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Abstract. We study the short-and-sparse (SaS) deconvolution problem of recovering a short signal a0 and a
sparse signal x0 from their convolution. We propose a method based on nonconvex optimization,
which under certain conditions recovers the target short and sparse signals, up to a signed shift
symmetry which is intrinsic to this model. This symmetry plays a central role in shaping the
optimization landscape for deconvolution. We give a regional analysis, which characterizes this
landscape geometrically, on a union of subspaces. Our geometric characterization holds when the
length-p0 short signal a0 has shift coherence µ, and x0 follows a random sparsity model with sparsity
rate ✓ 2

⇥
c1
p0
, c2
p0

p
µ+

p
p0

⇤
· 1
log2 p0

. Based on this geometry, we give a provable method that successfully

solves SaS deconvolution with high probability.
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1. Introduction. Datasets in a wide range of areas, including neuroscience [37], microscopy
[15], and astronomy [49], can be modeled as superpositions of translations of a basic motif.
Data of this nature can be modeled mathematically as a convolution y = a0 ⇤ x0, between
a short signal a0 (the motif) and a longer sparse signal x0, whose nonzero entries indicate
where in the sample the motif is present. A very similar structure arises in image deblurring
[14], where y is a blurry image, a0 the blur kernel, and x0 the (edge map) of the target sharp
image.

Motivated by these and related problems in imaging and scientific data analysis, we study
the short-and-sparse (SaS) deconvolution problem of recovering a short signal a0 2 Rp0 and
a sparse signal x0 2 Rn (n � p0) from their length-n cyclic convolution y = a0 ⇤ x0 2 Rn.1

This SaS model exhibits a basic scaled shift symmetry: for any nonzero scalar ↵ and cyclic
shift s`[·],

(1.1)
⇣
↵ s`[a0]

⌘
⇤
⇣

1
↵ s�`[x0]

⌘
= y.

Because of this symmetry, we only expect to recover a0 and x0 up to a signed shift (see
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1In this paper, the cyclic convolution a0 ⇤ x0 assumes a0 to be zero-padded [a0,0

n�p0 ] to length n.
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�1 1

1 �2 0

�1 0 2

=

⇤

⇤

y = ↵ s`[a0] (1/↵) s�`[x0]⇤

Figure 1. Shift symmetry in short-and-sparse deconvolution. An observation y (left) which is a convolution
of a short signal a0 and a sparse signal x0 (top right) can be equivalently expressed as a convolution of s`[a0]
and s�`[x0], where s`[·] denotes shift ` samples. The ground truth signals a0 and x0 can only be identified up to
a scaled shift.

Figure 1). Our problem of interest can be stated more formally as follows.

Problem 1.1 (short-and-sparse deconvolution). Given the cyclic convolution2 y = a0 ⇤ x0 2
Rn of a0 2 Rp0 short (p0 ⌧ n) and x0 2 Rn sparse, recover a0 and x0, up to a scaled shift.

Despite a long history and many applications, until recently very little algorithmic theory
was available for SaS deconvolution. Much of this di�culty can be attributed to the scale-shift
symmetry: natural convex relaxations fail,3 and nonconvex formulations exhibit a complicated
optimization landscape, with many equivalent global minimizers (scaled shifts of the ground
truth), additional local minimizers (scaled shift truncations of the ground truth), and a variety
of critical points [63, 64]. Currently available theory guarantees approximate recovery of a
truncation4 of a shift s`[a0], rather than guaranteeing recovery of a0 as a whole, and requires
certain (complicated) conditions on the convolution matrix associated with a0 [63].

In this paper, we describe an algorithm which, under simpler conditions, exactly recovers
a scaled shift of the pair (a0,x0). Our algorithm is based on a formulation first introduced
in [64], which casts the deconvolution problem as (nonconvex) optimization over the sphere.
We characterize the geometry of this objective function and show that near a certain union of
subspaces, every local minimizer is very close to a signed shift of a0. Based on this geometric
analysis, we give provable methods for SaS deconvolution that exactly recover a scaled shift
of (a0,x0) whenever a0 is shift-incoherent and x0 is a su�ciently sparse random vector. Our
geometric analysis highlights the role of symmetry in shaping the objective landscape for SaS
deconvolution.

The remainder of this paper is organized as follows. Section 2 introduces our optimization

2Our result can be applied to recovering direct convolutions. Let y 2 Rp0+n�1 be the direct convolution
between a0 2 Rp0 and x0 2 Rn; then y can also be expressed as circular convolution between a0 and [x0;0

p0�1].
3Such as matrix lifting relaxation [2, 39], in which a0 or x0 resides in random subspaces without shift

symmetry.
4That is, the portion of the shifted signal s`[a0] that falls in the window {0, . . . , p0 � 1}.D
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218 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

approach and modeling assumptions. Section 3 introduces our main results—both geometric
and algorithmic—and compares them to the literature. Sections 4 and 5 describes the main
ideas of our analysis. Section 6 demonstrates the experimental performance of the analyzed
algorithm. Finally, section 7 discusses two main limitations of our analysis and describes
directions for future work.

2. Formulation and assumptions.

2.1. Nonconvex SaS over the sphere. Our starting point is the (natural) formulation

(2.1) min
a,x

1
2 ka ⇤ x� yk22
Data Fidelity

+ � kxk1
Sparsity

s.t. kak2 = 1.

We term this optimization problem the Bilinear Lasso, for its resemblance to the Lasso
estimator in statistics. Indeed, letting

(2.2) 'lasso(a) ⌘ min
x

n
1
2 ka ⇤ x� yk22 + � kxk1

o

denote the optimal Lasso cost, we see that (2.1) simply optimizes 'lasso with respect to a:

(2.3) min
a

'lasso(a) s.t. kak2 = 1.

In (2.1)–(2.3), we constrain a to have unit `2 norm. This constraint breaks the scale ambi-
guity between a and x. Moreover, the choice of constraint manifold has surprisingly strong
implications for computation: if a is instead constrained to the simplex, the problem admits
trivial global minimizers. In contrast, local minima of the sphere-constrained formulation often
correspond to shifts (or shift truncations [64]) of the ground truth a0.

The problem (2.3) is defined in terms of the optimal Lasso cost. This function is challenging
to analyze, especially far away from a0. The article [64] analyzes the local minima of a
simplification of (2.3), obtained by approximating5 the data fidelity term as

1
2 ka ⇤ x� yk22 =

1
2 ka ⇤ xk

2
2 � ha ⇤ x,yi+

1
2 kyk

2
2

⇡ 1
2 kxk

2
2 � ha ⇤ x,yi+

1
2 kyk

2
2 .(2.4)

This yields a simpler objective function,

(2.5) '`1(a) = min
x

n
1
2 kxk

2
2 � ha ⇤ x,yi+

1
2 kyk

2
2 + � kxk1

o
.

We make one further simplification to this problem, replacing the nondi↵erentiable penalty
k·k1 with a smooth approximation ⇢(x).6 Our analysis allows for a variety of smooth sparsity
surrogates ⇢(x); for concreteness, we state our main results for the particular penalty7

(2.6) ⇢(x) =
X

i

�
x
2
i + �2

�1/2
.

5For a generic a, we have hsi[a], sj [a]i ⇡ 0 and hence ka ⇤ xk22 = x⇤C⇤
aCax ⇡ x⇤Ix = kxk22. The use of

'⇢ performs not as ideal compared to Bilinear Lasso when this approximation is inexact; see section 7.
6'`1 is not twice di↵erentiable everywhere and hence can’t be minimized with conventional second order

methods.
7This particular surrogate is sometimes called the pseudo-Huber function.D
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GEOMETRY AND SYMMETRY IN SaS DECONVOLUTION 219

For � > 0, this is a smooth function of x; as � & 0 it approaches kxk1. Replacing k·k1 with
⇢(·), we obtain the objective function which will be our main object of study,

(2.7) '⇢(a) = min
x

n
1
2 kxk

2
2 � ha ⇤ x,yi+

1
2 kyk

2
2 + �⇢(x)

o
.

As in [64], we optimize '⇢(a) over the sphere Sp�1:

(2.8) min
a

'⇢(a) s.t. a 2 Sp�1.

Here, we set p = 3p0�2. As we will see, optimizing over this slightly higher dimensional sphere
enables us to recover a (full) shift of a0, rather than a truncated shift. Our approach will leverage
the following fact: if we view a 2 Sp�1 as indexed by coordinates W = {�p0 + 1, . . . , 2p0 � 1},
then for any shifts ` 2 {�p0 + 1, . . . , p0 � 1}, the support of `-shifted short signal s`[a0] is
entirely contained in interval W . We will give a provable method which recovers a scaled
version of one of these canonical shifts.

2.2. Analysis setting and assumptions. For convenience, we assume that a0 has unit `2

norm, i.e., a0 2 Sp0�1.8 Our analysis makes two main assumptions, on the short motif a0 and
the sparse map x0, respectively:

The first is that distinct shifts a0 have small inner product. We define the shift coherence

of µ(a0) to be the largest inner product between distinct shifts:

(2.9) µ(a0) = max
`6=0

|ha0, s`[a0]i| .

The quantity µ(a0) is bounded between 0 and 1. Our theory allows any µ smaller than
some numerical constant. Figure 2 shows three examples of families of a0 that satisfy this
assumption:

• Spiky. When a0 is close to the Dirac delta �0, the shift coherence µ(a0) ⇡ 0.9 Here,
the observed signal y consists of a superposition of sharp pulses. This is arguably the
easiest instance of SaS deconvolution.

