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Abstract—Transcranial infrared laser stimulation (TILS)
is a promising noninvasive intervention for neurological
diseases. Though some experimental work has been done
to understand the mechanism of TILS, the reported
statistical analysis of data is quite simple and could not
provide a comprehensive picture on the effect of TILS. This
study learns the effect of TILS on hemodynamics of the
human brain from experimental data using longitudinal
data analysis methods. Specifically, repeated measures
analysis of variance (ANOVA\) is first applied to confirm the
significance of the TILS effect and its characteristics.
Based on that, two parametric mixed-effect models and
non-parametric functional mixed-effect model are proposed
to model the population-level performance and individual
variation of this effect. Interpretations on the fitted models
are provided, and comparison of the three proposed
models in terms of fitting and prediction performance is
made to select the best model. According to the selected
model, TILS increases the concentration of oxygenated
hemoglobin in the brain and this effect sustains even after
the treatment stops. Also, there is considerable variation
among individual responses to TILS.

Index Terms— Brain hemodynamics, functional mixed-
effect model, longitudinal data analysis, photobiomodulat-
ion.

|. INTRODUCTION

HOTOBIOMODULATION is a noninvasive intervention

that uses low-level laser to achieve beneficial therapeutic
outcomes [1]. Though photobiomodulation has been applied in
clinical practices for over 40 years for reduction of pain and
inflammation since the first observation of its medical benefits
in 1967, it was recently found to be potentially useful for
various brain disorders and neurological diseases, such as
stroke and Parkinson’s disease [2-4]. From then on, brain
photobiomodulation has gained much attention. One form of
brain photobiomodulation is transcranial infrared laser
stimulation (TILS). Previous studies demonstrated that TILS
can improve cognitive, emotional and executive functions and
reduce depression symptoms [5-8].
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TILS results from photon absorption by cytochrome-c-
oxidase, an enzyme within mitochondria in cells, which triggers
a chain of complex reactions and eventually leads to an increase
in energy metabolism in the brain [9]. Though much preclinical
work has been done to explore the underlying biochemical
mechanism of TILS, its fundamental principle is still not fully
clear so that skepticism about its clinical performance exists
[10]. To understand the mechanism of TILS, Wang et al.
conducted human in vivo experiments quantifying TILS-
triggered changes in cerebral hemodynamics near the
stimulation/treatment site [9]. In their study, hemodynamic
responses were measured at a number of time points during and
after treatment from a placebo group and a TILS group. At each
time point, the mean responses of the two groups were
compared using two-sample t-test. The test results confirmed
that TILS caused significant hemodynamic changes, namely,
increases in oxygenated hemoglobin concentration. Their
simple statistical analysis provides a reliable tool for
establishing the significance of TILS’s population-level
performance. However, the time effect of TILS during and after
treatment was ignored as the t-test was applied to each time
point separately. In addition, only the mean of individual
responses to TILS was considered, while the variation among
individuals, which is critical for assessing the treatment
performance as well, is not clear. The same problems exist in
statistical analysis in other studies of TILS such as those about
cognition [5, 8] and electrophysiology [11] of the human brain.

In this study, we propose to learn the effect of TILS on
hemodynamics of the human brain through longitudinal data
analysis. Our proposed methods model the time effect of TILS
during and after treatment. Also, both the population-level
performance and variation among individuals are considered in
order to learn the individual-level uncertainty as well as the
expected average therapeutic outcome of TILS. Specifically,
three longitudinal data analysis methods are used. First,
repeated measures ANOVA is applied to confirm significance
of the difference caused by TILS over placebo and the time
effect and individual variation of the TILS treatment, as
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motivation to the following modeling. Then two parametric
mixed-effect models are proposed to characterize the
population-level effect of TILS as a function of time and its
individual variation. Furthermore, a non-parametric functional
mixed-effect model is proposed to address problems of the
parametric mixed-effect models. Performance of the models
will be compared and interpretation of the selected model will
be given. The contribution of this study is to provide a set of
useful statistical learning methods for analyzing noisy cerebral
hemodynamic data in photobiomodulation experiments. Those
methods are able to reveal the underlying mechanism of the
treatment effect with quantification of individual variation.

