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Abstract—In this paper, the problem of energy efficient trans-
mission and computation resource allocation for federated learn-
ing (FL) over wireless communication networks is investigated.
In the considered model, each user exploits limited local compu-
tational resources to train a local FL model with its collected data
and, then, sends the trained FL model to a base station (BS) which
aggregates the local FL model and broadcasts it back to all of the
users. Since FL involves an exchange of a learning model between
users and the BS, both computation and communication latencies
are determined by the learning accuracy level. Meanwhile, due
to the limited energy budget of the wireless users, both local
computation energy and transmission energy must be considered
during the FL process. This joint learning and communication
problem is formulated as an optimization problem whose goal is
to minimize the total energy consumption of the system under a
latency constraint. To solve this problem, an iterative algorithm
is proposed where, at every step, closed-form solutions for time
allocation, bandwidth allocation, power control, computation
frequency, and learning accuracy are derived. Since the iterative
algorithm requires an initial feasible solution, we construct the
completion time minimization problem and a bisection-based
algorithm is proposed to obtain the optimal solution, which is
a feasible solution to the original energy minimization problem.
Numerical results show that the proposed algorithms can reduce
up to 59.5% energy consumption compared to the conventional
FL method.

Index Terms—Federated learning, resource allocation, energy
efficiency.

I. INTRODUCTION
In future wireless systems, due to privacy constraints and

limited communication resources for data transmission, it is
impractical for all wireless devices to transmit all of their
collected data to a data center that can use the collected
data to implement centralized machine learning algorithms for
data analysis and inference [2]–[5]. To this end, distributed
learning frameworks are needed, to enable the wireless de-
vices to collaboratively build a shared learning model with
training their collected data locally [6]–[15]. One of the most
promising distributed learning algorithms is the emerging
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federated learning (FL) framework that will be adopted in
future Internet of Things (IoT) systems [16]–[24]. In FL,
wireless devices can cooperatively execute a learning task by
only uploading local learning model to the base station (BS)
instead of sharing the entirety of their training data [25]. Using
gradient sparsification, a digital transmission scheme based on
gradient quantization was investigated in [26]. To implement
FL over wireless networks, the wireless devices must transmit
their local training results over wireless links [27], which can
affect the performance of FL due to limited wireless resources
(such as time and bandwidth). In addition, the limited energy
of wireless devices is a key challenge for deploying FL.
Indeed, because of these resource constraints, it is necessary
to optimize the energy efficiency for FL implementation.

Some of the challenges of FL over wireless networks have
been studied in [28]–[34]. To minimize latency, a broadband
analog aggregation multi-access scheme was designed in [28]
for FL by exploiting the waveform-superposition property of
a multi-access channel. An FL training minimization problem
was investigated in [29] for cell-free massive multiple-input
multiple-output (MIMO) systems. For FL with redundant
data, an energy-aware user scheduling policy was proposed
in [30] to maximize the average number of scheduled users.
To improve the statistical learning performance for on-device
distributed training, the authors in [31] developed a novel
sparse and low-rank modeling approach. The work in [32]
introduced an energy-efficient strategy for bandwidth allo-
cation under learning performance constraints. However, the
works in [28]–[32] focused on the delay/energy for wireless
transmission without considering the delay/energy tradeoff
between learning and transmission. Recently, the works in
[33] and [34] considered both local learning and wireless
transmission energy. In [33], we investigated the FL loss
function minimization problem with taking into account packet
errors over wireless links. However, this prior work ignored
the computation delay of local FL model. The authors in
[34] considered the sum computation and transmission energy
minimization problem for FL. However, the solution in [34] re-
quires all users to upload their learning model synchronously.
Meanwhile, the work in [34] did not provide any convergence
analysis for FL.

The main contribution of this paper is a novel energy
efficient computation and transmission resource allocation
scheme for FL over wireless communication networks. Our
key contributions include:

• We study the performance of FL algorithm over wireless
communication networks for a scenario in which each
user locally computes its FL model under a given learning
accuracy and the BS broadcasts the aggregated FL model
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Fig. 1. Illustration of the considered model for FL over wireless communi-
cation networks.

to all users. For the considered FL algorithm, we first
derive the convergence rate.

• We formulate a joint computation and transmission op-
timization problem aiming to minimize the total energy
consumption for local computation and wireless trans-
mission. To solve this problem, an iterative algorithm
is proposed with low complexity. At each step of this
algorithm, we derive new closed-form solutions for the
time allocation, bandwidth allocation, power control,
computation frequency, and learning accuracy.

