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On the Global Geometry of
Sphere-Constrained Sparse Blind

Deconvolution
Yuqian Zhang, Yenson Lau, Han-Wen Kuo,

Sky Cheung, Abhay Pasupathy, John Wright.

Abstract—Blind deconvolution is the problem of recovering a convolutional kernel a0 and an activation signal x0 from their
convolution y = a0 ~ x0. This problem is ill-posed without further constraints or priors. This paper studies the situation
where the nonzero entries in the activation signal are sparsely and randomly populated. We normalize the convolution kernel
to have unit Frobenius norm and cast the sparse blind deconvolution problem as a nonconvex optimization problem over the
sphere. With this spherical constraint, every spurious local minimum turns out to be close to some signed shift truncation of
the ground truth, under certain hypotheses. This benign property motivates an effective two stage algorithm that recovers the
ground truth from the partial information offered by a suboptimal local minimum. This geometry-inspired algorithm recovers
the ground truth for certain microscopy problems, also exhibits promising performance in the more challenging image
deblurring problem. Our insights into the global geometry and the two stage algorithm extend to the convolutional dictionary
learning problem, where a superposition of multiple convolution signals is observed.

Index Terms—Image Deblurring, Blind Deconvolution, Nonconvex Optimization
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1 INTRODUCTION

B���� deconvolution aims to recover two unknown
signals: a kernel a0 and some underlying signal

x0 from their convolution y = a0 ~ x0.
Blind deconvolution is ill-posed in general: there

are infinitely many pairs of signals rendering the same
convolution. To render the problem well-posed, one
may exploit prior knowledge about the structure of a0

and x0. For example, the underlying signal x0 is sparse
in many engineering and scientific applications:

Microscopy data analysis: In the crystal lattice of
nanoscale materials, there exist randomly and sparsely
distributed “defects”, whose locations and signatures
encode crucial information about the electronic struc-
ture of the material. Accurate recovery of such informa-
tion can facilitate investigation of the detailed structure
of materials [CLC+17].

Neural spike sorting: Neurons communicate by
firing brief voltage spikes, whose characteristics reflect
important features of the neuron. These spikes occur
randomly and sparsely in time. Neurophysiologists are
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interested in assigning stereotyped spikes to putative
cells, as well as in knowing their respective spike times
[ETS11], [Lew98].

Image deblurring: Motion blur can be modeled
as the convolution of a latent sharp image and a
kernel capturing the motion of the camera, usually
assumed to be invariant across the image [FSH+06]. The
inverse process of recovering the original sharp image
from a blurry image has been widely studied [CL09],
[KH96]. Many well-performing approaches leverage the
observation that sharp natural images typically have
(approximately) sparse gradients [CW98], [LWDF11],
[PF14].

All of these applications lead to instances of the
sparse blind deconvolution problem. The dominant
algorithmic approach to sparse blind deconvolution
involves nonconvex optimization1. Nonconvex formu-
lations for deconvolution can be derived via several
probabilistic formalisms (ML/MAP, VB, ect.), or simply
from heuristics. For example, in image deblurring, the
kernel a can be modeled as residing on a simplex

1. In signal processing, a number of elegant convex relaxations
of the problem have been developed [ARR12], [Chi16]. However,
these approaches typically require stronger prior information
(subspace constraint rather than sparsity) or exhibit suboptimal
scalings.
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[LWDF11], [GTZ+16], [KTF11], [LCM14]. This is natural
from a modeling prospective2, but problematic for
optimization: natural formulations of deconvolution
over the simplex admit trivial global minimizers (cor-
responding to spiky convolutional kernels a = �)
[PF14], [BVG13], which provide no information about
the ground truth. Practical remedies for this problem
include exploiting additional data priors [GTZ+16],
[LCM14], [XWHH16] or careful initialization via edge
restoration or multi-scale refinement [KTF11], [XJ10],
to avoid the trivial spiky global minima.

In contrast, motivated by a careful comparison of
MAP and VB approaches, [WZ13], [ZWZ13] propose to
instead constrain a to have unit Frobenius norm – i.e.,
to reside on a high-dimensional sphere.3 This choice is
arguably more appropriate for certain scientific applica-
tions – such as microscopy – in which the kernel a can
have negative entries. For image deblurring, a can be
assumed to be nonnegative, and the sphere constraint
seems less natural from a modeling perspective.

In this paper, we study the geometry of sphere-
constrained sparse blind deconvolution. Our goal is to
understand when simple algorithms based on noncon-
vex optimization can exactly recover the convolutional
kernel a and the sparse signal x. This goal is motivated
by the applications described above – in particular,
microscopy data analysis – in which there is a strong,
physical sparsity prior and a clear, physical notion of
the ground truth. We develop our theory and algo-
rithms under the assumption that a is a short kernel,
and that x is sparsely and randomly supported. We
demonstrate through a theoretical analysis of certain
(idealized) cases and many numerical experiments that
when these assumptions are satisfied, the proposed
algorithm correctly recovers a, and hence x. These re-
sults stem from a striking geometric property of sphere-
constrained sparse blind deconvolution: although the
problem is still nonconvex, every local minimizer ā is
very close to a signed shift-truncation of the ground
truth kernel a0. This observation provides a geometric
explanation of how the sphere constraint can facilitate
sparse blind deconvolution.

