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Engaging Middle and High School Students in Hypothesis 
Generation using a Citizen Scientist Network of Air Quality Sensors 

1 Introduction 

Polluted air afflicts 90% of the world’s population and contributes to 7 million premature deaths 
every year [1]. Salt Lake City, Utah periodically experiences some of the worst air quality in 
the nation [2], yet is sparsely instrumented and subject to lengthy update intervals of one or more 
hours until this air-quality information is publicly available. To provide more finely resolved 
spatial and temporal air-quality data, we have deployed a low-cost sensor network and 
accompanying website [3] for improving public awareness. This network has generated a 
large corpus of fine particulate matter (PM2.5) measurements that reveal how PM2.5 
concentrations evolve over time and space. Building on prior educational outreach and citizen 
science exercises [4], we explore an interactive, team-based teaching module using local real-
world data. This teaching module’s goal is to engage students in generating and testing hypotheses 
while also encouraging citizen use of real-time air quality data for their own interests, such as 
exploration, science fair projects, or environmental oversight. 

We have piloted this module with over 500 students across 8 local high schools in various 
chemistry, engineering, environmental science, and physics classrooms. Structured around a data 
analysis exercise with local air quality data, the module helps guide students through creating 
and testing hypotheses about air quality under various conditions. The module also incorporates 
fundamental analysis tasks, such as loading and plotting data in a spreadsheet program to build 
students’ familiarity with basic data analysis techniques. Using pre- and post-survey responses, 

Figure 1: Salt Lake City Valley-wide air quality model of PM2.5

concentrations, 7/4/18 



this work seeks to evaluate how a guided, team-based outreach module impacts students’ ability 
to generate and test hypotheses, perceptions of outdoor air quality, sense of engagement with a 
data analysis exercise, and overall success of incorporating publicly available local data from 
distributed sensor networks into their curriculum. In addition, over half of the visited schools had 
an underrepresented enrollment exceeding 50% of the student body (according to state statistics),
and all but two surpassed the state average of 25%. Consequently, this module helped introduce 
traditionally underrepresented students in STEM to distributed data collection, interpolation, 
modeling, and visualization concepts used for generating community-scale air quality models.  

Classroom activities were designed around helping improve students’ analytical competency 
through interpreting local PM2.5 measurements. Preliminary results showed this module to be 
highly engaging, and effective for improving students’ awareness of air quality’s geospatial and 
temporal variations during a variety of pollution episodes. Survey results also showed this 
module was effective at introducing hypothesis generation and testing techniques. All classrooms 
reported wanting to host the module again and having plans to incorporate their local air quality 
data into future activities and assignments. 

2 Background 

Citizen science enlists the public to participate in data collection across an array of locations and 
time spans, and has contributed to scientific discoveries in a variety of fields from bird watching 
to environmental oversight [5]. Research involving citizen science has also grown within 
scientific literature, as evidenced by an increased discussion of citizen science in peer reviewed 
articles [6]. Despite its growth, relatively few citizen science projects have focused on 
engineering disciplines [6, 7]. Prior citizen science efforts have developed curricula for low-cost, 
air-quality sensors in schools [8] and a recent study enabled citizen scientists to monitor and 
report unlawful air quality emissions from local industry [9]. One challenge integrating air 
quality measurement with citizen science initiatives is over sensors’ perceived “black box” 
operation, with citizen scientists having little understanding of how these sensors function [10]. 
While prior outreach has helped expose the inner workings of sensor hardware, specifically 
highlighting key operational principles and design trade-offs [4], this teaching module helps 
students reason about the larger sensing infrastructure. Through interactive presentations and 
guided activities, students get a glimpse of how raw, multi-sensor air-quality data are 
incorporated within simulation models to provide data in locations without sensor coverage. 
Though there are analytical limits to what the general public can do on their own, statistical and 
computational tools are being developed to assist citizens in analyzing these complex data sets 
[11]. 

This work attempts to involve students in hypothesis generation and testing, in order to engage 
the higher cognitive domains of Bloom’s taxonomy. Through the outreach activity, students are 
taught how to interact with vast amounts of data of concern to their communities and use it to 
support their conclusion about various air quality events. 



3 Study Design 

This teaching module pairs an interactive classroom presentation with guided, hands-on 
activities. Our aims with this module are to (a) generate interest in STEM fields using an 
environmental problem that students experience in their everyday lives; (b) help students use 
real-world data for developing and testing hypotheses about a pressing local and national 
challenge: air quality; (c) promote citizen use of real-time air quality data for their own
interests, such as data exploration, science fair projects, and environmental oversight; and (d) 
introduce students to new STEM concepts such as distributed data collection, interpolation, 
modeling, and visualization. 