• To obtain a feasible solution for the total energy mini-
mization problem, we construct the FL completion time
minimization problem. We theoretically show that the
completion time is a convex function of the learning
accuracy. Based on this theoretical finding, we propose a
bisection-based algorithm to obtain the optimal solution
for the FL completion time minimization.

• Simulation results show that the proposed scheme that
jointly considers computation and transmission optimiza-
tion can achieve up to 59.5% energy reduction compared
to the conventional FL method.

The rest of this paper is organized as follows. The system
model is described in Section II. Section III provides prob-
lem formulation and the resource allocation for total energy
minimization. The algorithm to find a feasible solution of the
original energy minimization problem is given in Section IV.
Simulation results are analyzed in Section V. Conclusions are
drawn in Section VI.

II. SYSTEM MODEL
Consider a cellular network that consists of one BS serving

K users, as shown in Fig. 1. Each user k has a local dataset Kk

with Dk data samples. For each dataset Kk = }xkl, ykl|
Dk

l=1,
xkl ∀ R

d is an input vector of user k and ykl is its corre-
sponding output1. The BS and all users cooperatively perform
an FL algorithm over wireless networks for data analysis and
inference. Hereinafter, the FL model that is trained by each
user’s dataset is called the local FL model, while the FL model
that is generated by the BS using local FL model inputs from
all users is called the global FL model.

A. Computation and Transmission Model
The FL procedure between the users and their serving BS is

shown in Fig. 2. From this figure, the FL procedure contains

1For simplicity, we consider an FL algorithm with a single output. In future
work, our approach will be extended to the case with multiple outputs.

Fig. 2. The FL procedure between users and the BS.

three steps at each iteration: local computation at each user
(using several local iterations), local FL model transmission
for each user, and result aggregation and broadcast at the BS.
The local computation step is essentially the phase during
which each user calculates its local FL model by using its
local data set and the received global FL model.

1) Local Computation: Let fk be the computation capacity
of user k, which is measured by the number of CPU cycles
per second. The computation time at user k needed for data
processing is:

τk =
IkCkDk

fk
, Dk ∀ L , (1)

where Ck (cycles/sample) is the number of CPU cycles
required for computing one sample data at user k and Ik is the
number of local iterations at user k. According to Lemma 1
in [35], the energy consumption for computing a total number
of CkDk CPU cycles at user k is:

EC
k1 = κCkDkf

2
k , (2)

where κ is the effective switched capacitance that depends on
the chip architecture. To compute the local FL model, user k
needs to compute CkDk CPU cycles with Ik local iterations,
which means that the total computation energy at user k is:

EC
k = IkE

C
k1 = κIkCkDkf

2
k . (3)

2) Wireless Transmission: After local computation, all user-
s upload their local FL model to the BS via frequency domain
multiple access (FDMA). The achievable rate of user k can
be given by:

rk = bk log2

)
1 +

gkpk
N0bk

[
, Dk ∀ L , (4)

where bk is the bandwidth allocated to user k, pk is the average
transmit power of user k, gk is the channel gain between user
k and the BS, and N0 is the power spectral density of the
Gaussian noise. Note that the Shannon capacity (4) serves
as an upper bound of the transmission rate. Due to limited
bandwidth of the system, we have:

∑K
k=1 bk ≥ B, where B

is the total bandwidth.
In this step, user k needs to upload the local FL model to

the BS. Since the dimensions of the local FL model are fixed
for all users, the data size that each user needs to upload is
constant, and can be denoted by s. To upload data of size
s within transmission time tk, we must have: tkrk � s. To
transmit data of size s within a time duration tk, the wireless
transmit energy of user k will be: ET

k = tkpk.
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Fig. 3. An implementation for the FL algorithm via FDMA.

3) Information Broadcast: In this step, the BS aggregates
the global FL model. The BS broadcasts the global FL model
to all users in the downlink. Due to the high transmit power
at the BS and the high bandwidth that can be used for data
broadcasting, the downlink time is neglected compared to the
uplink data transmission time. It can be observed that the local
data Kk is not accessed by the BS, so as to protect the privacy
of users, as is required by FL.

