he one-dimensional case, with a different choice of third-order
oundary conditions. The physical boundary conditions for (1.1)
re given by u ≡ △u ≡ 0 on ∂Ω . Currently, the question of
lobal existence of solutions to (1.1) under the physical boundary
onditions, even in the 1D case, remains open. Moreover, for n ≥

, the question of global well-posedness of (1.1) in the periodic
ase, or in the full space Rn, is also a challenging open question.
owever, short-time existence (but not uniqueness) of solutions
n Gevrey spaces in the case Ω = Rn for arbitrary dimension

∈ N was proven in [34], and recently, in [35], it was shown
hat, so long as there are no linearly growing modes, then for
ufficiently small initial data in a certain function space based on
he Wiener algebra, global existence holds. We also mention [36],
hich studied global existence and attractors in 2D thin domains.
We remark that (1.1) may be written in component form as

tu1 + (u · ∇)u1 = −λ∆u1 −∆2u1, (1.3a)

tu2 + (u · ∇)u2 = −λ∆u2 −∆2u2. (1.3b)

In this paper, we propose and study the following
wo-dimensional system, which we call the reduced Kuramoto–
ivashinsky equations (r-KSE) written in terms of u = (u1, u2).

tu1 + (u · ∇)u1 = σu1 + ν△u1 in Ω × (0, T ), (1.4a)

tu2 + (u · ∇)u2 = −λ△u2 − △
2u2 in Ω × (0, T ), (1.4b)

u(·, 0) = uin(·) = (uin
1 , u

in
2 )(·) in Ω, (1.4c)

nder periodic boundary conditions on the domain Ω = T2
=

2/2πZ2
= [0, 2π ]

2 and . Here, T > 0, ν > 0, σ > 0, and λ > 0
re constants.

emark 1.1. Note that (1.4) no longer appears to arise from a
calar form of the equations such as (1.2), and hence for (1.2),
here is no obvious analogue of the modification that takes (1.1)
o (1.4). One possibility is to use a nonlinearity of the form 1

2∇|u|
2

instead of u · ∇u in (1.4). These are formally the same for the 2D
KSE if one identifies u ≡ ∇φ, but for system (1.4), we make no
assumption that u ≡ ∇ψ for any function ψ . Rather than analyze
oth possible choices of nonlinearity, we made the arbitrary
hoice to focus on the nonlinearity u · ∇u (this case is slightly
ore involved, since the

∫
Ω
u dx is no longer preserved by the

low), but results similar to those in this paper can also be proven
or the nonlinearity 1

2∇|u|
2 using nearly identical arguments to

hose made below.
We also note that it is clear that if ones switches the roles

f u1 and u2 in (1.4), symmetric results to those in the present
ork hold. There are several possibilities for 3D and higher-
imensional generalizations of the anisotropic reduction of (1.1)
o (1.4). The authors plan to investigate these questions in a
uture work.

emark 1.2. A different modification of the 2D KSE was stud-
ed in [37,38]; however, this was with a drastically simplified
onlinearity (uu rather than u · ∇u) which vanishes in energy
x N
stimates. It is our view that the central difficulty of the higher-
imensional KSE is that the nonlinearity does not vanish in L2

energy estimates, analogous to the vorticity stretching for the 3D
Navier–Stokes equations (NSE) term not vanishing in L2 estimates
of the vorticity. We note that in system (1.4) proposed above, the
nonlinearity is identical to the nonlinearity in the 2D KSE, and
hence does not vanish in L2 energy estimates.

We note that, as remarked upon above, one of the main
obstacles in tackling the global well-posedness of the KSE (1.1) in
the 2D case is that even though the following one-dimensional
integrals vanish,∫
Ω

ui
∂ui

∂xi
ui dxi =

1
3

∫
Ω

∂

∂xi
(u3

i ) dxi = 0, i = 1, . . . , n, (1.5)

(which is the crucial fact that allows one to prove global well-
posedness in 1D), such a result does not hold for the full nonlin-
earity in dimensions n ≥ 2:∫
Ω

(u · ∇)u · u dx ̸= 0, (1.6)

ince u is not divergence free. This is reminiscent of the situ-
ation of the Burgers’ equation in contrast to the Navier–Stokes
equations;

∫
Ω
(u · ∇)u · u dx = 0 in the latter case due to the

ivergence-free condition while this integral is nonzero in general
or the former case. With that in mind, we partially follow the
ork of [39] in the proof of our main result Theorem 3.2.
Let us also point out that even if the initial data is mean-zero,

uch a property is not preserved through evolution of (1.4). Again,
his is actually valid for the one-dimensional KSE (1.1) but not for
he two-dimensional KSE (1.1) or (1.4), because

Ω

(u · ∇)u dx ̸= 0

which is also in contrast to the case of the NSE). This creates
arious difficulty such as the lack of applicability of Poincaré

inequality. Pooley and Robinson in [39] overcame such a difficulty
using a bound on the moment of the solution u [39, Lemma
2]. We can obtain the analogous result with which we may use
Poincaré inequality. However, the computations become rather
lengthy. In fact, as we will see, we may overcome this difficulty
essentially by doing the estimates in an inhomogeneous space
instead of homogeneous space, i.e., an H1(T2)-estimate instead
of Ḣ1(T2)-estimate.

1.1. Some remarks on the equation

There are many studies that consider modifications of an equa-
tion for which the global existence and/or uniqueness of solutions
is an open question. Such works, including the present work,
often then show that the modified equation is well-posed. There
are at least two major reasons for such studies. The first is that
sometimes the modified equation can be seen as a better-behaved
approximation of the original equation, and thus it may be of
use, e.g., in numerical simulations or studies of the dynamics. For
instance, the development of α-models for the 3D NSE and related
α-models (see, e.g., [40–43] and the references therein).

The second reason is more subtle. A modification of the equa-
tion can be seen as a way to try to understand something about
the mechanisms underlying the dynamics predicted by the equa-
tions. For instance, let us consider the abstract system

∂tu + (u · ∇)u = N (u), (1.7)

here N is an operator that may be nonlinear and nonlocal.
or instance, if N (u) = −λ∆u − ∆2u, then (1.7) is the KSE. If
(u) = ν∆u−∇p (where the pressure p = ∆−1

∇ · ((u ·∇)u) and
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∆−1 is taken with respect to appropriate boundary conditions),
then (1.7) is the NSE. Let us consider the 2-dimensional case for
the moment. If N (u) = 0, then this equation is the inviscid
Burgers equation, which is well-known to blow up in finite time.
If N (u) = −∇p (yielding the 2D Euler equations) or N (u) =

∆u (yielding the 2D viscous Burgers equations), then well-
osedness is restored. In the first case, this is due to the pressure
‘weakening’’ the nonlinearity by causing u to be divergence-
ree, preventing (1.6) and similarly weakening the nonlinearity
n higher-order estimates, ultimately allowing proofs of global
ell-posedness to go through. In the case of the 2D (or higher
imensional) viscous Burgers equation, the situation is quite dif-
erent due to (1.6); however, as observed by O. Ladyzhenskaya
see, e.g., [44] and the discussion in [39]), a maximum principle
an be found for this system, which prevents the nonlinearity
rom forming arbitrarily large gradients. This maximum principle
s destroyed by adding a pressure gradient, as in the case of the
uler or the NSE), or by adding a higher-order diffusion, as in
he case of the so-called ‘‘hyper-viscous Burgers equation’’ where
(u) = −ν2∆2u (formally, this is (1.1a) with λ = 0) as pointed
ut in [33]. In the 3D case, the pressure gradient weakens the
onlinearity in the sense that it prevents (1.6), but it no longer
as a similar effect on higher-order estimates. Moreover, it still
estroys the maximum principle, so it is no longer clear to what
xtent the pressure affects the nonlinearity, or even whether its
et effect is to weaken or strengthen the nonlinearity.
From this perspective, one can see the reason for the interest

