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 
Abstract—Transcranial infrared laser stimulation (TILS) 

is a promising noninvasive intervention for neurological 
diseases. Though some experimental work has been done 
to understand the mechanism of TILS, the reported 
statistical analysis of data is quite simple and could not 
provide a comprehensive picture on the effect of TILS. This 
study learns the effect of TILS on hemodynamics of the 
human brain from experimental data using longitudinal 
data analysis methods. Specifically, repeated measures 
analysis of variance (ANOVA) is first applied to confirm the 
significance of the TILS effect and its characteristics. 
Based on that, two parametric mixed-effect models and 
non-parametric functional mixed-effect model are proposed 
to model the population-level performance and individual 
variation of this effect. Interpretations on the fitted models 
are provided, and comparison of the three proposed 
models in terms of fitting and prediction performance is 
made to select the best model. According to the selected 
model, TILS increases the concentration of oxygenated 
hemoglobin in the brain and this effect sustains even after 
the treatment stops. Also, there is considerable variation 
among individual responses to TILS.  
 

Index Terms— Brain hemodynamics, functional mixed-
effect model, longitudinal data analysis, photobiomodulat-
ion. 
 

I. INTRODUCTION 
HOTOBIOMODULATION is a noninvasive intervention 
that uses low-level laser to achieve beneficial therapeutic 

outcomes [1]. Though photobiomodulation has been applied in 
clinical practices for over 40 years for reduction of pain and 
inflammation since the first observation of its medical benefits 
in 1967, it was recently found to be potentially useful for 
various brain disorders and neurological diseases, such as 
stroke and Parkinson’s disease [2-4]. From then on, brain 
photobiomodulation has gained much attention. One form of 
brain photobiomodulation is transcranial infrared laser 
stimulation (TILS). Previous studies demonstrated that TILS 
can improve cognitive, emotional and executive functions and 
reduce depression symptoms [5-8].  
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TILS results from photon absorption by cytochrome-c-

oxidase, an enzyme within mitochondria in cells, which triggers 
a chain of complex reactions and eventually leads to an increase 
in energy metabolism in the brain [9]. Though much preclinical 
work has been done to explore the underlying biochemical 
mechanism of TILS, its fundamental principle is still not fully 
clear so that skepticism about its clinical performance exists 
[10]. To understand the mechanism of TILS, Wang et al. 
conducted human in vivo experiments quantifying TILS-
triggered changes in cerebral hemodynamics near the 
stimulation/treatment site [9]. In their study, hemodynamic 
responses were measured at a number of time points during and 
after treatment from a placebo group and a TILS group. At each 
time point, the mean responses of the two groups were 
compared using two-sample t-test. The test results confirmed 
that TILS caused significant hemodynamic changes, namely, 
increases in oxygenated hemoglobin concentration. Their 
simple statistical analysis provides a reliable tool for 
establishing the significance of TILS’s population-level 
performance. However, the time effect of TILS during and after 
treatment was ignored as the t-test was applied to each time 
point separately. In addition, only the mean of individual 
responses to TILS was considered, while the variation among 
individuals, which is critical for assessing the treatment 
performance as well, is not clear. The same problems exist in 
statistical analysis in other studies of TILS such as those about 
cognition [5, 8] and electrophysiology [11] of the human brain.  

In this study, we propose to learn the effect of TILS on 
hemodynamics of the human brain through longitudinal data 
analysis. Our proposed methods model the time effect of TILS 
during and after treatment. Also, both the population-level 
performance and variation among individuals are considered in 
order to learn the individual-level uncertainty as well as the 
expected average therapeutic outcome of TILS. Specifically, 
three longitudinal data analysis methods are used. First, 
repeated measures ANOVA is applied to confirm significance 
of the difference caused by TILS over placebo and the time 
effect and individual variation of the TILS treatment, as 
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is significant, it should be taken into account in the modeling. 
The above three aspects can be tested all at once using repeated 
measures ANOVA [13]. 