According to the above FL model, the energy consumption
of each user includes both local computation energy EC

k and
wireless transmission energy ET

k . Denote the number of global
iterations by I0, and the total energy consumption of all users
that participate in FL will be:

E = I0

K

k=1

(EC
k + ET

k). (5)

Hereinafter, the total time needed for completing the ex-
ecution of the FL algorithm is called completion time. The
completion time of each user includes the local computation
time and transmission time, as shown in Fig. 3. Based on (1),
the completion time Tk of user k will be:

Tk = I0(τk + tk) = I0

)
IkCkDk

fk
+ tk

[
. (6)

Let T be the maximum completion time for training the entire
FL algorithm and we have:

Tk ≥ T, Dk ∀ L . (7)

B. FL Model
We define a vector w to capture the parameters related

to the global FL model. We introduce the loss function
f(w,xkl, ykl), that captures the FL performance over input
vector xkl and output ykl. For different learning tasks, the
loss function will be different. For example, f(w,xkl, ykl) =
1
2 (x

T
klw ykl)

2 for linear regression and f(w,xkl, ykl) =
log(1 + exp( yklx

T
klw)) for logistic regression. Since the

dataset of user k is Kk, the total loss function of user k will
be:

Fk(w, xk1, yk1,×××, xkDk
, ykDk

) =
1

Dk

Dk

l=1

f(w,xkl, ykl).

(8)
Note that function f(w,xkl, ykl) is the loss function
of user k with one data sample and function
Fk(w, xk1, yk1,×××, xkDk

, ykDk
) is the total loss function

of user k with the whole local dataset. In the following,

Algorithm 1 FL Algorithm
1: Initialize global model w0 and global iteration number

n = 0.
2: repeat
3: Each user k computes Fk(w

(n)) and sends it to the
BS.

4: The BS computes F (w(n)) = 1
K

∑K
k=1 Fk(w

(n)),
which is broadcast to all users.

5: parallel for user k ∀ L = }1,×××,K|
6: Initialize the local iteration number i = 0 and set

h
(n),(0)
k = 0.

7: repeat
8: Update h

(n),(i+1)
k = h

(n),(i)
k

δ Gk(w
(n),h

(n),(i)
k ) and i = i+ 1.

9: until the accuracy η of local optimization problem
(11) is obtained.

10: Denote h
(n)
k = h

(n),(i)
k and each user sends h

(n)
k to

the BS.
11: end for
12: The BS computes

w(n+1) = w(n) +
1

K

K

k=1

h
(n)
k , (10)

and broadcasts the value to all users.
13: Set n = n+ 1.
14: until the accuracy ε0 of problem (9) is obtained.

Fk(w, xk1, yk1,×××, xkDk
, ykDk

) is denoted by Fk(w) for
simplicity of notation.

In order to deploy an FL algorithm, it is necessary to train
the underlying model. Training is done in order to generate a
unified FL model for all users without sharing any datasets.
The FL training problem can be formulated as [2], [19], [25]:

min
w

F (w) �
K

k=1

Dk

D
Fk(w) =

1

D

K

k=1

Dk

l=1

f(w,xkl, ykl),

(9)
where D =

∑K
k=1 Dk is the total data samples of all users.

To solve problem (9), we adopt the distributed approximate
Newton (DANE) algorithm in [25], which is summarized in
Algorithm 1. Note that the gradient descent (GD) is used at
each user in Algorithm 1. One can use stochastic gradient
descent (SGD) to decrease the computation complexity for
cases in which a relatively low accuracy can be tolerated.
However, if high accuracy was needed, gradient descent (GD)
would be preferred [25]. Moreover, the number of global
iterations is higher in SGD than in GD. Due to limited wireless
resources, SGD may not be efficient since SGD requires
more iterations for wireless transmissions compared to GD.
The DANE algorithm is designed to solve a general local
optimization problem, before averaging the solutions of all
users. The DANE algorithm relies on the similarity of the
Hessians of local objectives, representing their iterations as
an average of inexact Newton steps. In Algorithm 1, we
can see that, at every FL iteration, each user downloads the
global FL model from the BS for local computation, while
the BS periodically gathers the local FL model from all
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users and sends the updated global FL model back to all
users. According to Algorithm 1, since the local optimization
problem is solved with several local iterations at each global
iteration, the number of full gradient computations will be
smaller than the number of local updates.

We define w(n) as the global FL model at a given iteration
n. In practice, each user solves the local optimization problem:

min
hk∈Rd

Gk(w
(n),hk) � Fk(w

(n) + hk)

( Fk(w
(n)) ξ F (w(n)))Thk. (11)

In problem (11), ξ is a constant value. Any solution hk of
problem (11) represents the difference between the global FL
model and local FL model for user k, i.e., w(n) + hk is the
local FL model of user k at iteration n. The local optimization
problem in (11) depends only on the local data and the gradient
of the global loss function. The local optimization problem is
then solved, and the updates from individual users are averaged
to form a new iteration. This approach allows any algorithm
to be used to solve the local optimization problem. Note that
the number of iterations needed to upload the local FL model
(i.e., the number of global iterations) in Algorithm 1 is always
smaller than in the conventional FL algorithms that do not
consider a local optimization problem (11) [25]. To solve
the local optimization problem in (11), we use the gradient
method:

h
(n),(i+1)
k = h

(n),(i)
k δ Gk(w

(n),h
(n),(i)
k ), (12)

where δ is the step size, h(n),(i)
k is the value of hk at the i-th lo-

cal iteration with given vector w(n), and Gk(w
(n),h

(n),(i)
k )

is the gradient of function Gk(w
(n),hk) at point hk =

h
(n),(i)
k . For small step size δ, based on equation (12), we

can obtain a set of solutions h
(n),(0)
k , h(n),(1)

k , h(n),(2)
k , ×××,

h
(n),(i)
k , which satisfy,

Gk(w
(n),h

(n),(0)
k ) � ×××� Gk(w

(n),h
(n),(i)
k ). (13)