n the multi-dimensional KSE (or even the multi-dimensional
yper-viscous Burgers equation). It provides a setting in which
he nonlinearity is rather strong (i.e., not ‘‘weakened’’ by the
ressure or the maximum principle), and where the formation
f arbitrarily large gradients is checked only by hyperdiffusion.
nteresting results in this direction appear even in the 1D case.
or instance, in [45], it is shown that adding a large dispersion
erm to the 1D KSE weakens the nonlinearity in the sense that
he dispersion mechanism disperses large gradients as they begin
o form, keeping energy in the lower modes where it increased
y the low-mode instability in the KSE more than it is decreased
y the hyperdiffusion.
Thus, the reduced system (1.4) we propose in this work is

f interest in the sense that its solution also has no maximum
rinciple at all, while we point out that it has maximum principle
n L∞-norm if σ = 0. Moreover, it does not sufficiently weaken
he nonlinearity to prevent (1.6) by, e.g., enforcing a divergence-
ree condition, but relies only on one-dimensional symmetries
f the form (1.5), present in all equations of the form (1.7). As
e prove below, having only an exponential growth bound of
supremum norm of u1 in Proposition 4.2 is enough to tame
onlinearity sufficiently to obtain global well-posedness.

. Preliminaries

We write A ≲α,β B, A ≈α,β B, etc., whenever there exists a
onstant c = c(α, β) such that A ≤ cB, A = cB, respectively.
or brevity we also write

∫
f ≜

∫
T2 f(x)dx as well as ∂j ≜ ∂

∂xj
for j ∈ {1, 2}. The standard L2 inner-product is denoted by (·, ·).
We recall that, due to the periodic boundary conditions, for f in
suitable spaces, we may write

f(x) =

∑
k∈Z2

f̂(k)eik·x, ∥f∥L2 ≜ (
∑
k∈Z2

|f̂(k)|2)
1
2 ,

and the inhomogeneous and homogeneous Sobolev norms

∥f∥Hs ≜ (
∑

(1 + |k|
s)2|f̂(k)|2)

1
2 , ∥f∥Ḣs ≜ (

∑
|k|

2s
|f̂(k)|2)

1
2 ,
k∈Z2 k∈Z2
respectively. Consequently ∥f∥Hs ≈ ∥f∥Ḣs + ∥f∥L2 . We denote
by Λs ≜ (−∆)

s
2 which is defined by its Fourier transform as

Λ̂sf(k) = |k|
s f̂(k).

We recall the Picard–Lindelöf Theorem in Banach spaces, a
proof of which can be found in, e.g., [46, Theorem 3.1].

Lemma 2.1 (Picard–Lindelöf). Let O ⊂ B be an open subset of a
anach space B and let F : O ↦→ B be a mapping that satisfies the
ollowing conditions

1. F (X) maps O to B;
2. F is locally Lipschitz; i.e., for any X ∈ O there exist L > 0 and

an open neighborhood U of X in O such that

∥F (X̃) − F (X)∥B ≤ L∥X̃ − X∥B

for all X̃, X ∈ U.

Then for any X0 ∈ O, there exists a time T > 0 such that

∂tX = F (X), X |t=0= X0 ∈ O,

has a unique solution X ∈ C1((−T , T );O).

We also recall the Aubin–Lions–Simon Compactness Theorem,
a proof of which can be found in, e.g., [47, Theorem 5] (see
also [48, Lemma 4]).

Lemma 2.2 (Aubin–Lions–Simon). Assume that X, B, Y are all Ba-
nach spaces such that X ⊂ B ⊂ Y , where X ↪→ B compactly. Suppose
1 ≤ p ≤ ∞,

1. F ≜ {fn}n is bounded in Lp([0, T ]; X),
2. ∂F

∂t ≜ {
∂ fn
∂t }fn∈F is bounded in L1([0, T ]; Y ).

Then F is relatively compact in Lp([0, T ]; B) and in C([0, T ]; B) if
p = ∞.

3. Global well-posedness

We first write down the definition of a strong solution to the
r-KSE (1.4).

Definition 3.1. We call u = (u1, u2) a strong solution to (1.4)
ver a time interval [0, T ] if for any φ = (φ1, φ2) ∈ C∞(T2),

∂tu1, φ1) + ν(∇u1,∇φ1) + (u · ∇u1, φ1) = σ (u1, φ1), (3.1a)

∂tu2, φ2) + (∆u2,∆φ2) + (u · ∇u2, φ2) = λ(∇u2,∇φ2) (3.1b)

or almost all t ∈ [0, T ], and

∈ L∞([0, T ];H1(T2)), u1 ∈ L2([0, T ];H2(T2)), u2 ∈ L2([0, T ];

H3(T2)), (3.2a)

∈ C([0, T ];Hs(T2)) for any s ∈ [0, 1), ∂tu ∈ L2([0, T ];H−1(T2)).
(3.2b)

heorem 3.2. Given any initial data uin
∈ H1(T2) such that uin

1 ∈
∞(T2) and any T > 0, there exists a unique strong solution to (1.4)
ver [0, T ].

emark 3.3. By symmetry, if the roles of u1 and u2 are reversed
n (1.4), the analogous theorem clearly holds.

. Proof of Theorem 3.2

We consider a Galerkin approximation with Pn being the pro-
ection onto the Fourier modes of order up to n ∈ N ∪ {0}:

nu(x) ≜
∑

û(k)eix·k.

|k|≤n
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We let un ≜ Pnu ≜ (Pnu1, Pnu2) and consider the following
Galerkin-truncated system.

∂tun
1 + Pn((un

· ∇)un
1) = σun

1 + ν∆un
1, (4.1a)

∂tun
2 + Pn((un

· ∇)un
2) = −λ∆un

2 −∆2un
2, (4.1b)

n(·, 0) ≜ Pnuin(·) = Pn(uin
1 , u

in
2 ) = (un

1, u
n
2)(0). (4.1c)

roposition 4.1. Given initial data uin
∈ H1(T2), there exists

= T (∥uin
∥H1 ) > 0 such that the Galerkin approximation system

(4.1) has a solution un
∈ L∞([0, T ];H1(T2)) that satisfies un

1 ∈
2([0, T ];H2(T2)) and un

2 ∈ L2([0, T ];H3(T2)); moreover, such
ounds are independent of n. Additionally, ∂tun

1 ∈ L2([0, T ]; L2(T2))
nd ∂tun

2 ∈ L2([0, T ];H−1(T2)). Finally, if T ∗ is the maximal exis-
ence time and T ∗ < ∞, then

im sup
t→T∗

∥un(t)∥H1 = +∞.

roof. We rely on Lemma 2.1. In order to do so we define

n(un) ≜
(
Fn,1(un)
Fn,2(un)

)
≜

(
−Pn((un

· ∇)un
1) + σun

1 + ν∆un
1

−Pn((un
· ∇)un

2) − λ∆un
2 −∆2un

2

)
. (4.2)

In the estimates below, we make use of the following elementary
facts:

P̂nΛsf(k) = Λ̂sPnf(k) so that PnΛs
= ΛsPn, (4.3a)

∥Pnf∥Ḣs ≤ ns
∥f∥L2 , (4.3b)

Pnf∥Ḣs ≤ ∥f∥Ḣs , (4.3c)∫
(Pnf) · g =

∫
(Pnf) · (Png) =

∫
f · (Png). (4.3d)

Firstly, for fn ≜ (f n1 , f
n
2 ), g

n ≜ (gn
1 , g

n
2 ), we compute

∥Fn,1(fn) − Fn,1(gn)∥H1

=∥ − Pn((fn − gn) · ∇f n1 ) − Pn(gn
· ∇(f n1 − gn

1 )) + ν∆(f n1 − gn
1 )

