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Abstract. We study the short-and-sparse (SaS) deconvolution problem of recovering a short signal ao and a
sparse signal @y from their convolution. We propose a method based on nonconvex optimization,
which under certain conditions recovers the target short and sparse signals, up to a signed shift
symmetry which is intrinsic to this model. This symmetry plays a central role in shaping the
optimization landscape for deconvolution. We give a regional analysis, which characterizes this
landscape geometrically, on a union of subspaces. Our geometric characterization holds when the
length-po short signal ao has shift coherence p, and x¢ follows a random sparsity model with sparsity

rate 0 € [;—(1), Wﬁciim] . ﬁA Based on this geometry, we give a provable method that successfully

solves SaS deconvolution with high probability.
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1. Introduction. Datasets in a wide range of areas, including neuroscience [37], microscopy
[15], and astronomy [49], can be modeled as superpositions of translations of a basic motif.
Data of this nature can be modeled mathematically as a convolution y = ag * xg, between
a short signal ag (the motif) and a longer sparse signal xy, whose nonzero entries indicate
where in the sample the motif is present. A very similar structure arises in image deblurring
[14], where y is a blurry image, ag the blur kernel, and xg the (edge map) of the target sharp
image.

Motivated by these and related problems in imaging and scientific data analysis, we study
the short-and-sparse (SaS) deconvolution problem of recovering a short signal ag € RP? and
a sparse signal @y € R™ (n > pg) from their length-n cyclic convolution y = ag * o € R™.!
This SaS model exhibits a basic scaled shift symmetry: for any nonzero scalar o and cyclic
shift sg[],

(1.1) (aselac]) + (L5 clmol) = v

Because of this symmetry, we only expect to recover ag and xg up to a signed shift (see
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Figure 1. Shift symmetry in short-and-sparse deconvolution. An observation y (left) which is a convolution
of a short signal ag and a sparse signal o (top right) can be equivalently expressed as a convolution of s¢lao)
and s_g[xo], where s¢[] denotes shift £ samples. The ground truth signals ap and xo can only be identified up to
a scaled shift.

Figure 1). Our problem of interest can be stated more formally as follows.

Problem 1.1 (short-and-sparse deconvolution). Given the cyclic convolution? y = ag * To €
R”™ of ay € RP° short (py < n) and xg € R™ sparse, recover ag and xg, up to a scaled shift.

Despite a long history and many applications, until recently very little algorithmic theory
was available for SaS deconvolution. Much of this difficulty can be attributed to the scale-shift
symmetry: natural convex relaxations fail,? and nonconvex formulations exhibit a complicated
optimization landscape, with many equivalent global minimizers (scaled shifts of the ground
truth), additional local minimizers (scaled shift truncations of the ground truth), and a variety
of critical points [63, 64]. Currently available theory guarantees approximate recovery of a
truncation” of a shift sg[ag], rather than guaranteeing recovery of ag as a whole, and requires
certain (complicated) conditions on the convolution matrix associated with ag [63].

In this paper, we describe an algorithm which, under simpler conditions, ezactly recovers
a scaled shift of the pair (ag, ). Our algorithm is based on a formulation first introduced
in [64], which casts the deconvolution problem as (nonconvex) optimization over the sphere.
We characterize the geometry of this objective function and show that near a certain union of
subspaces, every local minimizer is very close to a signed shift of ag. Based on this geometric
analysis, we give provable methods for SaS deconvolution that exactly recover a scaled shift
of (@, xg) whenever ag is shift-incoherent and xg is a sufficiently sparse random vector. Our
geometric analysis highlights the role of symmetry in shaping the objective landscape for SaS
deconvolution.

The remainder of this paper is organized as follows. Section 2 introduces our optimization

20ur result can be applied to recovering direct convolutions. Let y € RP°T"~! be the direct convolution
between ag € RP° and o € R™; then y can also be expressed as circular convolution between ao and [zo; 0”0_1].

3Such as matrix lifting relaxation [2, 39], in which ag or xg resides in random subspaces without shift
symmetry.

4That is, the portion of the shifted signal s¢[ao] that falls in the window {0, ...,po — 1}.



Downloaded 11/29/20 to 129.236.147.196. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

218 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

approach and modeling assumptions. Section 3 introduces our main results—both geometric
and algorithmic—and compares them to the literature. Sections 4 and 5 describes the main
ideas of our analysis. Section 6 demonstrates the experimental performance of the analyzed
algorithm. Finally, section 7 discusses two main limitations of our analysis and describes
directions for future work.

2. Formulation and assumptions.

2.1. Nonconvex SaS over the sphere. Our starting point is the (natural) formulation

: 2
(2.1) min 3 Jaxz -yl + AMz|, st fall,=1.
’ Data Fidelity Sparsity

We term this optimization problem the Bilinear Lasso, for its resemblance to the Lasso
estimator in statistics. Indeed, letting

(2:2) Prassol@) = min {§ [la 2 — y|F + A 2], }
denote the optimal Lasso cost, we see that (2.1) simply optimizes ¢as50 With respect to a:

(2.3) mgn Plasso(@) s.t. |lally = 1.

In (2.1)-(2.3), we constrain @ to have unit 2 norm. This constraint breaks the scale ambi-
guity between a and x. Moreover, the choice of constraint manifold has surprisingly strong
implications for computation: if a is instead constrained to the simplex, the problem admits
trivial global minimizers. In contrast, local minima of the sphere-constrained formulation often
correspond to shifts (or shift truncations [64]) of the ground truth aq.

The problem (2.3) is defined in terms of the optimal Lasso cost. This function is challenging
to analyze, especially far away from ag. The article [64] analyzes the local minima of a
simplification of (2.3), obtained by approximating® the data fidelity term as

2 2 2
sllaxz—ylly =3llaxz|; - (axz,y) + 3 yl;

2 2

(2.4) ~ 5 llzll; = (axz,y) + 5|yl

This yields a simpler objective function,
. 2 2
(25) po(a)=min {3 2]2 ~ (ax 2, g) + Lyl2 + Azl }

We make one further simplification to this problem, replacing the nondifferentiable penalty
[|-|l; with a smooth approximation p(x).® Our analysis allows for a variety of smooth sparsity
surrogates p(x); for concreteness, we state our main results for the particular penalty”

(2.6) pla) =" (aF +6%)"°.

2

®For a generic a, we have (s;[a], s;[a]) ~ 0 and hence ||a * ;c||§ =z'C,Cox = "Iz = ||m||§ The use of
¢, performs not as ideal compared to Bilinear Lasso when this approximation is inexact; see section 7.

8,1 is not twice differentiable everywhere and hence can’t be minimized with conventional second order
methods.

"This particular surrogate is sometimes called the pseudo-Huber function.
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For ¢ > 0, this is a smooth function of x; as 6 \, 0 it approaches ||z||,. Replacing |-||; with
p(+), we obtain the objective function which will be our main object of study,

(2.7) epl@) = min {3 ll2ll3 ~ (ax,y) + § |yl + Mo(a) }

As in [64], we optimize ¢,(a) over the sphere SP~!:

(2.8) min ¢,(a) st. acSPL

Here, we set p = 3pg — 2. As we will see, optimizing over this slightly higher dimensional sphere
enables us to recover a (full) shift of ag, rather than a truncated shift. Our approach will leverage
the following fact: if we view a € SP~! as indexed by coordinates W = {—pg + 1, ..., 2po — 1},
then for any shifts £ € {—po+1,...,po — 1}, the support of ¢-shifted short signal sg[ay] is
entirely contained in interval W. We will give a provable method which recovers a scaled
version of one of these canonical shifts.

