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ABSTRACT
In the fabrication of artificial soft tissues, novel biomaterials with the required properties are obtained
by appropriately adjusting process parameters during material synthesis. One key step in finding the
desired material is understanding the relationship between the process parameters and the material
properties, and time-course experiments are typically conducted for this purpose. This article proposes
a constrained varying-coefficient modeling method for such data in which expert knowledge is properly
accommodated in the model estimation to make the modeling practically meaningful. The proposed model
has a semiparametric structure and incorporates expert knowledge in the form of constraints on model
coefficients. Estimation algorithms based on a smoothing spline and a weighted smoothing spline are also
provided. Finally, the proposed method is compared with existing methods in a case study and a numerical
study.

ARTICLE HISTORY
Received September 2018
Accepted February 2020

KEYWORDS
Biomaterial fabrication;
Constrained modeling;
Time-course experiment;
Varying-coefficient model;
Weighted smoothing spline

1. Introduction

Soft tissue injury occurs frequently among the elderly, due to the
combination of long-term pressure and the decline of physiolog-
ical functions. Consequently, there is a substantial and increas-
ing demand for soft tissue repair and replacement surgeries
(World Health Organization 2011; Ortman, Velkoff, and Hogan
2014; Parker et al. 2016). Among various treatments for soft
tissue injury, soft tissue grafts are one of the favored treatments
for the long term. However, there is a large gap between the
demand for and the supply of soft tissue grafts due to a shortage
of donations (Weiss et al. 2017). Driven by the need to close this
gap, fabrication of artificial (engineered) soft tissues has become
an emerging research topic.

A key to the success of soft tissue fabrication lies in appro-
priate biomaterials. For given biomaterial types, the use of 3D
printing allows the fabrication of structures with complicated
and customized shapes, such as human tissue for each individual
patient (He, Xue, and Fu 2015). Figure 1 illustrates the concept
of 3D printing for fabricating soft tissue products, using the
meniscus as an example. It begins with acquiring an image of
the tissue by a medical scanner such as computed tomography
(CT) or magnetic resonance imaging (MRI). Then the image is
processed to create a computer-aided design (CAD) model, and
the tissue is printed layer by layer based on the CAD model (Wei
et al. 2015).

To serve the proper functions of natural tissues, the fab-
ricated products need to meet certain requirements. Again,
take an artificial meniscus as an example. It must have certain
mechanical properties when exposed to shear, tension, and
compression forces (Bochynska et al. 2016), since the meniscus
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acts as a cushion for the knee joint to maintain its stability. More-
over, the meniscus is lubricated, so it is necessary to consider
the surface characteristics of the product (Fox, Bedi, and Rodeo
2012). In addition, the biocompatibility of the product is crucial,
as it will be implanted in a human body.

In biomaterial fabrication, satisfactory material properties
depend on the settings of the process parameters (e.g., per-
centages of ingredients, heating temperature). It is important
to understand the relationship between the process parameters
and material properties, or the effect of the process parame-
ters on material properties. Data-driven methods are useful for
modeling such effects, since the fabrication involves a series of
physicochemical mechanisms that are complex or unknown.
This requires data about the material properties that result
from different settings of the process parameters. Also, as the
effect of the process parameters evolves with time, the dynamic
trajectory of the material properties needs to be measured to
characterize the stability of the tissue products, which is critical
for serving their designed functions. Such data are obtained by
conducting time-course experiments as illustrated in the upper
panel of Figure 2, where y is the material property and x is the
process parameter of interest. Within the cost budget, m differ-
ent settings of the process parameter, x1, . . . , xm, are considered.
Under the ith setting, the material is fabricated and values of y at
n time points, denoted as yi

(
tj
)

, i = 1, . . . , m, j = 1, . . . , n, are
measured. The collected data form a two-way table, as shown
in the lower panel of Figure 2. Graphically, they manifest as
multiple time-course curves, each for a setting of the process
parameter.

Several considerations are involved in modeling the data in
Figure 2. First, because the modeling is intended to provide a
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Figure 1. An illustration of 3D printing for fabricating an artificial meniscus.

Figure 2. Data collected in biomaterial experiments, where yi
(

tj
)

is the measurement of the material property for the process parameter value xi and time tj .

better understanding of the complex material fabrication pro-
cess, good interpretability is required. Second, expert or domain
knowledge about the process must be accommodated to make
the estimated model practically meaningful. Finally, the model
must be applicable to a small amount of data, as experiments in
the fabrication of soft tissues are costly and time-consuming.

For the preceding reasons, we adopt a modeling strategy
based on varying-coefficient models (VCMs) (Hastie and Tib-
shirani 1993). The key idea in conventional VCMs is to use a
linear (or nonlinear) function to model the relationship between
the response and the covariates, where the coefficients (includ-
ing the intercept) are nonparametric functions of time. Thus,
they can capture both the complex effects of the covariates and
the dynamics of the effects. With a linear form, these models
are also easy to understand and do not require large samples for
fitting. However, one limitation of conventional VCMs is that
they are not easy to accommodate expert knowledge.

In this work, we propose a constrained VCM method to
model such time-course data as illustrated in Figure 2, with
accommodation of expert knowledge in the biomaterial fabrica-
tion. The proposed model is a linear function of covariates with
semiparametric coefficients. The intercept is a parametric func-
tion of time, and the coefficient of the covariate is a nonpara-
metric function of time. Such a semiparametric model structure

allows expert knowledge to be accommodated in the form of
constraints on the model coefficients. Specifically, knowledge
about the baseline material property is incorporated by speci-
fying an appropriate form for the parametric intercept function,
while knowledge about the effect of the process parameter on
the material property is incorporated by imposing constraints
on the nonparametric coefficient function. For the latter, we
consider a dynamic stability constraint that applies in many
engineering applications. We also develop model estimation
methods based on a smoothing spline and a weighted smooth-
ing spline for the proposed model.