+ σ (f n1 − gn
1 )∥H1

≲∥fn − gn
∥L2∥∇f n1 ∥L∞ + ∥gn

∥L∞∥∇(f n1 − gn
1 )∥L2 + νn2

∥f n1 − gn
1∥L2

+ σ∥f n1 − gn
1∥L2

+ n[∥fn − gn
∥L2∥∇f n1 ∥L∞ + ∥gn

∥L∞∥∇(f n1 − gn
1 )∥L2

+ νn2
∥f n1 − gn

1∥L2 + σ∥f n1 − gn
1∥L2 ]

≲(1 + n)[∥fn − gn
∥L2∥f

n
1 ∥H3 + ∥gn

∥H2n∥f n1 − gn
1∥L2

+ νn2
∥f n1 − gn

1∥L2 + σ∥f n1 − gn
1∥L2 ]

≲n,∥fn∥L2 ,∥g
n∥L2

∥fn − gn
∥L2

(4.4)

by (4.2), Hölder’s inequality, the embedding of H2(T2) ↪→ L∞(T2),
(4.3a), (4.3b) and (4.3c). Secondly, we compute

∥Fn,2(fn) − Fn,2(gn)∥H1

=∥ − Pn(((fn − gn) · ∇)f n2 ) − Pn((gn
· ∇)(f n2 − gn

2 ))

− λ∆(f n2 − gn
2 ) −∆2(f n2 − gn

2 )∥H1

≲(1 + n)[∥Pn(((fn − gn) · ∇)f n2 )∥L2 + ∥Pn((gn
· ∇)(f n2 − gn

2 ))∥L2

+ λ∥∆(f n2 − gn
2 )∥L2

+ ∥∆2(f n2 − gn
2 )∥L2 ]

≲(1 + n)[∥fn − gn
∥L2∥∇f n2 ∥L∞ + ∥gn

∥L∞∥∇(f n2 − gn
2 )∥L2

+ (λn2
+ n4)∥fn − gn

∥L2 ]

≲(1 + n)[∥fn − gn
∥L2∥f

n
2 ∥H3 + ∥gn

∥H2n∥f n2 − gn
2∥L2

+ (λn2
+ n4)∥fn − gn

∥L2 ]

≲n,∥fn∥L2 ,∥g
n∥L2

∥fn − gn
∥L2
(4.5)
y (4.2), (4.3b), (4.3c), Hölder’s inequality and the embedding of
2(T2) ↪→ L∞(T2). Therefore, we conclude from (4.2), (4.4) and
4.5) that

Fn(fn) − Fn(gn)∥H1 ≲n,∥fn∥L2 ,∥g
n∥L2

∥fn − gn
∥H1 . (4.6)

hus, we see that Fn is locally Lipschitz continuous in any open
et OM ≜ {f ∈ H1(T2) : ∥f∥H1 ≤ M}. It is also clear that Fn maps
M into B = H1 by taking gn

≡ 0 in (4.4) and (4.5). Thus, by
emma 2.1, given uin

∈ H1(T2), there exists a unique solution
n

∈ C1([0, Tn),H1(T2) ∩ OM )2 (4.7)

or some Tn > 0. Now we take L2(T2)-inner products on (4.1a)–
4.1b) with (−∆un

1,−∆un
2) to deduce

1
2

d
dt

(∥un
1∥

2
Ḣ1 + ∥un

2∥
2
Ḣ1 ) + ν∥∆un

1∥
2
L2 + ∥un

2∥
2
Ḣ3

=

∫
Pn((un

· ∇)un
1) ·∆un

1 +

∫
Pn((un

· ∇)un
2) ·∆un

2

− σ

∫
un
1 ·∆un

1 + λ∥∆un
2∥

2
L2 ≜

4∑
i=1

Ii.

(4.8)

s we pointed out in Remark 1.1, due to the lack of conserved
uantity such as L2-norm and the inaccessibility of Poincaré in-
quality, this estimate alone will not work. Nevertheless, if we
ork on the H1(T2)-estimate instead of Ḣ1(T2)-estimate, this
ifficulty may be overcome. For this purpose, we take L2-inner
roducts with (u1, u2) to obtain

1
2

d
dt

(∥un
1∥

2
L2 + ∥un

2∥
2
L2 ) + ν∥∇un

1∥
2
L2 + ∥∆un

2∥
2
L2

= −

∫
Pn((un

· ∇)un
1) · un

1 −

∫
Pn((un

· ∇)un
2) · un

2 + σ∥un
1∥

2
L2

+ λ∥∇un
2∥

2
L2 ≜

4∑
i=1

IIi.

(4.9)

e now start our estimates. Firstly, we compute

I1 ≲∥un
∥L4∥∇un

1∥L4∥∆un
1∥L2 ≲ ∥un

∥

3
2
H1∥∆un

1∥
3
2
L2

≤
ν

2
∥∆un

1∥
2
L2

+ c∥un
∥
6
H1

(4.10)

where we used (4.8), (4.3d), (4.3a), Hölder’s inequality, (4.3c), the
embedding of H1(T2) ↪→ L4(T2), Gagliardo–Nirenberg inequality,
nd Young’s inequality. Secondly, we compute

I2 =

∫
(un

· ∇)un
2 ·∆un

2

≤∥un
∥L4∥∇un

2∥L4∥∆un
2∥L2

≲∥un
∥H1∥un

2∥
1
2
H1∥u

n
2∥

1
2
H2∥∆un

2∥L2

(4.11)

y (4.8), Hölder’s inequality, (4.3c), the embedding of H1(T2) ↪→
4(T2) and Gagliardo–Nirenberg inequality. Now it is clear that

∥∆un
2∥

2
L2 =

∑
k∈Z2

|k|
4
|ûn

2|
2

≤ (
∑
k∈Z2

|k|
2
|ûn

2|
2)

1
2 (

∑
k∈Z2

|k|
6
|ûn

2|
2)

1
2

= ∥un
2∥Ḣ1∥un

2∥Ḣ3

(4.12)
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a

by Hölder’s inequality. Thus, we apply (4.12) to (4.11) and further
bound by

I2 ≲ ∥un
∥

3
2
H1 (∥u

n
2∥

1
2
L2

+ ∥un
2∥

1
2
Ḣ2 )∥u

n
2∥Ḣ2 ≤

1
4
∥un

2∥
2
Ḣ3

+ c(1 + ∥un
∥

18
5
H1 )

(4.13)

due to Young’s inequality. Thirdly, we compute

I3 = σ∥∇un
1∥

2
L2 , I4 ≤ λ∥un

2∥Ḣ1∥un
2∥Ḣ3 ≤

1
4
∥un

2∥
2
Ḣ3 + c∥un

∥
2
H1

(4.14)

due to (4.8), (4.12) and Young’s inequality. Fourthly, we compute

II1 ≤ ∥un
∥L4∥∇un

1∥L2∥u
n
1∥L4 ≲ ∥un

∥
3
H1 (4.15)

by (4.9), Hölder’s inequality, (4.3c) and the embedding of H1(T2)
↪→ L4(T2). Fifthly,

II2 ≤ ∥un
∥L4∥∇un

2∥L2∥u
n
2∥L4 ≲ ∥un

∥
3
H1 (4.16)

y (4.9), Hölder’s inequality and (4.3c). Finally, it is immediate
hat

I4 ≲ ∥un
∥
2
H1 . (4.17)

herefore, applying (4.10), (4.13), (4.14), (4.15), (4.16) and (4.17)
o (4.8)–(4.9) gives
d
dt

∥un
∥
2
H1 + ν∥∆un

1∥
2
L2 + ∥un

2∥
2
Ḣ3 ≤ c(1 + ∥un

∥
6
H1 + ∥un

∥

18
5
H1

+ ∥un
∥
2
H1 + ∥un

∥
3
H1 ). (4.18)

This implies that there exists a constant c ≥ 0 such that

∥un(t)∥H1 ≤
1 + ∥un(0)∥H1

[1 − 4ct(1 + ∥un(0)∥H1 )4]
1
4

− 1

≤
1 + ∥uin

∥H1

[1 − 4ct(1 + ∥uin∥H1 )4]
1
4

− 1, (4.19)

where we used the fact that ∥un(0)∥H1 ≤ ∥uin
∥H1 , and the

monotonicity of g(x) := x/(1−ϵx4)1/4 for small x and small ϵ > 0.
Thus, H1(T2)-norm does not blow up for all

t < T ∗ ≜
1

4c(1 + ∥uin∥H1 )4
.