The remainder of this paper is organized as follows.
Section 2 discusses the intrinsic symmetries associated
with the convolutional operator and their implication
on the geometry of sphere-constrained sparse blind
deconvolution. Section 3 introduces the optimization-
based two stage algorithm and some related technical

2. Since entries of a roughly represent the fraction of the camera
exposure time at a given location.

3. [WZ13] contains a wealth of additional ideas about the role
of sparsity-promoting priors in obtaining good local minima,
and on the probabilistic underpinnings of deconvolution. Our
experiments support the viewpoint that the key insight in [WZ13]
is the role of the spherical constraint in avoiding bad minimizers.

details. Section 4 discusses two other important exten-
sions in image deblurring and convolutional dictionary
learning. Section 5 gives experimental corroboration of
our theory, and shows promising results on microscopy
data analysis, image deblurring, and convolutional
dictionary learning. Section 6 discusses directions for
future work.

For simplicity, we assume that the convolutional
signals are one dimensional in both our problem
formulation and technical proofs; all of our results ex-
tend naturally to higher-dimensional signals. Through-
out this paper, vectors v 2 Rk are indexed as
v = [v0, v1, · · · , vk�1], and [·]m denotes the modulo-m
operation. We use k·k to denote the operator norm, and
k·kp to denote the entry wise `p norm. A projection
onto the Frobenius sphere is denoted with PS [·] = ·

k·k2
,

and a projection onto subset I is denoted with (·)I .

2 SYMMETRY AND GLOBAL GEOMETRY
Without loss of generality, we assume the observation
data y is generated via a circular convolution ~ of the
ground truth a0 2 Rk and x0 2 Rm:

y(a0,x0) = a0 ~ x0 = fa0 ~ x0 2 Rm
. (1)

Here, fa0 2 Rm denote the zero padded m-length
version of a0, which can be expressed as fa0 = ◆a0

with ◆ : Rk ! Rm be a zero padding operator. Its
adjoint ◆⇤ : Rm ! Rk acts as a projection to lower
dimensional space by keeping the first k components.
Equivalently, we can write

y(a0,x0) = Cfa0
x0 = Cx0

fa0. (2)

Here, Cv 2 Rm⇥m is the circulant matrix generated
from vector v, whose j-th column is a cyclic shift
sj�1[v] of the vector v:

s⌧ [v] (i) = v([i� ⌧ ]m), 8 i 2 [0, · · · ,m� 1]. (3)

2.1 Symmetries and Symmetry Breaking
The SBD problem exhibits a scaled-shift symmetry,
which derives from the symmetries of the convolution
operator. Namely, given a pair (a0,x0) satisfying
y = a0 ~ x0, for any nonzero scalar ↵ and integer
⌧

y = (↵s⌧ [fa0]) ~
�
↵
�1

s�⌧ [x0]
�
. (4)

Note that a scaled shift ↵�1
s�⌧ [x0] of a sparse signal

x0 remains sparse, and that a scaled shift ↵s⌧ [fa0] of
a length-k kernel a0 still has k-nonzero entries. So,
these symmetries are intrinsic to the SBD problem, as
formulated here. We can only hope to recover (a0,x0)

up to this symmetry.
The presence of nontrivial symmetries is a hallmark

of bilinear problems arising in practice – see, e.g.,

2
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[SQW17a], [SQW17b] for examples from dictionary
learning and generalized phase retrieval. Symmetries
render straightforward approaches to convexify the
problem ine�ective.4 They also raise challenges for non-
convex optimization: equivalent symmetric solutions
correspond to multiple disconnected global optima.
This creates a very complicated objective landscape,
which could potentially also contain spurious local opti-
mizers. Certain highly symmetric nonconvex problems
arising in signal processing do not exhibit spurious
minimizers [SQW17a], [SQW17b], however, proving
this can be challenging.

2.1.1 Symmetry breaking.
We employ a weak symmetry breaking mechanism by
constraining a 2 Sk�1 5: we reduce the scale ambiguity
to a sign ambiguity, by constraining a to have unit
Frobenius norm; we mitigate the shift ambiguity by
constraining a to be supported on the first k entries.

In general, s⌧ [fa0] are not be supported on the
first k entries, hence constraining a to be supported
on the first k entries removes the shift symmetry.
However, e�ects of such shift symmetry still persist.
Since the restriction ◆⇤s⌧ [fa0] to the first k entries can
be convolved with the sparse signal s�⌧ [x0] to produce
a near approximation to y:

(◆⇤s⌧ [fa0]) ~ s�⌧ [x0] ⇡ y, (5)

especially when the shift |⌧ | is small. We will see that
(i) these symmetric solutions ◆⇤s⌧ [fa0] persist as local
minima of a natural optimization formulation of the
SBD problem, but that (ii) under conditions, these are
the only local minima.