3.1 AQ&U Infrastructure 

The AQ&U infrastructure provides public access to data from its air quality sensing network and 
supports citizen scientist participation. A primary goal of this infrastructure is to provide dense, 
spatiotemporal estimates of air quality to researchers and the general public. Our teaching 
module utilizes this infrastructure to help students gain a better understanding of distributed 
collection of real-world data for developing and testing hypotheses. The AQ&U infrastructure 
integrates measurements from the Utah Division of Air Quality (DAQ) (2 gold-standard 
measurements) and over 100 citizen- and school-hosted PM2.5 sensors. Dynamic data-fusion 
algorithms and visualization techniques process these data streams to provide highly resolved 
PM2.5 concentration information to the public facing AQ&U website (Figure 2(b)). 

Individual air-quality events possess different measurement signal characteristics. For instance, 
PM2.5 levels during winter cold air pools tend to exhibit consistency in time, whereas summer 
events (fires, fireworks) change more rapidly. We therefore utilize a moving window including 
several days’ worth of data to generate estimates of PM2.5 within the modeling domain. The low-
cost PM2.5 sensor 1 measurements are also seasonally corrected using factors derived from co-

1 Plantower PMS sensor: http://www.plantower.com/en/list/?118 1.html 

Figure 2: Websites used in our classroom activities. (a) AQ&U Explorer: View air quality 
model simulations. (b) AQ&U website: Public-facing interface for viewing real-time air 
quality measurements. 



located reference measurements and applied to a classical Gaussian process model for computing 
spatiotemporal regression. [12, 13]. 

These results are translated into contours (Figure 3(b)) using standard plotting techniques from 
Matplotlib [14]. The visualization encodes the contours using a color map based on the EPA air 
quality index color scheme, subdividing each of the EPA categories into three ranges in order to 
provide more resolved concentration information. These divisions differentiate it slightly from 
EPA’s health-related color scheme, which is based on 24-hr average pollutant concentrations. 

3.2 Outreach 

The air quality teaching module adopts a student-led approach [15] and engages chemical 
engineering undergraduates who give classroom presentations that introduce core concepts 
including PM2.5 health impacts, sources, and geographical variation. Students learn about point- 
and area-sources of PM2.5 pollution, motivating the concept of spatiotemporal variations in air 
quality over a region. Using an analogy to image resolution, undergraduate facilitators discuss 
how more sensors can provide a “clearer image” of air quality variability, and underscores the 
importance of sensor distribution to accurately capture this information. 

Students are then shown the AQ&U website illustrating how this information can be used in 
practice (Figure 2(b)). Students use this site to explore individual air quality measurements from 
specific locations before being asked how they might characterize the air quality of the entire 
instrumented region. 

Measurement interpolation and contour plots (Figure 3) are motivated by way of analogy to 
topographic hiking maps and weather data. Students are then shown a second interactive tool, 
the AQ&U Explorer (Figure 2(a)), and use this to play air quality model output generated from 
the distributed sensor network measurements. The AQ&U Explorer lets users select between 
four air quality events effecting the entire Salt Lake City Valley: 4th of July fireworks,

Figure 3: Interpolating sensor measurements and simulation output contour plot. (a) 
Interpolation in two dimensions [16]. (b) Still frame from air quality model output. 



regional wildfires, a persistent cold air pool (also known as an ”inversion”), and a dust storm. 
This tool incorporates valley-wide sensor output to generate and display an air quality model as a 
color-coded contour plot. Simulation output illustrates how the underlying measurements change 
over space and time to highlight air quality’s variability. For each air quality event, students can 
choose from five underlying sensor distributions: All deployed monitors, a 50% deployment 
(“sparse”), the northeast or southwest quadrants, and “DAQ-only” sensors, which are official 
government measurements from the Division of Air Quality. Viewing model differences from 
different sensor distributions helps illustrate the importance of sensor density and placement. 

Students use this interface to complete a guided exercise for analyzing separate air quality events 
to consider strengths and weaknesses of the air-quality model estimates related to sensor 
technology, sensor location, and sensor density. 