2.2. Analysis setting and assumptions. For convenience, we assume that ag has unit ¢
norm, i.e., ag € SP~1.% Our analysis makes two main assumptions, on the short motif ag and
the sparse map xg, respectively:

The first is that distinct shifts ag have small inner product. We define the shift coherence
of u(ag) to be the largest inner product between distinct shifts:

(2.9) nlao) = 1;17?54(00, selao])| -

The quantity u(ag) is bounded between 0 and 1. Our theory allows any p smaller than
some numerical constant. Figure 2 shows three examples of families of ay that satisfy this
assumption:

e Spiky. When aq is close to the Dirac delta &g, the shift coherence u(ag) ~ 0.° Here,
the observed signal y consists of a superposition of sharp pulses. This is arguably the
easiest instance of SaS deconvolution.

o Generic. If ag is chosen uniformly at random from the sphere SP°~1  its coherence is
bounded as p(ag) $ +/1/po with high probability.

e Tuapered generic low-pass. Here, ag is generated by taking a random conjugate symmetric
superposition of the first L length-py discrete Fourier transform (DFT) basis signals,
windowing (e.g., with a Hamming window) and normalizing to unit ¢? norm. When
L = poy/1 — B, with high probability p(ag) 5 8. In this model, u does not have to
diminish as pg grows—it can be a fixed constant.'’

8This is purely a technical convenience. Our theory guarantees recovery of a signed shift (£s¢[ao], £5_¢[2o])
of the truth. If ag does not have unit norm, identical reasoning implies that our method recovers a scaled shift
(asz[ao],a_ls,g[a:o}) with o = im.

9The use of “a~” here suppresses constant and logarithmic factors.

10The upper right panel of Figure 2 is generated using random DFT components with frequencies smaller
than one-third Nyquist. Such a kernel is incoherent, with high probability. Many commonly occurring low-pass
kernels have p(ag) larger—very close to one. One of the most important limitations of our results is that they
do not provide guarantees in this highly coherent situation. See [34].



Downloaded 11/29/20 to 129.236.147.196. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

220 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

Spiky Generic Tapered Generic Lowpass

VY

ag Ap f\A'\A/\ M
vV

—1/2 ~
napy p=pB

| T Tc TGID ° ?P> T 9
Loyl o
0~ pa3/4 0 ~ pal
(/Do events every pg)  ({/po events every pg) (1 event every pp)

Figure 2. Sparsity-coherence tradeoff. Top: three families of motifs ao with varying coherence . Bottom:
mazimum allowable sparsity 6 and number of copies Opo within each length-po window. Here, we suppress
constants and logarithmic factors. When the target motif has smaller shift-coherence p, our result allows larger
0, and vice versa. This sparsity-coherence tradeoff is made precise in our main result, Theorem 3.1, which,
loosely speaking, asserts that when 6 5 1/(poy/B + /Po), our method succeeds.

Intuitively speaking, problems with smaller p are easier to solve, a claim which will be made
precise in our technical results.

We assume that x( is a sparse random vector. More precisely, we assume that xq is
Bernoulli-Gaussian, with rate 6:

(2.10) Toi = Wigi,

where w; ~ Ber(6), g; ~ N (0,1), and all random variables are jointly independent. We write
this as

(2.11) Lo ~Viid. BG(@)

Here, 6 is the probability that a given entry @; is nonzero. Problems with smaller 6 are easier
to solve. In the extreme case, when 6 < 1/pg, the observation y contains many isolated copies
of the motif ap, and ag can be determined by direct inspection. Our analysis will focus on the
nontrivial scenario, when 6 Z 1/po.

Our technical results will articulate sparsity-coherence tradeoffs, in which smaller coherence
1 enables larger 6, and vice versa. More specifically, in our main theorem, the sparsity-coherence
relationship is captured in the form

(2.12) 0 3 1/(pov/in+ v/po)-

When the target ag is very shift-incoherent (p = 0), our method succeeds when each length-pg
window contains about ,/pg copies of ag. When p is larger (as in the generic low-pass model),
our method succeeds as long as relatively few copies of ag overlap in the observed signal. In
Figure 2, we illustrate these tradeoffs for the three models described above.
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Figure 3. Geometry of ¢, near a shift of ag. Bottom: a portion of the sphere SP™1, colored according to ©,.
Top: ¢, visualized as height. ¢, is strongly convez in this region, and it has a minimizer very close to s;[ao].

3. Main results: Geometry and algorithms. In this section, we introduce our main
results—on the geometry of ¢, (subsection 3.1) and its algorithmic implications (subsection 3.2).
Finally, in subsection 3.3, we compare these results with the literature on deconvolution.

3.1. Geometry of the objective ¢,. The goal in SaS deconvolution is to recover ag (and
o) up to a signed shift; i.e., we wish to recover some +sg[ap]. The shifts +sy[ag] play a key
role in shaping the landscape of ¢,. In particular, we will argue that over a certain subset of
the sphere, every local minimum of ¢, is close to some %sg[ag].

To gain intuition into the properties of ¢,, we first visualize this function in the vicinity of
a single shift s¢[ag] of the ground truth ag. In Figure 3, we plot the function value of ¢, over

BgzyT(Sg[ao]) N Spil,

where By2 .(a) is a ball of radius 7 around a. We make two observations:
e The objective function ¢, is strongly convex in this neighborhood of s¢[ag].
e There is a local minimizer very close to s¢[ag].
We next visualize the objective function ¢, near the linear span of two different shifts,
s¢, lap] and sg,[ag]. More precisely, we plot ¢, near the intersection (Figure 4, left) of the
sphere SP~! and the linear subspace

Sie.00) = { a1sp[ao] + aaspyag] [, a2 € R}

We make three observations:

e Again, there is a local minimizer near each shift s¢[ag].

e These are the only local minimizers in the vicinity of Sy, 4,3 In particular, the
objective function ¢ exhibits negative curvature along Sy, 4,1 at any superposition
a8y, [ag] + aase,[ap] whose weights a1 and ag are balanced, i.e., || = |awl.

e Furthermore, the function ¢, exhibits positive curvature in directions away from the
subspace Sy, ¢,

Finally, we visualize ¢, over the intersection (Figure 5, left) of the sphere SP~! with the
linear span of three shifts sy, [ao], s¢,[ao], s¢s[ao] of the true kernel ap:

Sor 0,03y = 1 @181, [ao] + sy, [ao] + assyfao] o, g, a3 € R}
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8{41742} n Sp_l

Figure 4. Geometry of ¢, near the span S, ¢,} of two shifts of ag. Left: each pair of shifts s¢, [ao], se,[ao)
defines a linear subspace Sy, ¢,1 of RP. Center/right: every local minimum of @, near Sy¢, ¢,y (red line) is
close to either sg, [ao] or se,[ao]; there is a negative curvature in the middle of s¢, [ao] and se,lao], and ¢, is
convez in direction away from Sig, ¢,y

8{51 NOREY

S¢,]@0] 56, @]

Sy [

Sty 4,02y NSS!
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Figure 5. Geometry of ¢, over the span Sty ¢,,¢,) of three shifts of ao. The subspace Si¢, ¢,.053 15
three-dimensional; its intersection with the sphere SP™1 is isomorphic to a two-dimensional sphere. On this set,
@p has local minimizers near each of the s¢,[ao] and are the only minimizers near Se, e5,05-

Again, there is a local minimizer near each signed shift. At roughly balanced superpositions of
shifts, the objective function exhibits negative curvature. As a result, again, the only local
minimizers are close to signed shifts.

Our main geometric result will show that these properties are obtained from every subspace
spanned by a few shifts of ag. Indeed, for each subset

(3.1) TC{-po+1,....,po—1},

define a linear subspace

(3.2) Sr= Zagsdao] Oyt -, 0p—1 €R
let

The subspace S is the linear span of the shifts s;[ag] indexed by £ in the set 7. Our geometric
theory will show that with high probability the function ¢, has no spurious local minimizers
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Figure 6. Geometry of ¢, over the union of subspaces X2¢p,,. Left: schematic representation of the union
of subspaces X49p,. For each set T of at most 46pg shifts, we have a subspace S~. Right: ¢, has good geometry
near this union of subspaces.

near any Sy for which 7 is not too large—say, |7| < 46pg. Combining all of these subspaces
into a single geometric object, define the union of subspaces

(3'3) Xa6py = U Sr.

|7|<46po

Figure 6 (left) gives a schematic representation of this set. We claim the following:
o In the neighborhood of ¥4¢p,, all local minimizers are near signed shifts.
e The value of ¢, grows in any direction away from X4gp,.
Our main result formalizes the above observations under two key assumptions: first, that
the sparsity rate 6 is sufficiently small (relative to the shift coherence p of py), and, second,
that the signal length n is sufficiently large.