To provide the convergence condition for the gradient method,
we introduce the definition of local accuracy, i.e., the solution
h
(n),(i)
k of problem (11) with accuracy η means that:

Gk(w
(n),h

(n),(i)
k ) Gk(w

(n),h
(n)∗
k )

≥ η(Gk(w
(n),h

(n),(0)
k ) Gk(w

(n),h
(n)∗
k )), (14)

where h
(n)∗
k is the optimal solution of problem (11). Each

user is assumed to solve the local optimization problem (11)
with a target accuracy η. Next, in Lemma 1, we derive a lower
bound on the number of local iterations needed to achieve a
local accuracy η in (14).

Lemma 1: Let v = 2
(2−Lδ)δγ . If we set step δ < 2

L and
run the gradient method

i � v log2(1/η) (15)
iterations at each user, we can solve local optimization prob-
lem (11) with an accuracy η.

Proof: See Appendix A. �
The lower bounded derived in (15) reflects the growing trend

for the number of local iterations with respect to accuracy η.
In the following, we use this lower bound to approximate the
number of iterations Ik needed for local computations by each
user.

In Algorithm 1, the iterative method involves a number of
global iterations (i.e., the value of n in Algorithm 1) to achieve
a global accuracy ε0 for the global FL model. In other words,
the solution w(n) of problem (9) with accuracy ε0 is a point
such that

F (w(n)) F (w∗) ≥ ε0(F (w(0)) F (w∗)), (16)

where w∗ is the actual optimal solution of problem (9).
To analyze the convergence rate of Algorithm 1, we make

the following two assumptions on the loss function.

- A1: Function Fk(w) is L-Lipschitz, i.e., 2Fk(w) �
LI .

- A2: Function Fk(w) is γ-strongly convex, i.e.,
2Fk(w) ≈ γI .

The values of γ and L are determined by the loss function.
These assumptions can be easily satisfied by widely used

FL loss functions such as linear or logistic loss functions [18].
Under assumptions A1 and A2, we provide the following

theorem about convergence rate of Algorithm 1 (i.e., the
number of iterations needed for Algorithm 1 to converge),
where each user solves its local optimization problem with a
given accuracy.

Theorem 1: If we run Algorithm 1 with 0 < ξ ≥ γ
L for

n �
a

1 η
(17)

iterations with a = 2L2

γ2ξ ln 1
ε0

, we have F (w(n)) F (w∗) ≥
ε0(F (w(0)) F (w∗)).

Proof: See Appendix B. �
From Theorem 1, we observe that the number of global

iterations n increases with the local accuracy η at the rate
of 1/(1 η). From Theorem 1, we can also see that the FL
performance depends on parameters L, γ, ξ, ε0 and η. Note
that the prior work in [36, Eq. (9)] only studied the number of
iterations needed for FL convergence under the special case in
which η = 0. Theorem 1 provides a general convergence rate
for FL with an arbitrary η. Since the FL algorithm involves
the accuracy of local computation and the result aggregation,
it is hard to calculate the exact number of iterations needed
for convergence. In the following, we use a

1−η to approximate
the number I0 of global iterations.

For parameter setup, one way is to choose a very small
value of ξ , i.e., ξ ∞0 satisfying 0 < ξ ≥ γ

L , for an arbitrary
learning task and loss function. However, based on Theorem
1, the iteration time is pretty large for a very small value of
ξ. As a result, we first choose a large value of ξ and decrease
the value of ξ to ξ/2 when the loss does not decrease over
time (i.e., the value of ξ is large). Note that in the simulations,
the value of ξ always changes at least three times. Thm 1 is
suitable for the situation when the value of ξ is fixed, i.e., after
at most three iterations of Algorithm 1.

C. Extension to Nonconvex Loss Function

We replace convex assumption A2 with the following con-
dition:



5

- B2: Function Fk(w) is of γ-bounded nonconvexity (or
γ-nonconvex), i.e., all the eigenvalues of 2Fk(w) lie in
[ γ, L], for some γ ∀ (0, L].