• Generic. If a0 is chosen uniformly at random from the sphere Sp0�1, its coherence is
bounded as µ(a0) /

p
1/p0 with high probability.

• Tapered generic low-pass. Here, a0 is generated by taking a random conjugate symmetric
superposition of the first L length-p0 discrete Fourier transform (DFT) basis signals,
windowing (e.g., with a Hamming window) and normalizing to unit `2 norm. When
L = p0

p
1� �, with high probability µ(a0) / �. In this model, µ does not have to

diminish as p0 grows—it can be a fixed constant.10

8This is purely a technical convenience. Our theory guarantees recovery of a signed shift (±s`[a0],±s�`[x0])
of the truth. If a0 does not have unit norm, identical reasoning implies that our method recovers a scaled shift�
↵s`[a0], ↵

�1s�`[x0]
�
with ↵ = ± 1

ka0k2
.

9The use of “⇡” here suppresses constant and logarithmic factors.
10The upper right panel of Figure 2 is generated using random DFT components with frequencies smaller

than one-third Nyquist. Such a kernel is incoherent, with high probability. Many commonly occurring low-pass
kernels have µ(a0) larger—very close to one. One of the most important limitations of our results is that they
do not provide guarantees in this highly coherent situation. See [34].D
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220 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

Spiky Generic Tapered Generic Lowpass

µ ⇡ 0 µ ⇡ p�1/2
0

µ ⇡ �

✓ ⇡ p�1/2
0

(
p
p0 events every p0)

✓ ⇡ p�3/4
0

( 4
p
p0 events every p0)

✓ ⇡ p�1
0

(1 event every p0)

a0

x0

Figure 2. Sparsity-coherence tradeo↵. Top: three families of motifs a0 with varying coherence µ. Bottom:
maximum allowable sparsity ✓ and number of copies ✓p0 within each length-p0 window. Here, we suppress
constants and logarithmic factors. When the target motif has smaller shift-coherence µ, our result allows larger
✓, and vice versa. This sparsity-coherence tradeo↵ is made precise in our main result, Theorem 3.1, which,
loosely speaking, asserts that when ✓ / 1/(p0

p
µ+

p
p0), our method succeeds.

Intuitively speaking, problems with smaller µ are easier to solve, a claim which will be made
precise in our technical results.

We assume that x0 is a sparse random vector. More precisely, we assume that x0 is
Bernoulli–Gaussian, with rate ✓:

(2.10) x0i = !igi,

where !i ⇠ Ber(✓), gi ⇠ N (0, 1), and all random variables are jointly independent. We write
this as

(2.11) x0 ⇠i.i.d. BG(✓).

Here, ✓ is the probability that a given entry x0i is nonzero. Problems with smaller ✓ are easier
to solve. In the extreme case, when ✓ ⌧ 1/p0, the observation y contains many isolated copies
of the motif a0, and a0 can be determined by direct inspection. Our analysis will focus on the
nontrivial scenario, when ✓ ' 1/p0.

Our technical results will articulate sparsity-coherence tradeo↵s, in which smaller coherence
µ enables larger ✓, and vice versa. More specifically, in our main theorem, the sparsity-coherence
relationship is captured in the form

✓ / 1/(p0
p
µ+
p
p0).(2.12)

When the target a0 is very shift-incoherent (µ ⇡ 0), our method succeeds when each length-p0
window contains about

p
p0 copies of a0. When µ is larger (as in the generic low-pass model),

our method succeeds as long as relatively few copies of a0 overlap in the observed signal. In
Figure 2, we illustrate these tradeo↵s for the three models described above.D
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GEOMETRY AND SYMMETRY IN SaS DECONVOLUTION 221

B`2,r(s`[a0]) \ Sp�1

s`[a0]

'⇢(a)

Figure 3. Geometry of '⇢ near a shift of a0. Bottom: a portion of the sphere Sp�1, colored according to '⇢.
Top: '⇢ visualized as height. '⇢ is strongly convex in this region, and it has a minimizer very close to s`[a0].

3. Main results: Geometry and algorithms. In this section, we introduce our main
results—on the geometry of '⇢ (subsection 3.1) and its algorithmic implications (subsection 3.2).
Finally, in subsection 3.3, we compare these results with the literature on deconvolution.

3.1. Geometry of the objective '⇢. The goal in SaS deconvolution is to recover a0 (and
x0) up to a signed shift; i.e., we wish to recover some ±s`[a0]. The shifts ±s`[a0] play a key
role in shaping the landscape of '⇢. In particular, we will argue that over a certain subset of
the sphere, every local minimum of '⇢ is close to some ±s`[a0].

To gain intuition into the properties of '⇢, we first visualize this function in the vicinity of
a single shift s`[a0] of the ground truth a0. In Figure 3, we plot the function value of '⇢ over

B`2,r(s`[a0]) \ Sp�1,

where B`2,r(a) is a ball of radius r around a. We make two observations:
• The objective function '⇢ is strongly convex in this neighborhood of s`[a0].
• There is a local minimizer very close to s`[a0].

We next visualize the objective function '⇢ near the linear span of two di↵erent shifts,
s`1 [a0] and s`2 [a0]. More precisely, we plot '⇢ near the intersection (Figure 4, left) of the
sphere Sp�1 and the linear subspace

S{`1,`2} = { ↵1s`1 [a0] +↵2s`2 [a0] |↵1,↵2 2 R } .

We make three observations:
• Again, there is a local minimizer near each shift s`[a0].
• These are the only local minimizers in the vicinity of S{`1,`2}. In particular, the
objective function ' exhibits negative curvature along S{`1,`2} at any superposition
↵1s`1 [a0] +↵2s`2 [a0] whose weights ↵1 and ↵2 are balanced, i.e., |↵1| ⇡ |↵2|.

• Furthermore, the function '⇢ exhibits positive curvature in directions away from the
subspace S`1,`2 .

Finally, we visualize '⇢ over the intersection (Figure 5, left) of the sphere Sp�1 with the
linear span of three shifts s`1 [a0], s`2 [a0], s`3 [a0] of the true kernel a0:

S{`1,`2,`3} = { ↵1s`1 [a0] +↵2s`2 [a0] +↵3s`3 [a0] |↵1,↵2,↵3 2 R } .D
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222 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

s`2 [a0]

s`1 [a0]

S{`1,`2}

s`1 [a0]

s`2 [a0]

S{`1,`2} \ Sp�1

'⇢(a)

Figure 4. Geometry of '⇢ near the span S{`1,`2} of two shifts of a0. Left: each pair of shifts s`1 [a0], s`2 [a0]
defines a linear subspace S{`1,`2} of Rp. Center/right: every local minimum of '⇢ near S{`1,`2} (red line) is
close to either s`1 [a0] or s`2 [a0]; there is a negative curvature in the middle of s`1 [a0] and s`2 [a0], and '⇢ is
convex in direction away from S{`1,`2}.

S{`1,`2,`3} \ Sp�1

s`1 [a0]

s`2 [a0]s`3 [a0]

'⇢(a)

s`1 [a0]

s`2 [a0]s`3 [a0]

S{`1,`2,`3}

Figure 5. Geometry of '⇢ over the span S{`1,`2,`3} of three shifts of a0. The subspace S{`1,`2,`3} is
three-dimensional; its intersection with the sphere Sp�1 is isomorphic to a two-dimensional sphere. On this set,
'⇢ has local minimizers near each of the s`i [a0] and are the only minimizers near S`1,`2,`3 .

Again, there is a local minimizer near each signed shift. At roughly balanced superpositions of
shifts, the objective function exhibits negative curvature. As a result, again, the only local
minimizers are close to signed shifts.

Our main geometric result will show that these properties are obtained from every subspace
spanned by a few shifts of a0. Indeed, for each subset

(3.1) ⌧ ✓ {�p0 + 1, . . . , p0 � 1} ,

define a linear subspace

(3.2) S⌧ =

(
X

`2⌧
↵`s`[a0]

�����↵�p0+1, . . . ,↵p0�1 2 R
)
.

The subspace S⌧ is the linear span of the shifts s`[a0] indexed by ` in the set ⌧ . Our geometric
theory will show that with high probability the function '⇢ has no spurious local minimizersD
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GEOMETRY AND SYMMETRY IN SaS DECONVOLUTION 223

S`1,`2

S`1,`3

S`2,`3

⌃4✓p0
'⇢(a)

Figure 6. Geometry of '⇢ over the union of subspaces ⌃2✓p0 . Left: schematic representation of the union
of subspaces ⌃4✓p0 . For each set ⌧ of at most 4✓p0 shifts, we have a subspace S⌧ . Right: '⇢ has good geometry
near this union of subspaces.

near any S⌧ for which ⌧ is not too large—say, |⌧ |  4✓p0. Combining all of these subspaces
into a single geometric object, define the union of subspaces

(3.3) ⌃4✓p0 =
[

|⌧ |4✓p0

S⌧ .

Figure 6 (left) gives a schematic representation of this set. We claim the following:
• In the neighborhood of ⌃4✓p0 , all local minimizers are near signed shifts.
• The value of '⇢ grows in any direction away from ⌃4✓p0 .