The remainder of this paper is organized as follows. Section
II introduces the photobiomodulation experiment and data.
Section III presents the methods used to analyze the data.
Section 1V shows the model estimation results and compares
the proposed models in fitting and prediction. Section V
concludes this study and discusses its limitations.

Il. EXPERIMENT AND DATA

The data used in this study were collected from the
experiments conducted by Wang et al. [9]. The experimental
setup is shown in Fig. 1(a). A total of 11 healthy participants
with an average age of 31 were recruited from local community.
They underwent two separate experiments: the placebo
treatment on their right forehead, followed by the TILS
treatment on the same location. A 1064-nm continuous wave
laser device was used for both types of treatment. The laser
power was controlled at 3.4 W for the TILS treatment. For the
placebo treatment, the power was tuned down to 0.1 W, and the
laser aperture was further covered by a black cap to ensure that
no laser was delivered to the subject. A single-channel
broadband near-infrared spectroscopy (bb-NIRS) system was
used to measure changes in the concentration of oxygenated
hemoglobin (AHbO) in the brain during the experiments. The
bb-NIRS consists of a tungsten halogen lamp as light source, a
miniature spectrometer as detector, an “I”’-shaped probe holder
to hold two optical fiber bundles connecting to the light source
and detector for acquisition of the experimental data.

Each experiment lasted a period of 15 minutes, as shown in
Fig. 1(b), divided into three stages: pre-treatment (first 2
minutes), treatment (next 8 minutes) and recovery (last 5
minutes). In the pre-treatment stage, neither placebo nor TILS
was applied so that the baseline of oxygenated hemoglobin
(HbO) can be measured for each participant. The treatment
stage consists of eight 1-min cycles, 55-s laser on and 5-s laser
off per cycle. Spectral data were collected during the 5-s laser-
off periods, and then converted to AHbO from the baseline [12].
In the recovery stage, the treatment discontinued but data were
collected following the same format. The participants were
blinded for the placebo and TILS treatments.

Fig. 2 shows the AHbO measurements of the placebo group
and the TILS group. We denote the data using the following
notations. Let yy;; be the AHbO of participant i in group h at

time ¢;, where h = 0 (placebo) or 1 (TILS),i =1, .., Ny, j =
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Fig. 1. (a) Setup of the TILS/placebo treatment experiments and (b)
data acquisition scheme.
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Fig. 2. Data collected from the placebo group and TILS group.

1, ...,n. In this dataset, the two groups have equal number of
participants, N, = N; = 11, and the number of measured time
points in each session is n = 13.

[ll. METHODS
A. Repeated Measures ANOVA

We first test if group (TILS vs. placebo), time and individuals
cause variation in the AHbO measurements before formal, finer
modeling of the TILS effect. If the difference between groups
is negligible, the effectiveness of TILS at the population-level
will be declined. This indicates that modeling the effect of TILS
does not make much sense. Time may also play a role in the
variation of AHbO data. When the time effect is significant, it
means that the effect of TILS is time-varying, and thus it should
be modeled as a function of time. In addition, individual
differences of the participants in their responses to the treatment
may help explain the variation in AHbO too. If this difference



TABLEI
REPEATED MEASURE ANOVA TABLE

Source Degrees of freedom Sum-of-squares Mean sum-of-squares
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Group 1 585 =1 ) NG =3.)? MS = S
h=0
= ss
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* Yt o Ny = N denotes the total number of participants in the experiment.

is significant, it should be taken into account in the modeling.
The above three aspects can be tested all at once using repeated
measures ANOVA [13].

The repeated measures ANOVA is based on the following
point-wise model

Yhij = U+ Ve + T+ 0y + Ty + e ()

where p is the grand mean, y}, is the group effect, 7; is the time
effect, (y7)y; is the interaction effect of group and time, ;)
is the individual difference component for participant i in group
h, and ey;; is the random error. In general, it is assumed that
Tip) and ep,;; are independently normally distributed, ;) ~
N(0,07) , and ey; ~ N(0,0Z) . It is also required that
YheoVn =0, 2747, =0, Xh_o X7 1(yDp; = 0 to make all
effects in the model differentiable [6]. The ANOVA table is
shown in Table 1. Using the data in Fig. 2, the mean sum-of
squares are obtained: MS; = 107.9045 , MS; = 2.1862 ,
MSgr = 2.2242, MSy ;) = 2.1294, and MSE = 0.0585. The
hypothesis tests and results about the three types of effect of
interest in this study are given as follows.