Hence, Tn > T ≜ T∗

2 for all n ∈ N and

un
∈ L∞([0, T ];H1(T2)). (4.20)

We go back to (4.18) and integrate in time to also deduce that

un
1 ∈ L2([0, T ];H2(T2)) and un

2 ∈ L2([0, T ];H3(T2)) (4.21)

due to (4.20). We also go back to (4.1a) and directly take L2([0, T ];

L2(T2))-norms to obtain∫ T

0
∥∂tun

1∥
2
L2dτ ≲ sup

t∈[0,T ]

∥∇un
1(t)∥

2
L2

∫ T

0
∥un

∥
2
H2dτ +

∫ T

0
∥∆un

1∥
2
L2

+ ∥un
1∥

2
L2dτ < ∞

(4.22)

by the embedding of H2(T2) ↪→ L∞(T2), (4.20) and (4.21). We
also return to (4.1b) and directly take L2([0, T ];H1(T2))-norms to
obtain∫ T

0
∥∂tun

2∥
2
H−1dτ

≲ sup
t∈[0,T ]

∥∇un
2(t)∥

2
L2

∫ T

0
∥un

∥
2
H2dτ +

∫ T

0
∥∇un

2∥
2
L2

3 n 2

(4.23)
+ ∥Λ u2∥L2dτ < ∞
by the embedding of H2(T2) ↪→ L∞(T2), (4.20) and (4.21). Finally,
the fact that if T ∗ is the maximal existence time and T ∗ < ∞, then
lim supt→T∗ ∥un(t)∥H1 = +∞ follows from how we deduced T ∗ ≜

1
4c(1+∥uin∥H1 )4

based on (4.19). Indeed, if lim supt→T∗ ∥un(t)∥H1 <

∞, then we may obtain a solution on [0, T ], restart from T
until T1 where T1 < 1

4c(1+∥uin(T )∥H1 )4
; such a process may be

repeated either for all time or until ∥un
∥H1 becomes infinite. This

completes the proof of Proposition 4.1. □

Using our results on the Galerkin approximation system, we
will first deduce a local existence of a unique solution to (1.4). By
Banach–Alaoglu theorem and weak compactness we obtain u =

(u1, u2) ∈ L∞([0, T ];H1(T2)) such that u1 ∈ L2([0, T ];H2(T2)), u2
L2([0, T ];H3(T2)) and a subsequence of {un

}n, which we still
enote by un, such that

un
→ u weak∗ in L∞([0, T ];H1(T2)),

un
1 → u1 weakly in L2([0, T ];H2(T2)),

un
2 → u2 weakly in L2([0, T ];H3(T2))

(4.24)

y (4.20) and (4.21). Now we let p = 2, X = H2(T2), Y =
−1(T2), B = Hs(T2) for s ∈ [1, 2) so that
n

→ u strongly in L2(0, T ;Hs(T2)) for s ∈ [1, 2) (4.25)

y Lemma 2.2, (4.21), (4.22) and (4.23). Similarly letting p =

, X = H1(T2), Y = H−1(T2), B = Hs(T2) for s ∈ [0, 1) shows
hat
n

→ u strongly in C([0, T ];Hs(T2)) for s ∈ [0, 1) (4.26)

y Lemma 2.2, (4.20), (4.22) and (4.23). Now we return to the
alerkin approximation (4.1a)–(4.1b), take L2(T2)-inner products
ith {wj}j = {(wj,1, wj,2)}j ⊂ H1(T2) that is dense in H1 and
ultiply by ψ : [0, T ] ↦→ R such that ψ ∈ C1([0, T ]) and
(T ) = 0 to deduce

−

∫ T

0
(un

1, ψ
′(t)wj,1)dt + ν

∫ T

0
(∇un

1,∇wj,1)ψ(t)dt

+

∫ T

0
(Pn((un

· ∇)un
1), wj,1ψ(t))dt = (un

1(0), ψ(0)wj,1)

+ σ

∫ T

0
(un

1, wj,1ψ(t))dt, (4.27a)

−

∫ T

0
(un

2, ψ
′(t)wj,2)dt +

∫ T

0
(∆un

2,∆wj,2)ψ(t)dt

+

∫ T

0
(Pn((un

· ∇)un
2), wj,2ψ(t))dt = (un

2(0), ψ(0)wj,2)

+ λ

∫ T

0
(∇un

2,∇wj,2)ψ(t)dt. (4.27b)

irstly,⏐⏐⏐⏐∫ T

0
(un

1, ψ
′(t)wj,1)dt −

∫ T

0
(u1, ψ

′(t)wj,1)dt
⏐⏐⏐⏐

≤ sup
t∈[0,T ]

∥un
1 − u1∥L2

∫ T

0
∥wj,1∥L2 |ψ

′(t)|dt → 0
(4.28)

y Hölder’s inequality and (4.26). Identically we can show that∫ T

0
(un

2, ψ
′(t)wj,2)dt →

∫ T

0
(u2, ψ

′(t)wj,2)dt (4.29)

s n → ∞. Next,

ν

∫ T

0
(∇un

1,∇wj,1)ψ(t)dt − ν

∫ T

0
(∇u1,∇wj,1)ψ(t)dt

≤ν(
∫ T

∥∇(un
1 − u1)∥2

L2dt)
1
2 (

∫ T

∥∇wj,1∥
2
L2ψ

2(t)dt)
1
2 → 0

(4.30)
0 0
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as n → ∞ by Hölder’s inequality and (4.25). Identically we can
show

λ

∫ T

0
(∇un

2,∇wj,2)ψ(t)dt → λ

∫ T

0
(∇u2,∇wj,2)ψ(t)dt (4.31)

as n → ∞. On the other hand, we have∫ T

0
(∆un

2,∆wj,2)ψ(t)dt −

∫ T

0
(∆u2,∆wj,2)ψ(t)dt

=

∫ T

0
((un

2 − u2),∆2wj,2)ψ(t)dt → 0
(4.32)

as n → ∞ due to (4.24) and that (∆2wj)ψ(t) ∈ L2(0, T ;H−3(T2)).
Next,∫ T

0
(Pn((un

· ∇)un
1), wj,1ψ(t))dt −

∫ T

0
((u · ∇)u1, wj,1ψ(t))dt

=

∫ T

0
((Pn − Id)(un

· ∇)un
1, wj,1ψ(t))

+ ((un
− u) · ∇un

1, wj,1ψ(t)) + ((u · ∇)(un
1 − u1), wj,1ψ(t))dt

≜

3∑
i=1

IIIi.

(4.33)

We estimate

|III1| ≤

∫ T

0
∥un

∥L4∥∇un
1∥L2∥(Pn − Id)wj,1∥L4 |ψ(t)|dt

≲( sup
t∈[0,T ]

∥un(t)∥H1 )( sup
t∈[0,T ]

∥un
1(t)∥H1 )∥(Pn − Id)wj,1∥H1

×

∫ T

0
|ψ(t)|dt → 0

(4.34)

as n → ∞ by (4.33), (4.3d), Hölder’s inequality, the embedding
of H1(T2) ↪→ L4(T2) and (4.20). Secondly,

|III2| ≤

∫ T

0
∥un

− u∥L3∥∇un
1∥L2∥wj,1∥L6 |ψ(t)|dt

≤( sup
t∈[0,T ]

∥(un
− u)(t)∥

H
1
2
) sup
t∈[0,T ]

(∥∇un
1(t)∥L2 )∥wj,1∥H1

×

∫ T

0
|ψ(t)|dt → 0

(4.35)

as n → ∞ by (4.33), Hölder’s inequality, the embeddings
of H

1
2 (T2) ↪→ L3(T2), H1(T2) ↪→ L6(T2), (4.20) and (4.26).