2.2 Global Geometry on the Sphere
We study the following objective function, which can
be viewed as balancing sparsity of x with fidelity to
the observation y: 6

min
a2Sn�1,x

 (a,x)
.
=

1
2ky � a ~ xk22 + �r(x). (6)

When x0 is long and random, it is more convenient to
study this function through its “marginalization”

'(a)
.
= min

x
 (a,x), (7)

4. Given any set of points where the convex objective function
achieves equal values, the function value will be no larger at any
convex combination of them.

5. This is motivated in part by [SQW17a], which demonstrates
that a certain formulation of the dictionary learning problem over
the sphere has no spurious local minimizers, even for relatively
dense target representations. The “simplex constrained” analogue
of that work, which optimizes over hyperplanes, requires the
target solution to be much sparser [SWW12].

6. Similar formulation can be found in lot of sparse representa-
tion problems [MBP14].

which is defined over the sphere Sk�1.
In Figure 1, we plot the function value of '(a)

on the sphere a 2 S2: red and blue imply larger
and smaller objective value respectively and there
are several local minima. For this highly nonconvex
function, the ground truth a0 achieves the global
minimum, while other local minima ā are very close
to certain signed shift truncations of the ground truth.
Figure 1 (right) exhibits an example of a local minimum
in a higher-dimensional problem.

2.2.1 Analysis under Restricted Settings
Demonstrating that this observation holds in general
is challenging: for most reasonable choices of the
regularizer r, there is no closed form expression for the
objective '(a). We develop an analysis under several
simplifying assumptions. Throughout, we let r(x) be
the `

1 norm, although similar conclusions hold for
other sparsifying regularizers. With this choice, we can
simplify the objective ' by dividing the sphere Sn�1

via the sign-support pattern of the minimizing x?
(a):

x?
(a) = argmin

x

1
2 ky � a ~ xk22 + � kxk1 . (8)

Let I and � denote the support and sign of x?

I = supp (x?
) , � = sign(x?

), (9)

then the whole sphere can be divided via the sign
support pattern

Sn�1
=

[

�

R�, R� = {a | sign(x?
(a)) = �} .

(10)
On each R� where the sign support pattern � remains
the same, the stationarity condition for minimizer
x?

(a) implies

x?
I(a) = (C⇤

aCa)
�1
I (C⇤

ay � ��)I . (11)

Plugging above expression back to the original objec-
tive function '(a) yields

'�(a) =� 1
2 (C

⇤
ay � ��)⇤I (C

⇤
aCa)

�1
I (C⇤

ay � ��)I
+

1
2 kyk

2
2 . (12)

Although the objective function '(a) can be substan-
tially simplified by removing the x variable in this
way, it still maintains a complicated dependence on
a. To obtain some preliminary insights, we make two
simplifications for easier calculation while preserving
important characteristics of the geometry of ':

Simplification I: x0 = �. We maximally simplify
the underlying sparse signal as a single spike � and
the observation will be y = a0 ~ x0 = fa0. This case
itself is trivial, but its function geometry is a basic
but important case to be understood. This simple case

3
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Fig. 1: Geometry on the `2 ball for fixed a0 and generic x0. Left: the objective '(a) in a low dimensional setting
a 2 S2 – dark blue represents small values while dark red represents large values. All local minima are close to signed
shift truncations of the ground truth a0, with a0 itself achieving global minimum. The green lines indicate regions
where a are ill-posed as convolutional kernels. Right: a shift truncation a achieves a local minimum of '(a) in a
high dimensional setting. Shown here is the ground truth y = a0 ~ x0,a0, and x0 (top right) versus their respective
recovered quantities a~ x,a, and x (bottom right).

also yields intuitions that carry over to the less trivial
situation in which x0 is a long random vector.

Simplification II: C⇤
aCa ! I . For a random a 2

Sn�1, its expectation satisfies E {C⇤
aCa} = I . Here, we

simply use the identity matrix to replace any C⇤
aCa

and therefore reduce the complexity of Equation 12.
With these two simplifications, the original objective

problem can be replaced with the following:

minimize b'(a) subject to a 2 Sk�1
, (13)

where

b'(a) .
= min

x

1
2 kfa0k22+

1
2 kxk

2
2�hea ~ x,fa0i+� kxk1 .

In this case, the minimizing x?
(a) has a simple closed

form solution:

x̂?
(a) = SOFT� [C

⇤
afa0] = SOFT�

⇥
Č⇤

a0
◆a
⇤
, (14)

here, SOFT� [u] = sign(u)max {|u| � �, 0} is the
entry-wise soft-thresholding operator and Ča0 2
Rm⇥m is the reversed circulant matrix for a0 defined
via

Ča0 =
⇥
s0 [fa0] s�1 [fa0] . . . s�(m�1) [fa0]

⇤
.

(15)
Similarly, we let Î and �̂ denote the support and sign
of x̂?

Î = supp (x̂?
) , �̂ = sign(x̂?

), (16)

then the whole sphere can be divided via the sign
support pattern

Sn�1
=

[

�

R̂�̂, R̂� = {a | sign(x?
(a)) = �̂} .