Theorem 3.1 (main geometric theorem). Let y = ag * To with ag € SP°~1 p-shift coherent'!

and &g ~ii.4. BG(0) € R™ with sparsity rate

1 c2 1
3.4 0 € [—, } . .
(34) Po’ Poy/l+ /Po) log? po

Choose p(xz) = Va2 + 6% and set A\ = 0.1/y/pof in ¢,. Then there exist § > 0 and numerical
constant ¢ such that if n > poly(po), with high probability, every local minimizer a of ¢, over
Yaop, satisfies ||@ — oselagl|ly < cmax {u,pal} for some signed shift osglao] of the true kernel.
Above, c1,co > 0 are positive numerical constants.

" Typically it is possible to provide an overestimate py > po. Our theory and algorithm can be applied
directly to the overestimate p{, with the caveat that the sparsity rate § now scales with p{ rather than po.
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Proof. This follows from Theorem 4.1. |

The upper bound on 6 in (3.4) yields the tradeoff between coherence and sparsity described
in Figure 2. Simply put, when ay is better conditioned (as a kernel), its coherence p is smaller
and xg can be denser.

At a technical level, our proof of Theorem 3.1 shows that (i) ¢,(a) is strongly convex in
the vicinity of each signed shift, and that at every other point a near Y44y, , there is either
(ii) a nonzero gradient or (iii) a direction of strict negative curvature; furthermore (iv) the
function ¢, grows away from 4gp,. Points (ii)—(iii) imply that near X4qp, there are no “flat”
saddles: every saddle point has a direction of strict negative curvature. We will leverage these
properties to propose an efficient algorithm for finding a local minimizer near ¥¢,,. Moreover,
this minimizer is close enough to a shift (here, ||a — s¢[ao]|, < p) for us to exactly recover
selap]: we will give a refinement algorithm that produces (£sg[ag], £s_¢[xo]).

3.2. Provable algorithm for SaS deconvolution. The objective function ¢, has good
geometric properties on (and near!) the union of subspaces X4¢,. In this section, we show an
efficient method that exactly recovers ag and xy up to shift symmetry. Although our geometric
analysis only controls ¢, near ¥49,,, we will give a descent method which, with appropriate
initialization a(©), produces iterates aV), ..., a®) ... that remain close to Yagp, for all k. In
short, it is easy to start near X4, and easy to stay near ¥4g,,. After finding a local minimizer
a, we refine it to produce a signed shift of (ag, o) using alternating minimization.

The next two paragraphs give the main ideas behind the principal steps of the algorithm.
We then describe its components in more detail (Algorithm 3.1) and state our main algorithmic
result (Theorem 3.2), which asserts that under appropriate conditions this method produces a
signed shift of (ag, o).

Our algorithm starts with an initialization scheme which generates a(?) near the union of
subspaces Y49p,, which consists of linear combinations of just a few shifts of ag. How can we
find a point near this union? Notice that the data y also consists of a linear combination of
just a few shifts of ag Indeed,

(3.5) y=ap*xy = Z xoeselao).
Lesupp(zo)

A length-py segment of data yo,... py—1 = [Yo,- .-, Ypo—1]* captures portions of roughly 20py <
40py shifts sg[ag].

Many of these copies of ag are truncated by the restriction to {0,...,pg — 1}. A relatively
simple remedy is as follows: First, we zero-pad yo,...p,—1 to length p = 3pg — 2, giving

(3.6) (0771 g5+ s ypo—1; 07071

Zero-padding provides enough space to accommodate any shift sg[ag] with ¢ € 7. We then
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Figure 7. Data-driven initialization. Using a piece of the observed data y to generate an initial point a'®
that is close to a superposition of shifts selao] of the ground truth. Top: data y = ao * ®o is a superposition of
shifts of the true kernel ag. Bottom: a length-po window contains pieces of just a few shifts. Bottom middle:
one step of the generalized power method approzimately fills in the missing pieces, yielding a near superposition
of shifts of ao (right).

perform one step of the generalized power method,'? writing
(3'7) G(O) = —ng—l VQOgl (ngq [Opofl; Yo;- - i Ypo—1; Opole ,

where Pgp-1 projects onto the sphere. The reasoning behind this construction may seem
obscure. We will explain it at a more technical level in section 5 after interpreting the gradient
Vg, in terms of its action on the shifts s¢[ag] in section 4. For now, we note that this operation
has the effect of (approximately) filling in the missing pieces of the truncated shifts s;[ag]; see
Figure 7 for an example. We will prove that with high probability a(“) is indeed close to Y 40po -

The next key observation is that the function ¢, grows as we move away from the subspace
Sr; see Figure 8. Because of this, a small-stepping descent method will not move far away from
Y4pp,- For concreteness, we will analyze a variant of the curvilinear search method [23, 24],
which moves in a linear combination of the negative gradient direction —g and a negative
curvature direction —v. At the kth iteration, the algorithm updates a*+1) as

(3.8) a* V) — Py, [a(k) —tg®) — th(k)]

with appropriately chosen step size ¢t. The inclusion of a negative curvature direction allows
the method to avoid stagnation near saddle points. Indeed, we will prove that, starting from
initialization a(), this method produces a sequence a(t),a(? . ... which efficiently converges to
a local minimizer @ that is near some signed shift +sy[ag] of the ground truth.

12The power method for minimizing a quadratic form ¢(a) = %a*Ma over the sphere consists of the

iteration @ — —Pgp—1 M a. Notice that in this mapping, —Ma = —V¢(a). The generalized power method, for
minimizing a function ¢ over the sphere, consists of repeatedly projecting —V¢ onto the sphere, giving the
iteration @ — —Pgp-1Vp(a). Equation (3.7) can be interpreted as one step of the generalized power method
for the objective function ¢,.
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Figure 8. Growth of ¢, away from S,. Because ¢, grows away from Sr, small-stepping descent methods
stay near S-.

The second step of our algorithm rounds the local minimizer a ~ os¢[ag] to produce an
exact solution @ = osg[ag]. As a by-product, it also exactly recovers the corresponding signed
shift of the true sparse signal, & = os_s[xg].

Our rounding algorithm is an alternating minimization scheme, which alternates between
minimizing the Lasso cost over a with x fixed, and minimizing the Lasso cost over x with a
fixed. We make two modifications to this basic idea, both of which are important for obtaining
exact recovery. First, unlike the standard Lasso cost, which penalizes all of the entries of «,
we maintain a running estimate I%) of the support of @y and only penalize those entries that
are not in I(%):

(3.9) Haxz—yl3+A > |z
ig1(k)

This can be viewed as an extreme form of reweighting [11]. Second, our algorithm gradually
decreases penalty variable A to 0, so that eventually

(3.10) axT~y.

This can be viewed as a homotopy or continuation method [46, 19]. For concreteness, at the
kth iteration the algorithm reads

(3.11) Update x: ) argmin%”a(k) wx—y|3+ AP Z EZR
w ig1(k)

(3.12) Update a: a* ) Py [argmin%”a xFHD) y”%]’

(3.13) Update X and I: AEFD %)\(k), ID  supp (m(kﬂ)).

We prove that the iterates produced by this sequence of operations converge to the ground
truth at a linear rate, as long as the initializer a is sufficiently nearby.

Our overall algorithm is summarized as Algorithm 3.1. Figure 9 illustrates the main
steps of this algorithm. Our main algorithmic result states that under essentially the same
hypotheses as above, Algorithm 3.1 produces a signed shift of the ground truth (ag, o).
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Algorithm 3.1. Short-and-sparse deconvolution.