Our main result formalizes the above observations under two key assumptions: first, that
the sparsity rate ✓ is su�ciently small (relative to the shift coherence µ of p0), and, second,
that the signal length n is su�ciently large.

Theorem 3.1 (main geometric theorem). Let y = a0 ⇤ x0 with a0 2 Sp0�1 µ-shift coherent11

and x0 ⇠i.i.d. BG(✓) 2 Rn
with sparsity rate

✓ 2

c1
p0

,
c2

p0
p
µ+
p
p0

�
· 1

log2 p0
.(3.4)

Choose ⇢(x) =
p
x2 + �2 and set � = 0.1/

p
p0✓ in '⇢. Then there exist � > 0 and numerical

constant c such that if n � poly(p0), with high probability, every local minimizer ā of '⇢ over

⌃4✓p0 satisfies kā� �s`[a0]k2  cmax
�
µ, p�1

0

 
for some signed shift �s`[a0] of the true kernel.

Above, c1, c2 > 0 are positive numerical constants.

11Typically it is possible to provide an overestimate p00 � p0. Our theory and algorithm can be applied
directly to the overestimate p00, with the caveat that the sparsity rate ✓ now scales with p00 rather than p0.D
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224 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

Proof. This follows from Theorem 4.1.

The upper bound on ✓ in (3.4) yields the tradeo↵ between coherence and sparsity described
in Figure 2. Simply put, when a0 is better conditioned (as a kernel), its coherence µ is smaller
and x0 can be denser.

At a technical level, our proof of Theorem 3.1 shows that (i) '⇢(a) is strongly convex in
the vicinity of each signed shift, and that at every other point a near ⌃4✓p0 , there is either
(ii) a nonzero gradient or (iii) a direction of strict negative curvature; furthermore (iv) the
function '⇢ grows away from ⌃4✓p0 . Points (ii)–(iii) imply that near ⌃4✓p0 there are no “flat”
saddles: every saddle point has a direction of strict negative curvature. We will leverage these
properties to propose an e�cient algorithm for finding a local minimizer near ⌃4✓p0 . Moreover,
this minimizer is close enough to a shift (here, kā� s`[a0]k2 / µ) for us to exactly recover
s`[a0]: we will give a refinement algorithm that produces (±s`[a0],±s�`[x0]).

3.2. Provable algorithm for SaS deconvolution. The objective function '⇢ has good
geometric properties on (and near!) the union of subspaces ⌃4✓p0 . In this section, we show an
e�cient method that exactly recovers a0 and x0 up to shift symmetry. Although our geometric
analysis only controls '⇢ near ⌃4✓p0 , we will give a descent method which, with appropriate
initialization a

(0), produces iterates a(1), . . . ,a(k), . . . that remain close to ⌃4✓p0 for all k. In
short, it is easy to start near ⌃4✓p0 and easy to stay near ⌃4✓p0 . After finding a local minimizer
ā, we refine it to produce a signed shift of (a0,x0) using alternating minimization.

The next two paragraphs give the main ideas behind the principal steps of the algorithm.
We then describe its components in more detail (Algorithm 3.1) and state our main algorithmic
result (Theorem 3.2), which asserts that under appropriate conditions this method produces a
signed shift of (a0,x0).

Our algorithm starts with an initialization scheme which generates a(0) near the union of
subspaces ⌃4✓p0 , which consists of linear combinations of just a few shifts of a0. How can we
find a point near this union? Notice that the data y also consists of a linear combination of

just a few shifts of a0 Indeed,

y = a0 ⇤ x0 =
X

`2supp(x0)

x0`s`[a0].(3.5)

A length-p0 segment of data y0,...,p0�1 = [y0, . . . ,yp0�1]⇤ captures portions of roughly 2✓p0 ⌧
4✓p0 shifts s`[a0].

Many of these copies of a0 are truncated by the restriction to {0, . . . , p0 � 1}. A relatively
simple remedy is as follows: First, we zero-pad y0,...,p0�1 to length p = 3p0 � 2, giving

⇥
0
p0�1;y0; · · · ;yp0�1;0

p0�1
⇤
.(3.6)

Zero-padding provides enough space to accommodate any shift s`[a0] with ` 2 ⌧ . We thenD
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Data y Kernel a0 Sparse x0

Windowed Data a
(�1)

Initialization a
(0)

= ⇤

⇡

↵isi[a0] + ↵jsj [a0]

Figure 7. Data-driven initialization. Using a piece of the observed data y to generate an initial point a(0)

that is close to a superposition of shifts s`[a0] of the ground truth. Top: data y = a0 ⇤ x0 is a superposition of
shifts of the true kernel a0. Bottom: a length-p0 window contains pieces of just a few shifts. Bottom middle:
one step of the generalized power method approximately fills in the missing pieces, yielding a near superposition
of shifts of a0 (right).

perform one step of the generalized power method,12 writing

(3.7) a
(0) = �PSp�1r'`1

�
PSp�1

⇥
0
p0�1;y0; · · · ;yp0�1;0

p0�1
⇤�

,

where PSp�1 projects onto the sphere. The reasoning behind this construction may seem
obscure. We will explain it at a more technical level in section 5 after interpreting the gradient
r'⇢ in terms of its action on the shifts s`[a0] in section 4. For now, we note that this operation
has the e↵ect of (approximately) filling in the missing pieces of the truncated shifts s`[a0]; see
Figure 7 for an example. We will prove that with high probability a

(0) is indeed close to ⌃4✓p0 .
The next key observation is that the function '⇢ grows as we move away from the subspace

S⌧ ; see Figure 8. Because of this, a small-stepping descent method will not move far away from
⌃4✓p0 . For concreteness, we will analyze a variant of the curvilinear search method [23, 24],
which moves in a linear combination of the negative gradient direction �g and a negative
curvature direction �v. At the kth iteration, the algorithm updates a(k+1) as

a
(k+1)  PSp�1

⇥
a
(k) � tg(k) � t2v(k)

⇤
(3.8)

with appropriately chosen step size t. The inclusion of a negative curvature direction allows
the method to avoid stagnation near saddle points. Indeed, we will prove that, starting from
initialization a

(0), this method produces a sequence a
(1),a(2), . . . which e�ciently converges to

a local minimizer ā that is near some signed shift ±s`[a0] of the ground truth.

12The power method for minimizing a quadratic form ⇠(a) = 1
2a

⇤Ma over the sphere consists of the
iteration a 7! �PSp�1Ma. Notice that in this mapping, �Ma = �r⇠(a). The generalized power method, for
minimizing a function ' over the sphere, consists of repeatedly projecting �r' onto the sphere, giving the
iteration a 7! �PSp�1r'(a). Equation (3.7) can be interpreted as one step of the generalized power method
for the objective function '⇢.D
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S⌧

'⇢

Figure 8. Growth of '⇢ away from S⌧ . Because '⇢ grows away from S⌧ , small-stepping descent methods
stay near S⌧ .

The second step of our algorithm rounds the local minimizer ā ⇡ �s`[a0] to produce an
exact solution ba = �s`[a0]. As a by-product, it also exactly recovers the corresponding signed
shift of the true sparse signal, bx = �s�`[x0].

Our rounding algorithm is an alternating minimization scheme, which alternates between
minimizing the Lasso cost over a with x fixed, and minimizing the Lasso cost over x with a

fixed. We make two modifications to this basic idea, both of which are important for obtaining
exact recovery. First, unlike the standard Lasso cost, which penalizes all of the entries of x,
we maintain a running estimate I(k) of the support of x0 and only penalize those entries that
are not in I(k):

(3.9) 1
2 ka ⇤ x� yk22 + �

X

i 62I(k)
|xi| .

This can be viewed as an extreme form of reweighting [11]. Second, our algorithm gradually
decreases penalty variable � to 0, so that eventually

ba ⇤ bx ⇡ y.(3.10)

This can be viewed as a homotopy or continuation method [46, 19]. For concreteness, at the
kth iteration the algorithm reads

Update x: x
(k+1)  argmin

x

1
2ka

(k) ⇤ x� yk22 + �(k)
X

i 62I(k)
|xi| ;(3.11)

Update a: a
(k+1)  PSp�1

⇥
argmin

a

1
2ka ⇤ x

(k+1) � yk22
⇤
;(3.12)

Update � and I: �(k+1)  1
2�

(k), I(k+1)  supp
�
x
(k+1)

�
.(3.13)

We prove that the iterates produced by this sequence of operations converge to the ground
truth at a linear rate, as long as the initializer ā is su�ciently nearby.

Our overall algorithm is summarized as Algorithm 3.1. Figure 9 illustrates the main
steps of this algorithm. Our main algorithmic result states that under essentially the same
hypotheses as above, Algorithm 3.1 produces a signed shift of the ground truth (a0,x0).D
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Algorithm 3.1. Short-and-sparse deconvolution.
Input: Observation y, motif length p0, sparsity ✓, shift-coherence µ, and curvature threshold
�⌘v.
Minimization:
Set a(0)  �PSp�1r'⇢

�
PSp�1

⇥
0
p0�1;y0; · · · ;yp0�1;0p0�1

⇤�
.

