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Abstract. We study a continuous data assimilation algorithm proposed by Azouani, Olson,
and Titi (AOT) in the context of an unknown viscosity. We determine the large-time error between
the true solution of the 2 dimensional Navier–Stokes equations and the assimilated solution due to
discrepancy between an approximate viscosity and the physical viscosity. Additionally, we develop
an algorithm that can be run in tandem with the AOT algorithm to recover both the true solution
and the true viscosity using only spatially discrete velocity measurements.
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1. Introduction. A major difficulty in performing accurate, practical simula-
tions of dynamical systems is that one typically does not have complete information
about the initial state of the system, nor the exact physical parameters of the system,
which may be inaccurately measured, or simply unknown. In this paper, we present
an algorithm based on data assimilation that addresses both of these difficulties. The
term data assimilation refers to a wide class of techniques for incorporating obser-
vational data into simulations to increase their accuracy. It is especially relevant for
situations in which information about the initial data is sparse. Recently, in a paper
by Azouani, Olson, and Titi (AOT) [4], a new approach to data assimilation, which
we refer to as the AOT algorithm, was proposed. This algorithm uses a feedback
control term at the PDE level to penalize deviations from the observed data. In the
present work, we apply the AOT algorithm in the setting of an unknown diffusion co-
efficient (e.g., viscosity or Reynolds number) and propose an algorithm which changes
the diffusion coefficient dynamically as the simulation evolves in time, driving the
parameter to its true value.

We demonstrate this parameter recovery method for estimating viscosity using
the feedback control method of data assimilation proposed in [4], which states that

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section March 7,
2019; accepted for publication (in revised form) October 29, 2019; published electronically January
14, 2020.

https://doi.org/10.1137/19M1248583
Funding: The work of the first author was partially supported by NSF GRFP grant 1610400.

The work of the second author was partially supported by NSF grant DMS-1517027. The work
of the third author was partially supported by NSF grant DMS-1716801. Computational resources
were provided by Lilly Endowment, Inc., through its support for the Indiana University Pervasive
Technology Institute, and in part by the Indiana METACyt Initiative. The Indiana METACyt
Initiative at IU was also supported in part by Lilly Endowment, Inc.
†Department of Mathematics, University of Nebraska–Lincoln, Lincoln, NE 68588-0130 (elizabeth.

carlson@huskers.unl.edu).
‡University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21055. Current

address: Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel,
MD 20723-6099 (Joshua.Hudson@jhuapl.edu).
§Department of Mathematics, University of Nebraska–Lincoln, Lincoln, NE 68588-0130 (alarios@

unl.edu).

A250

D
ow

nl
oa

de
d 

11
/2

9/
20

 to
 1

29
.9

3.
22

4.
14

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/19M1248583
mailto:elizabeth.carlson@huskers.unl.edu
mailto:elizabeth.carlson@huskers.unl.edu
mailto:Joshua.Hudson@jhuapl.edu
mailto:alarios@unl.edu
mailto:alarios@unl.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DATA ASSIMILATION: PARAMETER RECOVERY A251

given a dissipative dynamical system (of possibly infinite dimension) of the form

du

dt
= F (u)

with missing initial data, we can instead solve the system,

dv

dt
= F (v) + µ(Ih(u)− Ih(v)),

v(0) = v0,

where µ is a sufficiently large positive relaxation parameter, Ih(u) represents the
observational measurements, and v0 is arbitrarily chosen in a suitable function space.
The function Ih is a straightforward interpolant satisfying particular bounds (stated
in the preliminaries), and is often taken to be modal projection.

Following the analysis of [4] on the 2 dimensional (2D) incompressible Navier–
Stokes equations, analytical bounds on the large time error of v with respect to the
true solution u are shown to be directly dependent upon the difference between our
chosen viscosity and the true viscosity. Computationally, it is observed that the term
involving the error of the viscosities closely matches the error between the solutions v
and u. Using this fact, we develop a heuristic algorithm for computationally recovering
the true viscosity and simultaneously converge to the true solution u.

Our error estimates in this work are also relevant to the setting of subgrid scale
data. In real-world settings, simulations are often underresolved; in particular, it is
not always possible to run simulations with the physical viscosity (see, e.g., [47, 55, 5]
and the references therein). The error estimates we prove in this paper indicate that
one may simulate flows using the AOT algorithm with a viscosity which is, e.g., larger
than the true viscosity, and be assured that deviations from the true solution are
controlled (in the L2 and H1 norms) by the difference in the viscosities.

We note that classical data assimilation is largely focused on statistical optimiza-
tion approaches utilizing the Kalman filter [38] or 3/4 dimensional-Var methods, and
variations of these techniques (see, e.g., [15, 39, 45, 48], and the references therein).
The AOT algorithm (which is also called continuous data assimilation or CDA in
the literature), differs markedly from the Kalman filter approach. Instead of employ-
ing statistical tools at the numerical level, AOT data assimilation arises at the PDE
level via a feedback-control term which penalizes deviations from interpolations of
observable data. This interpolation is a key difference between the AOT method and
the so-called nudging or Newtonian relaxation methods introduced in [3, 31], as it
allows for significantly more sparse initial data. For an overview of nudging meth-
ods, see, e.g., [40]. We mention that a method that shares some features with the
AOT algorithm was introduced in [9] in the context of stochastic differential equa-
tions. The AOT algorithm and its extensions have been the subject of much recent
theoretical work; see, e.g., [1, 6, 7, 8, 13, 20, 21, 22, 23, 24, 26, 27, 28, 30, 33, 34,
35, 36, 41, 50, 51, 52, 53]. Computational trials of the AOT algorithm and its vari-
ants were carried out on a wide variety of equations in several recent works, including
[2, 16, 46, 29, 42, 43, 44, 17, 49, 58]. We also mention an upcoming work [18], currently
a preprint, which explores some similar ideas contained in this paper in the context
of continuous data assimilation for the Rayleigh–Bénard convection equations with
unknown Prandtl number, although parameter recovery is not explored in that work.