Input: Observation y, motif length pg, sparsity 6, shift-coherence p, and curvature threshold
1.
Minimization:
Set a(®) «— =Py, 1V, (Psp-1 [0P0 5 s -+ 5 ypg—13 0707 1),
Set A =0.1/y/pof Pand § > 0 in ¢,. For k =1,2,..., Ky, let
(3.14) a* V) Py i[a®) —1g®*) — 2],
where g(*) is the Riemannian gradient; v(¥) is the eigenvector of smallest Riemannian Hessian
eigenvalue if less than —n, with <'v(k),g(k)> > 0, otherwise let v*) = 0; and t € (0,0.1/n6]
satisfies
(3.15) (@) < o, (™) = 1t)lg™|[5 — Jt .l lo™)|3

to obtain a near local minimizer a + a(51).

Refinement:
Set a® «— a, A9 «— 10(pfh + logn)(u + 1/p), and 1O Sy [supp(y * a]). For
k=1,2,..., Ky, lot

(3.16) gt argming %Ha(k) xx—yll+ AR Zigﬂk) |3l
(3.17) a* ) Py [argmin, 1|a = a1 y||%]7
(3.18) AEHD A(R) /o, T0HD o supp (1),

to obtain (@, ) + (a(Kz)’m(lﬁ))'
Output: Return (a, ).

Theorem 3.2 (main algorithmic theorem). Suppose y = ag * T, where ag € SPO~1 is -
truncated shift coherent' such that max;; ‘<L;0$i[a0], LpoSi [aom < u and xg ~iiq. BG(0) €
R™ with 0, u satisfying

C1 C2 C3
T 2 ) 1% S 2
po’ (pov/It + /Do) log® po log”n

(3.19)

for some constant c1,co,c3 > 0. If the signal lengths n,py satisfy n > poly(po) and py >
polylog(n), then there exist §,m, > 0 such that with high probability Algorithm 3.1 produces
(a,x) that are equal to the ground truth up to signed shift symmetry:

(3.20) (@, &) — o (selaol, s_clzo])||, <&
Joro € {£1} and £ € {—po+1,...,po — 1} if K1 > poly(n,po) and Ko > polylog(n, po,e~").

Proof. See Theorems 5.1 and 5.2. [ ]

131n practice, we suggest setting A = ¢ /v/pof with cx € [0.5,0.8].
14The truncated shift coherence is a stronger condition than natural shift coherence. The statement appears
mainly due to the limitation of the proof strategy for the algorithm.
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Figure 9. Local minimization and refinement. Left: data-driven initialization a© consisting of a near
superposition of two shifts. Middle: minimizing ¢, produces a near shift of ag. Right: rounded solution @ using
the Lasso. a is very close to a shift of ao.

When solving SaS deconvolution via minimizing Bilinear Lasso objective (2.2) in practice,
the algorithm is analogous to the provable method introduced in Algorithm 3.1, where the
curvilinear descent and the refinement step can be realized as alternating gradient descent of
both variables @, in (2.2). Unlike Algorithm 3.1, this alternating gradient method has yet to
come with theoretical guarantees, but has shown to be an effective and efficient method for
SaS deconvolution problems both in simulation and in reality [34].

3.3. Relationship to the literature. Blind deconvolution is a classical problem in signal
processing [54, 12] and has been studied under a variety of hypotheses. In this section, we first
discuss the relationship between our results and the existing literature on the SaS version of
this problem, and then briefly discuss other deconvolution variants in the theoretical literature.

The SaS model arises in a number of applications. One class of applications involves
finding basic motifs (repeated patterns) in datasets. This motif discovery problem arises
in extracellular spike sorting [37, 20] and calcium imaging [48], where the observed signal
exhibits repetitive short neuron excitation patterns occurring sparsely across time and/or
space. Similarly, electron microscopy images [15] arising in study of nanomaterials often exhibit
repeated motifs.

Another significant application of SaS deconvolution is image deblurring. Typically, the
blur kernel is small relative to the image size (short) [3, 62, 13, 35, 36]. In natural image
deblurring, the target image is often assumed to have relatively few sharp edges [21, 27, 36],
and hence have sparse derivatives. In scientific image deblurring, e.g., in astronomy [33, 25, 9]
and geophysics [28], the target image is often sparse, either in the spatial or wavelet domains,
again leading to variants of the SaS model. The literature on blind image deconvolution is
large; see, e.g., [31, 10] for surveys.

Variants of the SaS deconvolution problem arise in many other areas of engineering as well.
Examples include blind equalization in communications [50, 51, 26], dereverberation in sound
engineering [44, 45], and image superresolution [4, 53, 61].

These applications have motivated a great deal of algorithmic work on variants of the
SaS problem [32, 8, 6, 31, 43, 10, 56]. In contrast, relatively little theory is available to
explain when and why algorithms succeed. Our algorithm minimizes ¢, as an approximation
to the Lasso cost over the sphere. Our formulation and results have strong precedent in
the literature. Lasso-like objective functions have been widely used in image deblurring
[62, 14, 21, 35, 52, 60, 18, 30, 36, 59, 47, 64]. A number of insights have been obtained into the
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geometry of sparse deconvolution—in particular, into the effect of various constraints on a on
the presence or absence of spurious local minimizers. In image deblurring, a simplex constraint
(a > 0 and |la||; = 1) arises naturally from the physical structure of the problem [62, 14].
Perhaps surprisingly, simplex-constrained deconvolution admits trivial global minimizers, at
which the recovered kernel a is a spike, rather than the target blur kernel [7, 36].

The work [59] imposes the ¢? regularization on a and observes that this alternative
constraint gives a more reliable algorithm. In [64], the geometry of the simplified objective
pp over the sphere is studied, and it is proved that in the dilute limit in which oy has one
nonzero entry, all strict local minima of ,1 are close to signed shifts truncations of ag. By
adopting a different objective function (based on ¢* maximization) over the sphere, [63] proves
that on a certain region of the sphere every local minimum is near a truncated signed shift of
ao, i.e., the restriction of sy[ag] to the window {0, ...,pg — 1}. The analysis of [63] allows the

sparse sequence o to be denser (6 ~ p, 23 for a generic kernel ag, as opposed to 6 < p, 34 in
our result). Both [64] and [63] guarantee approzimate recovery of a portion of sy[ag], under
complicated conditions on the kernel ag. Our core optimization problem is very similar to that
of [64]. However, we obtain ezact recovery of both ay and relatively dense &g under the much
simpler assumption of shift incoherence.

Other aspects of the SaS problem have been studied theoretically. One basic question is
under what circumstances the problem is identifiable up to the scaled shift ambiguity. The
paper [17] shows that the problem is ill-posed for worst case (ag, xo), particularly for certain
support patterns in which xy does not have any isolated nonzero entries. This demonstrates
that some modeling assumptions on the support of the sparse term are needed. At the same
time, this worst-case structure is unlikely to occur, either under the Bernoulli model or in
practical deconvolution problems.

Motivated by a variety of applications, much research has focused on low-dimensional de-
convolution models in the theoretical literature. In communication applications, the signals ag
and xg either live in known low-dimensional subspaces or are sparse in some known dictionary
[2, 16, 29, 39, 40, 41, 42]. These theoretical works assume that the subspace/dictionary are
chosen at random. This low-dimensional deconvolution model does not exhibit the signed shift
ambiguity; nonconvex formulations for this model exhibit a different structure from that studied
here. In fact, the variant in which both signals belong to known subspaces can be solved by
convex relaxation [2]. The SaS model does not appear to be amenable to convexification and ex-
hibits a more complicated nonconvex geometry due to the shift ambiguity. The main motivation
for tackling this model lies in the aforementioned applications in imaging and data analysis.

In [38, 57] the related multi-instance sparse blind deconvolution problem (MISBD) is studied,
where there are K observations y; = ag * «; consisting of multiple convolutions ¢ = 1,..., K of
a kernel ag and different sparse vectors x;. Both works develop provable algorithms. There are
several key differences with our work. First, both the proposed algorithms and their analysis
require the kernel to be invertible. Second, despite the apparent similarity between the SaS
model and MISBD, these problems are not equivalent. It might seem possible to reduce SaS
to MISBD by dividing the single observation y into K pieces; this apparent reduction fails
due to boundary effects.
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3.4. Notation. All vectors/matrices are written in bold font, a/A; indexed values are
written as a;, A;;. Zero or one vectors are defined as 0 or 1, and 7th canonical basis vector
defined as e;. The indices for vectors/matrices all start from 0 and are taken modulo-n,
and thus a vector of length n should have its indices labeled as {0,1,...,n — 1}. We write
[n] ={0,...,n — 1}. We often use the capital italic symbols I, J for subsets of [n]. We abuse
notation slightly and write [-p] ={n —p+1,...,n— 1,0} and [£p] = {n—p+1,...,n—1,0,1,

..,p—1}. Index sets can be labels for vectors; a; € R denotes the restriction of the vector
to coordinates I. Also, we use a check symbol to denote the reversal operator on index set
= —J and vectors @; = a_;.