(17)
On a constant sign support pattern �̂, b'(a) can be
written into a simpler quadratic form:

b'�(a) = � 1
2

��(C⇤
afa0 � ��)Î

��2
2
+

1
2 kfa0k22 . (18)

While geometric investigation of the more practical
optimization problem '(a) remains open, for this
surrogate b'(a), we can show that if � is su�ciently
large compared to the magnitude of x0, every strict
local minimizer is a signed shift truncation of the
ground truth:

Theorem 2.1. Define the set of possible supports of mini-
mizer x? with

I =

n
supp

�
SOFT�

⇥
Č⇤

a0
◆a
⇤�

| a 2 Sk�1
o
. (19)

For each nonempty support I =
�
i1 < i2 < · · · < i|I|

 
, let

WI =
2

4 ◆⇤s�i1 [fa0]

k◆⇤s�i1 [fa0]kF

������
◆⇤s�i2 [fa0]

k◆⇤s�i2 [fa0]kF

������
. . .

������

◆⇤s�i|I| [fa0]���◆⇤s�i|I| [fa0]

���
F

3

5

Suppose that � < 1 and that for every nonempty I 2 I ,

kW ⇤
I WI � Ik <

�
2

6
, (20)

then every local minimum ā of b' over Sn�1 satisfies either
ā 2 R̂0 (in which case ā is also a global maximum), or

ā = ± ◆⇤s⌧ [fa0]

k◆⇤s⌧ [fa0]kF
= ±PS [◆

⇤
s�⌧ [fa0]] (21)

with x̂?
(ā) = ±SOFT� [k◆⇤s⌧ [fa0]kF ] s�⌧ [x0] for some

shift ⌧ .

Proof. Please refer to the supplement.

This theorem says that the only local minima in
this idealized case are signed shift truncations of the
ground truth a0, with certain choice of �. Moreover,
on those local minima ā, the minimizing sparse x?

(ā)
correspond to the soft thresholded, oppositely shifted
ground truth x0. The quantity kW ⇤

I WI � Ik measures

4
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the orthogonality of di�erent shifts of a0. In particular,
if a0 is benign enough in the sense that any two di�er-
ent shifts of a0 are uncorrelated, or kW ⇤

I WI � Ik ! 0

for any I , then any nonzero � guarantees the desired
geometry. On the other hand, for a fixed a0, both |I|
and |I| becomes smaller as � increases, therefore the
constraint kW ⇤

I WI � Ik < �
2
/6 is more likely to be

satisfied.
A similar result holds when x0 is separated enough

that copies of the kernel do not overlap. It also holds if
x0 is a long, su�ciently sparse random vector. For ex-
ample, if the entries of x0 satisfy a Bernoulli-Gaussian
distribution x0(i) = ⌦(i)v(i), with ⌦(i) ⇠ Ber(✓)

and v(i) ⇠ N (0, 1), and the probability ✓ diminishes
su�ciently quickly with k.

2.3 Global Geometry on the Simplex
In the application to image deblurring, the blur kernel
is always positive and sums to 1, which naturally leads
to a simplex-constrained optimization problem. How-
ever, the optimization landscape changes drastically
when the convolutional kernel a is constrained to live
on the `1 norm ball. The objective value of the same
objective function over the `1 ball is shown in Figure 2.

Fig. 2: Geometry on the `1 ball: The trivial spike convo-
lutional kernel is the global minimizer, while the ground
truth [1/3, 1/3, 1/3] becomes a local minimizer.

There is a significant di�erence induced by these
two constraints: the trivial spike kernel (a = �)
becomes the global minima and other meaningful solu-
tions become local minima with the `1 norm constraint
[BVG13], while the spherical constraint always renders
local minima close to some signed shift truncation of
the ground truth. This important empirical knowledge
of the structure of the local minima enables us to infer
the ground truth from any local minimizer.

3 A TWO-STAGE ALGORITHM
Inspired by the geometric insight that every local
minimum of the simplified problem b' is a signed shift-
truncation of the ground truth a0, we present a two
stage algorithm for reliable recovery of the ground
truth a0 in this section. In the first stage, the algorithm
recovers some signed shift truncation of the ground
truth, and the following stage infers the ground truth
from this partial recovery.

3.1 Stage I: Find the Signed Shift Truncation

Theorem 2.1 suggests that � needs to be relatively
large to guarantee that all local minimizers of b' are
signed shift truncations of the ground truth. Ignoring
the gap between b' to the original objective ', this
is still not su�cient to guarantee the success of an
optimization algorithm due to the non-di�erentiability
of the `1 regularizer at x?

= 0. Because of this non-
di�erentiability, when � is too large, there is a nonzero
measure set of a where kC⇤

ayk1  � and therefore
x?

(a) = 0. These a are not correlated with any signed
shift truncation of a0 and are the global maxima of '.
The objective function ' is constant over this region, so
there is no way to escape using only local information.