This work makes three contributions. First, it establishes an
interpretable framework for modeling data from time-course
experiments in soft tissue fabrication. The proposed method-
ology can be applied to broader areas, such as biomanufac-
turing, with similar forms of experimental data. It can obtain
a model with good interpretability to help researchers learn
new knowledge about their processes. Second, we develop novel
ways to accommodate different types of engineering expert
knowledge on data analytics for better interpretation and pre-
diction. Finally, the use of a weighted smoothing spline in the
proposed method provides a new and convenient way to impose
constraints in nonparametric function estimation. Smoothing
splines are known to be sensitive to large random errors/outliers
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in real observations. By imposing constraints through a weight-
ing scheme, we can regulate the smoothing spline fitting and
make it satisfy various requirements for specific applications.

The remainder of this article is organized as follows. Sec-
tion 2 reviews the related literature. Section 3 describes the
proposed modeling method and explains the underlying idea.
Section 4 presents the model estimation algorithms. Section 5
applies the proposed method to a dataset from artificial menis-
cus fabrication and compares its interpretability and prediction
performance with those of existing methods. Section 6 provides
a numerical example to illustrate the advantage of accommo-
dating expert knowledge in statistical modeling. Section 7 con-
cludes this study and discusses future work.

2. Literature Review

The form of the time-course data in Figure 2 is similar to
the longitudinal/panel data that are popular in economics,
social sciences, and medical literature (Islam 1995; Hsiao 2003).
There are three relevant modeling approaches in the literature.
(1) Marginal or population-averaged models assume that the
response (the biomaterial property in our problem) is a linear
model of covariates (the process parameters for biomaterial
fabrication) through some link function (Verbeke et al. 2008).
Some studies use a nonparametric intercept to improve model
flexibility (Zeger and Diggle 1994). The effects of covariates
on the response are represented by their coefficients, but the
dynamics of the effects are often not captured. Moreover, an
adequate link function may not be available in practice to
characterize the complex effects of covariates. (2) Mixed-effect
models use a linear function to model the relationship of the
response and covariates with random effects for quantifying
the randomness between samples (Laird and Ware 1982). They
are often used for panel data from individuals, such as patients
in a medical study, where between-individual variation is of
interest. However, this is not the case in this study. (3) Transition
models account for the time dependence of the response using
Markov models (Verbeke et al. 2008). The effect of a covariate is
separated into two parts, as represented by its coefficient in the
regression component of the model and by the influence of past
values of the response on its present value. Such an approach
is not applicable for our problem since biomaterial fabrication
requires a direct characterization of the effect of the process
parameters.

Imposing constraints in statistical modeling has recently
been studied. For example, the recently developed shape-
constrained generalized additive model (SCAM) can incorpo-
rate shape constraints such as monotonicity (Pya and Wood
2015). A constrained hierarchical model has been proposed for
modeling the degradation of biomaterials, with monotonicity
and concavity constraints incorporated in the model (Zeng,
Deng, and Yang 2016). Several studies have developed con-
strained Gaussian process modeling, in which shape and other
types of constraints such as bound and censoring are considered
(Lin and Dunson 2014; Wang and Berger 2016; Lenk and Choi
2017; Zeng, Deng, and Yang 2018). Splines with a nonnegativity
constraint have been used for analyzing the wake effect in wind
turbine power generation (Hwangbo, Johnson, and Ding 2018).

The present work considers a dynamic stability constraint on the
effect of process parameters that has not yet been considered in
the literature.

3. The Proposed Model

Let y be the measurement of the biomaterial property of interest
(e.g., toughness or viscosity), x the value of a process parameter
(e.g., the percentage of a certain ingredient or temperature) in
biomaterial fabrication, and t the time. We consider the VCM

y (t) = β0 (t) + β1 (t) x + ε (t) , ε(t) ∼ N
(
0, σ 2

ε

)
, (1)

where β0(t; θ) is a parametric function with parameter θ and
β1(t) is a nonparametric function.

Here ε(t) is a Gaussian white noise process that represents the
overall effect of measurement errors and other random errors
in the fabrication. The error term is assumed to be normally
distributed with mean 0 and a constant variance σ 2

ε . β0(t) is the
intercept, and β1(t) is the coefficient of the process parameter.

The proposed model in Equation (1) follows the spirit of
conventional VCMs, which allow the coefficients to evolve with
time to capture the dynamics of the effect of a process parameter.
It has a linear structure with respect to the process parameter,
and thus a large number of different settings of the process
parameter are not required for learning the model. This is espe-
cially useful for the application we consider, where only a limited
number of settings are affordable in experimental studies. The
linear structure is also easy to interpret. These aspects of the
model make it suitable for the data in Figure 2.

The core of the proposed model lies in the coefficients β0(t)
and β1(t), which need good interpretations and provide a foun-
dation for accommodating expert knowledge. Specifically, the
intercept term β0(t) represents the material property under the
null setting of the process parameter (i.e., x = 0), or the baseline
material property. We consider a parametric function of time
for β0(t) since the baseline material property is often relatively
straightforward with abundant domain knowledge (Murphy,
Black, and Hastings 2016), including physiochemical models of
the material and historical data on the material characterization.
The slope term β1(t) represents the effect of the process param-
eter on the material property. In general, this effect is complex,
and there is little available knowledge about it, especially in new
fabricated biomaterials. Therefore, we assume that β1(t) is a
nonparametric function of time.

The above setup makes it convenient to incorporate different
types of expert knowledge in the form of constraints on the two
coefficients. Specifically, expert knowledge about the baseline
material property can be incorporated by constraining the form
of β0(t) (e.g., specifying a certain parametric form for β0(t)),
and knowledge about the effect of the process parameter can
be incorporated by imposing constraints on the nonparametric
fitting of β1(t). Examples of such constraints are sign constraints
(e.g., the effect must be positive) and shape constraints (e.g., the
effect must be monotonically nondecreasing over time).