Thirdly,

|III3| ≤

∫ T

0
∥u∥L4∥∇(un

1 − u1)∥L2∥wj,1∥L4 |ψ(t)|dt

≲( sup
t∈[0,T ]

∥u(t)∥H1 )(
∫ T

0
∥∇(un

1 − u1)∥2
L2dt)

1
2 ∥wj,1∥H1

× (
∫ T

0
|ψ(t)|2dt)

1
2 → 0

(4.36)

s n → ∞ by (4.33) and Hölder’s inequality. Thus, applying
4.34)–(4.36) to (4.33) gives∫ T

0
(Pn(un

· ∇)un
1, wj,1ψ(t))dt →

∫ T

0
((u · ∇)u1, wj,1ψ(t))dt (4.37)

s n → ∞. We did not rely on anything special about u1 in the
omputations of (4.33)–(4.36); thus, the same argument mutatis
utandis shows that∫ T

(Pn(un
· ∇)un

2, wj,2ψ(t))dt →

∫ T

((u · ∇)u2, wj,2ψ(t))dt (4.38)

0 0

u

s n → ∞. Finally,

|(un
1(0), ψ(0)wj,1) − (u1(0), ψ(0)wj,1)|

≤ ∥(Pn − Id)uin
1 ∥L2∥wj,1∥L2ψ(0) → 0

(4.39)

s n → ∞ due to that (4.1c). Identically we can show that

un
2(0), ψ(0)wj,2) → (uin

2 (0), ψ(0)wj,2) (4.40)

s n → ∞. Thus, considering (4.28), (4.29), (4.30), (4.31), (4.32),
4.37), (4.38), (4.39), (4.40), along with⏐⏐⏐⏐σ ∫ T

0
(un

1, wj,1ψ(t))dt − σ

∫ T

0
(u1, wj,1ψ(t))dt

⏐⏐⏐⏐
σ∥un

1 − u1∥C([0,T ];L2(T2))∥wj,1∥L2T∥ψ∥C([0,T ]) → 0

s n → ∞ due to (4.26), we may pass to the limit to obtain

−

∫ T

0
(u1, ψ

′(t)wj,1)dt + ν

∫ T

0
(∇u1,∇wj,1)ψ(t)dt

+

∫ T

0
((u · ∇)u1, wj,1ψ(t))dt = (uin

1 , ψ(0)wj,1)

+ σ

∫ T

0
(u1, wj,1ψ(t))dt, (4.41a)

−

∫ T

0
(u2, ψ

′(t)wj,2)dt +

∫ T

0
(∆u2,∆wj,2)ψ(t)dt

+

∫ T

0
((u · ∇)u2, wj,2ψ(t))dt = (uin

2 , ψ(0)wj,2)

+ λ

∫ T

0
(∇u2,∇wj,2)ψ(t)dt (4.41b)

or all wj = (wj,1, wj,2) ∈ H1(T2). It follows that (4.41a)–(4.41b)
ontinue to hold for any linear combinations ofwj = (wj,1, wj,2) ∈
1(T2) and thus for any v = (v1, v2) ∈ H1(T2) by continuity and
enseness of {wj}j in H1(T2). Taking ψ ∈ C∞

c ([0, T ]) also shows
hat

∂tu1, v1) + ν(∇u1,∇v1) + (u · ∇u1, v1) = σ (u1, v1), (4.42a)

∂tu2, v2) + (∆u2,∆v2) + (u · ∇u2, v2) = λ(∇u2,∇v2), (4.42b)

olds in the distributional sense. We also multiply (4.42a)–(4.42b)
y ψ ∈ C∞

c ([0, T ]) such that ψ(T ) = 0 and ψ(0) = 1 and
ntegrate over [0, T ] to deduce

−

∫ T

0
(u1, ψ

′(t)v1)dt + ν

∫ T

0
(∇u1,∇v1)ψ(t)dt

+

∫ T

0
((u · ∇)u1, v1ψ(t))dt = (u1(0), ψ(0)v1), (4.43a)

−

∫ T

0
(u2, ψ

′(t)v2)dt +

∫ T

0
(∆u2,∆v2)ψ(t)dt

+ σ

∫ T

0
(u1, v1ψ(t))dt,

+

∫ T

0
((u · ∇)u2, v2ψ(t))dt = (u2(0), ψ(0)v2)

+ λ

∫ T

0
(∇u2,∇v2)ψ(t)dt. (4.43b)

n comparison of (4.41a)–(4.41b) and (4.43a)–(4.43b), we see
hat
(u1(0), ψ(0)v1) = (uin

1 , ψ(0)v1) and (u2(0), ψ(0)v2)

= (uin
2 , ψ(0)v2).

(4.44)

hus, (u1(0) − uin
1 , v1) = 0 and (u2(0) − uin

2 , v2) = 0 for any
= (v1, v2) ∈ H1(T2), which implies that u1(0) = uin

1 and
in 2 2
2(0) = u2 in the sense of L (T ) functions.
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Next, concerning uniqueness, suppose that u = (u1, u2) and
= (v1, v2) are both solutions to (1.4) with the same initial data.
etting w = (w1, w2) ≜ u − v gives

tw1 + (u · ∇)w1 + (w · ∇)v1 = σw1 + ν∆w1, (4.45a)

∂tw2 + (u · ∇)w2 + (w · ∇)v2 = −λ∆w2 −∆2w2 (4.45b)

o that taking L2(T2)-inner products with (w1, w2) leads to

1
2

d
dt

∥w∥
2
L2+ν∥∇w1∥

2
L2 + ∥∆w2∥

2
L2 = −((u · ∇)w1, w1)

+ ((w · ∇)v1, w1)

+ ((u · ∇)w2, w2) + ((w · ∇)v2, w2) + σ∥w1∥
2
L2

+ λ∥∇w2∥
2
L2 ≜

6∑
i=1

IVi.

(4.46)

We point out that in contrast to the case of the NSE, IV1 and
IV3 in (4.46) do not immediately vanish due to the lack of
divergence-free property of u in (1.1). Now we estimate the terms
in (4.46)

|IV1| ≤ ∥u∥L∞∥∇w1∥L2∥w1∥L2 ≤
ν

4
∥∇w1∥

2
L2 + c∥u∥

2
H2∥w1∥

2
L2 ,

(4.47)

|IV2| ≤∥w∥L2∥∇v1∥L4∥w1∥L4

≤c∥w∥
2
L2∥∇v1∥L2 +

ν

4
∥∇w1∥

2
L2 + c∥w∥

2
L2∥∆v1∥

2
L2

(4.48)

and

|IV3| ≤ ∥u∥L∞∥∇w2∥L2∥w2∥L2 ≤
1
4
∥∆w2∥

2
L2 + c∥u∥

4
3
H2∥w2∥

2
L2

(4.49)

where we used Hölder’s inequality, the embeddings of H2(T2) ↪→
∞(T2) and H1(T2) ↪→ L4(T2), that

∇w2∥
2
L2 =

∑
k∈Z2

|k|
2
|ŵ2(k)|2 ≤ (

∑
k∈Z2

|ŵ2(k)|2)
1
2 (

∑
k∈Z2

|k|
4
|ŵ2(k)|2)

1
2

≤ ∥w2∥L2∥w2∥Ḣ2 (4.50)

and Young’s inequality. Next,

|IV4| ≲∥w∥L2∥∇v2∥H1∥w2∥H1

≲∥w∥L2 (∥∇v2∥L2∥w2∥L2 + ∥∆v2∥L2∥∇w2∥L2 )