One way to cope with this flat global maxima region
is to replace the nondi�erentiable `1 sparsity penalty
with a di�erentiable one. A natural choice is the huber-
µ function, which can be seen as an `1 penalty but with
a rounded bottom for |xi|  µ:

hµ(x) =
X

|xi|µ

✓
x
2
i

2µ
+

µ

2

◆
+

X

|xi|>µ

|xi| (22)

As we choose µ ⌧ �, the µ-huber function closely
approximates the `1 norm, which still maintaining the
e�ect of “smoothing” the flat region. The flat region
for the `1 penalty objective occurs when x⇤

(a) = 0,
correspondingly we define a region as Rh,0 with small
x⇤

(a) such that

Rh,0 := {a 2 Sk�1
: kx⇤

(a)k1  µ}. (23)

Within the Rh,0 region, the original objective function
can be rewritten into a simpler form:

'hµ(a) =
1
2ky � a ~ xk22 + �

2µkxk
2
2 +

µn
2 , (24)

thus the optimality condition for x⇤ implies

x⇤
(a) =

⇣
C⇤

aCa +
�
µI

⌘�1
C⇤

ay ⇡ µ
�C

⇤
ay. (25)

Plugging x⇤
(a) back to (6) and ignoring the higher

order term O(
µ2

�2 ) yields

'hµ(a) ⇡ � µ
2� ky ~ ak22 +

1
2 kyk

2
2 +

µn
2 . (26)

In this case, minimization of the objective func-
tion 'hµ(a) within the region Rh,0 is equivalent
to finding the maximum eigenvalue of the matrix
◆⇤C⇤

yCy◆ with the corresponding leading eigenvectors
e1(◆⇤C⇤

yCy◆) achieving the local minima. However,

5
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these points can be excluded from Rh,0 by setting
� < minv2e1(◆⇤C⇤

yCy◆)

��C⇤
y◆v

��
1.7

With above modifications, the original flat local
maxima region Rh,0 becomes concave and always have
a direction of negative curvature for the algorithm to
escape Rh,0. Hence, the first stage of the algorithm
can find a signed shift-truncation of the ground truth
ā = ± ◆⇤s⌧ [fa0]

k◆⇤s⌧ [fa0]kF
as desired.

3.2 Stage II: Infer the Ground Truth
The second stage of the algorithm aims to recover
the ground truth from its signed shift truncation ā.
To recover the truncated part, we first put ā in a
higher dimensional sphere by zero padding (Figure
3), and then recover the ground truth a0 on this higher
dimensional sphere. Intuitively, as ā still captures
a considerable portion of the ground truth a0 (the
zero padded ā is close to the shifted a0 in a higher
dimensional space), the zero padded ā serves as a
good initialization. This intuition is made rigorous in
the following lemma:

Lemma 3.1. Let �rel = �/ kx0k1, suppose the ground
truth a0 satisfies

|ha0, ◆s⌧ 6=0 [fa0]i| < �
2
rel �

�
2 + 1/�

2
rel

�q
1� �2rel

for any nonzero shift ⌧ , and x0 is separated enough such
that any two nonzero components are at least 2k entries
away from each other. If initialized at some a 2 Sk�1 that
|ha,a0i| > �rel, a small-stepping projected gradient method
minimizing '(a) recovers the signed ground truth ±a0.

Proof. Please refer to the supplement.

This lemma says when the initial point a is close
enough to the ground truth, the gradient always points
to a0 as long as |ha0, ◆s⌧ 6=0 [fa0]i| is su�ciently small.
Theorem 2.1 suggests that the first stage of the algo-
rithm finds one local minimum ā that |hā,a0i| � �rel.
Hence, the second stage of the algorithm, which
minimizes the same objective function but on a higher
dimensional sphere, recovers the ground truth up to
sign shift ambiguity as desired.

To ensure accurate recovery, it is important to
take the e�ect of � on the function geometry into
consideration. A larger � encourages a sparser x and
induces a simpler and smoother function landscape,
which e�ectively eliminates undesirable local minima

7. A computationally easier upper bound would beq
�1(◆⇤C⇤

yCy◆)

k . Note that in some scenario, there exists a local
minima appearing in either region Rh,0 or Rc

h,0 regardless of
how we set �. Such extreme case happens when the ground truth
convolutional kernel is only supported on a small consecutive
portion of its full size, hence a tight estimate of the kernel size is
preferred.

Fig. 3: Zero Padding a Signed Shift Truncation The orig-
inal signed shift truncation (left) and the corresponding
zero padded one (right).

that are not close to any signed shift truncations, as
shown in Figure 4. On the other hand, a smaller �
emphasizes more on the accurate recovery of the signal,
therefore the global minima of (6) will be closer to the
ground truth when � decreases.
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'(a) over the hemisphere for � = 10�1, 10�3, 10�6.
Here a0 = PS2 [[1, 8, 2]] and x0 ⇠ Ber(.1) � N (0, 1).
The ground truth kernel a0 and its shift-truncations
PS2 [[8, 2, 0]], PS2 [[0, 1, 8]] are shown in red, and sign-
flips PS2 [�[8, 2, 0]], PS2 [�[0, 1, 8]] are shown in magenta.
Notice that each signed shift truncation shown on the
hemisphere is close to a corresponding local minima,
while as the objective landscape becomes less regularized
as � shrinks.

This geometric e�ect induced by � suggests a con-
tinuation method in the second stage of the algorithm.
We start with a relatively big � for smoother function
geometry, which encourages the algorithm to converge
to one meaningful local minimum close to some signed
shift truncation of the ground truth. Then run the same
algorithm with decreasing sequence of � to produce a
finer approximation of the ground truth. The overall
algorithm is described in Algorithm 1.