The idea of expert knowledge accommodation is illustrated
in Figure 3 with a simple example. The observed data are shown
in the left panel of the figure, and the coefficients and fitted
values are shown in the right panel. Assume that we have the
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Figure 3. The idea of expert knowledge accommodation in the proposed modeling method.

following expert knowledge: under the baseline setting, the
material property approximately linearly increases over time,
and the effect of the process parameter is monotonically non-
decreasing over time. Accordingly, β0(t) is modeled as a linear
function of time, while β1(t) is a nonparametric function of time
with a monotonicity constraint. The modeling is expected to
produce a good fit to the observed data and estimates of the
two coefficients that reveal the baseline material property and
the effect of the process parameter on the material property, as
shown in the right panel of Figure 3.

4. Model Estimation

Suppose that the time-course data contain m settings of the pro-
cess parameter, x1, x2,. . ., xm, and measurements of the material
property at n time points for each setting. Using i to index the
process settings and j to index the time points, the matrix form
of the proposed model can be written as

Y
(
tj
) = β0

(
tj
)

1m×1 + β1
(
tj
)

X + ε
(
tj
)

, j = 1, . . . , n, (2)
where Y(tj) = (y1

(
tj
)

, . . . , ym(tj))′, 1m×1 = (1, . . . , 1)′, X =
(x1, . . . , xm)′, and ε

(
tj
) = (ε1

(
tj
)

, . . . , εm(tj))′.
For the model estimation, we consider the following two

scenarios.

Scenario 1. There is only expert knowledge about the base-
line material property. In this scenario, the parametric form of
β0(t; θ) is determined by the expert knowledge about the base-
line material property, and β1(t) takes a general nonparametric
form. A method to estimate the parameter θ of β0(t) and β1(t)
is described in Section 4.1.

Scenario 2. There is expert knowledge about both the baseline
material property and the effect of the process parameter. In
this scenario, in addition to the parametric form of β0(t; θ)

determined by the expert knowledge about the baseline material
property, some constraints are imposed on the nonparametric
form of β1(t) to reflect the expert knowledge about the effect of
the process parameter on the material property. In particular, we
will investigate a dynamic stability constraint that is a character-
istic feature of biomaterials and also a common phenomenon in
many engineering applications. Section 4.2 describes how this
constraint is imposed in the estimation of β1(t).

4.1. Estimation Under Scenario 1

In this scenario, we consider a smoothing spline as the nonpara-
metric function for β1(t), since the process parameter usually
has a continuous smooth effect over time. Thus, the model
estimation can be written as(

θ̂∗, β̂∗
1 (t)

)
= arg min

θ ,β1(t)

m∑
i=1

n∑
j=1

{[
yi

(
tj
) − β0

(
tj; θ

) − xiβ1
(
tj
)]2

}

+ λ

∫
β

′′
1 (t) dt, (3)

where λ is a smoothing parameter. As there are two unknowns—
the parametric component θ (and β0(t; θ)) and the nonpara-
metric component β1(t)—the estimation will follow an iterative
scheme in a similar fashion to the generalized semiparametric
VCMs (Qi, Sun, and Gilbert 2017). To differentiate it from the
constrained estimate of β1(t) in Scenario 2, we will refer to β̂∗

1 (t)
as the unconstrained estimate of β1(t).

Figure 4 depicts the idea of the iterative estimation proce-
dure. The estimation has two building blocks: the estimation of
β1(t) by the smoothing spline and the estimation of θ by the
parametric function fitting. The estimation begins by assigning
an initial value to θ . Given the value of θ (and thus β0(t; θ)),
an estimate of β1(t) is obtained by fitting the adjusted part,
{Y

(
tj
) − β0

(
tj; θ̂

)
Im×1, j = 1, . . . , n}, using the smoothing

spline. Similarly, given the estimate of β1(t), an estimate of θ

is obtained by fitting the function β0(t; θ) to the adjusted part,
{Y

(
tj
) − Xβ̂1

(
tj
)

, j = 1, . . . , n}. This process iterates to update
the estimates of θ and β1(t) until θ̂ converges. The steps of this
method are summarized in Algorithm 1 of Appendix A in the
supplementary materials.

More specifically, in the estimation of β1 (t) given θ̂ , the
smoothing spline method for conventional VCMs is used
(Eubank et al. 2004). This method gives an analytical solution
for

β̂1 (t) = arg min
β1(t)

m∑
i=1

n∑
j=1

{[̃
yi

(
tj
) − xiβ1

(
tj
)]2

}

+ λ

∫
β

′′
1 (t) dt, (4)
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Figure 4. An illustration of the model estimation under Scenario 1.

where ỹi
(
tj
) = yi

(
tj
) − β0

(
tj; θ̂

)
. The objective function in

Equation (4) contains two parts: the residual sum of squares
(RSS), which represents the goodness of fit, and the penalty
for non-smoothness, which is controlled by the smoothing
parameter λ. A number of methods for automatic smoothing
parameter selection are available in the literature, including
prediction-based methods such as cross-validation (Wahba and
Wold 1975), generalized cross-validation (GCV) (Craven and
Wahba, 1978), Mallow’s Cp (Wakefield 2013), and the improved
Akaike information criterion (Hurvich, Simonoff, and Tsai
1998); likelihood-based methods such as maximum likelihood
(Anderssen and Bloomfield 1974), generalized maximum
likelihood (Wahba 1985), and restricted maximum likelihood
(Wood 2011); and risk-based methods (Lee 2003). In our study,
we use GCV for the smoothing parameter selection, as it is
widely used in the VCMs literature (e.g., Eubank et al. 2004).