The repeated measures ANOVA is based on the following 
point-wise model 

        𝑦ℎ𝑖𝑗 = 𝜇 + 𝛾ℎ + 𝜏𝑗 + (𝛾𝜏)ℎ𝑗 + 𝜋𝑖(ℎ) + 𝑒ℎ𝑖𝑗 ,           (1)   
where 𝜇 is the grand mean, 𝛾ℎ is the group effect, 𝜏𝑗  is the time 
effect, (𝛾𝜏)ℎ𝑗  is the interaction effect of group and time, 𝜋𝑖(ℎ) 
is the individual difference component for participant 𝑖 in group 
ℎ, and 𝑒ℎ𝑖𝑗 is the random error. In general, it is assumed that 
𝜋𝑖(ℎ) and 𝑒ℎ𝑖𝑗  are independently normally distributed, 𝜋𝑖(ℎ) ∼

𝑁(0, 𝜎𝜋
2) , and 𝑒ℎ𝑖𝑗 ∼ 𝑁(0, 𝜎𝑒

2) . It is also required that 
∑ 𝛾ℎ

1
ℎ=0 = 0 ,  ∑ 𝜏𝑗

𝑛
𝑗=1 = 0 , ∑ ∑ (𝛾𝜏)ℎ𝑗

𝑛
𝑗=1

1
ℎ=0 = 0  to make all 

effects in the model differentiable [6]. The ANOVA table is 
shown in Table 1. Using the data in Fig. 2, the mean sum-of 
squares are obtained: 𝑀𝑆𝐺 = 107.9045 , 𝑀𝑆𝑇 = 2.1862 , 
𝑀𝑆𝐺𝑇 = 2.2242, 𝑀𝑆𝑆(𝐺) = 2.1294, and 𝑀𝑆𝐸 = 0.0585. The 
hypothesis tests and results about the three types of effect of 
interest in this study are given as follows. 

1) Group effect hypothesis test 
𝐻0: 𝛾0 = 𝛾1 = 0  𝑣𝑠.  𝐻𝑎: not both 𝛾0  and 𝛾1  are zeros. 

Under 𝐻0 , 𝐹0 =
𝑀𝑆𝐺

𝑀𝑆𝑆(𝐺)
 follows 𝐹  distribution with degrees of 

freedom 1 and (𝑁 − 2). The computed p-value is smaller than 
0.0001 so the null hypothesis is rejected at the typical level of 
significance such as 0.05. The test result indicates that the effect 
of TILS is significant in this experiment so modeling this effect 
is meaningful.  

2) Time effect hypothesis test 
𝐻0: 𝜏1 = ⋯ = 𝜏𝑛 = 0  𝑣𝑠.  𝐻𝑎: not all of 𝜏1, … , 𝜏𝑛 are zeros. 

Under 𝐻0 , 𝐹0 =
𝑀𝑆𝑇

𝑀𝑆𝐸
 follows 𝐹  distribution with degrees of 

freedom (𝑛 − 1) and (𝑁 − 2)(𝑛 − 1). The null hypothesis is 
rejected as the p-value is smaller than 0.0001. This indicates 
that the value of Δ𝐻𝑏𝑂 depends on time, which suggests to 
model the effect of TILS as a function of time. To find out the 
source of the rejection, we apply this test to data in the treatment 

stage and recovery stage separately. The p-value is smaller than 
0.0001 for the treatment stage and 0.586 for the recovery stage, 
meaning that the time effect results from the treatment stage.    

3) Individual effect hypothesis test 
𝐻0: 𝜎𝜋

2 = 0   𝑣𝑠.  𝐻𝑎: 𝜎𝜋
2 ≠ 0 

Under 𝐻0 , 𝐹0 =
𝑀𝑆𝑆(𝐺)

𝑀𝑆𝐸
 follows 𝐹  distribution with degrees of 

freedom (𝑁 − 2)  and (𝑁 − 2)(𝑛 − 1).  Again, the null 
hypothesis is rejected as the p-value is smaller than 0.0001, 
which means that the participants respond to the treatment 
differently. This result necessitates the quantification of 
individual variation in the TILS effect.  