We let Po denote the projection operator associated with a compact set C. The zero-filling
operator ¢ : RHl — R™ injects the input vector to higher dimensional Euclidean space, via
(trx); = ®p1(; for i € I, and 0 otherwise. Its adjoint operator ¢7 can be understood as
a subset selection operator which picks up entries of coordinates I. A common zero-filling
operator throughout this paper, ¢, is an abbreviation of ¢[,), which is often addressed as the
zero-padding operator and its adjoint ¢* as truncation operator.

The convolution operators are all circular with modulo-n: (a*x); =) jen] @iTi—j; also,
the convolution operator works on the index set: I J = supp (17 * 15). Similarly, the shift
operator s¢[-] : RP — R™ is circular with modulo-n without specification: (s¢[a]); = (¢ya);—e.
Notice that here a can be shorter, p < n. Let C, € R™ "™ denote a circulant matrix (with
modulo-n) for vector a, whose jth column is the cyclic shift of a by j: Cqae; = sjlal. It
satisfies for any b € R,

a
I

(3.21) Cab=axb.

The correlation between a and b can be also written in similar form of convolution operators
which reverse one vector before convolution. Define two correlation matrices C}; and C| as
Cie; = sjlal and Cqe; = s_j[a]. The two operators will satisfy

(3.22) Cib=txb, Cagb=axb.

4. Geometry of ¢, in shift space. Underlying our main geometric and algorithmic
results is a relationship between the geometry of the function ¢, and the symmetries of the
deconvolution problem. In this section, we describe this relationship at a more technical level
by interpreting the gradient and Hessian of the function ¢, in terms of the shifts sy[ag] and
stating a key lemma which asserts that a certain neighborhood of the union of subspaces ¥4¢p,
can be decomposed into regions of negative curvature, strong gradient, and strong convexity
near the target solutions +s/[ag].

4.1. Shifts and correlations. The set Y4, is a union of subspaces. Any point a in one
of these subspaces S is a superposition of shifts of ag:

(4.1) a= Z aysilag).
leT
This representation can be extended to a general point a € SP~! by writing

(4.2) a=> oysiag] + Y _ auslag).

ler LT
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The vector a can be viewed as the coefficients of a decomposition of a into different shifts
of ag. This representation is not unique. For a close to S, we can choose a particular a for
which a;c is small, a notion that we will formalize below.

For convenience, we introduce a closely related vector 3 € R™, whose entries are the inner
products between a and the shifts of ag: By = (a, s¢[ag]). Since the columns of Cy, are the
shifts of ag, we can write

(4.3) B=C,a
(4.4) =C, ' Coyax =: Ma.

The matrix M is the Gram matrix of the truncated shifts: M;; = (¢*s;[ao], t*sjlag]). When
is small, the off-diagonal elements of M are small. In particular, on S, we may take a.c = 0,
and B =~ « in the sense that 3, ~ a, and the entries of 3, are small. For detailed elaboration,
see section SM2 in the supplementary material.

4.2. Shifts and the calculus of ¢,1. Our main geometric claims pertain to the function
©p, which is based on a smooth sparsity surrogate p(-) ~ ||-||;. In this section, we sketch the
main ideas of the proof as if p(-) = | - ||1 by relating the geometry of the function ¢, to the
vectors o, 3 introduced above. Working with ¢, simplifies the exposition; it is also faithful to
the structure of our proof, which relates the derivatives of the smooth function ¢, to similar
quantities associated with the nonsmooth function .

The function ¢, has a relatively simple closed form:

(4.5) pe(a) = 5 [Sx [+ alll3.
Here, Sy is the soft thresholding operator, which is defined for scalars t as
(4.6) S\[t] = sign(t) max {|t| — A, 0}

and is extended to vectors by applying it elementwise. The operator Sy[x] shrinks the elements
of  toward zero. Small elements become identically zero, resulting in a sparse vector.

Gradient: Sparsifying the correlations 3. Our goal is to understand the local minimizers
of the function @, over the sphere. The function ¢, is differentiable. Clearly, any point a at
which its gradient (over the sphere) is nonzero cannot be a local minimizer. We first give an
expression for the gradient of ¢, over Euclidean space RP, and then extend it to the sphere
SP—1. Using y = ag * xo and calculus gives

~~

Vp(a) = —t"CqyCqpySa [\C’/mOC’ZOLa}
— ~4"Cay CayS) |, 3]

(4.7) = —1"Ca,Xx[0],

where we have simplified the notation by introducing an operator x : R" — R™ as x[8] =
Cz,Sx [C’mo ,8] This representation exhibits the (negative) gradient as a superposition of shifts
of ag with coefficients given by the entries of x[3]:

(4.8) ~Va(a) =Y x(8lesela).
7
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A0\ -0\ Gradient descent Large gradient region
Bi Bi suppresses small 3; %6(0) > By > vA

Figure 10. Gradient sparsifies correlations. Left: the soft thresholding operator Sx[3] shrinks the entries of
B toward zero, making it sparser. Middle left: the negative gradient —N pp1 is a superposition of shifts se[ao],
with coefficients x¢[B] = Sx[B]¢. Because of this, gradient descent sparsifies 3. Middle right: 3(a) before, and
B(a™) after, one projected gradient step a™ = Pyp—1[a — t - grad[p,1](a)]. Notice that the small entries of B are
shrunk towards zero. Right: the gradient grad[p,i](a) is large whenever it is easy to sparsify B, particularly
when the largest entry By > By > 0.

The operator x appears complicated. However, its effect is relatively simple: when xg is a
long random vector, x[B] acts like a soft thresholding operator on the vector 3. That is,

1 ﬁf - )\7 /35 > )\a

(49) " X[/B]e ~ 6@ + )\7 /34 < _/\7
no .

0 otherwise.

We show this rigorously below in the proof of our main theorems. Here, we support this claim
pictorially by plotting the ¢th entry x[8]; as B¢ varies; see Figure 10 (middle left) and compare
to Figure 10 (left). Because x[3] suppresses small entries of 3, the strongest contributions
to —Vp in (4.8) will come from shifts sy[ag] with large By. In particular, the Euclidean
gradient is large whenever there is a single preferred shift s¢[ao], i.e., the largest entry of B is
significantly larger than the second largest entry.

The (Euclidean) gradient Vi, measures the slope of ¢, over R”. We are interested in
the slope of ¢, over the sphere SP~1, which is measured by the Riemannian gradient

grad[pp](a) = P, Vyp(a)
(4.10) =—P,. > x8]selac).
J4

The Riemannian gradient simply projects the Euclidean gradient onto the tangent space a*-

to SP~! at a. The Riemannian gradient is large whenever
(i) the negative gradient points to one particular shift: there is a single preferred shift
selap] so that the Euclidean gradient is large; and
(ii) a is mot too close to any shift: it is possible to move in the tangent space in the
direction of this shift.'” Since the tangent space consists of those vectors orthogonal to
a, this is possible whenever sg[ag] is not too aligned with a, i.e., a is not too close to

Sg[a[)].