≲∥w∥
2
L2∥∇v2∥L2 + ∥w∥

3
2
L2

∥∆v2∥L2∥∆w2∥
1
2
L2

≤c∥w∥
2
L2∥∆v2∥L2 +

1
8
∥∆w2∥

2
L2 + c∥w∥

2
L2∥∆v2∥

4
3
L2

(4.51)

by (4.46), Hölder’s inequality, the embedding of H1(T2) ↪→ L4(T2),
4.50) and Young’s inequality. Finally,

|IV6| ≤ λ∥w2∥L2∥∆w2∥L2 ≤
1
8
∥∆w2∥

2
L2 + c∥w2∥

2
L2

(4.52)

by (4.46), (4.50) and Young’s inequality. Therefore, we apply
(4.47), (4.48), (4.49), (4.51) and (4.52) to (4.46) and conclude
that

1
2

d
dt

∥w∥
2
L2 +

ν

2
∥∇w1∥

2
L2 +

1
2
∥∆w2∥

2
L2

2 2
4
3

4
3 2

(4.53)

≤c(1 + ∥u∥H2 + ∥v∥H1 + ∥v∥H2 + ∥u∥

H2 + ∥v∥
H1 )∥w∥L2 . u
Grönwall’s inequality implies uniqueness, considering that u, v ∈

L2([0, T ];H2) due to (4.24).
Next, we finally extend our local solution globally in time.

It suffices to prove a uniform bound on H1-norm considering
Proposition 4.1. We will need the following exponential growth
bound on the supremum norm of u1.

Proposition 4.2. Let u = (u1, u2) be a smooth solution to (1.4)
over time interval [0, T ]. Then for any α > σ > 0,

sup
t∈[0,T ]

∥u1(t)∥L∞ ≤ ∥uin
1 ∥L∞e2αT . (4.54)

Proof. From (1.4a), we may fix α > σ > 0, denote by φ(x, t) ≜

e−αtu1(x, t) and consider the equation of evolution of |φ|
2. A

straight-forward computation yields,

∂t |φ|
2

= −2α|φ|
2
− (u · ∇)|φ|

2
+ 2νφ∆φ + 2σ |φ|

2 (4.55)

ue to (1.4a). Using the identity

∆|φ|
2
− 2|∇φ|

2
= 2φ∆φ (4.56)

e rewrite (4.55) as

t |φ|
2
+2(α−σ )|φ|

2
+ (u ·∇)|φ|

2
−ν∆|φ|

2
+2ν|∇φ|

2
= 0. (4.57)

ow suppose that |φ|
2 has maximum at (x∗, t∗) ∈ (0, T ] × T2

nd |φ(x∗, t∗)|2 ̸= 0. Then the left side of (4.57) becomes strictly
ositive, leading to an immediate contradiction. Therefore, either
φ(x∗, t∗)|2 = 0 and has a maximum at (x∗, t∗) or |φ(x, t)|2 has
o maximum on (0, T ] × T2. If |φ(x∗, t∗)|2 = 0, then |φ| ≡ 0 on
0, T ]×T2 so that φ = e−2αtu1 ≡ 0 indicating that u1 ≡ 0; hence
4.54) follows. On the other hand, if |φ(x∗, t∗)|2 ̸= 0, because
e know that the maximum exists on [0, T ] × T2, we must
ave

φ(x, t)|2 ≤ |φ(x∗, 0)|2

or some x∗
∈ T2 and all t ∈ [0, T ] and hence

u1(x, t)|2 ≤ e2αt |u1(x∗, 0)|2

for some x∗
∈ T2 and all t ∈ [0, T ]. Therefore,

∥u1(t)∥2
L∞ ≤ e2αt∥uin

1 ∥
2
L∞

or all t ∈ [0, T ], and thus (4.54) now follows. □

emark 4.3. If σ = 0, then we could take α ↘ 0 in (4.54)
o deduce the maximum principle. Indeed, here we employed
proof that typically proves maximum principle and proved

n exponential growth bound. This was necessary because even
hough a typical method to prove an exponential growth bound
s an energy estimate and an application of Grönwall’s inequality
e.g., in the case of the 2D Euler equations), the structure of (1.4)
oes not allow the energy estimate to work due to the lack of
onserved quantity to start with.

The L∞([0, T ]; L∞(T2))-bound on u1 leads to the following
ound on u2.

roposition 4.4. Let u = (u1, u2) solve (1.4) over time interval
0, T ]. Then

∞ 2 2 2 2 2

2 ∈ L ([0, T ]; L (T )) ∩ L ([0, T ];H (T )). (4.58)



8 A. Larios and K. Yamazaki / Physica D 411 (2020) 132560

W
e

b
t

b

−

w
N

H

5

b
a
f
t
c
s
s
o

r
i
t
c
s

5

a
l
e
p
W
s
s
o
l
a
T
|

i
e

ν

Proof. We take L2(T2)-inner products on (1.4b) with u2 to obtain

1
2

d
dt

∥u2∥
2
L2 + ∥∆u2∥

2
L2 = −

∫
u1∂1u2u2 −

∫
u2∂2u2u2

− λ

∫
∆u2u2.

(4.59)

e make use of the fact that
∫
u2(∂2u2)u2 =

∫ 1
6∂2(u2)3 = 0 and

stimate

1
2

d
dt

∥u2∥
2
L2 + ∥∆u2∥

2
L2 ≤∥u1∥L∞∥∇u2∥L2∥u2∥L2

+
1
4
∥∆u2∥

2
L2 + c∥u2∥

2
L2

≤
1
2
∥∆u2∥

2
L2 + c∥u2∥

2
L2

(4.60)

y Hölder’s inequality, Young’s inequality, (4.54) and (4.50). Sub-
racting 1

2∥∆u2∥
2
L2

from both sides of (4.60) and applying Grön-
wall’s inequality completes the proof of Proposition 4.4. □

We are almost ready to complete the H1(T2)-bound; however,
we will see that we need to improve the L∞([0, T ]; L∞(T2))-
ound of u1 to L2([0, T ];H1(T2))-bound as usual (see (4.64).

Proposition 4.5. Let u = (u1, u2) solve (1.4) over time interval
[0, T ]. Then

u1 ∈ L2([0, T ];H1(T2)). (4.61)

Proof. We take L2(T2)-inner products on (1.4a) with u1 to first
rewrite

1
2

d
dt

∥u1∥
2
L2 + ν∥∇u1∥

2
L2 = −

∫
(u · ∇)u1u1 + σ∥u1∥

2
L2

= −

∫
u1∂1u1u1 + u2∂2u1u1 + σ∥u1∥

2
L2

= −

∫
u2

1
2
∂2(u1)2 + σ∥u1∥

2
L2

=
1
2

∫
(∂2u2)u1u1 + σ∥u1∥

2
L2

where we used (1.5); this is crucial because we do not have any
bound on the derivative of u1 yet. Now we continue to bound
by

1
2

d
dt

∥u1∥
2
L2 + ν∥∇u1∥

2
L2 ≤

1
2
∥∇u2∥L2∥u1∥L∞∥u1∥L2 + σ∥u1∥

2
L2

≲∥∇u2∥L2∥u1∥
2
L∞ + ∥u1∥

2
L∞

≲∥∇u2∥L2 + 1

(4.62)

by Hölder’s inequality, the embedding of L∞(T2) ↪→ L2(T2) and
(4.54). Because u2 ∈ L2([0, T ];H2(T2)) by (4.58), integrating (4.62)
in time completes the proof of Proposition 4.5. □

Finally, the following proposition will complete the proof of
Theorem 3.2.