We need to note that solving a = argmin'�(a) in
Algorithm 1 involves iteration between (i) finding the
marginalization over x⇤

(a) step, and (ii) updating a
based on the gradient/Hessian of '�(a). This could
be very computationally consuming, a more e�cient
variant would be to optimize over the cross space of a
and x together. The corresponding algorithm can be
easily adapted to fit into the same general framework.
The only things we want to emphasize in the proposed
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Algorithm 1 Nonconvex Sparse Blind Deconvolution
Ensure: Observation data y, regularization parameter
�0 and �min, continuation parameter � > 1.
Solve a(0)

= argmin'�0(a) on Sk�1 with random
initialization;
Set �1 = �0, zero pad a(0) to a(1) 2 Sk0�18;
while �t > �min do

Solve a(t+1)
= argmin'�t(a) on Sk0�1 with

initialization a(i);
�t+1 = �t/�.

end while

algorithm are the dimension lifting of the sphere and
the continuation of �.

4 FURTHER EXTENSIONS
In this section, we extend our algorithm to handle two
other deconvolution problems of practical interests: im-
age deblurring and convolutional dictionary learning.
The proposed two stage algorithm can be modified and
applied to these more complicated applications.

4.1 Image Deblurring
Image deblurring aims to recover a sharp natural image
from its blurred observation due to unknown photo-
graphic processes such as camera shake or defocus.
Although the natural images are not necessarily sparse,
it is widely acknowledged that their gradients are
approximately sparse. Let y = a0 ~ x0 denote the
observed blurry image, which is the convolution of the
original sharp image x0 and the blurring kernel a0.
Because of the linearity of the convolution operator, the
gradient of the blurred image equals the convolution
of the kernel and gradient of the original sharp image,
which is usually sparse as desired

rxy = a0 ~rxx0, ryy = a0 ~ryx0. (27)

Here, rx and ry denote derivatives in the x and y

directions. In this application, rxx0 and ryx0 are
the underlying sparse signals, and the blind image
deblurring problem can be cast as solving:

min
a2Sk�1

+ ,x1,x2

n
1
2krxy � a ~ x1k22 + �r(x1) (28)

+
1
2kryy � a ~ x2k22 + �r(x2)

o
.

Here, Sk�1
+ denotes the intersection of the unit sphere

and the positive orthant. In this application, the non-
negativity of the blurring kernel removes the sign ambi-
guity. We observe in experiments that local minimizers
are all near some shift truncation of the ground truth
kernel. The same two stage algorithm can therefore be
applied to infer the ground truth.

4.2 Convolutional Dictionary Learning
Convolutional dictionary learning (CDL) is an important
problem in machine learning for images, speeches, as
well as scientific problems like microscopy data analysis
and neural spike sorting. The observation signal y is
the superposition of convolutions of N pairs of kernels
a0n and corresponding coe�cients x0n:

y =
PN

n=1a0n ~ x0n. (29)

Blind deconvolution can be seen as a special case of
CDL with N = 1. If the coe�cients x0n are sparse, a
natural way to extend our knowledge of SBD would
be to assume all N convolutional kernels having unit
Frobenius norm and cast it as minimizing following
objective function over the product of N spheres:

min
an2Sk�1

min
xn

1
2ky �

PN
n=1an ~ xnk22 + �

PN
n=1r(xn).

(30)
We anticipate that all the local minima are near signed
shift truncations of the ground truth, provided the
target kernels a0n are su�ciently diverse. The modified
two stage algorithm still manages to capture the partial
information o�ered by local minima and hence recovers
the ground truth. Experimental results are provided in
Section 5.4 to corroborate this claim.

5 EXPERIMENTS
In this section, we investigate the performance of
our algorithm on both synthetic and real data. We
first report a systematic investigation, performed in
[CLC+17], of the performance of our algorithm on
synthetic data, which are designed to mimic properties
of the microscopy data analysis problem. In Sections
5.2-5.4, we present experiment results showing how
our method performs on real data from microscopy
and image deblurring.

5.1 Evaluation on Synthetic Data
Noise-free data: we generate the noise-free observation
signal of size m = 256⇥ 256 through circular convolu-
tion between a kernel of size k and a random underly-
ing activation signal with a Bernoulli distribution with
sparsity ✓, i.e. xi

i.i.d.⇠ Ber(✓), or x ⇠ Ber(✓). We plot
the kernel recovery error for varying kernel size k and
sparsity level ✓ in the left of Figure 5 [CLC+17]. Each
point on the diagram is the average of 20 independent
measurements. The algorithm performs excellently
in the blue regions, but begins to fail in the red
regions, where either the kernel size is large or the
underlying activation signal is dense. The region where
typical STM measurements are performed are bounded
below by the white dashed line, where the proposed
algorithm achieves satisfying performance.
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Fig. 5: Recovery accuracy [CLC+17]. Left: phase transition diagram from noise-free simulated results. Right:
performance of algorithm 1 in the presence of additive noise in the measurement; the error increases for small
✓ due to a lack of samples, whereas extremely large ✓ leads to algorithmic failure.