In summary, the above test results motivate us to model the 
effect of TILS on the concentration of oxygenated hemoglobin 
in the human brain. In the modeling, time should be involved as 
the TILS effect is found to be time-varying. The variation of 
individual responses should also be taken into account. The 
following sections provide two types of models that satisfy the 
requirements. Note that only the data of the TILS group (shown 
in the lower panel of Fig. 2) will be used in the modeling, and 
thus the subscript ℎ will be dropped in the notations hereafter. 

B. Parametric Mixed-effect Model 

Parametric mixed-effect models is a popular class of models 
for longitudinal data analysis [14, 15]. A general parametric 
mixed-effect model can be written in the following hierarchical 
form [16] 

                 Level-1: 𝑦𝑖𝑗 = 𝑓(𝑡𝑗 ; 𝜃𝑖) + 𝑒𝑖𝑗 ,                  (2a)                                  
              Level-2: 𝜃𝑖 = 𝛽 + 𝑢𝑖.                               (2b) 

Here the Level-1 model assumes that 𝑦𝑖𝑗 , the Δ𝐻𝑏𝑂  of 
participant 𝑖 at time 𝑡𝑗 , depends on a parametric function 𝑓 of 
time with parameter 𝜃𝑖 and random error 𝑒𝑖𝑗. 𝑒𝑖𝑗 is assumed to 
follow a normal distribution 𝑁(0, 𝜎𝑒

2) . The Level-2 model 
further defines the parameter 𝜃𝑖 as combination of a constant 𝛽, 
called fixed effect, and a random variable 𝑢𝑖 , called random 
effect. It is assumed that 𝑢𝑖 ∼ 𝑁(0, 𝜎𝑢

2).  

TABLE I 
REPEATED MEASURE ANOVA TABLE 

Source Degrees of freedom Sum-of-squares Mean sum-of-squares 

Group 1 𝑆𝑆𝐺 = 𝑛 ∑ 𝑁ℎ(𝑦̅ℎ. . −𝑦̅…)2

1

ℎ=0

 𝑀𝑆𝐺 = 𝑆𝑆𝐺  

Time 𝑛 − 1 𝑆𝑆𝑇 = 𝑁(∑(𝑦̅..𝑗 − 𝑦̅…)
2

𝑛

𝑗=1

) 𝑀𝑆𝑇 =
𝑆𝑆𝑇

𝑛 − 1
 

GroupTime 𝑛 − 1 𝑆𝑆𝐺𝑇 = 𝑛 ∑ ∑ 𝑁ℎ(𝑦̅ℎ.𝑗 − 𝑦̅ℎ.. − 𝑦̅..𝑗 + 𝑦̅…)
2

 

𝑛

𝑗=1

1

ℎ=0

 𝑀𝑆𝐺𝑇 =
𝑆𝑆𝐺𝑇

𝑛 − 1
 

Individuals in Group 𝑁∗ − 2 𝑆𝑆𝑆(𝐺) = 𝑛 ∑ ∑(𝑦̅ℎ𝑖 . −𝑦̅ℎ . . )2

𝑁ℎ

𝑖=1

 

1

ℎ=0

 𝑀𝑆𝑆(𝐺) =
𝑆𝑆𝑆(𝐺)

𝑁 − 2
 

Residuals (𝑁 − 2) × (𝑛 − 1) 𝑆𝑆𝐸 = ∑ ∑ ∑(𝑦ℎ𝑖𝑗 − 𝑦̅ℎ.𝑗 − 𝑦̅ℎ𝑖. + 𝑦̅ℎ . . )
2

𝑛

𝑗=1

𝑁ℎ

𝑖=1

1

ℎ=0

 𝑀𝑆𝐸 =
𝑆𝑆𝐸

(𝑁 − 2) × (𝑛 − 1)
 