15 .so the projection of the Euclidean gradient onto the tangent space does not vanish.
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Our technical lemma quantifies this situation in terms of the ordered entries of 3. Write
1Byl = 1Byl = -+ -, with corresponding shifts s(g)[ao], 5(1)[@o], - ... There is a strong gradient

whenever |B(g)| is significantly larger than |3)| and |B(1)| is not too small compared to A: in

A
4log?6-1"
5(0)lao], reducing |B(y)], . .., and making the vector 3 sparser. We establish the technical claim
that the (Euclidean) gradient of ¢, sparsifies vectors in shift space in section SM3.

particular, when %| ,3(0)| > |,6'(1)| > In this situation, gradient descent drives a toward

Hessian: Negative curvature breaks symmetry. When there is no single preferred shift,
i.e., when |B()| is close to |B(|, the gradient can be small. Similarly, when a is very close
to £s(g)[ao], the gradient can be small. In either of these situations, we need to study the
curvature of the function ¢ to determine whether there are local minimizers.

Strictly speaking, the function ¢, is not twice differentiable, due to the nonsmoothness of
the soft thresholding operator Sy[t] at ¢ = £A. Indeed, ¢, is nonsmooth at any point a for
which some entry of ¥ * @ has magnitude A. At other points a, @, is twice differentiable, and
its Hessian is given by

(4.11) V2 (a) = —1*CayCuy PrCoy Ciot,

with I = supp (S)\ [\C/yl,a]). We (formally) extend this expression to every a € R™, terming
%2%1 the pseudo-Hessian of @,1. For appropriately chosen smooth sparsity surrogate p, we
will see that the (true) Hessian of the smooth function V2<pp is close to 62%1, and so %24,041
yields useful information about the curvature of ¢,,.

As with the gradient, the Hessian is complicated, but becomes simpler when the sample
size is large. The approximation

V2 ~— ) selag]selaol” 9
(4.12) Vipp(a) = 2 elao]se[ao] (amxé[ﬁo

can be obtained from (4.8) by noting that %X@[,@] =25 [ao]%xg[,@}, that aiﬁjxg[ﬁ] ~ 0
for j # ¢, and that

L oxilf) {0, B < A,

4.13 —
( ) nd 9B 1, |Bel > A

Again, we corroborate this approximation pictorially; see Figure 11.

From this approximation, we can see that the quadratic form v*V=pnv takes on a large
negative value whenever v is a shift sy[ag] corresponding to some |3¢| > A, or whenever v is a
linear combination of such shifts. In particular, if for some j, |Bo)l, |Bwl, - - -, 18| > A, then
@ will exhibit negative curvature in any direction v € span(sg)[ao), sqy[aol, - - -, 5(j)[ao])-

The (Euclidean) Hessian measures the curvature of the function ¢y over R™. The Rie-
mannian Hessian

2

(4.14) Ifegs{wpl(a)—PaL( Vip(a) + (~Vep(a),a) I )Pal

Curvature of ¢ Curvature of the sphere
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—A0AX

Negative curvature: B(1) > 280
Bi Strong convexity: By < VA

Figure 11. Hessian breaks symmetry. Left: contribution of —s;[ao]s:[ao]” to the Euclidean Hessian. If
|Bi| > A, the Euclidean Hessian ezhibits a strong negative component in the s;[ao]| direction. The Riemannian
Hessian exhibits negative curvature in directions spanned by s;[ao] with corresponding |B:| > A and positive
curvature in directions spanned by si|ag] with |B;| < X. Middle: this creates negative curvature along the
subspace S+ and positive curvature orthogonal to this subspace. Right: our analysis shows that there is always
a direction of negative curvature when By > %ﬂ(o) ; conversely, when By < A there is positive curvature in
every feasible direction and the function is strongly convex.

measures the curvature of ¢y, over the sphere. The projection P, restricts its action to
directions v L a that are tangent to the sphere. The additional term (—V g, (a),a) accounts
for the curvature of the sphere. This term is always positive. The net effect is that directions
of strong negative curvature of @y, over R” become directions of moderate negative curvature
over the sphere. Directions of nearly zero curvature over R"™ become directions of positive
curvature over the sphere. This has three implications for the geometry of ¢, over the sphere:

(i) Negative curvature in symmetry breaking directions: If |B(o)|, [B1)l; - - -, [B(;)| = A, then
pp will exhibit negative curvature in any tangent direction v L a which is in the linear
span

span(s(g)[ao], s1)[acl; - - -, s(j[ao])

of the corresponding shifts of ay.

(ii) Positive curvature in directions away from Sy: The Euclidean Hessian quadratic form
v*%%pelv takes on relatively small values in directions orthogonal to the subspace Sr.
The Riemannian Hessian is positive in these directions, creating positive curvature
orthogonal to the subspace S.

(iii) Strong convezity around minimizers: Around a minimizer syag], only a single entry 3y
is large. Any tangent direction v L a is nearly orthogonal to the subspace span(s¢[ag)),
and hence is a direction of positive (Riemannian) curvature. The objective function ¢,
is strongly convex around the target solutions +sy[a).

Figure 11 visualizes these regions of negative and positive curvatures, and the technical claim
of positivity /negativity of curvature in shift space is presented in detail in section SM4.

4.3. Any local minimizer is a near shift. We close this section by stating a key theorem,
which makes the above discussion precise. We will show that a certain neighborhood of
any subspace S, can be covered by regions of negative curvature, of large gradient, and of
strong convezity containing target solutions +sy[ag]. Furthermore, at the boundary of this
neighborhood, the negative gradient points back—retracts—toward the subspace S, due to



Downloaded 11/29/20 to 129.236.147.196. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

GEOMETRY AND SYMMETRY IN SaS DECONVOLUTION 235

the (directional) convexity of ¢, away from the subspace.

To formally state the result, we need a way of measuring how close a is to the subspace
S+. For technical reasons, it turns out to be convenient to do this in terms of the coefficients
« in the representation

(4.15) a= Z aygselag] + Z oy splag).

ler l'ere

If a € S, we can take a with ;e = 0. We can view the energy ||a<||2 as a measure of the
distance from a to Sr. A technical wrinkle arises, because the representation (4.15) is not
unique. We resolve this issue by choosing the a that minimizes ||o e ||2, writing

(4.16) do(a,S;) = inf{||oz.,.c||2 : Zag:s@[ao] = a} )

L
The distance d,(a,S;) is zero for a € S;. Our analysis controls the geometric properties of
¢, over the set of a for which d,(a,S;) is not too large. Similar to (3.3), we define an object
which contains all points that are close to some S in the above sense:

(4.17) X lopy = U {a : do(a,S7) <~}.
|7|<46po

The aforementioned geometric properties hold over this set.

Theorem 4.1 (geometry of ¢, over union of subspaces). Suppose that y = ag * xg, where
ag € SPo~1 s p-shift coherent and xy ~i5q. BG(0) € R™ satisfying

c c 1
118 o e [ } .
(4.18) po’ poy/B+ /o] log? po

for some constants ¢/,c¢ > 0. Set A = 0.1/v/pof in ¢,, where p(x) = V&2 + 6%2. There exist
C//>\08

p2log?n

with probability at least 1 — "' /n, for every a € ZZGPO, we have the following:

(Negative curvature.) If ’,@(1)| > ’,8(0)}, then

numerical constants C,c", ", ci1-c4 > 0 such that if § < and n > Cp30~2log po, then

(4.19) Amin (Hess[g,](a)) < —cinbA.
(Large gradient.) If 1q |ﬂ(0)| > |ﬁ(1)| > 1a(0) A, then

(4.20) lgrad(p,)(@)ll, > confi2=-
(Convex near shifts.) If va(0)\ > ‘,6(1)|, then

(4.21) Hess[p,](a) > c3nfP,..

(Retraction to subspace.) If 3 < do(a,S;) <7, then for every o satisfying a = *Cq,a,
there exists ¢ satisfying grad[p,](a) = ¢*Cq,(, such that

(4.22) (Cresaure) = ca[|Crelly llatrell, -
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(Local minimizers.) If a is a local minimizer,

(1.23) min fla— o silag]l, < ymax {p.p;"}
Cef+p]
oe{£1}
-poly(y/1/6,+/1
where V] = %, v (0) = W, and v = Cpoy§0g2éﬂ /1) \/%'
Proof. See subsection SM6.5. |

The retraction property elaborated upon in (4.22) implies that the negative gradient at
a points in a direction that decreases d,(a,Sr). This is a consequence of positive curvature
away from S;. It essentially implies that the gradient is monotone in a-c space: choose any
a €S, NSPL, write a to be its coefficient, and let ¢ be the coefficient of grad[y,](a). Then
are =0, {re =0, and -

(Cre — Cre, Qe — Q) R (Cre — 0, are — 0) = (Cre, 0tre) > 0.