1) Group effect hypothesis test

Hy:vo =v1 =0 vs. H,:not both y, and y, are zeros.

Under Hy, Fy = —=6

follows F distribution with degrees of
MSs(c)

freedom 1 and (N — 2). The computed p-value is smaller than
0.0001 so the null hypothesis is rejected at the typical level of
significance such as 0.05. The test result indicates that the effect
of TILS is significant in this experiment so modeling this effect
is meaningful.
2) Time effect hypothesis test
Hy:ty =+-=1,=0 vs. H:notall of 74, ..., T,, are zeros.

Under Hy, Fy = % follows F distribution with degrees of

freedom (n — 1) and (N — 2)(n — 1). The null hypothesis is
rejected as the p-value is smaller than 0.0001. This indicates
that the value of AHbO depends on time, which suggests to
model the effect of TILS as a function of time. To find out the
source of the rejection, we apply this test to data in the treatment

stage and recovery stage separately. The p-value is smaller than
0.0001 for the treatment stage and 0.586 for the recovery stage,
meaning that the time effect results from the treatment stage.

3) Individual effect hypothesis test

Hy:02=0 vs. Hi:02#0
Under Hy, Fy = % follows F distribution with degrees of
freedom (N —2) and (N—2)(n—1). Again, the null
hypothesis is rejected as the p-value is smaller than 0.0001,
which means that the participants respond to the treatment
differently. This result necessitates the quantification of
individual variation in the TILS effect.

In summary, the above test results motivate us to model the
effect of TILS on the concentration of oxygenated hemoglobin
in the human brain. In the modeling, time should be involved as
the TILS effect is found to be time-varying. The variation of
individual responses should also be taken into account. The
following sections provide two types of models that satisfy the
requirements. Note that only the data of the TILS group (shown
in the lower panel of Fig. 2) will be used in the modeling, and
thus the subscript A will be dropped in the notations hereafter.

B. Parametric Mixed-effect Model

Parametric mixed-effect models is a popular class of models
for longitudinal data analysis [14, 15]. A general parametric
mixed-effect model can be written in the following hierarchical
form [16]

Level-1: y;; = f(tj; Bl-) + e, (2a)
Level-2: 8; = B + u;. (2b)
Here the Level-1 model assumes that y;;, the AHbO of
participant i at time t;, depends on a parametric function f of
time with parameter 8; and random error e;;. €;; is assumed to

follow a normal distribution N(0,62). The Level-2 model
further defines the parameter 8; as combination of a constant f3,
called fixed effect, and a random variable u;, called random
effect. It is assumed that u; ~ N (0, 6.2).



Note that the model in Eq. (2a) is a point-wise model. The
continuous versions of the notations are y;(t), f(¢; 8;), etc.
Intuitively, the responses of participant i at different time points
form a curve y;(t) as shown in Fig. 2. The shape of the curve
is determined by 6; and varies from one participant to another
as clearly seen from the figure. Thus, [ represents the
population-level, or baseline, shape of the curve, while wu;
represents the difference of participant i from the baseline.

Once the form of Leve-1 model is determined, the unknown
parameters ff , o, and o, can be estimated using the
expectation-maximization (EM) algorithm [17] or Bayesian
methods [18]. The EM algorithm is used in this study for
convenience. Then f(t; B) can be interpreted as the population-
level effect of TILS, and 62 represents the individual variation
of the TILS effect. It deserves to mention that the selection of
the Level-1 function f(t; 8) is subjective and often relies on
domain knowledge. Without such knowledge about the TILS
effect, here we propose two specific forms of Eq. (2a) according
to the shape of the average curve in the lower panel of Fig. 2.

1) Model I Based on the increasing trend of the average
curve during the treatment stage, we assume that the Level-1
model has a quadratic form

Level-1: f(t], 01) = Hlitjz + Hzitj + 631’ + el’j’ (33)

01i = B1 + Uy,
Level-2: 10,; = B, + Uy, (3b)
03 = PB5 +us; .