Noisy data: we generate convolutional signals by con-
volving fixed kernel of dimension k, k/m = 0.14 with
the random activation map x ⇠ Ber(✓) of dimension
m, and applying additive Gaussian noise. We test the
performance of our algorithm for varying sparsity ✓
and noise power. The result is shown in Figure 5 (right):
the algorithm achieves noise-robust recovery when the
sparsity constraint is satisfied.

5.2 Microscopy Data Analysis
We apply our algorithm on experimental microscopy
data obtained from a NaFeCoAs sample. Our results
shown in Figure 6 indicate that the proposed algorithm
manages to recover the missing details of the ripples
in the Fourier domain of the defect, which encode the
physical scattering processes of electrons at work.

Fig. 6: STM Data Analysis. From left to right: the
microscopy images, extracted convolutional kernels (defect
patterns), and their respective Fourier magnitude images.

5.3 Image Deblurring
We test our algorithm on the image deblurring dataset
from [LWDF11], solving (29) to recover the convolu-
tional kernel. To clearly separate the inaccuracy of the
algorithm and the universal blurring kernel model, all
the experiments are done on three kinds of blurred

images: (i) synthetic blurred images generated by the
convolution of sharp images and blurry kernels; (ii)
noisy blurred images generated by adding Gaussian
noise to the clean synthetic blurred images (SNR=100);
and (iii) real blurry images taken with camera shakes
[LWDF11].

We compare with algorithms by Zhang et
al. [ZWZ13], Krishnan et al. [KTF11], Sun et al.
[SCWH13], and Liu et al. [LCM14].9 Because of
the shift ambiguity, we evaluate the accuracy of
the recovered blurring kernel considering all possi-
ble shifts. The kernel recovery error is defined as
min⌧ k◆⇤s⌧ [ea] / kak1 � a0/ ka0k1kF , and the cumula-
tive distribution is shown in Figure 7.

We use the same non-blind deblurring algorithm
from [KF09], with the same parameter. We consider
the blurred image using the ground truth kernel to
be the bench mark, and evaluate the quality of the
deblurred image by calculating the Frobenius norm of
its di�erence to such bench mark. Results are shown
are in Figure 8.

Our algorithm achieves better convolutional kernel
recovery for all three types of images, but its improve-
ment on deblurred image is less obvious, especially for
real images. This could be due to (i) the convolutional
kernel in this dataset is not strictly uniform across the
image, and (ii) the non-blind deconvolution algorithm
exploits the heavy-tailed distribution of a natural
image’s gradient and becomes less sensitive to the
accuracy of the recovered convolutional kernel.

9. We use the default parameters for these algorithms. It’s
possible that better performance could be obtained by tuning the
parameters more carefully. In our algorithm, we fix the �’s to be
0.1, 0.01, 0.001, 0.001 for all the instances.
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Fig. 7: Blur Kernel Recovery Error: Cumulative distributions of recovered blur kernel error from synthetic (left),
noised (middle), and real (right) blurry images.

Fig. 8: Non-blind Restoration Error: Cumulative distributions of deblurred image error from synthetic (left), noised
(middle), and real (right) blurry images.

5.4 Convolutional Dictionary Learning
We show results of recovering multiple convolutional
kernels on both synthetic data (Figure 9) and real
STM data (Figure 10). In the synthetic data, the three
convolutional kernels are of size 16 ⇥ 16 and their
corresponding activation signals are generated through
a Bernoulli model of sparsity 0.005. Results of both
stages of the algorithm are shown in Figure 9: the first
stage returns kernels close to some shift truncations of
the ground truth, and the second stage recovers the
ground truth on a higher dimensional space.
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Fig. 9: Multi Kernel Blind Deconvolution on Synthetic
Data: Input image (left) and the recovered convolutional
kernels of Stage I and Stage II of the algorithm (right).

We repeat this experiment with microscopy data ob-
tained from a NaFeAs sample. The algorithm manages
to di�erentiate the two convolutional kernels (defect

patterns), as shown in Figure 10. For this material, the
kernel orientations depend on the history of the mate-
rial (stress, temperature, etc.), and using convolutional
dictionary learning can be used to automatically detect
these features.

Fig. 10: Multi Kernel Blind Deconvolution on Real STM
Image: Input image (left) and recovered convolutional
kernels and their corresponding activation signals (right).

6 GENERALIZATIONS: MATCHING LOSS AND
CONSTRAINTS

In the Lasso-like objective function studied in this
paper, the approximation error of y � a ~ x are
measured in the squared Frobenius norm (or entry-
wise `2 norm), which is usually adopted to penalize
gaussian addictive noise in the observation. To obtain
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reliable solutions, a spherical constraint on the short
kernel turned out to be crucial. Moreover, several theo-
retical papers [ZKW18], [KZLW18] studying variations
of the Lasso-like objective function also adopt the
unit Frobenius constraint, and show that the claimed
geometry continues to hold under much more general
conditions. However, noise could be more complicated
and does not always satisfy the gaussian model in real
applications. If given prior knowledge of the noise,
other penalties for the loss term y � a ~ x could be
preferable. For example, ky � a ~ xkpp with p < 2

performs better to penalize heavy tailed noise, and
ky � a ~ xkpp with p > 2 performs better control on
the magnitude of the noise.