The paper is organized as follows: in section 2, we describe the mathematical
framework for the problems we consider. In section 3 we consider the AOT data
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assimilation algorithm and show that with only an approximation of the true viscosity,
the reference solution can still be recovered using data assimilation. We analyze the
Navier–Stokes equations with periodic boundary conditions, but our techniques can be
extended to other boundary conditions and other dissipative systems. We also provide
computational evidence that illustrates the effectiveness of the AOT algorithm in the
setting of a mismatched viscosity parameter, as well as the practical performance one
might expect in a typical flow. In section 5, motivated by our rigorous results, we
consider the problem of parameter recovery and propose two algorithms to recover the
true viscosity “on-the-fly” (i.e., during the simulation) using only the AOT algorithm
and the observational data. In our computational experiments, we observe that the
convergence to the true viscosity and the true solution happen exponentially fast in
time.

2. Preliminaries. In this section, we state the theorems and other preliminaries
needed to solve the 2D incompressible Navier–Stokes equations and the associated
modified equations utilizing the AOT algorithm [4]. The statements given in the
section without proof are standard, and proofs can be found, e.g., in [14, 25, 54, 57, 56].
We consider the 2D incompressible Navier–Stokes equations in dimensionless form on
a spatial domain Ω,

∂tu + (u · ∇)u = −∇p+ ν14u + f in Ω× [0, T ],(2.1a)

∇ · u = 0 in Ω× [0, T ],(2.1b)

u(x, 0) = u0(x) in Ω,(2.1c)

where ν1 > 0 is the kinematic viscosity.
We take the spatial domain, Ω, to be the torus, i.e., Ω = T2 = R2/Z2, which is

an open, bounded, and connected domain. As is customary, we define the space

V :=

{
w : T2 → R2 | w ∈ C∞(T2),∇ ·w = 0,

∫
T2

w(x) dx = 0

}
and, subsequently, the spaces H := V in L2(Ω;R2) and V := V in H1(Ω;R2). H
and V are subspaces of L2(Ω;R2) and H1(Ω;R2), respectively, and hence are Hilbert
spaces with the inner products defined as

(u,v) =

∫
T2

u · v dx, ((u,v)) =

2∑
i,j=1

∫
T2

∂ui
∂xj

∂vi
∂xj

dx

with corresponding norms |u| =
√

(u,u) and ‖u‖ =
√

((u,u)).
We denote the Leray projection Pσ : L2(Ω)→ H defined by Pσu = u−∇4−1(∇·

u) (see, e.g., [14, 25, 54, 57, 56]). We can equivalently consider (2.1), where Pσ is
the orthogonal projection of a vector field onto its divergence-free part. As in [4], we
define the Stokes operator A and the bilinear term B : V ×V → V ∗ as the continuous
extensions of the operators A and B defined on V × V as

Au = −Pσ4u and B(u,v) = Pσ(u · ∇v),

and we define the domain of A to be D(A) := {u ∈ V : Au ∈ H}. Also note that A
is a linear self-adjoint and positive definite operator with a compact inverse, so there
exists a complete orthonormal set of eigenfunctions wi in H such that Awi = λiwi
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with the eigenvalues strictly positive and monotonically increasing. Furthermore, the
following Poincaré inequalities hold:

λ1‖u‖2L2 ≤ ‖∇u‖2L2 for u ∈ V,
λ1‖∇u‖2L2 ≤ ‖Au‖2L2 for u ∈ D(A),

where λ1 = 4π2 is the first eigenvalue of the Stokes operator. Thus, |∇u| and ‖u‖
are equivalent norms on V . In 2 dimensions, the following Brezis–Gallouet inequality
[10], also holds for all u ∈ D(A):

‖u‖L∞ ≤ c‖u‖
{

1 + log
|Au|2

4π2‖u‖2

}
.(2.2)

We note that the bilinear operator, B, has the property

〈B(u,v),w〉 = −〈B(u,w),v〉(2.3)

for all u,v,w ∈ V . This implies B also satisfies

〈B(u,w),w〉 = 0(2.4)

for all u,v,w ∈ V . Moreover, the following inequalities hold:

| 〈B(u,v),w〉 | ≤ ‖u‖L∞(Ω)‖v‖|w| for u ∈ L∞(Ω),v ∈ V,w ∈ H,
(2.5)

| 〈B(u,v),w〉 | ≤ c|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2 for u,v,w ∈ V,
(2.6)

|(B(u,v),w)| ≤ c|u|1/2‖u‖1/2‖v‖1/2|Av|1/2|w| for u ∈ V,v ∈ D(A),w ∈ H,
(2.7)

|(B(u,v),w)| ≤ c|u|1/2|Au|1/2‖v‖|w| for u ∈ D(A),v ∈ V,w ∈ H.
(2.8)

Due to the periodic boundary conditions, it also holds (in 2 dimensions) that

(B(w,w), Aw) = 0 for every w ∈ D(A).(2.9)

Therefore, for u,w ∈ D(A),

(B(u,w), Aw) + (B(w,u), Aw) = −(B(w,w), Au).(2.10)

Without loss of generality, we will assume f ∈ L∞(0, T ;H) so that Pσf = f .
Thus, we may rewrite (2.1) as

d

dt
u +B(u,u) + ν1Au = f in Ω× [0, T ],(2.11a)

u(x, 0) = u0(x) in Ω.(2.11b)

The pressure term can be recovered using de Rham’s theorem [57, 25], a corollary of
which is that

g = ∇p with p a distribution if and only if 〈g,h〉 = 0 for all h∈ V.(2.12)
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For a given force f and some initial data u0, it is classical that a unique global
solution u of (2.11) will exist. However, we don’t expect to know u0 exactly, and
so cannot compute u(t) from (2.11); rather, we consider the case that measurement
data is collected on u(t) over the time interval [0, T ], sufficient for the interpolation
operator Ih to construct the interpolation Ih(u(t)) on [0, T ]. From here, we can define
a new system, dubbed the data assimilation system, by introducing a feedback control
(nudging term) via Ih into (2.11) (or (2.1)), as is done in [4].