The estimation of θ given β̂1(t) is a nonlinear (linear if
β0(t; θ) is linear) least-squares curve fitting problem

θ̂ = arg min
θ

m∑
i=1

n∑
j=1

(
ri

(
tj
) − β0

(
tj; θ

))2 , (5)

where ri
(
tj
) = yi

(
tj
) − xiβ̂1

(
tj
)
. Optimization problem (5) can

be solved by either the trust-region-reflective algorithm (Moré
1978) or the Levenberg–Marquardt algorithm (Coleman and Li
1996).

4.2. Estimation Under Scenario 2

Dynamic stability means that the material property approaches
an equilibrium state as time passes. In biomaterial fabrication, it
is common expert knowledge that the material property under
each setting of the process parameter will stabilize over time,
which implies that the effect of the process parameter β1(t) will
converge to a constant. Note that the data-driven approach may
not follow such an underlying mechanism, since it relies on data
to reveal the pattern of the observed data. The smoothing spline
method used in Section 4.1 could thus fit the experimental data
well, but might not produce a β̂1(t) with the desired shape,
especially when the data suffer from large random errors and/or
outliers, which often happens in biomaterial experiments.

To address this challenge, we consider a constrained smooth-
ing spline for the estimation of β1(t) that incorporates dynamic
stability as a constraint, as follows:

β̂1 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arg min
β1(t)

m∑
i=1

n∑
j=1

{[
yi

(
tj
) − β0

(
tj; θ̂∗) − xiβ1

(
tj
)]2

}
+λ

∫
β

′′
1 (t) dt

s.t. β1 (t) converges as t → ∞
,

(6)

where θ̂∗ is the estimate of θ obtained from the unconstrained
scenario in Section 4.1. Here θ is treated as a known plug-in
parameter, considering that in general, the parametric function
(i.e., β0(t; θ)) fitting is not as flexible as the nonparametric
fitting. If θ is treated as an unknown under the constrained
scenario, it can be difficult to find an estimate of θ that both fits
β0(t; θ) adequately and satisfies the constraint. Thus, it is better
to obtain the estimate of θ under the simpler unconstrained
scenario and then apply the flexible nonparametric fitting of
β1(t) to the adjusted data, yi (t) − β0

(
t; θ̂∗).

Note that the formulation in Equation (6) is not easy to
solve, because the constraint is rather implicit and nonlinear. It
might be thought that the dynamic stability constraint can be
integrated in the objective function in a penalty form similar
to the non-smoothness penalty. However, the non-smoothness
penalty is a global constraint that applies for the entire time
span of β1(t), while the dynamic instability penalty is local and
only used in the tail part of the function. It would be complex
to implement this penalty, including defining the tail of β1(t)
and solving the resultant optimization problem for parameter
estimation.

To circumvent this difficulty, we consider a weighted smooth-
ing spline method and adjust the weights appropriately so that
the estimate β̂1(t) converges over time. The reasoning here
is to allow more bias at some points through the weighting
scheme, forcing the resultant estimate to satisfy the constraint.
Specifically, we use the following weighted smoothing spline to
obtain β̂1(t):

β̂1 (t) = arg min
β1(t)

m∑
i=1

n∑
j=1

wij
{[

yi
(
tj
) − β0

(
tj; θ̂∗) − xiβ1

(
tj
)]2

}

+ λ

∫
β

′′
1 (t)dt, (7)

where wij is the weight given to the squared error under the
ith setting at time tj, i = 1, . . . , m, j = 1, . . . , n. If all the
weights are equal to 1, the weighted smoothing spline reduces to
a smoothing spline, and if a weight wij is less than 1, more bias
is allowed in fitting the corresponding data point. The closed-
form solution of Equation (7) and details of the derivation can
be found in Appendix B in the supplementary materials.

It should be mentioned that the weighted smoothing spline
in the literature is usually used for improving the local perfor-
mance of curve fitting. That is, weights are assigned to either
the squared error term or the smoothness penalty term in
Equation (4) to reduce bias in a region with large local variation
(Maria and Malva 2005; Davies and Meise 2008). Our use of the
weighted smoothing spline in the present work has an opposite
purpose: allowing tolerable bias in the fitting when local vari-
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Figure 5. The proposed method to incorporate the dynamic stability constraint in the estimation of β1(t).

ation is large to make the estimate β̂1(t) satisfy the dynamic
stability constraint.

Based on the weighted smoothing spline in Equation (7),
a satisfactory estimate of β1(t) for the constrained estimation
problem in Equation (6) is found through an iterative search.
The idea is illustrated in Figure 5. Basically, the constrained
estimate of β1(t) in the right panel is obtained by correcting the
unconstrained estimate β̂∗

1 (t) in the left panel so that the result-
ing estimate exhibits converging behavior during the period
[t∗, tn] (later called the converging stage), where t∗, 0 < t∗≤tn,
is the starting time point. Specifically, starting with β̂∗

1 (t), we
update the weights wij in Equation (7) and iteratively obtain a
new estimate β̂1(t) from the weighted smoothing spline. The
convergence performance of the estimate from each iteration is
assessed. This will produce a number of estimates for β1(t) and
their corresponding convergence assessments before the stop-
ping condition is met, and the one that has the best convergence
performance will be selected as the constrained estimate of
β1(t). The steps of this method are summarized in Algorithm 2
of Appendix C in the supplementary materials.