Set � = 0.1/
p
p0✓ 13and � > 0 in '⇢. For k = 1, 2, . . . ,K1, let

a
(k+1)  PSp�1 [a(k) � tg(k) � t2v(k)],(3.14)

where g(k) is the Riemannian gradient; v(k) is the eigenvector of smallest Riemannian Hessian
eigenvalue if less than �⌘v with

⌦
v
(k), g(k)

↵
� 0, otherwise let v(k) = 0; and t 2 (0, 0.1/n✓]

satisfies

'⇢(a
(k+1)) < '⇢(a

(k))� 1
2 tkg

(k)k22 � 1
4 t

4⌘vkv(k)k22(3.15)

to obtain a near local minimizer ā a
(K1).

Refinement:
Set a

(0)  ā, �(0)  10(p✓ + log n)(µ + 1/p), and I(0)  S�(0) [supp(y

V⇤ ā]). For
k = 1, 2, . . . ,K2, let

x
(k+1)  argminx

1
2ka

(k) ⇤ x� yk22 + �(k)P
i 62I(k) |xi| ,(3.16)

a
(k+1)  PSp�1

⇥
argmina

1
2ka ⇤ x

(k+1) � yk22
⇤
,(3.17)

�(k+1)  �(k)/2, I(k+1)  supp(x(k+1)),(3.18)

to obtain (ba, bx) (a(K2),x(K2)).

Output: Return (ba, bx).

Theorem 3.2 (main algorithmic theorem). Suppose y = a0 ⇤ x0, where a0 2 Sp0�1
is µ-

truncated shift coherent
14

such that maxi 6=j

��⌦◆⇤p0si[a0], ◆⇤p0sj [a0]
↵��  µ and x0 ⇠i.i.d. BG(✓) 2

Rn
with ✓, µ satisfying

✓ 2
"
c1
p0

,
c2�

p0
p
µ+
p
p0
�
log2 p0

#
, µ  c3

log2 n
(3.19)

for some constant c1, c2, c3 > 0. If the signal lengths n, p0 satisfy n > poly(p0) and p0 >
polylog(n), then there exist �, ⌘v > 0 such that with high probability Algorithm 3.1 produces

(ba, bx) that are equal to the ground truth up to signed shift symmetry:

(3.20)
���ba, bx

�
� �

�
s`[a0], s�`[x0]

���
2
 "

for � 2 {±1} and ` 2 {�p0 + 1, . . . , p0 � 1} if K1 > poly(n, p0) and K2 > polylog(n, p0, "�1).

Proof. See Theorems 5.1 and 5.2.

13In practice, we suggest setting � = c�/
p
p0✓ with c� 2 [0.5, 0.8].

14The truncated shift coherence is a stronger condition than natural shift coherence. The statement appears
mainly due to the limitation of the proof strategy for the algorithm.D
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a0

ba

Initial a
(0)

a
(100) Converged a

(') Est. ba and true a0

Figure 9. Local minimization and refinement. Left: data-driven initialization a(0) consisting of a near
superposition of two shifts. Middle: minimizing '⇢ produces a near shift of a0. Right: rounded solution ba using
the Lasso. ba is very close to a shift of a0.

When solving SaS deconvolution via minimizing Bilinear Lasso objective (2.2) in practice,
the algorithm is analogous to the provable method introduced in Algorithm 3.1, where the
curvilinear descent and the refinement step can be realized as alternating gradient descent of
both variables a,x in (2.2). Unlike Algorithm 3.1, this alternating gradient method has yet to
come with theoretical guarantees, but has shown to be an e↵ective and e�cient method for
SaS deconvolution problems both in simulation and in reality [34].

3.3. Relationship to the literature. Blind deconvolution is a classical problem in signal
processing [54, 12] and has been studied under a variety of hypotheses. In this section, we first
discuss the relationship between our results and the existing literature on the SaS version of
this problem, and then briefly discuss other deconvolution variants in the theoretical literature.

The SaS model arises in a number of applications. One class of applications involves
finding basic motifs (repeated patterns) in datasets. This motif discovery problem arises
in extracellular spike sorting [37, 20] and calcium imaging [48], where the observed signal
exhibits repetitive short neuron excitation patterns occurring sparsely across time and/or
space. Similarly, electron microscopy images [15] arising in study of nanomaterials often exhibit
repeated motifs.

Another significant application of SaS deconvolution is image deblurring. Typically, the
blur kernel is small relative to the image size (short) [3, 62, 13, 35, 36]. In natural image
deblurring, the target image is often assumed to have relatively few sharp edges [21, 27, 36],
and hence have sparse derivatives. In scientific image deblurring, e.g., in astronomy [33, 25, 9]
and geophysics [28], the target image is often sparse, either in the spatial or wavelet domains,
again leading to variants of the SaS model. The literature on blind image deconvolution is
large; see, e.g., [31, 10] for surveys.

Variants of the SaS deconvolution problem arise in many other areas of engineering as well.
Examples include blind equalization in communications [50, 51, 26], dereverberation in sound
engineering [44, 45], and image superresolution [4, 53, 61].

These applications have motivated a great deal of algorithmic work on variants of the
SaS problem [32, 8, 6, 31, 43, 10, 56]. In contrast, relatively little theory is available to
explain when and why algorithms succeed. Our algorithm minimizes '⇢ as an approximation
to the Lasso cost over the sphere. Our formulation and results have strong precedent in
the literature. Lasso-like objective functions have been widely used in image deblurring
[62, 14, 21, 35, 52, 60, 18, 30, 36, 59, 47, 64]. A number of insights have been obtained into theD
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geometry of sparse deconvolution—in particular, into the e↵ect of various constraints on a on
the presence or absence of spurious local minimizers. In image deblurring, a simplex constraint
(a � 0 and kak1 = 1) arises naturally from the physical structure of the problem [62, 14].
Perhaps surprisingly, simplex-constrained deconvolution admits trivial global minimizers, at
which the recovered kernel a is a spike, rather than the target blur kernel [7, 36].

The work [59] imposes the `2 regularization on a and observes that this alternative
constraint gives a more reliable algorithm. In [64], the geometry of the simplified objective
'`1 over the sphere is studied, and it is proved that in the dilute limit in which x0 has one
nonzero entry, all strict local minima of '`1 are close to signed shifts truncations of a0. By
adopting a di↵erent objective function (based on `4 maximization) over the sphere, [63] proves
that on a certain region of the sphere every local minimum is near a truncated signed shift of
a0, i.e., the restriction of s`[a0] to the window {0, . . . , p0 � 1}. The analysis of [63] allows the

sparse sequence x0 to be denser (✓ ⇠ p�2/3
0 for a generic kernel a0, as opposed to ✓ . p�3/4

0 in
our result). Both [64] and [63] guarantee approximate recovery of a portion of s`[a0], under
complicated conditions on the kernel a0. Our core optimization problem is very similar to that
of [64]. However, we obtain exact recovery of both a0 and relatively dense x0 under the much
simpler assumption of shift incoherence.

Other aspects of the SaS problem have been studied theoretically. One basic question is
under what circumstances the problem is identifiable up to the scaled shift ambiguity. The
paper [17] shows that the problem is ill-posed for worst case (a0,x0), particularly for certain
support patterns in which x0 does not have any isolated nonzero entries. This demonstrates
that some modeling assumptions on the support of the sparse term are needed. At the same
time, this worst-case structure is unlikely to occur, either under the Bernoulli model or in
practical deconvolution problems.

Motivated by a variety of applications, much research has focused on low-dimensional de-
convolution models in the theoretical literature. In communication applications, the signals a0

and x0 either live in known low-dimensional subspaces or are sparse in some known dictionary
[2, 16, 29, 39, 40, 41, 42]. These theoretical works assume that the subspace/dictionary are
chosen at random. This low-dimensional deconvolution model does not exhibit the signed shift
ambiguity; nonconvex formulations for this model exhibit a di↵erent structure from that studied
here. In fact, the variant in which both signals belong to known subspaces can be solved by
convex relaxation [2]. The SaS model does not appear to be amenable to convexification and ex-
hibits a more complicated nonconvex geometry due to the shift ambiguity. The main motivation
for tackling this model lies in the aforementioned applications in imaging and data analysis.

In [38, 57] the relatedmulti-instance sparse blind deconvolution problem (MISBD) is studied,
where there are K observations yi = a0 ⇤xi consisting of multiple convolutions i = 1, . . . ,K of
a kernel a0 and di↵erent sparse vectors xi. Both works develop provable algorithms. There are
several key di↵erences with our work. First, both the proposed algorithms and their analysis
require the kernel to be invertible. Second, despite the apparent similarity between the SaS
model and MISBD, these problems are not equivalent. It might seem possible to reduce SaS
to MISBD by dividing the single observation y into K pieces; this apparent reduction fails
due to boundary e↵ects.
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3.4. Notation. All vectors/matrices are written in bold font, a/A; indexed values are
written as ai, Aij . Zero or one vectors are defined as 0 or 1, and ith canonical basis vector
defined as ei. The indices for vectors/matrices all start from 0 and are taken modulo-n,
and thus a vector of length n should have its indices labeled as {0, 1, . . . , n� 1}. We write
[n] = {0, . . . , n� 1}. We often use the capital italic symbols I, J for subsets of [n]. We abuse
notation slightly and write [�p] = {n� p+ 1, . . . , n� 1, 0} and [±p] = {n�p+1, . . . , n�1, 0, 1,
. . . , p� 1}. Index sets can be labels for vectors; aI 2 R|I| denotes the restriction of the vector
a to coordinates I. Also, we use a check symbol to denote the reversal operator on index set
I

V

= �I and vectors a

V

i = a�i.
We let PC denote the projection operator associated with a compact set C. The zero-filling

operator ◆I : R|I| ! Rn injects the input vector to higher dimensional Euclidean space, via
(◆Ix)i = xI�1(i) for i 2 I, and 0 otherwise. Its adjoint operator ◆

⇤
I can be understood as

a subset selection operator which picks up entries of coordinates I. A common zero-filling
operator throughout this paper, ◆, is an abbreviation of ◆[p], which is often addressed as the
zero-padding operator and its adjoint ◆⇤ as truncation operator.