3.3 Guided group activities 

After familiarizing themselves with the visualization interface, students form groups of three to 
five to analyze separate types of air quality events, focusing on how air quality measurements 
vary over space and time for each event. Figure 4 gives snapshots of the animations that student 
teams may view on the AQ&U Explorer interface to develop expertise on different air quality 
events. As can be seen, each type of event has different characteristic behaviors in the valley 
regarding timing, and location (particularly elevation). For instance, fireworks tend to affect 
areas without fireworks restrictions and last briefly, whereas inversions tend to pool and slosh in 

Figure 4: Example events which student teams may observe in animated form to develop 

expertise on the characteristics of each AQ event type. 



the valley and last 
significant time. 
Furthermore, students 
can detect both the 
benefits and limitations 
of such a sensor 
network when 
compared to the 
existing DAQ stations. 
For instance, in Figure 4 
it can be seen that the 
low-cost sensors, while 
generating more 
resolution during 
inversions and wildfire, 
have a difficult time 
detecting the large 
particles common in dust storms. 

Individual teams then take turns presenting their analysis to the rest of the class, which then 
collectively consider how the data from low-cost sensors compares to the more accurate (but 
more sparse) government monitoring stations. Students also discuss socioeconomic factors, such 
as locations of communities that are predominantly affected by poor air quality, the underlying 
sensor distribution, and how they may be related. 

After this exercise, teams shuffle and reform so that there is an ‘expert’ from each prior air 
quality event in the new group. Together this team tries to classify a mystery data set as one of 
the previous four air quality scenarios. Student groups receive three unique sensor data streams 
from locations in the valley with the goal of hypothesizing which air quality event was captured. 
Students may also be asked to determine the possible locations of their sensor (e.g. in the lower 
elevation suburbs, downtown, on the foothills, etc.).  

Students download air quality datasets through the AQ&U API and plot these measurements in a 
spreadsheet program. Data properties such as measurement values and time stamps are compared 
to the simulation output to help discern the captured events, while individual sensor responses 
can help localize the sensor’s position. Figure 5 shows a replicated example of typical student 
work from this section of the module. Analysis of the downloaded csv file also allows students to 
get some practice using Google Sheets or MS Excel. In this example, both the 4th of July occurs 
with fireworks and it is followed immediately the next day by a wild fire. Through observations 
of the plots they generate, student teams are meant to come to conclusions about event type and 
sensor locations. 

Table 1: Classroom Visit Timeline. If a 50 min class period is not 
available, the items in orange may be removed to fit into a smaller 
portion of a class period. 

Activity Time (min) 
Introduction to air quality science and sensor 
networks 

5 

Familiarization with visualization interface 5 
Group air quality event analysis 5 
Group presentation on unique event types 10 
Shuffle groups - 
Familiarization with network API for data 
download 

5 

Group mystery data set analysis 10 
Group presentation and discussion of hypothesis & 
evidence 

10 



In addition to engaging students’ 
hypothesis generation and 
evaluation process, this activity 
is also meant to familiarize 
students with the AQ&U API, 
with the aim being to allow them 
to use the interface and historical 
data for individual projects. 

A timeline of an example 
classroom visit is shown in Table 
1. If less than a 50-minute class 
time is available, this module 
may be shortened by only going 
up to the first student team 
presentation. 

3.4 Teaching module surveys 

Pre- and post-module surveys are 
distributed to the classroom 
teachers before and after the air 
quality teaching module, 
respectively. These surveys collect self-reported data on teachers’ expectations for hosting the 
module, along with their appraisal of student’s analytical abilities, experience with data analysis, 
hypothesis generation, visualization, and overall air quality awareness. Post-surveys are issued 1 
to 2 weeks after a site visit to gauge the teaching module’s effectiveness relative to the teacher’s 
expectations. These surveys also assess the instructor’s perception of students’ understanding 
and engagement of the exercise (Figure 6). 

4 Results and discussion 

To date, our outreach team has visited 8 schools and 22 classes, and has reached over 540 
students. Table 2 outlines each of the school and classroom demographics. Nine teachers to our 
pre- and post-surveys.  

Pre-survey results (not plotted) indicate that both AP and non-AP teachers are strongly interested 
in hosting the teaching module. However, AP teachers rank the following motivational goals as 
higher importance than non-AP teachers: gaining a better understanding of how location affects 
air quality, learning how to use spreadsheets, and satisfying learning objectives of the class. 
Post-survey results begin to highlight the module’s most effective parts. Based on the survey, 
100% of teachers strongly agreed that they would use the module again in their classroom. This 
feedback in particular suggests that the module was of value to the teachers and the knowledge 
gained by the students was worth the time dedicated to the module. Furthermore, all teachers 

Figure 5: Replicated example of student analysis of 
mystery air quality event.  There are two main peaks: 
the first due to fireworks and the second due to 
wildfires. The data shows how the relative location to 
the pollution event causes different concentration 
readings. The students would use this data and 
knowledge gained from previous parts of the module to 
determine what pollution events are happening and 
where the sensors are likely located. 



either agreed or strongly agreed that this module was effective at integrating with their class 
objectives.  