We will construct our data assimilation system under the more general case of
having only an approximate viscosity, ν2:

d

dt
v +B(v,v) + ν2Av = f + µPσ(Ih(u)− Ih(v)),(2.13a)

v(x, 0) = v0(x).(2.13b)

Here, µ > 0 is a relaxation parameter, ν2 a kinematic viscosity approximating ν1, and
Ih is a linear interpolant satisfying

‖ϕ− Ih(ϕ)‖2L2(Ω) ≤ c0h
2‖ϕ‖2H1(Ω).(2.14)

From [4], (2.13) has a unique solution given either no-slip Dirichlet or periodic
boundary conditions as stated in the following theorem.

Theorem 2.1. Suppose Ih satisfies (2.14) and µc0h
2 ≤ ν2, where c0 is the con-

stant from (2.14). Then the CDA equations (2.13) possess unique strong solutions
that satisfy

v ∈ C([0, T ];V ) ∩ L2((0, T );D(A)) and
dv

dt
∈ L2((0, T );H)(2.15)

for any T > 0. Furthermore, this solution is in C([0, T ], V ) and depends continuously
on the initial data v0 in the V norm.

For (2.11) and (2.13), we denote the dimensionless Grashof numbers as

G1 =
1

λ1ν2
1

lim sup
t→∞

‖f(t)‖L2(Ω),(2.16)

G2 =
1

λ1ν2
2

lim sup
t→∞

‖f(t)‖L2(Ω).(2.17)

In 2 dimensions, it is classical that (2.1) possesses a unique global strong solution.
Furthermore, we have explicit upper bounds on the norms of the solutions in H and
V in terms of G1.

Theorem 2.2. Fix T > 0. Suppose that u is a solution of (2.11), corresponding
to the initial value u0 ∈ V . Then there exists a time t0 which depends on u0 such
that for all t ≥ t0, it holds that

|u(t)|2 ≤ 2ν2
1G

2
1 and

∫ t+T

t

‖u(τ)‖2dτ ≤ 2 (1 + Tλ1ν1) ν1G
2
1.(2.18)

In the case of periodic boundary conditions it also holds for all t ≥ t0 that

‖u(t)‖2 ≤ 2λ1ν
2
1G

2
1,

∫ t+T

t

|Au(τ)|2dτ ≤ 2 (1 + Tλ1ν1)λ1ν1G
2
1.(2.19)

Furthermore, if f ∈ H is time independent then

|Au(t)|2 ≤ cλ2
1ν

2
1(1 +G1)4.(2.20)
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To prove our main theoretical results, we will need the following corollary of the
statement of the uniform Grönwall lemma proved in [37].

Lemma 2.3 (generalized uniform Grönwall inequality). Let α be a locally inte-
grable real-valued function defined on (0,∞), satisfying the following conditions for
some 0 < T <∞:

lim inf
t→∞

∫ t+T

t

α(τ) dτ = γ > 0,

lim sup
t→∞

∫ t+T

t

α−(τ) dτ = Γ <∞,

where α− = max{−α, 0}. Furthermore, let β be a real-valued locally integrable func-
tion defined on (0,∞), and let β+ = max{β, 0}. Suppose that ξ is an absolutely
continuous nonnegative function on (0,∞) such that

d

dt
ξ + αξ ≤ β a.e. on (0,∞).(2.21)

Then

ξ(t) ≤ ξ(t0)Γ′e−
γ
2T (t−t0) +

(
sup
t≥t0

∫ t+T

t

β+(τ) dτ

)
Γ′
eγ/2

e− 1
,

where Γ′ = eΓ+1+γ/2 and t0 is chosen sufficiently large so that, for all s ≥ t0,∫ s+T

s

α−(σ) dσ ≤ Γ + 1(2.22)

and ∫ s+T

s

α(σ) dσ ≥ γ/2.(2.23)

We will also make use of the following lemma proved in [4].

Lemma 2.4. Let φ(r) = r − β(1 + log r), where β > 0. Then

min{φ(r) : r ≥ 1} ≥ −β log β.

3. Error of CDA to viscosity. We now present our first result. In [4], it was
shown for the case ν1 = ν2, that given a strong solution u of (2.1) and an interpolant
Ih satisfying (2.14), for sufficiently large µ and sufficiently small h, the corresponding
solution v of (2.13) will converge in the L2 sense to u exponentially fast in time for any
v0 ∈ V (and convergence in the H1 sense under stronger smoothness assumptions).
We extend this result to include the case ν1 6= ν2. In particular, we show that the
L2 error decays exponentially in time, down to a level which is controlled by the
difference in the viscosities. Moreover, this level goes to zero as ν2 → ν1. This means
that the AOT algorithm for 2D Navier–Stokes can recover the solution approximately
even when the true viscosity is unknown, and that the accuracy improves as the
approximation of the viscosity improves, and with the same order.
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Theorem 3.1. Let u and v be solutions to the systems (2.11) and (2.13), respec-

tively, with initial data u0, v0 ∈ V . Suppose ν1, ν2 > 0. Let µ ≥ 20π2c2
ν2
1

ν2
G2

1 and

h ≤ ( 1
40π2c2c0G2

1

ν2
2

ν2
1

)1/2. Then for any T such that 1
4π2ν1

< T <∞, and for a.e. t > T ,

it holds that

|u(t)− v(t)|2 ≤ |u(t0)− v(t0)|2e1+γ/2e−
γ
2T (t−t0) + C · (ν2 − ν1)2

ν2
,

where

C :=
e1+γ

e− 1
(2(1 + 4π2Tν1)ν1G

2
1)

and

γ := lim inf
t→∞

∫ t+T

t

µ− 2c2

ν2
‖u(s)‖2 ds > 0.