In the Level-1 model, f is a quadratic function of time with
three parameters 8;, 6,;, 85;. When 64; is negative, the curve
of participant i first increases monotonically when 0 <t <

0, . .
_zei and then decreases, and the increase/decrease rate is
1i

controlled by 68;;. All the three parameters contribute to the
highest value that the curve can achieve. In the Level-2 model,
each parameter contains a fixed effect and a random effect
which allows much flexibility to fit individual curves. The
random effects are assumed to be independent and normally
distributed u,; ~ N(0, a,fl),uzl- ~ N(o, ajz),ug,,- ~N(0,07)).
The independence assumption is made for convenience in
estimation and easy interpretation.

2) Model II: Alternatively, it is reasonable to assume that the
baseline response has an exponential trend and achieves a
plateau eventually. The model is of the following form

Level-1: £(5;;8,) = 05 + 05, (1 — e %)) e, (4a)

01 = B1 +wy,
Level-2: 62!' = ﬂz + Uy, (4b)
O3 = B3 + us; -

Fig. 3 shows an illustration of the Level-1 function f(t; @) in
Eq. (4a). It has an increasing trend starting from 8, att; =1
and reaches a plateau of height 6, + 6, when t is large. 6,
reflects the speed of increase before reaching the plateau. The
Level-2 model of Model II is the same as in Model I, where
each parameter contains a fixed effect and a random effect.
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Fig. 3. lllustration of Level-1 model in Model II.

C. Functional Mixed-effect Model

Unlike the parametric mixed-effect model, the functional
mixed-effect model uses a nonparametric approach and is thus
free of selection of function forms [19]. The model (Model 117)
can be written as below

yvij = B(t) + ai(t;) + ey, (5)
where e;; ~ N(0, 02). Here we assume that both f(t) and
a;(t) are smooth functions of time, and thus the estimate 9;(t)
is also a smooth curve. The random errors e;; are independent
among individuals and time points. The random effects
{a;(t), a;(ty), ..., a;(t,)} ~ N(0,Z,). Intuitively,  S(¢t)
represents the population-average curve that tells the overall
trend of the TILS effect, while a;(t) is the individual-specific
deviation from the population curve.

In this study, we model S(t) and a;(t) using smoothing
splines. Specifically, for participant i, the estimates £(t) and
@;(t) balance the fitting accuracy and smoothness by
minimizing a penalized residual sum of squares

{B(t). &i(t)} = argminz;‘:l[yij - ﬁ(tj) — ai(tj)]z
+ 25 J." B (DAt + A [ af ()7de. (6)

In Eq. (6), A3 and A, are smoothness parameters of the curves.
The estimation can be made using the sme algorithm in R [20]
where the two smoothness parameters are selected by the
corrected Akaike Information Criterion (AIC) and the estimates
of B(t) and a;(t) are obtained by EM algorithm.

IV. RESULTS

In this section, we first show the estimation results of the
three proposed models, and then compare them in terms of
fitting and prediction performance. The best model will be
chosen based on the comparison.

A. Model Estimation

/) Model I: The fitted population-average curve (i.e.,
f(t; B), where B = [B,, 5., Bs]), and individual curves (i.e.,
f(t;8,), where 8; = [0,;,0,;,05;]), of Model I are shown in
Fig. 4 with the parameter estimates given in Table 2. The fitted
population-average curve shows an overall increasing trend till
around the 11" minute. The fitted individual curves show
similar trend and match with the data well. According to Table
2, the estimated variances of random effects are considerably
large, indicating that individual variation of the TILS effect is

4



TABLEII
ESTIMATES OF PARAMETERS IN PARAMETRIC MIXED-EFFECT MODELS
Parameter Model T Model IT
By -0.0183 -0.0913
B, 0.4052 2.2300
Bs -0.4181 0.2078
Oy, 0.0103 0.0443
Oy, 0.1857 0.6847
Oy, 0.1340 0.0849
a, 0.1904 0.1990

significant. A corresponding fact is that the shapes of individual
curves in the right panel of Fig. 4 vary a lot from each other.