The convolution operators are all circular with modulo-n: (a ⇤ x)i =
P

j2[n] ajxi�j ; also,
the convolution operator works on the index set: I ⇤ J = supp (1I ⇤ 1J). Similarly, the shift
operator s`[·] : Rp ! Rn is circular with modulo-n without specification: (s`[a])j = (◆[p]a)j�`.
Notice that here a can be shorter, p  n. Let Ca 2 Rn⇥n denote a circulant matrix (with
modulo-n) for vector a, whose jth column is the cyclic shift of a by j: Caej = sj [a]. It
satisfies for any b 2 Rn,

Cab = a ⇤ b.(3.21)

The correlation between a and b can be also written in similar form of convolution operators
which reverse one vector before convolution. Define two correlation matrices C⇤

a and C

V

a as
C

⇤
aej = sj [a

V

] and C

V

aej = s�j [a]. The two operators will satisfy

C
⇤
ab = a

V⇤ b, C

V

ab = a ⇤ b

V

.(3.22)

4. Geometry of '⇢ in shift space. Underlying our main geometric and algorithmic
results is a relationship between the geometry of the function '⇢ and the symmetries of the
deconvolution problem. In this section, we describe this relationship at a more technical level
by interpreting the gradient and Hessian of the function '⇢ in terms of the shifts s`[a0] and
stating a key lemma which asserts that a certain neighborhood of the union of subspaces ⌃4✓p0

can be decomposed into regions of negative curvature, strong gradient, and strong convexity
near the target solutions ±s`[a0].

4.1. Shifts and correlations. The set ⌃4✓p0 is a union of subspaces. Any point a in one
of these subspaces S⌧ is a superposition of shifts of a0:

(4.1) a =
X

`2⌧
↵`s`[a0].

This representation can be extended to a general point a 2 Sp�1 by writing

(4.2) a =
X

`2⌧
↵`s`[a0] +

X

`/2⌧

↵`s`[a0].
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GEOMETRY AND SYMMETRY IN SaS DECONVOLUTION 231

The vector ↵ can be viewed as the coe�cients of a decomposition of a into di↵erent shifts
of a0. This representation is not unique. For a close to S⌧ , we can choose a particular ↵ for
which ↵⌧c is small, a notion that we will formalize below.

For convenience, we introduce a closely related vector � 2 Rn, whose entries are the inner
products between a and the shifts of a0: �` = ha, s`[a0]i. Since the columns of Ca0 are the
shifts of a0, we can write

� = C
⇤
a0
◆a(4.3)

= C
⇤
a0
◆◆

⇤
Ca0↵ =: M↵.(4.4)

The matrix M is the Gram matrix of the truncated shifts: Mij = h◆⇤si[a0], ◆⇤sj [a0]i. When µ
is small, the o↵-diagonal elements of M are small. In particular, on S⌧ we may take ↵⌧c = 0,
and � ⇡ ↵ in the sense that �⌧ ⇡ ↵⌧ and the entries of �⌧c are small. For detailed elaboration,
see section SM2 in the supplementary material.

4.2. Shifts and the calculus of '`1 . Our main geometric claims pertain to the function
'⇢, which is based on a smooth sparsity surrogate ⇢(·) ⇡ k·k1. In this section, we sketch the
main ideas of the proof as if ⇢(·) = k · k1 by relating the geometry of the function '`1 to the
vectors ↵, � introduced above. Working with '`1 simplifies the exposition; it is also faithful to
the structure of our proof, which relates the derivatives of the smooth function '⇢ to similar
quantities associated with the nonsmooth function '`1 .

The function '`1 has a relatively simple closed form:

(4.5) '`1(a) = �1
2 kS� [y

V⇤ a ]k22 .

Here, S� is the soft thresholding operator, which is defined for scalars t as

S�[t] = sign(t)max {|t| � �, 0}(4.6)

and is extended to vectors by applying it elementwise. The operator S�[x] shrinks the elements
of x toward zero. Small elements become identically zero, resulting in a sparse vector.

Gradient: Sparsifying the correlations �. Our goal is to understand the local minimizers
of the function '`1 over the sphere. The function '`1 is di↵erentiable. Clearly, any point a at
which its gradient (over the sphere) is nonzero cannot be a local minimizer. We first give an
expression for the gradient of '`1 over Euclidean space Rp, and then extend it to the sphere
Sp�1. Using y = a0 ⇤ x0 and calculus gives

r'`1(a) = �◆⇤Ca0C

V

x0S�

h
C

V

x0C
⇤
a0
◆a

i

= �◆⇤Ca0 C

V

x0S�

h
C

V

x0�

i

= �◆⇤Ca0�[�],(4.7)

where we have simplified the notation by introducing an operator � : Rn ! Rn as �[�] =

C

V

x0S�

⇥
C

V

x0�
⇤
. This representation exhibits the (negative) gradient as a superposition of shifts

of a0 with coe�cients given by the entries of �[�]:

�r'`1(a) =
X

`

�[�]` s`[a0].(4.8)
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��0�

0

�i

S�[�]i

��0�

0

�i

1
n✓E�i[�]

��
�

�(a)

�(a+)

Gradient descent

suppresses small �i

Large gradient region

4
5�(0) > �(1) > ⌫�

Figure 10. Gradient sparsifies correlations. Left: the soft thresholding operator S�[�] shrinks the entries of
� toward zero, making it sparser. Middle left: the negative gradient �r'`1 is a superposition of shifts s`[a0],
with coe�cients �`[�] ⇡ S�[�]`. Because of this, gradient descent sparsifies �. Middle right: �(a) before, and
�(a+) after, one projected gradient step a+ = PSp�1 [a� t · grad['`1 ](a)]. Notice that the small entries of � are
shrunk towards zero. Right: the gradient grad['`1 ](a) is large whenever it is easy to sparsify �, particularly
when the largest entry �(0) � �(1) � 0.

The operator � appears complicated. However, its e↵ect is relatively simple: when x0 is a

long random vector, �[�] acts like a soft thresholding operator on the vector �. That is,

1

n✓
· �[�]` ⇡

8
<

:

�` � �, �` > �,
�` + �, �` < ��,
0 otherwise.

(4.9)

We show this rigorously below in the proof of our main theorems. Here, we support this claim
pictorially by plotting the `th entry �[�]` as �` varies; see Figure 10 (middle left) and compare
to Figure 10 (left). Because �[�] suppresses small entries of �, the strongest contributions
to �r'`1 in (4.8) will come from shifts s`[a0] with large �`. In particular, the Euclidean

gradient is large whenever there is a single preferred shift s`[a0], i.e., the largest entry of � is

significantly larger than the second largest entry.

The (Euclidean) gradient r'`1 measures the slope of '`1 over Rn. We are interested in
the slope of '`1 over the sphere Sp�1, which is measured by the Riemannian gradient

grad['`1 ](a) = Pa?r'`1(a)

= �Pa?

X

`

�`[�] s`[a0].(4.10)

The Riemannian gradient simply projects the Euclidean gradient onto the tangent space a
?

to Sp�1 at a. The Riemannian gradient is large whenever
(i) the negative gradient points to one particular shift: there is a single preferred shift

s`[a0] so that the Euclidean gradient is large; and
(ii) a is not too close to any shift: it is possible to move in the tangent space in the

direction of this shift.15 Since the tangent space consists of those vectors orthogonal to
a, this is possible whenever s`[a0] is not too aligned with a, i.e., a is not too close to
s`[a0].

15. . . so the projection of the Euclidean gradient onto the tangent space does not vanish.D
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GEOMETRY AND SYMMETRY IN SaS DECONVOLUTION 233

Our technical lemma quantifies this situation in terms of the ordered entries of �. Write
|�(0)| � |�(1)| � · · · , with corresponding shifts s(0)[a0], s(1)[a0], . . . . There is a strong gradient
whenever |�(0)| is significantly larger than |�(1)| and |�(1)| is not too small compared to �: in

particular, when 4
5 |�(0)| > |�(1)| > �

4 log2 ✓�1 . In this situation, gradient descent drives a toward

s(0)[a0], reducing |�(1)|, . . . , and making the vector � sparser. We establish the technical claim
that the (Euclidean) gradient of '`1 sparsifies vectors in shift space in section SM3.

Hessian: Negative curvature breaks symmetry. When there is no single preferred shift,
i.e., when |�(1)| is close to |�(0)|, the gradient can be small. Similarly, when a is very close
to ±s(0)[a0], the gradient can be small. In either of these situations, we need to study the
curvature of the function ' to determine whether there are local minimizers.