Proposition 4.6. Let u = (u1, u2) solve (1.4) over time interval
[0, T ]. Then

u ∈ L∞([0, T ];H1(T2)), u1 ∈ L2([0, T ];H2(T2)), u2 ∈ L2([0, T ];

H3(T2)). (4.63)
Proof. We take L2(T2)-inner products on (1.4) with (−∆u1,
∆u2) to study

1
2

d
dt

∥∇u∥2
L2 + ν∥∆u1∥

2
L2 + ∥u2∥

2
Ḣ3

=

∫
(u · ∇)u1∆u1 +

∫
(u · ∇)u2∆u2 + σ∥∇u1∥

2
L2 + λ∥∆u2∥

2
L2

= −

2∑
i,k=1

∫
∂kui∂iu1∂ku1 + ∂kui∂iu2∂ku2

+
1
2

2∑
i,k=1

∫
∂iui∂ku1∂ku1 + ∂iui∂ku2∂ku2 + σ∥∇u1∥

2
L2

+ λ∥∆u2∥
2
L2

≲∥∇u∥L2∥∇u1∥
2
L4 + ∥∇u∥L2∥∇u2∥

2
L4 + ∥∇u1∥

2
L2 + ∥∆u2∥

2
L2

≲∥∇u∥L2∥u1∥H1∥u1∥H2 + ∥∇u∥L2∥u2∥
3
2
H1∥u2∥

1
2
H3

+ ∥∇u1∥
2
L2 + ∥∇u2∥L2∥u2∥Ḣ3

≤
ν

2
∥∆u1∥

2
L2 +

1
2
∥u2∥

2
Ḣ3 + c(1 + ∥∇u∥2

L2 )(1 + ∥∇u∥2
L2 ).

(4.64)

here we used Hölder’s inequality, (4.12) and Gagliardo–
irenberg inequality. Subtracting ν

2∥∆u1∥
2
L2

+
1
2∥u2∥

2
Ḣ3 from both

sides and relying on Grönwall’s inequality completes the proof
of Proposition 4.6 as u1 ∈ L2([0, T ];H1(T2)) and u2 ∈ L2([0, T ];

2(T2)) by (4.58) and (4.61). □

. Computational results

In this section, we demonstrate the dynamical differences
etween the KSE system (1.1) and r-KSE system (1.4) by looking
t numerical simulations of the equations side-by-side. We do not
ocus on the particular dynamics of the KSE system (1.1), since
his has been studied elsewhere. See, e.g., [49] for an in-depth
omputational study of the 2D KSE and [50] for a finite-difference
cheme for the 2D KSE. We also mention the computational
tudy [51], which examines a 2D dispersive anisotropic version
f the KSE, with nonlinearity uux.
Note that we do not make any claims that solutions of the

-KSE are good approximations to solutions of the KSE, but we are
nterested in it for phenomenological reasons, as discussed in
he introduction. Therefore, we present solutions to the KSE in
omparison to solutions of the r-KSE to get some idea of their
imilarities and differences.

.1. Choice of parameters

The r-KSE system has two additional parameters that do not
ppear in the KSE model; namely ν > 0 and σ ≥ 0. While this
ends considerable freedom, it also greatly increases the param-
ter space that can be explored. Hence, we wish to restrict the
arameter space to some phenomenologically interesting region.
hile we are not trying to approximate solutions of the KSE, we

eek to capture some of its qualitative properties. Thus, it makes
ense to make the ‘‘instability cut-off’’ for the r-KSE match that
f the KSE. That is, if we compute the Fourier symbols of the
inear operators in the r-KSE and KSE systems, namely σ + ν∆
nd λ∆+∆2, we obtain σ − ν|k|

2 and λ|k|
2
− |k|

4, respectively.
hus, the unstable modes occur exactly at those values of kwhere
k|

2 < σ/ν (for u1 in r-KSE) and |k|
2 < λ (for KSE and u2

n r-KSE). Thus, to obtain the same instability cut-off for both
quations, in our simulations, we set:

= σ/λ when σ > 0. (5.1)
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(Notice that there is no explicit contribution to the unstable
modes from the σ + ν∆ operator when σ = 0.) Thus, equating
the instability cut-offs eliminates one free parameter.

To further limit the parameter space, one can consider the ‘‘to-
tal amount of instability’’ contributed by the two linear operators,
and equate these. Toward this end, we compute:∑
{k∈Z2:|k|2<σ/ν}

(σ − ν|k|
2) ≈

∫
B(0,

√
σ
ν )
(σ − ν|x|2) dx

= π
σ

ν
− 2πν

∫ √
σ
ν

0
r3 dr =

πσ 2

2ν
, (5.2)

nd similarly,∑
k∈Z2:|k|2<λ}

(λ|k|
2
− |k|

4) ≈

∫
B(0,

√
σ
ν )
(λ|x|2 − |x|4) dx

= π

(σ
ν

)2
(
λ

2
−

1
3
σ

ν

)
Setting these equal, we find

3ν = 3λ− 2
σ

ν
. (5.3)

ombining this with (5.1), we find

=
λ

3
and σ =

λ2

3
. (5.4)

hus, if we accept the equating done above (as well as the ap-
roximation of the 2D sum by a 2D integral) our two parameters
and σ are determined purely in terms of the KSE parameter λ.

.2. Numerical methods

We performed our simulations in MATLAB (version R2019a).
he domain was a periodic square, Ω = [−π, π )2, using stan-
ard pseudo-spectral methods respecting the 2/3’s dealiasing rule
or (see, e.g., [52–55] and the references therein for details of
suedospectral methods). (The 2/3’s dealising cut-off can be seen
n Fig. 5.3 as a vertical line.) We use an implicit/explicit Runge–
utta-4-type algorithm, where the linear terms are handled im-
licitly via an exponential time-differencing algorithm (ETD, also
alled the exponential integrator method) using complex contour
ntegration to handle removable singularities of the form (ez −

)/z, (ez − z − 1)/z2, and so on (see, e.g., [56,57]).
For any simulation one must of course decide on specific

values of parameters that hopefully give a reasonable picture of
the more general dynamics (unless the parameters are deter-
mined, e.g., by physical considerations). This choice is typically
limited by computational constraints, which limit spatial and
temporal resolution. As the KSE have a fourth-order dissipation
term, it is somewhat forgiving in terms of spatial resolution, as
small scales a dissipated quickly. This is less true for the r-KSE
(since the u1 equation has only second-order dissipation), but
one can still observe simulations which appear highly nonlinear
chaotic at resolution 5122, reasonable enough to be run on a
good laptop; a choice that was made in the hope that this study
may be reproduced with relative ease by other researchers. We
considered our simulations to be ‘‘well-resolved’’ if the energy
spectrum of the solution had decayed to machine precision (≈
2.2204×10−16 in MATLAB) before the dealiasing cut-off, verified
a posteriori. A trial-and-error search through parameter space,
making sure to respect this criterion, yielded λ = 5.01 to be
a well-resolved value (for the time interval simulated), meaning
there were 20 = |

{
(m, n) ∈ Z2

\ (0, 0)|m2
+ n2 < 5.01

}
| unsta-

ble modes in the KSE part. Using this with (5.4), we find ν = 1.67,

σ = 8.37 for the r-KSE. We also observed the case ν = 1.67 with
Fig. 5.1. Error ∥u(t) − ∇ϕ(t)∥L∞ vs. time (Log-linear plot.).