Total 𝑁𝑛 − 1 𝑆𝑆𝑦 = ∑ ∑ ∑(𝑦ℎ𝑖𝑗 − 𝑦̅…)
2

𝑛

𝑗=1

𝑁ℎ

𝑖=1

1

ℎ=0

 𝑀𝑆𝑦 =
𝑆𝑆𝑦

𝑁𝑛 − 1
 

              ∗ ∑ 𝑁ℎ
1
ℎ=0 = 𝑁 denotes the total number of participants in the experiment. 
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training/testing set and variation in data splitting, five different 
sizes of the testing set 𝑁𝑡𝑒𝑠𝑡 = {1, 5, 10, 20, 30} are considered, 
and given each size, 100 runs are conducted and the average 
prediction error is computed. For a specific example, given 
𝑁𝑡𝑒𝑠𝑡 = 5, 5 observations are randomly selected from the data 
to be the testing set and the remaining 138 observations are the 
training set. The MSE of predictions of the testing set based on 
the model fitted using the training set will be calculated. This 
process will repeat 100 times, and the prediction error for this 
𝑁𝑡𝑒𝑠𝑡 value is the average of the 100 MSEs.  

The results are shown in Fig. 8. Model III outperforms the 
other two models with the smallest prediction error in all 
scenarios. Between the two parametric models, Model I 
exhibits relatively better prediction performance than Model II 
in most scenarios. To further confirm the conparison results, 
two-sample t-tests are conducted between the 100 MSEs of 
Model I vs. Model III (𝐻0: 𝑒𝑟𝑟 𝐼 ≤ 𝑒𝑟𝑟𝐼𝐼𝐼 ) and Model II vs. 
Model III (𝐻0: 𝑒𝑟𝑟 𝐼𝐼 ≤ 𝑒𝑟𝑟 𝐼𝐼𝐼) given each size of testing data. 
All the p-values are smaller than 0.05, which validates that 
Model III performs better than Model I and Model II. 

C. Selected Model 

Based on the above comparison, the functional mixed-effect 
model is selected as it has the best fitting and prediction 
performance. The estimated Model III in Fig. 6 suggests that 
the change in oxygenated hemoglobin concentration increases 
as time goes on and sustains even after TILS stops. Also, the 
individual variation in the TILS effect is large. These findings 
are useful information to related researchers toward a better 
understanding of the mechanism of TILS. They will also guide 
future research in this field. For example, further studies are 
needed to investigate how long the effect of TILS can sustain 
in the recovery stage, how the maximum change of 𝐻𝐵𝑂 
depends on individual factors, and how to adjust the dose of 
treatment (i.e., laser power) to make the maximum change at 
desired level. Ultimately, such knowledge will enable clinicians 
to design the TILS treatment for each individual patient 
according to his/her conditions and needs. 
 

V. CONCLUSION AND DISCUSSION 
In this study, we learn the effect of TILS treatment on the 

concentration of oxygenated hemoglobin in the human brain 
from experimental data by using three longitudinal data 
analysis methods. The result of repeated measures ANOVA 
shows that the TILS effect is significant. We then propose two 
parametric mixed-effect models and a functional mixed-effect 
model to characterize the effect of TILS.  The functional mixed-
effect model is selected through comparison of fitting and 
prediction performance. Estimation results of the selected 
model produce meaningful interpretations about the population 
effect of TILS and individual variation. 

This study has some limitations which should be addressed 
in future research. First, although the proposed methods are 
effective, accuracy of the results is limited by the small sample 
size of the data used. The experiment only involved 11 
participants, which may not be able to reflect the true pattern of 
the population and heterogeneity among individuals well. In our 
future research, we will conduct larger-scale experiments with 

more participants and update the conclusions based on the new 
data. Using the larger dataset, we will also study other response 
variables such as concentration of deoxygenated hemoglobin 
and total hemoglobin to generate more comprehensive 
understanding on the hemodynamic effect of TILS. Another 
limitation is that characteristics of participants such as age, 
gender, education level, etc., were not collected in this study. 
When such data become available in the future, we will 
incorporate them in the statistical modeling in appropriate 
ways. This will improve the prediction performance of the 
proposed methods at individual level and build a foundation for 
personalized TILS treatment. 
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