Strictly speaking, the function '`1 is not twice di↵erentiable, due to the nonsmoothness of
the soft thresholding operator S�[t] at t = ±�. Indeed, '`1 is nonsmooth at any point a for
which some entry of y

V⇤ a has magnitude �. At other points a, '`1 is twice di↵erentiable, and
its Hessian is given by

er2'`1(a) = �◆⇤Ca0C

V

x0PIC

V

x0C
⇤
a0
◆,(4.11)

with I = supp
�
S�

⇥
C

V

y◆a
⇤�
. We (formally) extend this expression to every a 2 Rn, terming

er2'`1 the pseudo-Hessian of '`1 . For appropriately chosen smooth sparsity surrogate ⇢, we
will see that the (true) Hessian of the smooth function r2'⇢ is close to er2'`1 , and so er2'`1

yields useful information about the curvature of '⇢.
As with the gradient, the Hessian is complicated, but becomes simpler when the sample

size is large. The approximation

er2'`1(a) ⇡ �
X

`

s`[a0]s`[a0]
⇤
✓

@

@�`
�`[�]

◆
(4.12)

can be obtained from (4.8) by noting that @
@a�`[�] =

P
j sj [a0]

@
@�j

�`[�], that
@

@�j
�`[�] ⇡ 0

for j 6= `, and that

(4.13)
1

n✓
· @�`[�]

@�`
⇡
(
0, |�`| ⌧ �,

1, |�`| � �.

Again, we corroborate this approximation pictorially; see Figure 11.
From this approximation, we can see that the quadratic form v

⇤ er2'`1v takes on a large
negative value whenever v is a shift s`[a0] corresponding to some |�`| � �, or whenever v is a
linear combination of such shifts. In particular, if for some j, |�(0)|, |�(1)|, . . . , |�(j)| � �, then
'`1 will exhibit negative curvature in any direction v 2 span(s(0)[a0], s(1)[a0], . . . , s(j)[a0]).

The (Euclidean) Hessian measures the curvature of the function '`1 over Rn. The Rie-
mannian Hessian

(4.14) gHess['`1 ](a) = Pa?

 
er2'`1(a)

Curvature of '`1

+ h�r'`1(a),ai · I
Curvature of the sphere

!
Pa?
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�� 0 �
0

�1
n✓ hr'`1 (a),ai

1

�i

@
@�i

1
n✓E�i[�] S?

⌧
S⌧

Negative curvature: �(1) >
4
5�(0)

Strong convexity: �(1) < ⌫�

Figure 11. Hessian breaks symmetry. Left: contribution of �si[a0]si[a0]
⇤ to the Euclidean Hessian. If

|�i| � �, the Euclidean Hessian exhibits a strong negative component in the si[a0] direction. The Riemannian
Hessian exhibits negative curvature in directions spanned by si[a0] with corresponding |�i| � � and positive
curvature in directions spanned by si[a0] with |�i| ⌧ �. Middle: this creates negative curvature along the
subspace S⌧ and positive curvature orthogonal to this subspace. Right: our analysis shows that there is always
a direction of negative curvature when �(1) >

4
5�(0); conversely, when �(1) ⌧ � there is positive curvature in

every feasible direction and the function is strongly convex.

measures the curvature of '`1 over the sphere. The projection Pa? restricts its action to
directions v ? a that are tangent to the sphere. The additional term h�r'`1(a),ai accounts
for the curvature of the sphere. This term is always positive. The net e↵ect is that directions
of strong negative curvature of '`1 over Rn become directions of moderate negative curvature
over the sphere. Directions of nearly zero curvature over Rn become directions of positive
curvature over the sphere. This has three implications for the geometry of '`1 over the sphere:

(i) Negative curvature in symmetry breaking directions: If |�(0)|, |�(1)|, . . . , |�(j)| � �, then
'`1 will exhibit negative curvature in any tangent direction v ? a which is in the linear
span

span(s(0)[a0], s(1)[a0], . . . , s(j)[a0])

of the corresponding shifts of a0.
(ii) Positive curvature in directions away from S⌧ : The Euclidean Hessian quadratic form

v
⇤ er2'`1v takes on relatively small values in directions orthogonal to the subspace S⌧ .

The Riemannian Hessian is positive in these directions, creating positive curvature
orthogonal to the subspace S⌧ .

(iii) Strong convexity around minimizers: Around a minimizer s`[a0], only a single entry �`

is large. Any tangent direction v ? a is nearly orthogonal to the subspace span(s`[a0]),
and hence is a direction of positive (Riemannian) curvature. The objective function '⇢

is strongly convex around the target solutions ±s`[a0].
Figure 11 visualizes these regions of negative and positive curvatures, and the technical claim
of positivity/negativity of curvature in shift space is presented in detail in section SM4.

4.3. Any local minimizer is a near shift. We close this section by stating a key theorem,
which makes the above discussion precise. We will show that a certain neighborhood of
any subspace S⌧ can be covered by regions of negative curvature, of large gradient, and of
strong convexity containing target solutions ±s`[a0]. Furthermore, at the boundary of this
neighborhood, the negative gradient points back—retracts—toward the subspace S⌧ , due toD
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GEOMETRY AND SYMMETRY IN SaS DECONVOLUTION 235

the (directional) convexity of '⇢ away from the subspace.
To formally state the result, we need a way of measuring how close a is to the subspace

S⌧ . For technical reasons, it turns out to be convenient to do this in terms of the coe�cients
↵ in the representation

(4.15) a =
X

`2⌧
↵`s`[a0] +

X

`02⌧ c

↵`0s`0 [a0].

If a 2 S⌧ , we can take ↵ with ↵⌧c = 0. We can view the energy k↵⌧ck2 as a measure of the
distance from a to S⌧ . A technical wrinkle arises, because the representation (4.15) is not
unique. We resolve this issue by choosing the ↵ that minimizes k↵⌧ck2, writing

d↵(a,S⌧ ) = inf

(
k↵⌧ ck2 :

X

`

↵`s`[a0] = a

)
.(4.16)

The distance d↵(a,S⌧ ) is zero for a 2 S⌧ . Our analysis controls the geometric properties of
'⇢ over the set of a for which d↵(a,S⌧ ) is not too large. Similar to (3.3), we define an object
which contains all points that are close to some S⌧ in the above sense:

⌃�
4✓p0

:=
[

|⌧ |4✓p0

{a : d↵(a,S⌧ )  �} .(4.17)

The aforementioned geometric properties hold over this set.

Theorem 4.1 (geometry of '⇢ over union of subspaces). Suppose that y = a0 ⇤ x0, where

a0 2 Sp0�1
is µ-shift coherent and x0 ⇠i.i.d. BG(✓) 2 Rn

satisfying

✓ 2

c0

p0
,

c

p0
p
µ+
p
p0

�
· 1

log2 p0
(4.18)

for some constants c0, c > 0. Set � = 0.1/
p
p0✓ in '⇢, where ⇢(x) =

p
x2 + �2. There exist

numerical constants C, c00, c000, c1-c4 > 0 such that if �  c00�✓8

p2 log2 n
and n > Cp50✓

�2 log p0, then

with probability at least 1� c000/n, for every a 2 ⌃�
4✓p0

, we have the following:

(Negative curvature.) If
���(1)

�� � ⌫1
���(0)

��, then

�min (Hess['⇢](a))  �c1n✓�.(4.19)

(Large gradient.) If ⌫1
���(0)

�� �
���(1)

�� � ⌫2(✓)�, then

kgrad['⇢](a)k2 � c2n✓
�2

log2 ✓�1 .(4.20)

(Convex near shifts.) If ⌫2(✓)� �
���(1)

��, then

Hess['⇢](a) � c3n✓Pa? .(4.21)

(Retraction to subspace.) If
�
2  d↵(a,S⌧ )  �, then for every ↵ satisfying a = ◆

⇤
Ca0↵,

there exists ⇣ satisfying grad['⇢](a) = ◆
⇤
Ca0⇣, such that

h⇣⌧ c ,↵⌧ ci � c4 k⇣⌧ ck2 k↵⌧ ck2 .(4.22)D
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236 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

(Local minimizers.) If a is a local minimizer,

min
`2[±p]
�2{±1}

ka� � s`[a0]k2 
1
2 max

�
µ, p�1

0

 
,(4.23)

where ⌫1 =
4
5 , ⌫2(✓) =

1
4 log2 ✓�1 , and � =

c·poly(
p

1/✓,
p

1/µ)

log2 ✓�1 · 1p
p0
.

Proof. See subsection SM6.5.

The retraction property elaborated upon in (4.22) implies that the negative gradient at
a points in a direction that decreases d↵(a,S⌧ ). This is a consequence of positive curvature
away from S⌧ . It essentially implies that the gradient is monotone in ↵⌧ c space: choose any
a 2 S⌧ \ Sp�1, write ↵ to be its coe�cient, and let ⇣ be the coe�cient of grad['⇢](a). Then
↵⌧ c = 0, ⇣⌧ c ⇡ 0, and

h⇣⌧ c � ⇣⌧ c , ↵⌧ c �↵⌧ ci ⇡ h⇣⌧ c � 0, ↵⌧ c � 0i = h⇣⌧ c ,↵⌧ ci > 0.

Our main geometric claim in Theorem 3.1 is a direct consequence of Theorem 4.1. Moreover,
it suggests that as long as we can minimize '⇢ within the region ⌃�

4✓p0
, we will solve the SaS

deconvolution problem.

5. Provable algorithm. In light of Theorem 4.1, in this section we introduce a two-
part algorithm, Algorithm 3.1, which first applies the curvilinear descent method to find a
local minimum of '⇢ within ⌃�

4✓p0
, followed by a refinement algorithm that uses alternating

minimization to exactly recover the ground truth. This algorithm exactly solves the SaS
deconvolution problem.