In particular,

lim sup
t→∞

|u(t)− v(t)| ≤ C |ν2 − ν1|√
ν2

.

The idea of the proof is similar to the proof of the corresponding result in [4],
except that we have an additional term to handle since we allow for the case ν1 6= ν2.

Proof. We denote w := u− v, and subtract (2.13a) from (2.11a) to obtain

wt +B(w,u) +B(v,w) = −ν1Au + ν2Av − µPσ(Ih(w)),

which can be simplified to

wt +B(w,u) +B(v,w) = (ν2 − ν1)Au− ν2Aw − µPσ(Ih(w))(3.1)

with initial data given by

w(x, 0) = w0(x) := u0(x)− v0(x).

We take the action of (3.1) on w, and utilize the Cauchy–Schwarz and Young’s
inequalities to obtain

1

2

d

dt
|w|2 + ν2‖w‖2

= (ν2 − ν1)((u,w))− 〈B(w,u),w〉 − µ(Pσ(Ih(w)),w)

≤ |ν2 − ν1|‖u‖‖w‖
− 〈B(w,u),w〉 − µ(Pσ(Ih(w)),w)

≤ |ν2 − ν1|2

2ν2
‖u‖2 +

ν2

2
‖w‖2

− 〈B(w,u),w〉 − µ(Pσ(Ih(w)),w).
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Using (2.6), (2.14), and Young’s inequality, we obtain

1

2

d

dt
|w|2 +

ν2

2
‖w‖2

≤ −〈B(w,u),w〉+
|ν2 − ν1|2

2ν2
‖u‖2 − µ(Pσ(Ih(w)),w)

≤ c|w|‖w‖‖u‖+
(ν2 − ν1)2

2ν2
‖u‖2

− µ(Pσ(Ih(w)−w),w)− µ|w|2

≤ c|w|‖w‖‖u‖+
(ν2 − ν1)2

2ν2
‖u‖2

+ µ
√
c0h2‖w‖|w| − µ|w|2

≤ c2

ν2
|w|2‖u‖2 +

ν2

4
‖w‖2

+
(ν2 − ν1)2

2ν2
‖u‖2 + µ

√
c0h2‖w‖|w| − µ|w|2

≤ c2

ν2
|w|2‖u‖2 +

ν2

4
‖w‖2

+
(ν2 − ν1)2

2ν2
‖u‖2 +

µc0h
2

2
‖w‖2 − µ

2
|w|2.

This implies

1

2

d

dt
|w|2 +

(
ν2

4
− µc0h

2

2

)
‖w‖2 +

(
µ

2
− c2

ν2
‖u‖2

)
|w|2(3.2)

≤ (ν2 − ν1)2

2ν2
‖u‖2.

Since, by assumption,

µ ≥ 20π2c2
ν2

1

ν2
G2

1

and

h ≤
(

1

40c2c0π2G2
1

ν2
2

ν2
1

)1/2

,

it follows that

1

2

d

dt
|w|2 +

(
µ

2
− c2

ν2
‖u‖2

)
|w|2 ≤ (ν2 − ν1)2

2ν2
‖u‖2.(3.3)

Hence, we have an inequality of the form (2.21).
Fix T > 0 such that 1

4π2ν1
< T <∞. Then

lim inf
t→∞

∫ t+T

t

µ− 2c2

ν2
‖u(s)‖2 ds

≥ Tµ− 2c2

ν2
(2(1 + 4π2Tν1)ν1G

2
1)) > 0,
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thanks to the assumption µ ≥ 20π2c2
ν2
1

ν2
G2

1. Define

γ := lim inf
t→∞

∫ t+T

t

µ− 2c2

ν2
‖u(s)‖2 ds > 0.

Choose t0 sufficiently large so that Theorem 2.2 holds and the inequalities (2.22)
and (2.23) hold. Then

Γ := lim sup
t→∞

∫ t+T

t

α−(τ) dτ = 0 <∞,

and we can apply Lemma 2.3 to conclude that, for a.e. t > t0,

|w(t)|2

≤ |w(t0)|2e1+γ/2e−
γ
2T (t−t0) +

(
sup
t≥t0

∫ t+T

t

(ν2 − ν1)2

ν2
‖u(τ)‖2 dτ

)
e1+γ

e− 1

≤ |w(t0)|2e1+γ/2e−
γ
2T (t−t0) + C · (ν2 − ν1)2

ν2
,

where C := e1+γ

e−1 (2(1+4π2Tν1)ν1G
2
1). Taking the limit supremum as t→ 0 establishes

the result.

We now prove a similar result for the H1 norm of the difference of the solutions,
the proof of which closely follows that of [4], although again with an additional term
to allow for ν1 6= ν2.

Theorem 3.2. Given the systems (2.11) and (2.13) with periodic boundary con-
ditions, and given µ ≥ 12π2ν1JG1, with

J :=

[
2c log

(
2c3/2ν1

ν2

)
+ 4c log(1 +G1)

]
,

and µc0h
2 ≤ ν2 (or, more universally, h <

√
ν2

12π2c0ν1JG
), then with the following

constants:
• C := 32π2ν1G

2
1Γ′ e

γ/2

e−1

• γ := lim inft→∞
∫ t+T
t

1
2

[
µ− J2

µ |Au|
2
]
dτ ,

• Γ := lim supt→∞
∫ t+T
t

max
{

1
2

[
µ− J2

µ |Au|
2
]
, 0
}
dτ ,

• Γ′ := eΓ+1+γ/2,
and for any T ≥ 4π2ν1, we obtain

‖u(t)− v(t)‖2 ≤ ‖u(0)− v(0)‖2Γ′e−
γ
2T (t−t0) + C · (ν1 − ν2)2

ν2
.