In this section, we briefly discuss the following
more general formulation for the short-and-sparse
deconvolution problem

min  p(a,x)
.
=

1
p ky � a ~ xkpp + �r k·k1 (31)

s. t. kakq = 1.

Similarly, we write 'p(a)
.
= minx  p(a,x). In this

case, we use entrywise `p norm to measure the approx-
imation error of a ~ x, and assume the optimization
constraint for a to be a unit `q (2 < q < 1) sphere.
Comprehensive study of the function landscape of
above general formulation is even more challenging.
However, we can demonstrate that once p = q, there
exist local solutions that share the same geometric
property (a local optimum is close to some scaled
shifted truncation) through local analysis. As in the
objective optimization problem (6), the inherent shift
ambiguity leads to these structured local minimizers.
Because of the randomness in x0, the derived results
hold for more general x0.

Lemma 6.1. Suppose y = a0 ~ x0 with x0 = e0, and
p = q � 2. Then for any shift ⌧ , positive scalar " and
� such that at every a 2 Sq \ B

⇣
◆⇤s�⌧ [a0]

k◆⇤s�⌧ [a0]kq
, "

⌘
the

solution x⇤
(a)

.
= argminx  p(a,x) is (i) unique and (ii)

is supported on the ⌧ -th entry, the point ā .
=

◆⇤s�⌧ [a0]
k◆⇤s�⌧ [a0]kq

is
a strict local minimizer of the cost 'p(a) over the manifold
kakp = 1.

Proof. Please refer to the supplement.

This lemma says that as long as the constraint matches
the loss, i.e., we choose q = p � 2, a scaled shift
truncation ā = ◆⇤s�⌧ [a0] / k◆⇤s�⌧ [a0]kq achieves
the local minimum. In contrast, when the constraint
does not match the loss, i.e., q 6= p, this property is
not satisfied: the Riemannian gradient vanishes at a
stationary point a, which satisfies

sign (◆⇤s�⌧ [fa0]� ↵a) = sign (a) , (32)

and

(◆⇤s�⌧ [fa0]� ↵a)�(p�1)
= ↵

0a�(q�1)
, (33)

with ↵0 denoting another non-zero scalar of arbitrary
value. This point is not a shift truncation of the ground
truth.10

Hence, when the constraint matches the loss, there
is good local geometry. In this paper, we have empir-
ically demonstrated that when p = q = 2, there is
good global geometry, under appropriate conditions.
We can potentially leverage this property to find global
solutions to the general `p (p � 2) problem: one first
minimizes `2 to obtain a point near the ground truth
and then locally minimizes 'p over an `p ball to obtain
an estimate that uses the statistical characteristics of
the noise.

Although our analysis only pertains to q � 2, we
believe that there is good local geometry even when
q < 2. In this situation, the constraint set is no longer
twice di�erentiable and the shift truncations are always
on the non-smooth region of the constraint set. As the
p decrease, the normal cone at the nonsmooth points
gets wider. For example, if q � 2 the normal cone is
the normal direction. Therefore, as q decreases, the
normal cone is larger and hence more like to contain
the gradient direction, then this shift truncation is likely
to be a stationary point.

7 DISCUSSIONS

This work studies the global geometry of a nonconvex
optimization problem for SBD when the kernel is
assumed to have unit Frobenius norm. In this setting,
we find that all the local minima are benign, in the
sense that they are close to some signed shift truncation
of the ground truth. With this insight, we propose a
two stage algorithm that recovers the ground truth by
exploiting the information hidden in local minima.

This problem reveals the challenges faced when
analyzing the SBD problem via a geometrical approach.
For problems enjoying stronger symmetry properties
[SQW17a], [SQW17b], similar approaches yield a global
understanding of the function geometry and recovery
guarantees. We expect that the weak symmetries in
SBD make a major contribution to the di�culties
encountered for this problem.

There are lots of additional further directions could
be of great interests for both theory and application:

10. When p 6= q, (32) can be rewritten as ↵a = ◆⇤s�⌧ [fa0] +

↵0a
� q�1

p�1 . With the stationary condition for x⇤(a), we have ↵a !
◆⇤s�⌧ [fa0] as � ! 0. Algorithmically, this helps to explain why
practical algorithms solving (31) with p 6= q can sometimes
recover the kernel, where a careful continuation in � is always
necessary.
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Our empirical results show that the our characteriza-
tion of local minima carries through to the convolu-
tional dictionary learning problem, which can also be
e�ciently solved by slight adaptation of the proposed
algorithm. However, the theory part is open, it would
be interesting to know how many kinds of kernels,
or what kinds of kernels are recoverable, probably by
some measures of incoherence, which is a common
assumption in dictionary learning problem.

Two other imperfections we encounter in scientific
measurement are resolution limit and measurement
error, which inspire us to consider (i) if it’s possible
to integrate blind deconvolution and super-resolution
process together; (ii) if we can come up with a robust
blind deconvolution algorithm to automatically rule
out noisy entries.
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