The interpretation of the fitted Model I is that in general, the
change in oxygenated hemoglobin concentration in the brain
increases as the TILS treatment continues. When the treatment
stops, the change remains increasing and then starts to decrease,
meaning that the effect of TILS lasts but gets weaker with time.

2) Model II: The fitted population-average curve and
individual curves of Model II are shown in Fig. 5. The
population-level effect keeps increasing without reaching a
plateau during the whole experiment period. The fitted
individual curves show similar trend and match with data well.
According to Table 2, the estimates of variance components are
considerably large and similar to those of Model I.

The interpretation of the fitted Model 11 is that the change in
oxygenated hemoglobin concentration keeps increasing during
the treatment stage and recovery stage, meaning that the TILS
effect sustains for quite long time after the treatment stops. This
is a little different from the interpretation of the fitted Model I
where AHDO starts to decrease in the recovery stage. Such a
difference is possible when different model forms are used in
the parametric mixed-effect model.

(a) Population fit

3) Model I11: The estimated population-level effect #(t) and
random effects @;(t) of Model III are given in Fig. 6. In Fig.
6(a), the population-level effect exhibits monotonic increase
during the whole experiment period with a decreasing rate in
the recovery stage. In Fig. 6(c), we could observe that for all
participants, the observed values (black dots) fall close to the
individual fits, which indicates good fitting performance. Also,
the fitted individual curves do not have similar shapes but vary
a lot from each other, which is different from those from
parametric mixed-effect models shown in Figs. 4 and 5. To
provide some intuition on the fitting, Fig. 6(b) shows the
population fit, individual fit and the estimated random effect of
a single participant as an example. It can be seen clearly that the
individual fit (black solid line) is a combination of the
population effect and random effect.

The interpretation of the fitted Model III is that TILS causes
increasing change in the oxygenated hemoglobin concentration
in the brain, and this effect sustains in the recovery stage after
the treatment stops with a weakened rate. The individual
variation among participants is significant as shown in the fitted
individual curves. Especially, their behaviors in the recovery
stage are very different, some keeping increasing, some
reaching a constant, and some going downward.

B. Model Comparison

1) Fitting performance: Table 3 lists the residual sum of
squares and log likelihood of the three models, which measure
how well each model fits the data. It is clear that Model I1I has
the best fitting performance, with the smallest residual sum of
squares and largest log likelihood. This is consistent with the

(b) Individual fit
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visual impression of fitting performance in Figs. 4-6. The two TABLE III
parametric models perform Similarly in ﬁttlng COMPARISON OF FITT.ING PERFORMANCE OF PROPOSED I\'/IOD.ELS
We al mpare the fitted variance patterns of the models Model Residual sum of squares Log kelihood
¢ also compare v p . Model T (Eq. (3)) 4508246 1361531
Let V(y) be the variance of the response AHbO. For parametric Model 1T (Eq. (4)) 4977247 _3.189774
mixed-effect models, the variance is determined by both the Model I1I (Eq. (5)) 3.135987 147.9451
Level-1 model and Level-2 model, and thus the resulting
structure of variance is often complex. Here we derive the Variance fitting
variance of Model I as an example (the variance of Model II is v S Model | -
. . . . . .8 I men i Vi
similar). The variance of AHbO in Model I is below eame . ec.o er:,
V(iy) = Var(f(t; 0)) + Var(e) . . Nw__*;-—i—”""'x
0.4 ek i . .
=¢3 (2031052p(u1,u2)) + t2 (a,fl + 2051053p(u1,u3)) O |
+t (a,fz + 2052053p(u2,u3)) + a5, + dt. 7 2 ool °
: . . § Model Il
In contrast, the variance of Model 111 is determined by the ” e Treatment oce 1 Recovery
random effect a(t) and random error 064 SO . :
' - 8 e L r v s -
V(y) = Var(a(t)) + Var(e). ®) 0.4 e . T .
Fig. 7 shows the variance patterns of data and the fitted models. 021 Lox
Sample variance of all observations at each time point is used ool ¥ "
to represent the variance of data and the fitted variance is Time (min)
obtained baspd on Eqgs. (7)'—(8). Again, Model III performs -X-Fitted ® Sample Variance
much better in fitting the variance pattern of flata. The variance  pio 7 Comparison of fitted variance patterns.
of Model I has a near-linear shape not matching with the data.
2) Prediction performance: Prediction at individual level can
be made based on the estimated fixed effect and random effect 0-207
in the model. If the subject does not have any historical data,
the prediction is just the estimated population value. Here we 0181
compare the prediction performance of Models I, II and III g
through the following cross validation procedure. First, we split % 016
the data into a training set and a testing set. Specifically, the s
testing set is created by randomly selecting N, ; observations E 0.141
from the data (totally 13x11=143 observations), and the
remaining data form the training set. Each model is estimated 0.12
1 5 10 20 30