5.1. Minimization. There are three major issues in finding a local minimizer within ⌃�
4✓p0

:

(i) Initialization. The initializer a(0) to reside within ⌃�
4✓p0

.
(ii) Negative curvature. The method to avoid stagnating near saddle points of '⇢.
(iii) No exit. The descent method to remain inside ⌃�

4✓p0
.

In the following paragraphs, we describe how our proposed algorithm achieves the above
desiderata.

Initialization within ⌃�
4✓p0

. Our data-driven initialization scheme produces a(0), where

a
(0) = �PSp�1r'⇢

�
PSp�1

⇥
0
p0�1;y0; · · · ;yp0�1;0

p0�1
⇤�

= �PSp�1r'⇢PSp�1

⇥
P[p0](a0 ⇤ x0)

⇤

⇡ �PSp�1r'⇢
⇥
P[p0](a0 ⇤ ex0)

⇤

is the normalized gradient vector from a chunk of data a
(�1) := P[p0](a0 ⇤ ex0) with ex0 a

normalized Bernoulli–Gaussian random vector of length 2p0�1. Since r'⇢ ⇡ r'`1 , expanding
the gradient r'`1 and rewriting the gradient r`1(a

(�1)) in shift space gives us

�r'⇢1(a
(�1)) ⇡ ◆

⇤
Ca0C

V

x0S�

h
C

V

x0C
⇤
a0
P[p0](a0 ⇤ ex0)

i

= ◆
⇤
Ca0�

⇥
C

⇤
a0
P[p0]Ca0 ex0

⇤

⇡ ◆
⇤
Ca0� [ex0]

⇡ n✓ · ◆⇤Ca0S� [ex0] ,D
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GEOMETRY AND SYMMETRY IN SaS DECONVOLUTION 237

where the approximation in the third equation is accurate if the truncated shifts are incoherent:

max
i 6=j

��⌦◆⇤p0si[a0], ◆
⇤
p0sj [a0]

↵��  µ⌧ 1.(5.1)

With this simple approximation, it becomes clear that the coe�cients (in shift space) of
initializer a(0),

a
(0) ⇡ PSp�1◆

⇤
Ca0S� [ex0] ,(5.2)

approximate S� [ex0], which resides near the subspace S⌧ , in which ⌧ contains the nonzero
entries of ex0 on {�p0 + 1, . . . , p0 � 1}. With high probability, the number of nonzero entries
is |⌧ | / 4✓p0, and we therefore conclude that our initializer a(0) satisfies

a
(0) 2 ⌃�

4✓p0
.(5.3)

Furthermore, since ex0 is normalized, the largest magnitude for entries of |ex0| is likely to be
around 1/

p
2p0✓. To ensure that S� [ex0] does not annihilate all nonzero entries of ex0 (otherwise

our initializer a(0) will become 0), the ideal � should be slightly less than the largest magnitude
of |ex0|. We suggest setting � in '⇢ as

� =
cp
p0✓

(5.4)

for some c 2 (0, 1).
Many methods have been proposed to optimize functions whose saddle points exhibit strict

negative curvature, including the noisy gradient method [22], trust region methods [1, 55], and
curvilinear search [58]. Any of the above methods can be adapted to minimize '⇢. In this
paper, we use the curvilinear method with restricted stepsize to demonstrate how to analyze an
optimization problem using the geometric properties of '⇢ over ⌃�

4✓p0
—in particular, negative

curvature in symmetry breaking directions and positive curvature away from S⌧ .
Curvilinear search uses an update strategy that combines the gradient g and a direction of

negative curvature v, which here we choose as an eigenvector of the Hessian H with smallest
eigenvalue, scaled such that v⇤

g � 0. In particular, we set

a
+  PSp�1

⇥
a� tg � t2v

⇤
.(5.5)

For small t,

'(a+) ⇡ '(a) + hg, ⇠i+ 1
2⇠

⇤
H⇠.(5.6)

Since ⇠ converges to 0 only if a converges to the local minimizer (otherwise either gradient g is
nonzero or there is a negative curvature direction v), this iteration produces a local minimizer
for '⇢, whose saddle points near any S⌧ have negative curvature, we just need to ensure all
iterates stay near some such subspace. We prove this by showing the following:

• When d↵(a,S⌧ )  �, curvilinear steps move a small distance away from the subspace:

��d↵
�
a
+,S⌧

�
� d↵ (a,S⌧ )

��  �
2 .(5.7)D
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238 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

• When d↵(a,S⌧ ) 2
⇥�
2 , �
⇤
, curvilinear steps retract toward subspace:

d↵
�
a
+,S⌧

�
 d↵ (a,S⌧ ) .(5.8)

Together, we can prove that the iterates a(k) converge to a minimizer, and

8 k = 1, 2, . . . , a
(k) 2 ⌃�

4✓p0
.(5.9)

We conclude this section with the following theorem.

Theorem 5.1 (convergence of retractive curvilinear search). Suppose signals a0,x0 satisfy

the conditions of Theorem 4.1, ✓ > 103c/p0 (c > 1), and a0 is µ-truncated shift coherent

maxi 6=j

��⌦◆⇤p0si[a0], ◆⇤p0sj [a0]
↵��  µ. Write g = grad['⇢](a) and H = Hess['⇢](a). When the

smallest eigenvalue of H is strictly smaller than �⌘v, let v be the unit eigenvector of smallest

eigenvalue, scaled so v
⇤
g � 0; otherwise let v = 0. Define a sequence

�
a
(k)
 
k2N where a

(0)

equals (3.7) and for k = 1, 2, . . . ,K1

a
(k+1)  PSp�1

h
a
(k) � tg(k) � t2v(k)

i
,(5.10)

with largest t 2
�
0, 0.1n✓

⇤
satisfying Armijo steplength

'⇢(a
(k+1)) < '⇢(a

(k))� 1
2

⇣
tkg(k)k22 + 1

2 t
4⌘vkv(k)k22

⌘
.(5.11)

Then with probability at least 1�1/c, there exists some signed shift ā = ±si[a0], where i 2 [±p0],
such that

��a(k) � ā
��
2
 µ + 1/p for all k � K1 = poly(n, p). Here, ⌘v = c0n✓� for some

c0 < c1 in Theorem 4.1.

Proof. See subsection SM7.2.

5.2. Local refinement. In this section, we describe and analyze an algorithm which refines
an estimate ā ⇡ a0 of the kernel to exactly recover (a0,x0). Set

a
(0)  ā, �(0)  C(p✓ + log n)(µ+ 1/p), I(0)  supp(S� [C

⇤
āy]).(5.12)

We alternatively minimize the Lasso objective with respect to a and x:

x
(k+1)  argmin

x

1
2ka

(k) ⇤ x� yk22 + �(k)
X

i 62I(k)
|xi| ,(5.13)

a
(k+1)  PSp�1

⇥
argmin

a

1
2ka ⇤ x

(k+1) � yk22
⇤
,(5.14)

�(k+1)  1
2�

(k), I(k+1)  supp
�
x
(k+1)

�
.(5.15)

One departure from standard alternating minimization procedures is our use of a continuation
method, which (i) decreases �, and (ii) maintains a running estimate I(k) of the support set.
Our analysis will show that a(k) converges to one of the signed shifts of a0 at a linear rate, in
the sense that

min
�2±1, `2[±p0]

��a(k) � � · s`[a0]
��
2
 C 02�k.(5.16)
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It should be clear that exact recovery is unlikely if x0 contains many consecutive nonzero
entries: in fact in this situation, even nonblind deconvolution fails. Therefore to obtain exact
recovery it is necessary to put an upper bound on signal dimension n. Here, we introduce the
notation I as an upper bound for the number of nonzero entries of x0 in a length-p window:

(5.17) I := 6max {✓p, log n} ,

where the indexing and addition should be interpreted modulo n. We will denote the support
sets of true sparse vector x0 and recovered x

(k) in the intermediate kth steps as

I = supp(x0), I(k) = supp(x(k)).(5.18)

Then in the Bernoulli–Gaussian model, with high probability,

(5.19) max
`

��I \ ([p] + `)
��  I .

The log n term reflects the fact that as n becomes enormous (exponential in p), eventually it
becomes likely that some length-p window of x0 is densely occupied. In our main theorem
statement, we preclude this possibility by putting an upper bound on signal length n with
respect to window length p and shift coherence µ. We will assume

(µ+ 1/p) · 2I < c(5.20)

for some numerical constant c 2 (0, 1).
Recall that (4.23) in Theorem 3.1 provides that

kā� a0k2  (µ+ 1/p) ,(5.21)

which is su�ciently close to a0 as long as (5.19) holds true. Here, we will elaborate upon this
by showing that a single iteration of alternating minimization algorithm (5.13)–(5.15) is a
contraction mapping for a toward a0.