Our main geometric claim in Theorem 3.1 is a direct consequence of Theorem 4.1. Moreover,
it suggests that as long as we can minimize ¢, within the region ZZ@po’ we will solve the SaS
deconvolution problem.

5. Provable algorithm. In light of Theorem 4.1, in this section we introduce a two-
part algorithm, Algorithm 3.1, which first applies the curvilinear descent method to find a
local minimum of ¢, within Zzepo, followed by a refinement algorithm that uses alternating
minimization to exactly recover the ground truth. This algorithm exactly solves the SaS
deconvolution problem.

5.1. Minimization. There are three major issues in finding a local minimizer within EZQPO:
(i) Initialization. The initializer a(®) to reside within S iopo-
(i) Negative curvature. The method to avoid stagnating near saddle points of ¢,.
(iii) No exit. The descent method to remain inside EZ@po'
In the following paragraphs, we describe how our proposed algorithm achieves the above
desiderata.
Initialization within EZG])Q' Our data-driven initialization scheme produces a(?), where

al” = —Pgy 1 Vip, (Pop-1 [07 g5+ 5 4pg—1; 07 1))

— Py 1 Vg, Pyr [Py (@ + )]

—Pg,-1 Vo, [P[po](ao * 50)]

is the normalized gradient vector from a chunk of data a(-1) := Py, (ag * xo) with zo a

normalized Bernoulli-Gaussian random vector of length 2py — 1. Since Vi, ~ V1, expanding
the gradient Vipp and rewriting the gradient Vi (a(=1) in shift space gives us

Q

_Vgppl (a(*l)) ~ L*CGO\C/QJOS)\ [\émOC;OP[po](a’O * Zl’?(])j|
=1"CayX [CZOP[I,O]C,IOEO]
~ 1" Cay X [0]
~nb - L*CQOS)\ [50] y
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where the approximation in the third equation is accurate if the truncated shifts are incoherent:
(5.1) max (e, silaol, 1y, s5lao])| < p < 1.

With this simple approximation, it becomes clear that the coefficients (in shift space) of
initializer a(©,

(5.2) a® ~ Pyo10*Cy, Sy [Z0)

approximate Sy [Zo], which resides near the subspace Sy, in which 7 contains the nonzero
entries of yp on {—pp + 1,...,po — 1}. With high probability, the number of nonzero entries
is |7| S 40po, and we therefore conclude that our initializer a() satisfies

(5.3) a®exj, .
Furthermore, since & is normalized, the largest magnitude for entries of |z is likely to be
around 1/+/2pof. To ensure that Sy [@o] does not annihilate all nonzero entries of z (otherwise
our initializer a(®) will become 0), the ideal A should be slightly less than the largest magnitude
of |Zg|. We suggest setting A in ¢, as

C

Vpol

(5.4) \ =

for some ¢ € (0,1).

Many methods have been proposed to optimize functions whose saddle points exhibit strict
negative curvature, including the noisy gradient method [22], trust region methods [1, 55], and
curvilinear search [58]. Any of the above methods can be adapted to minimize ¢,. In this
paper, we use the curvilinear method with restricted stepsize to demonstrate how to analyze an
optimization problem using the geometric properties of ¢, over Ezgpo—in particular, negative
curvature in symmetry breaking directions and positive curvature away from Si.

Curvilinear search uses an update strategy that combines the gradient g and a direction of
negative curvature v, which here we choose as an eigenvector of the Hessian H with smallest
eigenvalue, scaled such that v*g > 0. In particular, we set

(5.5) at + Py-1[a—tg— thJ .
For small ¢,

(5.6) ola®) = p(a) + (g,&) + 56" HE.

Since & converges to 0 only if @ converges to the local minimizer (otherwise either gradient g is
nonzero or there is a negative curvature direction v), this iteration produces a local minimizer
for ¢,, whose saddle points near any S; have negative curvature, we just need to ensure all
iterates stay near some such subspace. We prove this by showing the following:

e When d,(a,S;) < v, curvilinear steps move a small distance away from the subspace:

(5.7) |do (a™,87) — da (a,8:)| < 3.
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e When dy(a,S;) € [%, 'y], curvilinear steps retract toward subspace:
(5.8) d, (a+,S,.) <dy(a,S;).
Together, we can prove that the iterates a(¥) converge to a minimizer, and

(5.9) VE=12,..., a®ex] .

We conclude this section with the following theorem.

Theorem 5.1 (convergence of retractive curvilinear search). Suppose signals ag, g satisfy
the conditions of Theorem 4.1, 0 > 103¢/po (c > 1), and ag is u-truncated shift coherent
mMax;4; |<L;Osi[a0},L;03j [ag])| < p. Write g = grad|p,](a) and H = Hess[p,](a). When the
smallest eigenvalue of H is strictly smaller than —n,, let v be the unit eigenvector of smallest
etgenvalue, scaled so v*g > 0; otherwise let v = 0. Define a sequence {a(k)}keN where a(©)
equals (3.7) and for k=1,2,..., K

(5.10) a" ) Py, [a(k) —tg®) — tQU(k)} ,
with largest t € (0, %] satisfying Armijo steplength
(5.11) 2o(a™HD) < 9,(@®) — & (g ™13+ §tn. |0 ™)3)

Then with probability at least 1 —1/c, there exists some signed shift @ = +s;[ag], where i € [£po],
such that ||a(k) — Et||2 < w4+ 1/p for all k > K; = poly(n,p). Here, n, = ¢'nf\ for some
cd < e1 in Theorem 4.1.

Proof. See subsection SM7.2. [ |

5.2. Local refinement. In this section, we describe and analyze an algorithm which refines
an estimate @ & aq of the kernel to exactly recover (ag, o). Set

(5.12) a®—a, A C@h+logn)(n+1/p), I« supp(S\[CLy)).

We alternatively minimize the Lasso objective with respect to a and x:

(5.13) G argmin%Ha(’“) s —yl3+ 2" Z ||,
‘ igI(k)
(5.14) a*th — Py [argmin §||a * 2D y|3],
a
(519 AR 0 1)y (@b,

One departure from standard alternating minimization procedures is our use of a continuation
method, which (i) decreases A, and (i) maintains a running estimate I*) of the support set.
Our analysis will show that a*) converges to one of the signed shifts of ag at a linear rate, in
the sense that

(5.16) Leutmm, |a®) — o - sela)||, < C"27*.
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It should be clear that exact recovery is unlikely if &y contains many consecutive nonzero
entries: in fact in this situation, even nonblind deconvolution fails. Therefore to obtain exact
recovery it is necessary to put an upper bound on signal dimension n. Here, we introduce the
notation k; as an upper bound for the number of nonzero entries of x( in a length-p window:

(5.17) Ky = 6max {fp,logn},

where the indexing and addition should be interpreted modulo n. We will denote the support
sets of true sparse vector xo and recovered z(®) in the intermediate kth steps as

(5.18) I = supp(=y), 1% = supp(z®).
Then in the Bernoulli-Gaussian model, with high probability,

(5.19) max 10 ([p] +0) | < k1.

The log n term reflects the fact that as n becomes enormous (exponential in p), eventually it
becomes likely that some length-p window of @ is densely occupied. In our main theorem
statement, we preclude this possibility by putting an upper bound on signal length n with
respect to window length p and shift coherence p. We will assume

(5.20) (+1/p) -} < c

for some numerical constant ¢ € (0, 1).
Recall that (4.23) in Theorem 3.1 provides that

(5.21) la —aoll, < (n+1/p),

which is sufficiently close to ag as long as (5.19) holds true. Here, we will elaborate upon this
by showing that a single iteration of alternating minimization algorithm (5.13)—(5.15) is a
contraction mapping for a toward ay.