Due to the non-convexity of function Fk(w), we respectively
replace Fk(w) and F (w) with their regularized versions [37]

F̃
(n)
k (w) = Fk(w)+γ∇w w(n)∇2, F̃ (n)(w) =

K

k=1

Dk

D
F̃

(n)
k (w).

(18)
Based on assuption A2 and (18), both functions F

(n)
k (w)

and F (n)(w) are γ-strongly convex, i.e., 2F̃
(n)
k (w) ≈ γI

and 2F̃ (n)(w) ≈ γI . Moreover, it can be proved that both
functions F

(n)
k (w) and F (n)(w) are (L+ 2γ)-Lipschitz. The

convergence analysis in Section II-B can be direcltly applied.

III. RESOURCE ALLOCATION FOR ENERGY MINIMIZATION
In this section, we formulate the energy minimization prob-

lem for FL. Since it is challenging to obtain the globally opti-
mal solution due to nonconvexity, an iterative algorithm with
low complexity is proposed to solve the energy minimization
problem.

A. Problem Formulation
Our goal is to minimize the total energy consumption of

all users under a latency constraint. This energy efficient
optimization problem can be posed as follows:

min
t,b,f ,p,η

E, (19)

s.t.
a

1 η

)
Ak log2(1/η)

fk
+ tk

[
≥ T, Dk ∀ L ,

(19a)

tkbk log2

)
1 +

gkpk
N0bk

[
� s, Dk ∀ L , (19b)

K

k=1

bk ≥ B, (19c)

0 ≥ fk ≥ fmax
k , Dk ∀ L , (19d)

0 ≥ pk ≥ pmax
k , Dk ∀ L , (19e)

0 ≥ η ≥ 1, (19f)
tk � 0, bk � 0, Dk ∀ L , (19g)

where t = [t1,×××, tK ]T , b = [b1,×××, bK ]T , f =
[f1,×××, fK ]T , p = [p1,×××, pK ]T , Ak = vCkDk is a
constant, fmax

k and pmax
k are respectively the maximum local

computation capacity and maximum value of the average
transmit power of user k. Constraint (19a) is obtained by
substituting Ik = v log2(1/η) from (15) and I0 = a

1−η from
(17) into (6). Constraints (19b) is derived according to (4) and
tkrk � s. Constraint (19a) indicates that the execution time
of the local tasks and transmission time for all users should
not exceed the maximum completion time for the whole FL
algorithm. Since the total number of iterations for each user
is the same, the constraint in (19a) captures a maximum time
constraint for all users at each iteration if we divide the total
number of iterations on both sides of the constraint in (19a).
The data transmission constraint is given by (19b), while the
bandwidth constraint is given by (19c). Constraints (19d) and
(19e) respectively represent the maximum local computation

capacity and average transmit power limits of all users. The
local accuracy constraint is given by (19f).

B. Iterative Algorithm
The proposed iterative algorithm mainly contains two steps

at each iteration. To optimize (t, b,f ,p, η) in problem (19),
we first optimize (t, η) with fixed (b,f ,p), then (b,f ,p) is
updated based on the obtained (t, η) in the previous step. The
advantage of this iterative algorithm lies in that we can obtain
the optimal solution of (t, η) or (b,f ,p) in each step.

In the first step, given (b,f ,p), problem (19) becomes:

min
t,η

a

1 η

K

k=1

κAk log2(1/η)f
2
k + tkpk

∥
, (20)

s.t.
a

1 η

)
Ak log2(1/η)

fk
+ tk

[
≥ T, Dk ∀ L , (20a)

tk � tmin
k , Dk ∀ L , (20b)

0 ≥ η ≥ 1, (20c)

where
tmin
k =

s

bk log2

)
1 + gkpk

N0bk

(, Dk ∀ L . (21)

The optimal solution of (20) can be derived using the
following theorem.

Theorem 2: The optimal solution (t∗, η∗) of problem (20)
satisfies:

t∗k = tmin
k , Dk ∀ L , (22)

and η∗ is the optimal solution to:

min
η

α1 log2(1/η) + α2

1 η
(23)

s.t. ηmin ≥ η ≥ ηmax, (23a)

where
ηmin = max

k∈K
ηmin
k , ηmax = min

k∈K
ηmax
k , (24)

βk(η
min
k ) = βk(η

max
k ) = tmin

k , tmin
k ≥ tmax

k , α1, α2 and βk(η)
are defined in (C.2).