We use Cβ̂1
= ∫ tn

t∗ |β̂ ′
1(t)|dt to assess the convergence perfor-

mance of the estimate β̂1(t). Obviously, a smaller value of Cβ̂1

indicates better convergence performance for β̂1(t). As shown
in Appendix B of the supplementary materials, β̂1(t) is a natural
cubic spline, and thus β̂

′
1(t) can be computed using the natural

cubic basis functions and their estimated coefficients.
The weight updating is to improve the convergence perfor-

mance of β̂1(t). Here we propose an updating method based on
the current fitting performance:

wij = min1≤i′≤m,a≤j′≤n
∣∣ri′j′

∣∣∣∣rij
∣∣ , i = 1, . . . , m, j = a, . . . , n,

(8)

where rij = yi
(
tj
) − ŷi

(
tj
)

is the residual of the current fitting,
a is the time index corresponding to the starting time t∗ of the
converging stage, and wij = 1 for j < a. The idea here is similar
to that of robust regression (Rousseeuw 1987). If there exist any
observations with large random errors or outliers, those points
are given small weights. Thus, large bias is allowed in fitting
them—or, in other words, they will have little influence on the
estimation. Since those points are, as mentioned previously, the
major cause for non-convergence, this is expected to improve
the convergence performance of β̂1(t).

Implementing the estimation method proposed in Figure 5
requires solving three other related issues. First, the dynamic

stability constraint should be imposed on the converging stage
[t∗, tn] in the constrained estimation. There is usually no knowl-
edge about the starting time t∗ of the converging stage, and
it needs to be automatically estimated from the data. Second,
in addition to good converging behavior, the constrained esti-
mation should also ensure acceptable fitting accuracy. Note
that the weights in the weighted smoothing spline vary from
iteration to iteration, which means that the fitting accuracy can
also vary, and the resultant estimate may not have satisfactory
accuracy. We check the fitting accuracy in each iteration and end
the search when it becomes unacceptable. Finally, appropriate
values should be selected for the tuning parameters. Details of
how to solve these issues are presented next.

4.2.1. Estimating the Starting Time t∗ of the Converging
Stage

The reverse cumulative average, that is, the cumulative average
starting from the last time point, is often used to reveal the
trend of a time-course data stream (Yang, Bitetti-Putzer, and
Karplus 2004). Following this idea, for a single time-course
stream from the i th setting, i = 1, . . . , m, we can calculate the
difference between yi(tj), j = 1, . . . , n, and its corresponding
reverse cumulative average, denoted as Dj(i). The converging
stage of this single stream can then be obtained by finding the
time point at which Dj(i) starts to become small. For multiple
streams under the m settings, we can take the median of all Dj(i),
i = 1, . . . , m, denoted as Dj. To determine the magnitude of the
Dj that signals converging, we can compare it to hσ̂ , where h
is a prespecified positive value (e.g., 1) and σ̂ is the estimated
standard deviation of the data.

Formally, the procedure to find the estimate of t∗ consists of
the following steps.

Step 1. At each time point tj, calculate the differences between
the observations and their corresponding reverse cumulative
averages and compute median:

Dj = median
i

⎧⎨
⎩ 1

n − j + 1

n∑
s=j

yi (ts) − yi
(
tj
)

: i = 1, . . . , m

⎫⎬
⎭ ,

j = 1, . . . , n.
Step 2. Estimate the variance σ 2 of the data:

σ̂ = median
i

{̂σi : i = 1, . . . , m} ,

where σ̂i = 1.48√
2 median

{∣∣yi
(
tj
) − yi

(
tj−1

)∣∣ : j = 2, . . . , n
}

is
the robust variance estimate for the data under each setting
(Davies and Meise 2008).
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Figure 6. An example of finding the starting time point for the converging stage.

Step 3. In the sequence {D1, D2, . . . , Dn}, find the longest sub-
sequence { Da, Da+1, . . . , Dn}, a ∈ {1, . . . , n}, that is bounded by
±hσ̂ . Then ta is the estimate of t∗.

Figure 6 provides an example with m = 3 settings and n = 25
time points to illustrate the above procedure. Intuitively, when
convergence behavior is present, the Dj’s are small, as shown in
the right panel. hσ̂ is used as the threshold to decide whether the
sequence is small enough to signal converging. The width of the
signaling region depends on the value of h; a larger value of h
tolerates more random errors. In the example given in Figure 6,
h = 1 is used. The 16th time point is selected as the estimate of
t∗, and thus the converging stage is [t16, tn].

4.2.2. Ensuring Acceptable Fitting Accuracy
In some studies (e.g., Davies and Meise 2008), fitting accuracy
is controlled by specifying a nonparametric confidence region
based on residuals, and the fitting lying in the region is selected.
Inspired by this idea, we can guarantee fitting accuracy by defin-
ing a region of acceptable accuracy (RAA) for the fitted values
ŷi

(
tj
) = β0

(
t; θ̂∗) + xiβ̂1

(
tj
)

, i = 1, . . . , m, j = 1, . . . , n. The
width of the RAA depends on one’s tolerance of fitting accuracy.
Intuitively, if the width → ∞, fitting accuracy is completely
ignored in the constrained estimation, while the narrower the
width, the higher the accuracy requirement. A reasonable choice
of the RAA is the confidence interval based on the observed data

Aα = yi(tj) ± t1− α
2 ,n−1 × σ̂√

n
, (9)

where α is a tuning parameter to control the width of Aα and
σ̂ is the estimated standard deviation of the data obtained in
Step 2 of the procedure in Section 4.2.1. The tuning parameter α

follows the rule for selecting the significance level for confidence
intervals; some common values are 0.001, 0.01, and 0.05.

Aα will be used for the stopping condition in the search
for the constrained estimate of β1(t). Specifically, the iteration
process will stop when the number of fitted values falling out-
side Aα increases. As the search starts with the unconstrained
estimate β̂∗

1 (t), this means that the fitting accuracy of the con-
strained estimate should not be considerably worse than the
fitting when the convergence constraint is not considered. It
should be pointed out that the RAA can also be viewed as
a quantification of uncertainty in the constrained estimation,
because it gives a bound for the resulting fitted values.