To this end, at kth iteration, write T = I®) J = I*+1) and o®) = sign (a:(k)); then first
observe that the solution to the reweighted Lasso problem (5.13) can be written as

(522) :I:(k+1) =1L (Lik]CZ(k) Ca(k) LJ)_1 L; (CZ(M Caoxo — )\(k)PJ\TO'(k+1)) ,
and the solution to least squares problem (5.14) will be
(5.23) a*th) = (L*C::(kﬂ)cm(k“)b)_l ("*C::(kﬂ)cmoLaO) :

Here, we are going to illustrate the relationship between a*t1) — ay and a®) — ag using simple
approximations. First, let us assume that a® ~ ay, C.,Cay = I, and I =~ J ~T. Then
(5.22) gives

(5.24) et~ @,
(m(kJrl) —x) ~ P; (CZOCaomO - CZOCa(m%)
(5.25) ~ P [CZoCmoL(ao - a(k))} ’
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which implies, while assuming C}, Cy, ~ nfI, that from (5.23),

(@®D) —ag) ~ (nh)! L C i) Cagtag — L C 141 Crpernytag
~ (nf)~! t"Cy Cay (0 — )
(5.26) ~ (n0) 71" CL Cay PrC Coot (a¥) — ap).

Now since Cj, PiCq, =~ nf ee};, this suggests that (nf) ! t*Cj Cay PrC} Cqyt approximates
a contraction mapping with fixed point ag, as follows:

(ne)_l L*C;OCGQPICZOCmOL ~ L*CaoneSC;()[/
(5.27) ~ apay.

Hence, if we can ensure all of the above approximation is sufficiently and increasingly accurate
as the iterate proceeds, the alternating minimization essentially is a power method which finds
the leading eigenvector of matrix apaj—and the solution to this algorithm is apparently ao.
Indeed, we prove that the iterates produced by this sequence of operations converge to the
ground truth at a linear rate, as long as it is initialized sufficiently nearby.

Theorem 5.2 (linear rate convergence of alternating minimization). Suppose y = ag * xo,
where ag is p-shift coherent and xy ~ BG(0). Then there exist some constants C,c, ¢, such
that if (u+ 1/p) k% < ¢, and n > CO~>p*logn, then with probability at least 1 — c/n, for any
starting point a® and A0, 1) gych that

(5.28) [a® —aoll, <p+1/p, AN =5ki(u+1/p), I =supp (Chny).
and for k=1,2,...,
(5.29) ™) argmin L[la® « 2 — g3+ 20 > Jay],
N ig1(k)
(5.30) a" Y Py, [argmin%“a s ) — y||§]7
(5.31) AR IAE D gupp (D),
then

for every k =0,1,2,....
Proof. See subsection SMS.3. |
Remark 5.3. The estimates (%) also converges to the ground truth xg at a linear rate.

6. Experiments. We demonstrate that the tradeoffs between the motif length pg and
sparsity rate 6 produce a transition region for successful SaS deconvolution under generic
choices of ag and . For fixed values of § € [1073,1072] and po € [10%,10%], we draw 50
instances of synthetic data by choosing ag ~ Unif(SP°~!) and zo € R” with g ~;;4. BG(),

where n = 5 x 10°. Note that choosing ag this way implies u(ag) ~ \/%.
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Figure 12. Success probability of SaS deconvolution under generic ag, o with varying kernel length po and
sparsity rate . When sparsity rate decreases sufficiently with respect to kernel length, successful recovery becomes

very likely (brighter), and vice versa (darker). A transition line is shown with slope % ~ —2, implying
1

in the generic case.
/Do 9

Algorithm 6.1 works with high probability when 6 <

For each instance, we recover ag and @y from y = ag * g by minimizing problem (2.5).
For ease of computation, we modify Algorithm 3.1 by replacing curvilinear search with the
accelerated Riemannian gradient descent method (Algorithm 6.1), which is an adaptation
of accelerated gradient descent [5] to the sphere. In particular, we apply momentum and
increment by the Riemannian gradient via the exponential and logarithmic operators

(6.1) Bxpg(u) = cos(||ully) - @+ sin(|lull,) - .
o . Par(®-a)
(6.2) Logq(b) = arccos({a, b)) - o i

derived from [1]. Here Exp, : a* — SP~! takes a tangent vector of a and produces a new
point on the sphere, whereas Log, : SP~! — a' takes a point b € SP~! and returns the tangent
vector which points from a to b.

For each recovery instance, we say the local minimizer au;, generated from Algorithm 6.1
is sufficiently close to a solution of the SaS deconvolution problem if

(6.3) success(@min, ; @o) = {maxy |(s¢[ag], @min)| > 0.95}.
The result is shown in Figure 12. Our source code can be accessed via the following address:

https://github.com/sbdsphere/sbd_experiments.git
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Algorithm 6.1. SaS deconvolution with accelerated Riemannian gradient descent.

Input: Observation y, sparsity penalty A = 0.5/y/pof, momentum parameter n € [0, 1).
Initialize a(®) <= —Ps,-1 Vg, (Po-1 (077 [yo, .. ., ypo—1];07071]),
for k=1,2,...,K do
Get momentum: w < Exp, ) (77 -Log, k1) (a(’f)))'
Get negative gradient direction: g <— — grad[p,](w).
Armijo step a®**+1) « Exp,,(tg), choosing t € (0,1) s.t. p,(a*+D) -, (w) < —t||g]/3.
end for
Output: Return aX).

7. Discussion. In this section, we close by discussing the most important limitations of
our results when ag is coherent, regarding scenarios when the signal setting breaches our
assumption, especially when x( is either highly sparse or nonsymmetric, and highlighting
corresponding directions for future work.

The main drawback of our proposed method is that it does not succeed when the target
motif ag has shift coherence very close to 1. For instance, a common scenario in image blind
deconvolution involves deblurring an image with a smooth, low-pass point spread function
(e.g., Gaussian blur). Both our analysis and numerical experiments show that in this situation
minimizing ¢, does not find the generating signal pairs (ag, o) consistently—the minimizer of
p is often spurious and is not close to any particular shift of ap. We do not suggest minimizing
©p in this situation. On the other hand, minimizing the Bilinear Lasso objective (lags Over
the sphere often succeeds even if the true signal pair (ag, o) is coherent and dense.

In light of the above observations, we view the analysis of the Bilinear Lasso as the most
important direction for future theoretical work on SaS deconvolution. The drop quadratic
formulation studied here has commonalities with the Bilinear Lasso: both exhibit local minima
at signed shifts, and both exhibit negative curvature in symmetry breaking directions. A
major difference (and hence major challenge) is that gradient methods for Bilinear Lasso do
not retract to a union of subspaces—they retract to a more complicated, nonlinear set.

Our model assumes xg to be Bernoulli-Gaussian vectors, which are sparse and symmetric
i.i.d. random variables. When x is sparse but nonsymmetric, (e.g., Bernoulli), one can apply
our result with a simple symmetrization trick, using the concatenated observation vectors
[y, —y] as an input to our algorithm.

When x( is highly sparse and if y is noiseless, it is possible to identify a short copy
of ap via looking for the shortest consecutive nonzero entries within y. When 6 < 1/py,
these isolated copies are very common. Once 6 exceeds 1/pg, or when support @ is not
Bernoulli random while being more clustered, they become very uncommon. In particular, the
probability of an isolated copy is small unless n 2 exp(po#). Our proposed approach succeeds
when n > poly(po).

In applications involving noisy data, optimization approaches often outperform direct
inspection, even for samples with isolated copies of ag. An intuition for this is that optimization
methods aggregate information across the sample. One practical avenue for obtaining the best of
both worlds is to try to optimize the choice of data segment used for initialization. This can be a
potential improvement for our data-driven initialization scheme, both in theory and in practice.
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Finally, there are several directions in which our analysis could be improved. Our lower

bounds on the length n of the random vector xg required for success are clearly suboptimal.
We also suspect our sparsity-coherence tradeoff between 1,0 (roughly, § < 1/(\/mpo)) is
suboptimal, even for the ¢, objective. Articulating optimal sparsity-coherence tradeoffs is
another interesting direction in this line of work. Extending our current result for cases when
y is affected by noise can also be a natural next step for future work.
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