Proof: See Appendix C. �
Theorem 2 shows that it is optimal to transmit with the

minimum time for each user. Based on this finding, problem
(20) is equivalent to the problem (23) with only one variable.
Obviously, the objective function (23) has a fractional form,
which is generally hard to solve. By using the parametric
approach in [38], we consider the following problem,

H(ζ) = min
ηmin≤η≤ηmax

α1 log2(1/η) + α2 ζ(1 η). (25)

It has been proved [38] that solving (23) is equivalent to
finding the root of the nonlinear function H(ζ). Since (25)
with fixed ζ is convex, the optimal solution η∗ can be obtained
by setting the first-order derivative to zero, yielding the optimal
solution: η∗ = α1

(ln 2)ζ . Thus, problem (23) can be solved by
using the Dinkelbach method in [38] (shown as Algorithm 2).

In the second step, given (t, η) calculated in the first step,
problem (19) can be simplified as:
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Algorithm 2 The Dinkelbach Method

1: Initialize ζ = ζ(0) > 0, iteration number n = 0, and set
the accuracy ε3.

2: repeat
3: Calculate the optimal η∗ = α1

(ln 2)ζ(n) of problem (25).

4: Update ζ(n+1) = α1 log2(1/η
∗)+α2

1−η∗
5: Set n = n+ 1.
6: until ‖H(ζ(n+1))‖/‖H(ζ(n))‖< ε3.

min
b,f ,p

a

1 η

K

k=1

κAk log2(1/η)f
2
k + tkpk

∥
, (26)

s.t.
a

1 η

)
Ak log2(1/η)

fk
+ tk

[
≥ T, Dk ∀ L , (26a)

tkbk log2

)
1 +

gkpk
N0bk

[
� s, Dk ∀ L , (26b)

K

k=1

bk ≥ B, (26c)

0 ≥ pk ≥ pmax
k , Dk ∀ L , (26d)

0 ≥ fk ≥ fmax
k , Dk ∀ L . (26e)

Since both objective function and constraints can be decou-
pled, problem (26) can be decoupled into two subproblems:

min
f

aκ log2(1/η)

1 η

K

k=1

Akf
2
k , (27)

s.t.
a

1 η

)
Ak log2(1/η)

fk
+ tk

[
≥ T, Dk ∀ L , (27a)

0 ≥ fk ≥ fmax
k , Dk ∀ L , (27b)

and
min
b,p

a

1 η

K

k=1

tkpk, (28)

s.t. tkbk log2

)
1 +

gkpk
N0bk

[
� s, Dk ∀ L , (28a)

K

k=1

bk ≥ B, (28b)

0 ≥ pk ≥ pmax
k , Dk ∀ L . (28c)

According to (27), it is always efficient to utilize the
minimum computation capacity fk. To minimize (27), the
optimal f∗

k can be obtained from (27a), which gives:

f∗
k =

aAk log2(1/η)

T (1 η) atk
, Dk ∀ L . (29)

We solve problem (28) using the following theorem.
Theorem 3: The optimal solution (b∗,p∗) of problem (28)

satisfies:
b∗k = max}bk(μ), b

min
k | , (30)

and
p∗k =

N0b
∗
k

gk

)
2

s
tkb∗

k 1
(
, (31)

where

bmin
k =

(ln 2)s

tkW

)
(ln 2)N0s
gkpmax

k tk
e
− (ln 2)N0s

gkpmax
k

tk

[
+ (ln 2)N0s

gkpmax
k

, (32)

Algorithm 3 : Iterative Algorithm

1: Initialize a feasible solution (t(0), b(0),f (0),p(0), η(0)) of
problem (19) and set l = 0.

2: repeat
3: With given (b(l),f (l),p(l)), obtain the optimal

(t(l+1), η(l+1)) of problem (20).
4: With given (t(l+1), η(l+1)), obtain the optimal (

b(l),f (l),p(l)) of problem (26).
5: Set l = l + 1.
6: until objective value (19a) converges

bk(μ) is the solution to

N0

gktk

)
e

(ln 2)s
tkbk(μ) 1

(ln 2)s

tkbk(μ)
e

(ln 2)s
tkbk(μ)

[
+ μ = 0, (33)

and μ satisfies
K

k=1

max}bk(μ), b
min
k | = B. (34)

Proof: See Appendix D. �
By iteratively solving problem (20) and problem (26), the

algorithm that solves problem (19) is given in Algorithm 3. S-
ince the optimal solution of problem (20) or (26) is obtained in
each step, the objective value of problem (19) is nonincreasing
in each step. Moreover, the objective value of problem (19) is
lower bounded by zero. Thus, Algorithm 3 always converges
to a local optimal solution.