In particular,

lim sup
t→∞

‖u(t)− v(t)‖ ≤ C |ν1 − ν2|√
ν2

.

Proof. We subtract (2.13a) from (2.11a) to get

wt +B(w,u) +B(v,w) = (ν2 − ν1)Au− ν2Aw − µPσ(Ih(w))
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with w = u− v which, using the identity B(w,u) +B(v,w) = B(u,w) +B(w,u)−
B(w,w), can be simplified to

1

2

d

dt
‖w‖2 + (B(u,w), Aw) + (B(w,u), Aw)− (B(w,w), Aw)

= (ν2 − ν1)(Au, Aw)− ν2|Aw|2 − µ(Pσ(Ih(w)), Aw).

Then, by (2.9) and (2.10)

1

2

d

dt
‖w‖2 − (B(w,w), Au) = (ν2 − ν1)(Au, Aw)

− ν2|Aw|2 − µ(Pσ(Ih(w)), Aw).

Hence,

1

2

d

dt
‖w‖2 + ν2|Aw|2 = (B(w,w), Au)

+ (ν2 − ν1)(Au, Aw)− µ(Pσ(Ih(w)), Aw).

By the Brezis–Gallouet inequality (2.2),

|(B(w,w), Au)| ≤ c‖w‖2
{

1 + log
|Aw|2

4π2‖w‖2

}
|Au|.

Moreover, since µc0h
2 ≤ ν2 by assumption, we obtain

−µ(Pσ(Ih(w)), Aw) = µ(w − Pσ(Ih(w)), Aw)− µ‖w‖2

≤ µ|Pσ(w − Ih(w))||Aw| − µ‖w‖2

≤ µ2c0h
2

2ν2
‖w‖2 +

ν2

2
|Aw|2 − µ‖w‖2

≤ ν2

2
|Aw|2 − µ

2
‖w‖2.

Using the Cauchy–Schwarz and Young’s inequalities, we find

(ν2 − ν1)(Au, Aw) ≤ |ν2 − ν1||Au||Aw|

≤ |ν2 − ν1|2

ν2
|Au|2 +

ν2

4
|Aw|2.

Together, the above three inequalities imply that

1

2

d

dt
‖w‖2 +

ν2

2
|Aw|2

≤ c‖w‖2
(

1 + log
|Aw|

4π2‖w‖2

)
|Au|+ (ν2 − ν1)2

ν2
|Au|2

+
ν2

4
|Aw|2 − µ

2
‖w‖2.

Hence,

d

dt
‖w‖2 +

ν2

2
|Aw|2 + ‖w‖2

[
µ− 2c|Au|

(
1 + log

|Aw|2

4π2‖w‖2

)]
≤ 2

(ν2 − ν1)2

ν2
|Au|2.
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Let

β =
c|Au|
2π2ν2

and r =
|Aw|2

4π2‖w‖2
.

Applying Lemma 2.4 (which is applicable since r ≥ 1 by Poincaré’s inequality), we
obtain

−c|Au|
2π2ν2

log

(
c|Au|
2π2ν2

)
≤ |Aw|2

4π2‖w‖2
− c|Au|

2π2ν2

(
1 + log

|Aw|2

4π2‖w‖2

)
which can be simplified to

−2c|Au| log

(
c|Au|
2π2ν2

)
≤ ν2

|Aw|2

‖w‖2
− 2c|Au|

(
1 + log

|Aw|2

4π2‖w‖2

)
.

This implies that

1

2

d

dt
‖w‖2 + ‖w‖2

[
µ− 2c|Au| log

c|Au|
2π2ν2

]
≤ 2

(ν2 − ν1)2

ν2
|Au|2.

By (2.20),

2c log
c|Au|
2π2ν2

≤ 2c log

(
c

2π2ν2
·
√
c4π2ν1(1 +G)2

)
= 2c log

(
2ν1c

3/2

ν2

)
+ 4c log(1 +G).

Let J := 2c log( 2ν1c
3/2

ν2
) + 4c log(1 +G). Then

d

dt
‖w‖2 + [µ− J |Au|] ‖w‖2 ≤ 2

(ν2 − ν1)2

ν2
|Au|2.

Young’s inequality implies

J |Au| ≤ J2

2µ
|Au|2 +

µ

2
,

hence,
d

dt
‖w‖2 +

1

2

[
µ− J2

µ
|Au|2

]
‖w‖2 ≤ 2

(ν2 − ν1)2

ν2
|Au|2.

Next, we denote α(t) := 1
2 [µ − J2

µ |Au|
2] and let T := 4π2ν1. Thanks to Theo-

rem 2.2 and the assumption µ ≥ 12π2ν1JG1, it follows that

γ := lim inf
t→∞

∫ t+T

t

α(τ)dτ =
µ

8π2ν1
− J2

2µ

(
lim inf
t→∞

∫ t+T

t

|Au|2dτ

)

≥ µ

8π2ν1
− J2

2µ

(
16π2G2

1ν1

)
>

3

2
JG1 −

2

3
JG1 =

5

6
JG1 > 0.

Clearly, it follows that

Γ := lim sup
t→∞

∫ t+T

t

α−(τ)dτ <∞,

where α−(t) is defined as in Lemma 2.3.
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Choose t0 sufficiently large so that Theorem 2.2 holds and the inequalities (2.22)
and (2.23) hold. Then, we can apply Lemma 2.3 to obtain, for a.e. t > t0,

‖w(t)‖2 ≤ ‖w(t0)‖2Γ′e−
γ
2T (t−t0)

+

(
sup
t≥t0

∫ t+T

t

2
|ν2 − ν1|2

ν2
|Au(τ)|2 dτ

)
Γ′
eγ/2

e− 1
,

where Γ′ is defined in Lemma 2.3. Taking the limit supremum as t → 0 establishes
the result.