using the training set and then the estimated model is used to
predict values in the testing set. The performance of prediction
is measured by the mean squared error (MSE), which is the
mean of squared differences between the predicted values and
actual observations. To be robust to sample size in the

Size of testing data

Mode! [[lvoder n[limoder m

Fig. 8. Comparison of prediction performance.




training/testing set and variation in data splitting, five different
sizes of the testing set Ny, = {1,5, 10, 20, 30} are considered,
and given each size, 100 runs are conducted and the average
prediction error is computed. For a specific example, given
Niest = 5, 5 observations are randomly selected from the data
to be the testing set and the remaining 138 observations are the
training set. The MSE of predictions of the testing set based on
the model fitted using the training set will be calculated. This
process will repeat 100 times, and the prediction error for this
Ni.s: value is the average of the 100 MSEs.

The results are shown in Fig. 8. Model III outperforms the
other two models with the smallest prediction error in all
scenarios. Between the two parametric models, Model I
exhibits relatively better prediction performance than Model 11
in most scenarios. To further confirm the conparison results,
two-sample t-tests are conducted between the 100 MSEs of
Model I vs. Model III (Hy: err; < erry;) and Model II vs.
Model Il (Hy: err;; < erry,;) given each size of testing data.
All the p-values are smaller than 0.05, which validates that
Model III performs better than Model I and Model I1.

C. Selected Model

Based on the above comparison, the functional mixed-effect
model is selected as it has the best fitting and prediction
performance. The estimated Model III in Fig. 6 suggests that
the change in oxygenated hemoglobin concentration increases
as time goes on and sustains even after TILS stops. Also, the
individual variation in the TILS effect is large. These findings
are useful information to related researchers toward a better
understanding of the mechanism of TILS. They will also guide
future research in this field. For example, further studies are
needed to investigate how long the effect of TILS can sustain
in the recovery stage, how the maximum change of HBO
depends on individual factors, and how to adjust the dose of
treatment (i.e., laser power) to make the maximum change at
desired level. Ultimately, such knowledge will enable clinicians
to design the TILS treatment for each individual patient
according to his/her conditions and needs.

V. CONCLUSION AND DISCUSSION

In this study, we learn the effect of TILS treatment on the
concentration of oxygenated hemoglobin in the human brain
from experimental data by using three longitudinal data
analysis methods. The result of repeated measures ANOVA
shows that the TILS effect is significant. We then propose two
parametric mixed-effect models and a functional mixed-effect
model to characterize the effect of TILS. The functional mixed-
effect model is selected through comparison of fitting and
prediction performance. Estimation results of the selected
model produce meaningful interpretations about the population
effect of TILS and individual variation.

This study has some limitations which should be addressed
in future research. First, although the proposed methods are
effective, accuracy of the results is limited by the small sample
size of the data used. The experiment only involved 11
participants, which may not be able to reflect the true pattern of
the population and heterogeneity among individuals well. In our
future research, we will conduct larger-scale experiments with

more participants and update the conclusions based on the new
data. Using the larger dataset, we will also study other response
variables such as concentration of deoxygenated hemoglobin
and total hemoglobin to generate more comprehensive
understanding on the hemodynamic effect of TILS. Another
limitation is that characteristics of participants such as age,
gender, education level, etc., were not collected in this study.
When such data become available in the future, we will
incorporate them in the statistical modeling in appropriate
ways. This will improve the prediction performance of the
proposed methods at individual level and build a foundation for
personalized TILS treatment.
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