C. Complexity Analysis

To solve the energy minimization problem (19) by using
Algorithm 3, the major complexity in each step lies in solving
problem (20) and problem (26). To solve problem (20), the
major complexity lies in obtaining the optimal η∗ according
to Theorem 2, which involves complexity { (K log 2(1/ε1))
with accuracy ε1 by using the Dinkelbach method. To solve
problem (26), two subproblems (27) and (28) need to be
optimized. For subproblem (27), the complexity is { (K)
according to (29). For subproblem (28), the complexity is
{ (K log2(1/ε2) log2(1/ε3)), where ε2 and ε3 are respectively
the accuracy of solving (32) and (33). As a result, the
total complexity of the proposed Algorithm 3 is { (LitSK),
where Lit is the number of iterations for iteratively op-
timizing (t, η) and (T, b,f ,p), and S = log 2(1/ε1) +
log 2(1/ε2) log 2(1/ε3).

The conventional successive convex approximation (SCA)
method can be used to solve problem (19). The complexity of
SCA method is O(LscaK

3), where Lsca is the total number of
iterations for SCA method. Compared to SCA, the proposed
Algorithm 3 grows linearly with the number of users K.

It should be noted that Algorithm 3 is done at the BS side
before executing the FL scheme in Algorithm 1. To implement
Algorithm 3, the BS needs to gather the information of gk,
pmax
k , fmax

k , Ck, Dk, and s, which can be uploaded by all
users before the FL process. Due to small data size, the
transmission delay of these information can be neglected. The
BS broadcasts the obtained solution to all users. Since the BS
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has high computation capacity, the latency of implementing
Algorithm 3 at the BS will not affect the latency of the FL
process.

IV. ALGORITHM TO FIND A FEASIBLE SOLUTION OF
PROBLEM (19)

Since the iterative algorithm to solve problem (19) requires
an initial feasible solution, we provide an efficient algorithm
to find a feasible solution of problem (19) in this section. To
obtain a feasible solution of (19), we construct the completion
time minimization problem:

min
T,t,b,f ,p,η

T, (35)

s.t. (19a) (19g). (35a)

We define (T ∗, t∗, b∗,f∗,p∗, η∗) as the optimal solution of
problem (35). Then, (t∗, b∗,f∗,p∗, η∗) is a feasible solution
of problem (19) if T ∗ ≥ T , where T is the maximum delay
in constraint (19a). Otherwise, problem (19) is infeasible.

Although the completion time minimization problem (35) is
still nonconvex due to constraints (19a)-(19b), we show that
the globally optimal solution can be obtained by using the
bisection method.

A. Optimal Resource Allocation
Lemma 2: Problem (35) with T < T ∗ does not have a

feasible solution (i.e., it is infeasible), while problem (35) with
T > T ∗ always has a feasible solution (i.e., it is feasible).

Proof: See Appendix E. �
According to Lemma 2, we can use the bisection method

to obtain the optimal solution of problem (35).
With a fixed T , we still need to check whether there

exists a feasible solution satisfying constraints (19a)-(19g).
From constraints (19a) and (19c), we can see that it is
always efficient to utilize the maximum computation capac-
ity, i.e., f∗

k = fmax
k ,Dk ∀ L . From (19b) and (19d), we

can see that minimizing the completion time occurs when
p∗k = pmax

k ,Dk ∀ L . Substituting the maximum computation
capacity and maximum transmission power into (35), the
completion time minimization problem becomes:

min
T,t,b,η

T (36)

s.t. tk ≥
(1 η)T

a
+

Ak log2 η

fmax
k

, Dk ∀ L , (36a)

s

tk
≥ bk log2

)
1 +

gkp
max
k

N0bk

[
, Dk ∀ L , (36b)

K

k=1

bk ≥ B, (36c)

0 ≥ η ≥ 1, (36d)
tk � 0, bk � 0, Dk ∀ L . (36e)

Next, we provide the sufficient and necessary condition for
the feasibility of set (36a)-(36e).

Lemma 3: With a fixed T , set (36a)-(36e) is nonempty if
an only if

B � min
0≤η≤1

K

k=1

uk(vk(η)), (37)

where

Algorithm 4 Completion Time Minimization
1: Initialize Tmin, Tmax, and the tolerance ε5.
2: repeat
3: Set T = Tmin+Tmax

2 .
4: Check the feasibility condition (40).
5: If set (36a)-(36e) has a feasible solution, set Tmax = T .