4. Computational comparison. In the previous section, we showed that the
data assimilation algorithm (2.13) can still perform well even when there is an error in
the viscosity parameter. In practice, the complexity of small viscosity flows requires
more computational resources to accurately simulate, but our simulations in this
section indicate that if one has (sparse) measurement data collected on such a flow
continuously over a time interval [0, T ] it may be possible to construct an accurate
computational simulation of the flow over the same time interval using a much larger
value for the viscosity, saving computational resources. However, one would still need
to use the true viscosity in simulations after time T to accurately predict the behavior
of the flow, because we have no data after time T . Hence, in order to more accurately
predict the true behavior of the flow, it would be better to somehow recover the true
viscosity. We note that our analytical results from the preceding section demonstrate
that we have also obtained a lower bound on the viscosity error, |ν2− ν1|, in terms of
the resulting data assimilation error.

The outline of this section is as follows: in section 4.1, we describe the compu-
tational setup and choice of data assimilation parameters; in section 4.2, we test the
performance of the AOT algorithm without parameter recovery.

4.1. Computational setting. All of the following computations were performed
on the supercomputer Karst at Indiana University, using dedalus, an open source
pseudospectral python package, available at http://dedalus-project.org (see [11]). A
5122 computational resolution was used, with a 3/2 dealiasing factor. A simple ex-
plicit/implicit time stepping scheme was used for each simulation, where the linear
terms were handled implicitly, and the nonlinear terms explicitly. The spatial domain
we consider is [0, 2π].

4.1.1. Reference solution. We take our reference solution to be the solution,
u∗, of (2.1) with

ν1 = 0.001

and
f =

∑
9<|k|<11

f̂ke
ik·x,

and with the initial condition u∗(0) = 0. Each f̂k is normally distributed, and scaled
so that |f | = 1.

We do not have a closed form solution for u∗ so instead we approximate it nu-
merically by solving (2.1) computationally over the time interval [0, 30]. We call the
computational approximation we obtain u, and denote its Fourier transform by û.
So, for all t ∈ [0, 30],

u(x, t) =
∑
|k|≤256

ûk(t)eik·x.
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100 101 102

10−21

10−16

10−11

10−6

10−1

r

S(r)

S(r)/r−5/3

Fig. 1. Spectrum of the computed reference solution over the time interval [20, 30].

Figure 1 shows the spectrum of u over the time interval [20, 30], where we define the
spectrum, S : [0,∞)→ R, by

S(r) =
1

10

∫ 30

20

∑
r− 1

2<|k|≤r+
1
2

|ûk(t)|2dt.

4.1.2. Data assimilation parameters. In the following numerical experiments,
we only consider the case that Ih is the projection onto the low modes, i.e.,

Ih(u) = (x, t) 7→
∑
|k|≤ 1

h

ûk(t)eik·x.

We used a spectral method to compute u, so we can readily construct Ih(u). In a
practical situation, Ih(u) would be given to us and we would have no knowledge of
u; instead, we use Ih(u) to compute v with the expectation that v(t) ≈ u(t) for
all t after a time t0. In section 4.2 we simulate this situation by computing v and
comparing it to u.

Before we can compute v, we will need to choose values for µ and h. The rigorous
estimates we have obtained thus far are sufficient conditions, and do not determine
the most efficient values of µ and h in practice. Specifically, for the reference solution
we have computed, G1 = 106, so to satisfy the requirements of Theorem 3.1, we would
need µ ∼ 1012 and h ∼ 10−6. To compute Ih(u) with h = 10−6, in addition to requir-
ing a large amount of data in practice, would require we increase the computational
resolution at least to 200,0002.

Fortunately, the algorithm works with much less data, and with much smaller µ.
This has been observed when the viscosity is known exactly for the Navier–Stokes
equations [29] and for other dissipative systems [2, 18, 19, 32]. In [18] it was shown
for the Rayleigh–Bénard equations that analogous rigorous convergence criteria be-
come sharp only as the Prandtl number becomes infinite. In general, a larger Grashof
number seems to require a larger µ and a smaller h, as has been observed in the
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19 20 21 22 23 24 25 26 27 28 29 30

10−6

10−5

10−4

10−3

10−2

10−1

100

101

t

|u
(t
)
−

v
(t
)|

ν2 = 0.0008

ν2 = 0.0009

ν2 = 0.00099

ν2 = 0.000999

ν2 = 0.0009999

ν2 = 0.0010001

ν2 = 0.001001

ν2 = 0.00101

ν2 = 0.0011

ν2 = 0.002

ν2 = 0.011

Fig. 2. The evolution of the L2 error is shown for the solutions of the data assimilation system
corresponding to several different values of ν2. The minimum L2 error achieved decreases as the
viscosity error decreases.

computational studies mentioned above. However, a comprehensive study of the per-
formance of the algorithms here, or of optimal choices for h or µ, is not within the
scope of this paper and will be presented elsewhere. For our purposes, we only need
for the algorithm to work for some reasonable choice of µ and h. So, for simplicity,
and motivated by the results in [32], we will take

µ = 20, h = 1
32 = 0.03125.

4.2. Subgrid simulations. We are now ready to test the performance of the
data assimilation algorithm when ν2 6= ν1. We compute the solutions of (2.13) cor-
responding to several values of ν2, with percentage error, |ν2 − ν1|/ν1, ranging from
1000% to 0.1%. Each solution is computed over the time interval [20, 30] with the
initial condition v(20) ≡ 0. Starting the data assimilation simulation at time t = 20
is sufficient in this case to ensure that u is past a transient (and so is approximating
a physical flow), and will be nontrivial at t = 20 (and therefore differs from v at the
start of the simulation).