4.2.3. Selecting Tuning Parameters
The proposed constrained estimation involves two tuning
parameters: λ in Equation (7), which controls the smoothness
level of β̂1(t), and α in Equation (9), which controls the width

of the acceptable accuracy region. For λ, the non-smoothness
penalty is a global constraint that should be established before
the local dynamic stability constraint is imposed. Thus, the
optimal value of λ obtained by GCV in Section 4.1 will be
used in the constrained scenario to maintain the same level of
smoothness as in the unconstrained scenario. A smaller value of
α corresponds to a tighter region of acceptable accuracy, which
requires a larger number of iterations in the estimation. We use
a moderate value α = 0.01 in the case study to avoid too long a
searching time while achieving a reasonably good level of fitting
accuracy.

5. Case Study

In this section, we apply the proposed method described in
Sections 3 and 4 to a real dataset for 3D printing of menisci.
The dataset comes from the fabrication of a novel biomaterial
called calcium-alginate/polyacrylamide (CA/PAAm) double-
network (DN) hydrogel (Wang et al. 2015). Hydrogel is a
popular class of materials constructed by a network of polymer
chains. The CA/PAAm-DN hydrogel contains two networks: the
alginate/polyacrylamide (A/PAAm) network and the network
formed by calcium. With this special structure, the CA/PAAm-
DN hydrogel has good shape fidelity with mechanical properties
similar to those of a natural meniscus and is hence a promising
material for 3D printing of menisci. One key step in synthesizing
this type of hydrogel is to immerse the single-network A/PAAm
hydrogel in a CaCl2 solution to build the second network
through Ca2+ in the solution. The concentration of the
CaCl2 solution is a critical process parameter in this step
that determines the properties of the resulting hydrogel. One
property of interest is swelling, that is, a change in the volume
of the hydrogel, which is important for the geometric fidelity of
the 3D printed meniscus. Thus, experiments are conducted to
explore how the concentration of the CaCl2 solution affects the
swelling behavior of the hydrogel.

Details of the case study are reported in the following sub-
sections. Section 5.1 introduces the data used in the case study
and the preprocessing. Section 5.2 describes the available expert
knowledge about the baseline swelling behavior of the hydro-
gel material and the effect of the process parameter on the
swelling. Section 5.3 presents the results of the model estimation
using the proposed method without and with considering the
expert knowledge about the effect of the process parameter.
Section 5.4 compares the fitting and prediction performance of
the proposed method to those of several existing methods. The
data used and the R code can be found in the supplementary
materials.
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Figure 7. Hydrogel swelling data used in the case study: original (left) and scaled (right).

5.1. Data and Preprocessing

The CA/PAAm-DN hydrogel is made into cylinder-shaped
samples under four values of the weight concentration of the
CaCl2 solution: 4%, 6%, 8%, and 10%. The diameters of the
samples are recorded initially and then measured at 16 time
points during a 10-day period. The original data collected from
the experiment are displayed in the left panel of Figure 7, with
the portions after two days shown in the small plot. We scaled
these data by the initial diameter to eliminate the unit effect, so
the response used in the modeling is the volumetric swelling
ratio rather than the absolute measure of the diameter. The
transformed data are displayed in the right panel of Figure 7,
where the small plot shows a more detailed view of the data
arranged by the time index (i.e., 1st time point, …, 16th time
point). We will fit the transformed data using the proposed
model in Equation (1). Here y is the volumetric swelling ratio
of the fabricated material, x is the weight concentration of the
CaCl2 solution, m = 4, and n = 16.

5.2. Available Expert Knowledge

In the proposed model, the intercept β0(t) represents the
swelling behavior of the material when the concentration of
the CaCl2 solution is 0% (i.e., when deionized water is used in
the material fabrication). In this case, the resulting material is
a regular type, single-network hydrogel. β1(t) represents the
effect of the concentration of the CaCl2 solution on the swelling
behavior of the material. Expert knowledge about these two
quantities exists and is described below.

Regarding the swelling behavior of regular hydrogels (i.e., the
baseline swelling behavior of the fabricated material), previous
research has found that the volume swelling ratio is proportional
to the mass swelling ratio, and the mass swelling ratio has a typ-
ical behavior pattern that is monotonically nondecreasing and
gradually flattens out as time passes (Ehrenhofer, Elstner, and
Wallmersperger 2018). In some of the literature, exponential
functions are used to fit the mass swelling ratio of various types
of hydrogels (Sadeghi and Hosseinzadeh 2013; Slaughter et al.
2015). Thus, we assume that β0(t) has the parametric form:

β0 (t; θ) = θ1(1 − θ2·e−θ3t), (10)

which is characterized by the three parameters θ = [θ1, θ2, θ3].
The parameters have good physical interpretations: θ1 rep-
resents the plateau of the equilibrium volume swelling ratio
(i.e., the converged value of the volume swelling ratio), and
θ2 and θ3 together indicate the rate of increase of the volume
swelling ratio before equilibrium is reached (Steiner et al.
2016).

Because the CA/PAAm-DN hydrogel is a new material under
development, there exists little understanding in the literature
regarding the effect of the CaCl2 concentration on hydrogel
swelling. Based on the experimental data in the right panel of
Figure 8, a rough impression is that higher concentration leads
to a smaller swelling ratio. In other words, the concentration
seems to have a negative effect on the swelling. But domain
knowledge to support this is lacking. The dynamics of the effect
are also unknown; it may monotonically increase or decrease
with time or oscillate in a complex way. Hence, we cannot
constrain the sign/shape of β1(t), and it needs to be learned
from the data. The only knowledge we have is that β1(t) will
converge with time. As can be seen from the trend of the data,
the swelling of each hydrogel sample will finally reach a plateau,
and thus the effect of the process parameter will converge to a
constant.