To this end, at kth iteration, write T = I(k), J = I(k+1), and �
(k) = sign

�
x
(k)
�
; then first

observe that the solution to the reweighted Lasso problem (5.13) can be written as

x
(k+1) = ◆J

�
◆
⇤
JC

⇤
a(k)Ca(k)◆J

��1
◆
⇤
J

⇣
C

⇤
a(k)Ca0x0 � �(k)

PJ\T�
(k+1)

⌘
,(5.22)

and the solution to least squares problem (5.14) will be

a
(k+1) =

�
◆
⇤
C

⇤
x(k+1)Cx(k+1)◆

��1 �
◆
⇤
C

⇤
x(k+1)Cx0◆a0

�
.(5.23)

Here, we are going to illustrate the relationship between a
(k+1)�a0 and a

(k)�a0 using simple
approximations. First, let us assume that a

(k) ⇡ a0, C
⇤
a0
Ca0 ⇡ I, and I ⇡ J ⇡ T . Then

(5.22) gives

x
(k+1) ⇡ x0,(5.24)

(x(k+1) � x0) ⇡ PI
�
C

⇤
a0
Ca0x0 �C

⇤
a0
Ca(k)x0

�

⇡ PI

h
C

⇤
a0
Cx0◆(a0 � a

(k))
i
,(5.25)
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which implies, while assuming C
⇤
x0
Cx0 ⇡ n✓I, that from (5.23),

(a(k+1) � a0) ⇡ (n✓)�1
◆
⇤
C

⇤
x(k+1)Cx0◆a0 � ◆

⇤
C

⇤
x(k+1)Cx(k+1)◆a0

⇡ (n✓)�1
◆
⇤
C

⇤
x0
Ca0(x0 � x

(k+1))

⇡ (n✓)�1
◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆ (a

(k) � a0).(5.26)

Now since C⇤
x0
PICx0 ⇡ n✓ e0e⇤0, this suggests that (n✓)

�1
◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆ approximates

a contraction mapping with fixed point a0, as follows:

(n✓)�1
◆
⇤
C

⇤
x0
Ca0PIC

⇤
a0
Cx0◆ ⇡ ◆

⇤
Ca0e0e

⇤
0C

⇤
a0
◆

⇡ a0a
⇤
0.(5.27)

Hence, if we can ensure all of the above approximation is su�ciently and increasingly accurate
as the iterate proceeds, the alternating minimization essentially is a power method which finds
the leading eigenvector of matrix a0a

⇤
0—and the solution to this algorithm is apparently a0.

Indeed, we prove that the iterates produced by this sequence of operations converge to the
ground truth at a linear rate, as long as it is initialized su�ciently nearby.

Theorem 5.2 (linear rate convergence of alternating minimization). Suppose y = a0 ⇤ x0,

where a0 is µ-shift coherent and x0 ⇠ BG(✓). Then there exist some constants C, c, cµ such

that if (µ+ 1/p)2I < cµ and n > C✓�2p2 log n, then with probability at least 1� c/n, for any

starting point a
(0)

and �(0)
, I(0) such that

��a(0) � a0

��
2
 µ+ 1/p, �(0) = 5I(µ+ 1/p), I(0) = supp

�
C

⇤
a(0)y

�
,(5.28)

and for k = 1, 2, . . . ,

x
(k+1)  argmin

x

1
2ka

(k) ⇤ x� yk22 + �(k)
X

i 62I(k)
|xi| ,(5.29)

a
(k+1)  PSp�1

⇥
argmin

a

1
2ka ⇤ x

(k+1) � yk22
⇤
,(5.30)

�(k+1)  1
2�

(k), I(k+1)  supp
�
x
(k+1)

�
,(5.31)

then

��a(k+1) � a0

��
2
 (µ+ 1/p)2�k(5.32)

for every k = 0, 1, 2, . . . .

Proof. See subsection SM8.3.

Remark 5.3. The estimates x(k) also converges to the ground truth x0 at a linear rate.

6. Experiments. We demonstrate that the tradeo↵s between the motif length p0 and
sparsity rate ✓ produce a transition region for successful SaS deconvolution under generic
choices of a0 and x0. For fixed values of ✓ 2 [10�3, 10�2] and p0 2 [103, 104], we draw 50
instances of synthetic data by choosing a0 ⇠ Unif(Sp0�1) and x0 2 Rn with x0 ⇠i.i.d. BG(✓),
where n = 5⇥ 105. Note that choosing a0 this way implies µ(a0) ⇡ 1p

p0
.D
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Figure 12. Success probability of SaS deconvolution under generic a0, x0 with varying kernel length p0 and
sparsity rate ✓. When sparsity rate decreases su�ciently with respect to kernel length, successful recovery becomes
very likely (brighter), and vice versa (darker). A transition line is shown with slope log p0

log ✓ ⇡ �2, implying

Algorithm 6.1 works with high probability when ✓ / 1p
p0

in the generic case.

For each instance, we recover a0 and x0 from y = a0 ⇤ x0 by minimizing problem (2.5).
For ease of computation, we modify Algorithm 3.1 by replacing curvilinear search with the
accelerated Riemannian gradient descent method (Algorithm 6.1), which is an adaptation
of accelerated gradient descent [5] to the sphere. In particular, we apply momentum and
increment by the Riemannian gradient via the exponential and logarithmic operators

Expa(u) := cos(kuk2) · a+ sin(kuk2) ·
u

kuk2
,(6.1)

Loga(b) := arccos(ha, bi) · Pa? (b�a)

kPa? (b�a)k
2

,(6.2)

derived from [1]. Here Expa : a? ! Sp�1 takes a tangent vector of a and produces a new
point on the sphere, whereas Loga : Sp�1 ! a

? takes a point b 2 Sp�1 and returns the tangent
vector which points from a to b.

For each recovery instance, we say the local minimizer amin generated from Algorithm 6.1
is su�ciently close to a solution of the SaS deconvolution problem if

(6.3) success(amin, ;a0) := {max` |hs`[a0],amini| > 0.95 } .

The result is shown in Figure 12. Our source code can be accessed via the following address:

https://github.com/sbdsphere/sbd experiments.gitD
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Algorithm 6.1. SaS deconvolution with accelerated Riemannian gradient descent.

Input: Observation y, sparsity penalty � = 0.5/
p
p0✓, momentum parameter ⌘ 2 [0, 1).

Initialize a
(0)  �PSp�1r'⇢

�
PSp�1

⇥
0
p0�1; [y0, . . . ,yp0�1];0p0�1

⇤�
,

for k = 1, 2, . . . ,K do

Get momentum: w  Expa(k)

�
⌘ · Loga(k�1)(a(k))

�
.

Get negative gradient direction: g  � grad['⇢](w).
Armijo step a

(k+1)  Expw(tg), choosing t 2 (0, 1) s.t. '⇢(a(k+1))� '⇢(w) < �t kgk22.
end for

Output: Return a
(K).

7. Discussion. In this section, we close by discussing the most important limitations of
our results when a0 is coherent, regarding scenarios when the signal setting breaches our
assumption, especially when x0 is either highly sparse or nonsymmetric, and highlighting
corresponding directions for future work.

The main drawback of our proposed method is that it does not succeed when the target
motif a0 has shift coherence very close to 1. For instance, a common scenario in image blind
deconvolution involves deblurring an image with a smooth, low-pass point spread function
(e.g., Gaussian blur). Both our analysis and numerical experiments show that in this situation
minimizing '⇢ does not find the generating signal pairs (a0,x0) consistently—the minimizer of
'⇢ is often spurious and is not close to any particular shift of a0. We do not suggest minimizing
'⇢ in this situation. On the other hand, minimizing the Bilinear Lasso objective 'lasso over
the sphere often succeeds even if the true signal pair (a0,x0) is coherent and dense.

In light of the above observations, we view the analysis of the Bilinear Lasso as the most
important direction for future theoretical work on SaS deconvolution. The drop quadratic
formulation studied here has commonalities with the Bilinear Lasso: both exhibit local minima
at signed shifts, and both exhibit negative curvature in symmetry breaking directions. A
major di↵erence (and hence major challenge) is that gradient methods for Bilinear Lasso do
not retract to a union of subspaces—they retract to a more complicated, nonlinear set.

Our model assumes x0 to be Bernoulli–Gaussian vectors, which are sparse and symmetric
i.i.d. random variables. When x0 is sparse but nonsymmetric, (e.g., Bernoulli), one can apply
our result with a simple symmetrization trick, using the concatenated observation vectors
[y,�y] as an input to our algorithm.

When x0 is highly sparse and if y is noiseless, it is possible to identify a short copy
of a0 via looking for the shortest consecutive nonzero entries within y. When ✓ ⌧ 1/p0,
these isolated copies are very common. Once ✓ exceeds 1/p0, or when support x0 is not
Bernoulli random while being more clustered, they become very uncommon. In particular, the
probability of an isolated copy is small unless n ' exp(p0✓). Our proposed approach succeeds
when n � poly(p0).

In applications involving noisy data, optimization approaches often outperform direct
inspection, even for samples with isolated copies of a0. An intuition for this is that optimization
methods aggregate information across the sample. One practical avenue for obtaining the best of
both worlds is to try to optimize the choice of data segment used for initialization. This can be a
potential improvement for our data-driven initialization scheme, both in theory and in practice.D
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Finally, there are several directions in which our analysis could be improved. Our lower
bounds on the length n of the random vector x0 required for success are clearly suboptimal.
We also suspect our sparsity-coherence tradeo↵ between µ, ✓ (roughly, ✓ / 1/(

p
µp0)) is

suboptimal, even for the '⇢ objective. Articulating optimal sparsity-coherence tradeo↵s is
another interesting direction in this line of work. Extending our current result for cases when
y is a↵ected by noise can also be a natural next step for future work.
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