Figure 2 shows the resulting L2 error we observed for each simulation compared
to u over the same time interval. We see that for each simulation, after a transient
period of fast convergence, the error decreases exponentially at a nearly constant rate
before reaching a minimum value. Also, the rates of convergence are the same for
each simulation.

5. Parameter recovery. In this section, we construct a rudimentary algorithm
to correct the estimated viscosity ν2 toward the true (but unknown) viscosity ν1, using
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20 25 30

100

10−3

10−6

10−9

10−12

20 25 30

100

10−3

10−6

10−9

10−12

ν2 = 0.0008 ν2 = 0.000999 ν2 = 0.001001 ν2 = 0.002

ν2 = 0.0009 ν2 = 0.0009999 ν2 = 0.00101 ν2 = 0.011

ν2 = 0.00099 ν2 = 0.0010001 ν2 = 0.0011

Fig. 3. Shown on the left is µ|Ih(v) − Ih(u)|2 versus time for several different values of ν2.
We see that in each case, |Ih(v)− Ih(u)| reaches a minimum value, which is smaller for ν2 closer
to ν1. On the right is the value of the right-hand side of (5.2) for the same values of ν2. We see
that the values on the right are negligible compared to the error values on the left.

only the sparse observational data collected from the flow, Ih(u), and the solution of
the data assimilation algorithm, v. We then test the algorithm computationally,
demonstrating a full recovery of true behavior of the flow. An analytical proof of the
convergence of this algorithm will be the subject of a future work.

We can see in Figure 2 that the error in the viscosity value is directly correlated
with the minimum error achieved by the corresponding data assimilation solution.
This observation motivates the following: given the data Ih(u), we can compute v
and use the minimum error we observe to estimate the true viscosity, ν1.

Although Ih(u) is sufficient to compute v, we would need to have u to compute
|u− v|. Fortunately, we see that |ν2 − ν1| and |Ih(u)− Ih(v)| are also correlated, as
can be seen in Figure 3.

With this in mind, we will now study this correlation, so that, once its nature is
established, we can use it to develop an algorithm to estimate ν1.

5.1. A posteriori error estimate. The result in Theorem 3.1, in addition to
being in terms of the true error (as opposed to the error of only the interpolations of
u and v), establishes bounds for the data assimilation error in terms of the Grashof
number. We are now considering a situation where we have access to v, and so would
like to obtain a sharper estimate on the error by allowing it to be in terms of v instead
of G.

Let w = u− v. Subtracting (2.13a) from (2.11a), we obtain

wt +B(w,v) +B(u,w) = (ν2 − ν1)Av − ν1Aw − µPσ(Ih(w)).

Now, we apply Ih to both sides of this equation and obtain

∂tIh(w) + Ih(B(w,v) +B(u,w))

= (ν2 − ν1)Ih(Av)− ν1Ih(Aw)− µIh(Pσ(Ih(w))).

Next, we take the inner product with Ih(w) and use the fact that

−µ 〈Ih(Pσ(Ih(w))), Ih(w)〉 = −µ|Ih(w)|2.
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The result, after rearranging terms, is

1

2

d

dt
|Ih(w)|2 + (ν1 − ν2) 〈Ih(Av), Ih(w)〉+ µ|Ih(w)|2(5.1)

= −〈Ih (ν1Aw +B(w,v) +B(u,w)) , Ih(w)〉 .

We have observed in each of our simulations that there is a time at which the error
|Ih(w)| reaches a minimum value and thereafter remains constant; then d

dt |Ih(w)| ≈ 0,
and the above equation reduces to

(ν1 − ν2) 〈Ih(Av), Ih(w)〉+ µ|Ih(w)|2(5.2)

= −〈Ih (ν1Aw +B(w,v) +B(u,w)) , Ih(w)〉 .

Note that all of the terms on the left-hand side of (5.2) except ν1 are explicitly
computable from data observations. However, on the right-hand side, one would need
u to compute B(w,v) and B(u,w). Also, although A commutes with the projection
onto the low Fourier modes in the periodic setting, A might not commute with other
types of interpolation operators Ih, in which case one could not compute Ih(Aw)
exactly from the observations Ih(u).

However, we note that in terms of units, each of the terms in (5.2) decreases
quadratically with w as w→ 0 (with the exception of (ν1− ν2) 〈Ih(Av), Ih(w)〉), but
we control µ and have chosen µ large enough that µ|Ih(w)|2 dominates the terms on
the right-hand side, as can be seen in Figure 3. Therefore, we propose an approxima-
tion formed by dropping these terms from the equation and, solving (approximately)
for ν1, thereby obtaining

(5.3) ν1 ≈ ν2 + µ
|Ih(w)|2

〈Ih(−Av), Ih(w)〉
.

Since each term on the right-hand side now depends only on given or observable
quantities, this approximation motivates an iterative scheme for recovering the vis-
cosity. We therefore test (5.3) as a means of recovering ν1, using the data from our
simulations. We obtain the approximation ν̃1 iteratively, using (5.3) for each of the
simulations performed in section 4.2 at time t = 24, and compare this to ν1. The re-
sults are shown in Table 1. In each case, (5.3) produces a much better approximation
of the true ν1, showing at least an 80% improvement. Furthermore, since the algo-
rithm we propose involves changing the viscosity midsimulation, we need to verify it
does not in general lead to badly discontinuous behavior, e.g., introducing nonphysical
shocks, oscillations, etc. Thus, in a related work [12], we examine the sensitivity of
the equations with respect to the viscosity, specifically, we prove local-in-time bounds
on solutions to the viscosity-sensitivity equations associated with (2.13) (i.e., bounds
on ∂u

∂ν in appropriate spaces).
To avoid waiting until the time derivative of the error becomes negligible, or to

include the possibility that the time derivative has nonnegligible oscillations, we can
choose to leave the time derivative in (5.1). Let t > s ≥ t0. We then integrate (5.1)
over the time interval [s, t], to obtain