5.3. Model Estimation

We first obtain the estimate of β0(t) using the method described
in Section 4.1 (Algorithm 1) and then the estimate of β1(t) with
the dynamic stability constraint using the method described
in Section 4.2 (Algorithm 2). The parameter setting in the
estimation and the results are presented below.

5.3.1. Estimation of β0 (t)
The initial values of the parameters are set to be θ (0) =
[θ(0)

1 , θ(0)
2 , θ(0)

3 ] = [1, 0.5, 1]. The algorithm stops after 11
iterations and yields θ̂ = [1.28, 0.21, 0.12]. Figure 8 shows
the updating process of the parameter estimation (the 1-norm
of θ̂

(k) − θ̂
(k−1), where k is the iteration index, is plotted for

convenience) and the resulting estimate of β0(t). As expected
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Figure 8. Estimation of β0(t): updating (left) and the resulting estimate of β0(t) (right).

Figure 9. Regions of acceptable accuracy under the four settings of the process parameter.

based on the aforementioned expert knowledge, the estimated
β0(t) is nondecreasing and flattens out after approximately 40 hr.

5.3.2. Estimation of β1(t)
From the results of Algorithm 1, we have the initial (uncon-
strained) estimate β̂

(0)
1 (t) = β̂∗

1 (t) . To impose the dynamic
stability constraint, we first determine the starting point t∗ of the
converging stage using the procedure given in Section 4.2.1. The
standard deviation of the data is estimated to be σ̂ = 0.0137,
and h = 1 is used. The starting point is found to be t∗ = t12 =
72 hr. Then we obtain the region of acceptable accuracy using
Equation (9), with α = 0.01. The regions associated with the
four settings of the process parameter are shown in Figure 9.
In each plot, the solid marks connected by solid lines represent
the observed values, the hollow marks connected by dash lines
represent the fitted values, and the gray lines are the upper and
lower bounds of the RAA.

Using Algorithm 2, we obtain the constrained β̂1(t) with Cβ̂1
= 0.0574, which has a higher degree of convergence than the

unconstrained estimate β̂∗
1 (t) with Cβ̂∗

1
= 0.1184. The two esti-

mates are shown in the left panel of Figure 10, for comparison.
It is clear that the constrained estimate is more stable in the tail
part. Compared to β̂0(t) shown in the right panel of Figure 8,
the estimated β1(t) has a complex shape during the period
t = [0, 50], indicating that the effect of the CaCl2 concentration
oscillates in the early stage. This is understandable, because the
hydrogel swelling is known to be affected by multiple forces
(e.g., shrinkable elastic energy, swelling osmotic energy) that
compete before a balance is reached (Wang et al. 2015). Another
important finding is that the effect of the CaCl2 concentra-
tion is negative, that is, a higher CaCl2concentration tends to
shrink the volume of the hydrogel. These findings are useful to
researchers studying 3D printing of menisci for understanding
the swelling behavior of the novel CA/PAAm-DN hydrogel.

Based on the estimate of β0(t) in Figure 8 and the constrained
estimate of β1(t) in the left panel of Figure 10, we obtain the
fitted values of the original data on the volume swelling ratio;
these are displayed in the right panel of Figure 10. The model
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Figure 10. Estimate of β1(t) with and without the dynamic stability constraint (left) and fitted values to the original data (right).

Figure 11. Estimates of β0(t) and β1 (t) from conventional VCM, the proposed model, and SCAM with monotonic β0(t).

fitting of the data reaches a sum of squared residuals of 0.0032.
The largest fitting error occurs at the point x = 6, t = 27
hr, and is only 1.5% of the actual measurement. The residuals
(not shown here) are randomly around zero and appear similar
for the four settings of the process parameter, which validates
the constant variance assumption regarding random errors in
Equation (1).

5.4. Comparison With Existing Methods

We compare the proposed model with two existing VCMs: the
conventional VCM and the SCAM mentioned in Section 2. For
these two methods, both β0(t) and β1(t) are nonparametric
functions, except that SCAM can impose shape constraints.
They are fitted using the scam package in R. The estimated
β0(t) and β1(t) of the three methods are given in Figure 11. For
the conventional VCM, it can be seen that the nonparametric
estimate of β0(t) is jagged, with several local peaks before t =
60 hr, and the estimate of β1(t) has humps in the later stage.
Compared to their counterparts in the proposed model, the
estimates for the conventional VCM are difficult to interpret and
not consistent with expert knowledge.

For the SCAM, we impose a monotonicity constraint on
β0(t), since it is known that β0(t) is nondecreasing over time
based on expert knowledge about the baseline swelling prop-
erty of hydrogels. In the results for the SCAM, the estimate of
β0(t) has a simple, interpretable shape similar to that of the

proposed model, meaning that the monotonicity constraint on
β0(t) is helpful. On the other hand, the estimate of β1(t) is
over-simplistic. Although the dynamic stability in the later stage
is satisfactory, the oscillation in the early stage is completely
masked, which is neither consistent with the expert knowledge
nor informative in terms of revealing the subtle details of the
swelling behavior.

We also compare the prediction performance of the three
models. Due to the limited available data, we assess their predic-
tion performance by leave-one-out cross-validation (LOOCV).
Specifically, the data at the jth time point, j = 1, . . . , n, are used
as the test data (of size m), and the remaining data are used as
the training data (of size m×(n−1)). We first fit the model using
the training data and then predict the responses in the test data.
The prediction performance at each data point is measured by
the relative prediction error, that is, |yi(tj)−̂yi(tj)|

yi(tj)
.

Figure 12 shows the prediction performance of the pro-
posed model and the SCAM (the conventional VCM has similar
results, so it is omitted here). Generally speaking, the prediction
errors of both models are small (within 4%), indicating good
prediction accuracy. Thus, the proposed model has a prediction
performance comparable to the two existing VCMs with both
β0(t) and β1(t) being nonparametric. Although the original
motivation for the proposed model was to enhance model inter-
pretability (by accommodating expert knowledge), it can be
seen in Figure 12 that the proposed model also performs well



TECHNOMETRICS 11

Figure 12. Prediction performance of the proposed model and the SCAM.

in prediction and is comparable to the more flexible VCMs in
this respect.