σ = 0 to observe the effect of the σ term. The time step was
chosen to respect the advective CFL condition at each time step
(we used a conservative value of ∆t ≈ 3.0557 × 10−5). In all
simulations of r-KSE, the spatial resolution was 5122 grid points
(uniform rectangular mesh). For KSE simulations, the dissipation
from the biLaplacian was large enough that we only needed
1282 resolution. Our initial data was chosen similarly to be the
well-studied initial data in [49]. Namely, we set

ϕ(x, y) := C(sin(x + y) + sin(x) + sin(y)), and uin
= ∇ϕ. (5.5)

here C is chosen so that ∥uin
∥L2 = 1.

emark 5.1. Several issues arise with verification of numerical
chemes for 4th-order nonlinear equations in higher dimensions.
or example, the standard method of manufactured solutions
i.e., choosing a function to be an exact solution, and using it
o determine an initial condition, and an appropriate forcing
unction on the right-hand side) can have lead to large computed
rrors if one uses the L2 norm to compute the error. To see this,
onsider a spatial resolution of 5122 on the domain [−π, π )2 as in
ur simulations, meaning that the highest resolved frequency (the
yquist frequency) is kNy = 512/2. Assuming a machine-zero
rror of ε = 2.2204×10−16 occurs at this frequency, the resulting
omputation for the bi-Laplacian △

2 for just this node would
nvolve an error of size εk4Ny ≈ 9.54 × 10−7 (compare with the
aplacian case: εk2Ny ≈ 1.46×10−11). Given that there are 5122

=

62, 144 spatial nodes, errors can accumulate quite rapidly if one
ums over the domain; hence, even if the computation is done
o high precision (e.g., using ETD methods or integrating factors,
o that one is multiplying by factors involving small factors such
s e(−|k|

4
+λ|k|

2)∆t ), the computation of the error itself may show
ow precision. Hence, seems to be better to consider, e.g., the L∞

orm instead of the L2 norm for purposes of verification. Another
mplication is that, if one can run at lower spatial resolution (as
etermined by the fall-off of the energy spectrum), it may be
etter to do so to avoid polluting the solution with noise. Hence,
he KSE solution we show below is run at resolution 1282, since
he energy spectrum decays to machine precision long before the
/3’s dealising cutoff at |k| = 128/3 ≈ 42.67.
Aside from the problem of computation of the error, when

imulating a chaotic dynamical system such as the KSE, it is
mportant to have several checks to make sure simulations results
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Fig. 5.2. Solution magnitudes (
√
u2
1 + u2

2) for KSE (left); r-KSE with ν = 1.67, σ = 8.37 (middle); and r-KSE with ν = 1.67, σ = 0 (right). For all simulations,
λ = 5.01. Times (top to bottom): 0.0, 0.2, 0.4, 0.6, 0.8.
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Fig. 5.3. Energy spectra for KSE (left); r-KSE with ν = 1.67, σ = 8.37 (middle); and r-KSE with ν = 1.67, σ = 0 (right). For all simulations, λ = 5.01. Times (top to
bottom): 0.0, 0.2, 0.4, 0.6, 0.8.



12 A. Larios and K. Yamazaki / Physica D 411 (2020) 132560

f

do not depend too heavily on the numerical scheme. The results
reported here were also checked with integrating factor methods,
and similar results were obtained. We also check that resolved
simulations at lower resolution qualitatively agreed with those
at higher resolution. However, with the KSE system, we were
able to perform an additional check: namely, we simulated Eq.
(1.2) along (1.1), resulting in solutions ϕ and u respectively, and
then checked ∥u − ∇ϕ∥L∞ . Analytically, if solutions are smooth,
one should have u = ∇ϕ, but computationally, one expects
disagreement between these quantities to arise due to small
errors accumulating over time, combined with the chaotic nature
of the equations. The results of our simulations can be seen in
Fig. 5.1. It is for this reason that our simulations shown below are
shown for relatively small times, e.g., t ≤ 1 (even though our
simulations were stable for significantly larger times).

5.3. Simulations

It is important to keep in mind that the r-KSE system (1.4)
is not meant to be a model for the KSE system (1.1) in the
sense of approximating the dynamical evolution of solutions, and
therefore no particular agreement between solutions is expected.
Moreover, both systems appear to behave chaotically, in the sense
that small perturbations of the initial conditions or parameters
can strongly affect the evolution of solutions, and therefore the
major change made by moving from the KSE system to the r-KSE
system studied here is unlikely to produce similar trajectories,
which is what we observe in Fig. 5.2. However, we claim that
the dynamics of the r-KSE are phenomenologically similar to
the KSE, at least in certain aspects, which we investigate below.
We note that while we saw many varied types of behavior in
our simulations, the simulations presented were not chosen too
carefully, and we believe they represent fairly typical behavior for
these systems.

As expected, in Fig. 5.2 there are clear differences, both quan-
titative and qualitative, between the solutions in both systems.
Thus, we do not claim that the solutions of the r-KSE are rea-
sonable approximations to the KSE. However, a closer look does
reveal some qualitative agreements. We note that similar length-
scales develop at approximately the same time, and also solution
amplitudes grow at roughly the same rate. Both systems develop
new cell-like structures, although they appear to be more com-
plex in the KSE case. We also observed in large-time simulations
(not shown here) that solutions to the KSE and r-KSE often move
toward a quasi-one-dimensional state, a phenomenon was inves-
tigated in the context of the 2D KSE in [49]. The r-KSE solutions
tend to approach this state more rapidly, perhaps due increased
smoothing in one direction and anisotropic instability (although
the orientation of the 1D state, vertical or horizontal, seems to
be highly sensitive to small perturbations in the initial data and
parameters).

Qualitative similarities are also to be found in the energy
spectrum. We include these in part in order to show that the
simulations are well-resolved over the time interval in question.
However, we note that in Fig. 5.3, we see that the spectra of
u1 and u2 are right on top of each other for the KSE, while
the spectrum of u1 takes on a somewhat different character
rom the spectrum of u2 for the r-KSE. This phenomenon was
observed by the authors in many different simulations using a
wide range of different parameters and initial data, although we
present only one particular representative simulation here. We
note that these are not time averaged spectra, but spectra at each
time.
Remark 5.2. Many works on the KSE have concentrated on the
so-called ‘‘equipartition of energy’’ in solutions to the KSE (see,
e.g., [49,51,58,59]). By equipartition of energy, it is usually meant
that there is a range in the time-averaged spectrum where the
energy is statistically equally distributed between spherically-
averaged Fourier modes. However, we do not examine such con-
siderations here, in part because our simulation times are too
short (for reasons explained in Remark 5.1) to allow for a rea-
sonable time-averaging, but also because, with λ = 5.01, our
number of non-zero, spherically-averaged Fourier modes is only
5, which seems to be too small of a number to draw conclusions
from.

6. Conclusion

In this study, we have shown that the 2D r-KSE is globally
well-posed, that it enjoys many of the same mathematical prop-
erties as the 2D KSE (discussed in the introduction), and that
computationally, its dynamics have a qualitative resemblance to
the dynamics of the KSE (e.g., the time evolution of various norms,
and the spectrum of the ‘‘unreduced’’ component). Therefore, we
believe that the 2D r-KSE has the potential to serve as an instruc-
tive phenomenological model for the 2D KSE, playing a similar
role to the 3D Burgers equation for the 3D NSE. Indeed, this
analogy is stronger than one might initially suppose: in reducing
the 3D Navier–Stokes equations to the 3D Burgers equations,
one removes a term (namely the pressure gradient) to allow
for a maximum principle. This is similar to the strategy behind
reducing the 2D KSE to the 2D r-KSE, although we actually did
not allow a maximum principle (except when σ = 0) but only an
exponential growth bound .

Much like the 3D NSE, the 2D KSE is not known to be globally
well-posed for arbitrary smooth initial data. However, we note
that there exists a wide variety of globally well-posed models
that are phenomenologically similar to the 3D NSE (e.g., the 3D
Navier–Stokes-α model, the 3D viscous Burgers equation, 3D NSE
with hyperviscosity, etc.) that can lead to useful insights about
the 3D NSE, serve as instructive counter-examples, and guide
new research directions. In contrast, we know of no such globally
well-posed analogues for the 2D KSE, other than the 1D KSE
or models where the nonlinearity is essentially one-dimensional
(which clearly have strong differences from the 2D KSE), and the
r-KSE model proposed here. The aim of the present work has been
to provide a system which can act as such an analogue.
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