1

2
|Ih(w(t))|2 − 1

2
|Ih(w(s))|2

+ (ν1 − ν2)

∫ t

s

〈Ih(Av(τ)), Ih(w(τ))〉 dτ + µ

∫ t

s

|Ih(w(τ))|2dτ

= −
∫ t

s

〈Ih((ν1Aw +B(w,v) +B(u,w)) (τ)), Ih(w(τ))〉 dτ.
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Table 1

ν2 |Ih(w)|2 〈Ih(−Av), Ih(w)〉 ν̃1 |ν̃1 − ν1| |ν̃1−ν1|
|ν2−ν1|

0.00080000 1.564e-03 −2.462e-01 9.986e-04 1.381e-06 0.69%
0.00090000 7.786e-04 −1.226e-01 9.988e-04 1.155e-06 1.15%
0.00099000 7.760e-05 −1.223e-02 9.999e-04 1.495e-07 1.49%
0.00099900 7.762e-06 −1.222e-03 1.000e-03 1.423e-08 1.42%
0.00099990 8.309e-07 −1.223e-04 1.000e-03 1.288e-08 12.88%
0.00100010 8.339e-07 1.221e-04 1.000e-03 1.391e-08 13.91%
0.00100100 7.765e-06 1.222e-03 1.000e-03 1.328e-08 1.33%
0.00101000 7.755e-05 1.222e-02 1.000e-03 1.551e-07 1.55%
0.00110000 7.732e-04 1.218e-01 1.002e-03 1.826e-06 1.83%
0.00200000 7.570e-03 1.183e+00 1.031e-03 3.121e-05 3.12%
0.01100000 6.750e-02 9.430e+00 1.336e-03 3.356e-04 3.36%

Then, dropping the terms on the right-hand side as before and solving for ν1, we
obtain

(5.4) ν1 ≈ ν2 +
µ
∫ t
s
|Ih(w(τ))|2dτ + 1

2 |Ih(w(t))|2 − 1
2 |Ih(w(s))|2∫ t

s
〈Ih(−Av(τ)), Ih(w(τ))〉 dτ

.

5.2. Algorithms. We next use (5.3) and (5.4) to devise algorithms capable of
recovering ν1 using only the data Ih(u) over a time interval [t0, T ]. The first algorithm
(Algorithm 5.1) utilizes (5.3). Algorithm 5.2 describes a method to recover ν1 using
(5.4) instead of (5.3).

Algorithm 5.1

input Ih(u) on [t0, T ] . available reference solution data
input ν2 . an initial estimate for ν1
input dt > 0 . time step
input ε > 0 . tolerance for machine precision
input δ ∈ (0, 1) . tolerance for convergence
t← t0
v(t0)← 0
while |Ih(u(t))− Ih(v(t))| > ε , AND t < T do

compute v(t+ dt) using viscosity ν2 and feedback Ih(u(t))
if |Ih(u(t+ dt))− Ih(v(t+ dt))| ≥ (1− δ)|Ih(u(t))− Ih(v(t))| then

if |Ih(u(t+ dt))− Ih(v(t+ dt))| < |Ih(u(t0))− Ih(v(t0))| then
compute ν̃1 using (5.3) at time t+ dt
t0 ← t+ dt
ν2 ← ν̃1

else
return ν2

end if
end if
t← t+ dt

end while
return ν2

Figure 4 shows the errors observed during the process of applying Algorithms 5.1
and 5.2 to our reference solution. Algorithm 5.1, tested with our reference solution
and an initial guess of ν2 = 1, after 10 iterations produced an end approximation of
ν̃1 = 0.00100000000000113301 (an absolute error of ≈ 1.133 × 10−15). With similar
performance, Algorithm 5.2, tested under the same conditions, after 100 iterations
produced an end approximation of ν̃1 = 0.00099999999999981332 (an absolute error
of≈ 1.867×10−16). In both cases, the results are accurate to within machine precision.
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Alg 2 |Ih(u(t)) − Ih(v(t))|

Alg 2 |ν2 − ν1|/ν1

Fig. 4. The evolution of the L2 error is shown for the solutions of the data assimilation systems
corresponding to Algorithms 5.1 and 5.2, as well as that of the relative error in the approximate
viscosity. The νk are chosen and the equations updated following the procedures outlined in the
algorithms.

Algorithm 5.2

input Ih(u) on [t0, T ] . available reference solution data
input ν2 . an initial estimate for ν1
input dt > 0 . time step
input I > 0 . time to wait before computing time averages
input J > 0 . length of time interval used to compute time averages
input ε > 0 . tolerance for machine precision
v0 ← 0
t← t0
while |Ih(u(t))− Ih(v(t))| > ε , AND t0 + I + J < T do

compute v(t) on [t0, t0 + I+J] using viscosity ν2, feedback Ih(u(t)), IC v(t0) = v0, and time step
dt.

compute ν̃1 using (5.4) over the time interval [t0 + I, t0 + I + J].
v0 ← v(t0 + I + J)
t0 ← t0 + I + J
ν2 ← ν̃1

end while
return ν2

6. Conclusion. In this article, we presented and analyzed a new way to recover
unknown parameters of a system (in this case, the viscosity), using a CDA approach
for the 2D incompressible Navier–Stokes equations. This means that even in the
case where the viscosity is unknown and one only has sparse observational data,
one may still obtain convergence to the true solution by using the AOT algorithm in
combination with the algorithms proposed here. In addition, our new algorithms allow
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one to update the viscosity in real time using only observational data, and we showed
computationally that the true solution and the true viscosity are recovered to within
machine precision, exponentially fast in time. An analytical proof of this will be the
subject of a forthcoming work, which will also explore the extension of the algorithm
to other physical systems. Furthermore, and as a lead-up to the new algorithms, we
proved analytically that in the case of an inaccurately known viscosity, the large-time
error produced by the AOT algorithm is controlled by the error in the viscosity.
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