Note that the proposed model performs consistently better
in prediction than the SCAM in the later stage, from t10 to
t16, thanks to the dynamic stability constraint. In addition, the
predictions at t1 are actually extrapolations, as they are made
based on data at t2, . . . , t16. The proposed model has better
performance in this case as well, which can be explained by
its full accommodation of available expert knowledge about
the baseline swelling property and the effect of the process
parameter.

6. Numerical Study

To further demonstrate the effectiveness of the proposed
method, this section presents a numerical example. The data
generation model is

Y
(
tj
) = β0

(
tj
) + β1

(
tj
)

X + ε
(
tj
)

, β0(t)

= tθ1 e
−t
θ2 + θ3, β1(t) = φ1t√

φ2 + t2
,

where the parameters for β0(t) are θ1 = 3, θ2 = 1.2, and
θ3 = 1.5, the parameters for β1(t) are φ1 = 5 and φ2 =
0.4, X = [x1, . . . , xm]′ = [0.05, 0.19, 0.36, 0.72, 0.91]′, ε =[
ε1(tj), . . . , εm(tj)

]′ with εi(tj)∼N
(
0, σ 2

ε

)
, and m = 5 with n

observations for each setting of x. To show the sensitivity of the

Figure 13. The simulated dataset with σε = 0.3, n = 30.

results to the quality of the data, we consider three different
levels of noise variance, σε = 0.3, 0.35, 0.4, and sample size,
n = 30, 25, 20.

The simulated data with the best quality, that is, σε = 0.3,
n = 30, are shown in Figure 13. In the figure, the curves are
the true functions of y for each setting of x (i.e., β0(t) + β1(t)xi,
i = 1, . . . , m), and the dots are actual observations. The curves
converge when t gets large, whereas the observations do not
reflect this trend very well due to considerable random errors.
Such a situation is common in biomaterial experiments. We fit
the data using the conventional VCM and the proposed model
with the dynamic stability constraint. There is no obvious shape
requirement in this case, so we do not consider the SCAM. The
computation time using the proposed model averages 4 min,
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Figure 14. Estimates of β0(t) and β1(t) using the conventional VCM and the proposed model with the dynamic stability constraint under different noise levels (n = 30).

and the additional time needed for imposing the dynamic sta-
bility constraint is under 10 sec on a 2.20 GHz processor.

Figure 14 shows the estimation results for the two methods
under the different noise levels, with the sample size n = 30.
We first examine the red dashed curves in the plots, which are
the estimates of the data shown in Figure 13 (i.e., σε = 0.3).
For the conventional VCM, the estimated β0(t) has distinct
deviations from the true curve, and the estimated β1(t) has large
fluctuations in the later stage and deviates substantially from the
true curve. For the proposed model, the estimated β0(t) is close
to the true curve, and the estimated β1(t) exhibits convergence
behavior in the later stage and becomes close to the true curve.
This validates that the use of the dynamic stability constraint in
the estimation of β1(t) can improve the fitting performance and
produce interpretable results consistent with expert knowledge.

Regarding the effect of the noise level, the estimation perfor-
mance of both methods becomes worse when the noise level
increases. Overall, the estimates of the proposed model are
closer to the true curves in all cases. Figure 15 shows the esti-
mation results under different sample sizes, with the noise level
σε = 0.3. Similarly, the estimation performance of both meth-
ods becomes worse when the sample size decreases, and the
proposed model performs better in all cases.

7. Discussion

This study proposes a constrained VCM method to model data
from time-course experiments in the fabrication of artificial soft
tissues. It can accommodate expert knowledge about the base-
line material property and the effect of the process parameter
on the material property. According to both the case study and

the numerical study, the proposed method leads to an estimated
model with good interpretability and accurate prediction per-
formance.

There are several directions for future research. First, it
will be interesting to investigate how to extend the proposed
semiparametric model to the case of multiple covariates. In
this case, the dynamic stability constraint will need to be
imposed on each smoothing component. The mgcv package
in R, which implements GCV optimization with respect to
multiple smoothing parameters, would probably be useful for
this extension. One possibility is to adapt this algorithm to
the penalization approach of the dynamic stability constraint,
that is, integrate this constraint into the objective function as
multiple penalty terms. We plan to conduct future research
along this direction.

Second, in the weighted smoothing spline fitting, we update
weights based on residuals from the previous iteration. Though
Cβ̂1

decreases as the iterations increase in the case study, this
method does not always guarantee such monotonicity. We have
considered other ways to update weights, but they do not appear
to perform as well as the proposed method in terms of the
convergence performance of β̂1(t). We will continue to explore
other methods for updating weights to find one that performs
better than the proposed method.

Finally, this study considers a single constraint in the mod-
eling. A more general scenario in practice is that multiple con-
straints need to be considered simultaneously. For example, a
process parameter may affect the product property of interest
in a monotonic way, with its effect simultaneously also follow-
ing a convergence pattern. In such a case, two constraints—
monotonicity and stability—need to be incorporated, which
is a challenging problem. The problem becomes even more



TECHNOMETRICS 13

Figure 15. Estimates of β0(t) and β1(t) using the conventional VCM and the proposed model with the dynamic stability constraint under different sample sizes ( σε = 0.3).

complex when multiple process parameters are involved. One
can imagine a case where a monotonicity constraint applies to
one process parameter while a stability constraint applies to
another. We will systematically explore these problems in our
future research.

Supplementary Materials

Online supplementary materials for this article include technical proofs,
algorithms, and the data and R code used in the case study and the
numerical study.
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