The post-survey not only highlighted the effective parts of the module, it also exposed the current 
flaws. One of the larger gaps in the module was the effectiveness of explaining how pollution 
varies by elevation, location, and over the course of the day. Questions 5 and 6 (Figure 6) suggest 
that students understood that pollution varies over the course of the day although they were less 
clear about the effects of location and elevation.   

The open-ended response portion of the post-survey provided additional insight into these trends. 
Feedback on the module’s most effective aspects included its ability to pair data analysis tools 
with real-world data. All post-survey responses indicated that some aspect of the visualizations 
were the most engaging component of the module, whether exploring how fireworks impact 
local air quality or observing the variation of pollution levels in different neighborhoods. One 
teacher claimed that the most effective aspect of the module was “Connecting engineering with 
real world problems students can relate to.” Feedback like this shows the module is effectively 
conveying engineering aspects to the students.  

Several teachers and our student outreach team suggested the following improvements: allowing 
75 minutes per class rather than 50 minutes, organizing the high school students into teams of 
two rather than four so that each student has a chance at analyzing data, and pairing in-class 
activities with an accompanying take-home assignment for reinforcing key concepts. Lastly, 
teachers and team members reported the highest student engagement with the fireworks and 
inversion datasets, which captured the largest air quality impacts over Salt Lake City Salt Lake 
City. Students’ interest in this module underscores how incorporating local and personally 
meaningful data in outreach programs can help foster and maintain student engagement. 

Table 2: Teaching module site visit statistics. 
School 

ID 
Course 

Curriculum # of Students Minority 
Enrollment (%) 

Student 
Age 

HS1 Intro to Engineering 12 51 14-18
HS2A Env. Science (AP) 25 66 16 
HS2B Env. Science (AP) 25 66 16 
HS2C Env. Science (AP) 25 66 16 
HS3 Env. Science (AP) 5 15 17 

HS4 Physics 173 9 16 
E1 Gifted and Talented 7 7 11-12
HS5 Physics 236 - 16 
HS6 Chemistry 27 46 15-17



Conclusion and future work 

This project develops, pilot tests, and performs a preliminary evaluation of an interactive, team-
based teaching module incorporating locally significant, real-world data collected though a 
citizen-hosted network of air-quality sensors. The goal of this teaching module is to engage 
students in hypothesis generation and evaluation, and to encourage citizen use of real-time air 
quality data. We have piloted this module to over 500 students at 9 local high school classrooms. 
Preliminary survey results suggest that the most effective aspects of this module are the engaging 
visualizations and the use of real-world data to generate and test hypotheses.  

The feedback from teachers and outreach students suggest several improvements. 

Figure 6: Module feedback from post-survey results. 



 Encourage greater student engagement through smaller group sizes.
 Developing a follow-up assignment to reinforce core ideas behind the teaching module.
 Have students download PM2.5 concentrations from the DAQ and our co-located sensor

through the API, and compare the PM2.5 concentrations by calculating accuracy, error,
and noise.

A follow-up assignment is being developed that will assess the students’ knowledge of the core 
ideas behind the teaching module. The assignment will contain questions that focus on the 
hypotheses generated, the impacts elevation has on air quality, how contour plots are generated 
and so on. As the module is refined, we will continue to visit classrooms and perform evaluations 
with an expectation of developing a more rigorously reviewed teaching module. 

Lastly, in response to the COVID-19 virus, most of the country is currently under quarantine and 
many universities and K-12 schools have turned to teaching exclusively online. This has, of 
course, had greatly limited outreach efforts. Our outreach team has had to turn to conducting 
outreach through teleconferencing, and is in the midst of organizing outreach “visits” to virtual 
classrooms. In organizing these efforts, we have, of course, found many of our hands-on teaching 
modules would be inappropriate. However, teaching modules such as the module described in 
this work are ideal for virtual outreach visits. In future work, this module will be used as one of 
the few outreach activities that may be executed under quarantine, while at the same time 
engaging more sophisticated cognitive domains, such as those involved in hypothesis generation 
and testing. Even once this current crisis passes, we envision using such outreach modules to 
conduct virtual outreach “visits” to rural parts of the country. 
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