Otherwise, set T = Tmin.
6: until (Tmax Tmin)/Tmax ≥ ε5.

uk(η) =
(ln 2)η

W

)
(ln 2)N0η
gkpmax

k
e
− (ln 2)N0η

gkpmax
k

[
+ (ln 2)N0η

gkpmax
k

, (38)

and
vk(η) =

s
(1−η)T

a + Ak log2 η
fmax
k

. (39)

Proof: See Appendix F. �
To effectively solve (37) in Lemma 3, we provide the

following lemma.
Lemma 4: In (38), uk(vk(η)) is a convex function.
Proof: See Appendix G. �
Lemma 4 implies that the optimization problem in (37) is a

convex problem, which can be effectively solved. By finding
the optimal solution of (37), the sufficient and necessary
condition for the feasibility of set (36a)-(36e) can be simplified
using the following theorem.

Theorem 4: Set (36a)-(36e) is nonempty if and only if

B �
K

k=1

uk(vk(η
∗)), (40)

where η∗ is the unique solution to
∑K

k=1 u
′
k(vk(η

∗))v′k(η
∗) =

0.
Theorem 4 directly follows from Lemmas 3 and 4. Due to

the convexity of function uk(vk(η)),
∑K

k=1 u
′
k(vk(η

∗))v′k(η
∗)

is an increasing function of η∗. As a result, the unique
solution of η∗ to

∑K
k=1 u

′
k(vk(η

∗))v′k(η
∗) = 0 can be ef-

fectively solved via the bisection method. Based on Theorem
4, the algorithm for obtaining the minimum completion time
is summarized in Algorithm 4. Theorem 4 shows that the
optimal FL accuracy level η∗ meets the first-order condition∑K

k=1 u
′
k(vk(η

∗))v′k(η
∗) = 0, i.e., the optimal η∗ should not

be too small or too large for FL. This is because, for small
η, the local computation time (number of iterations) becomes
high as shown in Lemma 1. For large η, the transmission time
is long due to the fact that a large number of global iterations
is required as shown in Theorem 1.

B. Complexity Analysis
The major complexity of Algorithm 4 at each iteration

lies in checking the feasibility condition (40). To check the
inequality in (40), the optimal η∗ needs to be obtained by
using the bisection method, which involves the complexity
of { (K log2(1/ε4)) with accuracy ε4. As a result, the total
complexity of Algorithm 4 is { (K log2(1/ε4) log2(1/ε5)),
where ε5 is the accuracy of the bisection method used in
the outer layer. The complexity of Algorithm 4 is low s-
ince { (K log2(1/ε4) log2(1/ε5)) grows linearly with the total
number of users.
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Fig. 4. Value of the loss function as the number of total computations varies
for FL algorithms with IID and non-IID data.

Similar to Algorithm 3 in Section III, Algorithm 4 is done
at the BS side before executing the FL scheme in Algorithm
1, which will not affect the latency of the FL process.

V. NUMERICAL RESULTS
For our simulations, we deploy K = 50 users uniformly in

a square area of size 500 m ≤ 500 m with the BS located
at its center. The path loss model is 128.1 + 37.6 log10 d (d
is in km) and the standard deviation of shadow fading is 8
dB. In addition, the noise power spectral density is N0 =
174 dBm/Hz. We use the real open blog feedback dataset in

[39]. This dataset with a total number of 60,000 data samples
originates from blog posts and the dimensional of each data
sample is 281. The prediction task associated with the data is
the prediction of the number of comments in the upcoming
24 hours. Parameter Ck is uniformly distributed in [1, 3] ≤
104 cycles/sample. The effective switched capacitance in local
computation is κ = 10−28 [35]. In Algorithm 1, we set ξ =
1/10, δ = 1/10, and ε0 = 10−3. Unless specified otherwise,
we choose an equal maximum average transmit power pmax

1 =
×××= pmax

K = pmax = 10 dB, an equal maximum computation
capacity fmax

1 = ×××= fmax
K = fmax = 2 GHz, a transmit

data size s = 28.1 kbits, and a bandwidth B = 20 MHz. Each
user has Dk = 500 data samples, which are randomly selected
from the dataset with equal probability. All statistical results
are averaged over 1000 independent runs.

A. Convergence Behavior
Fig. 4 shows the value of the loss function as the number

of total computations varies with IID and non-IID data. For
IID data case, all data samples are first shuffled and then
partitioned into 60, 000/500 = 120 equal parts, and each
device is assigned with one particular part. For non-IID data
case [28], all data samples are first sorted by digit label and
then divided into 240 shards of size 250, and each device is
assigned with two shards. Note that the latter is a pathological
non-IID partition way since most devices only obtain two
kinds of digits. From this figure, it is observed that the
FL algorithm with non-IID data shows similar convergence
behavior with the FL algorithms with IID data. Besides, we
find that the FL algorithm with multiple local updates requires
more total computations than the FL algorithm with only one
local update.

Fig. 5. Comparison of exact number of required iterations with the upper
bound derived in Theorem 1.

Fig. 6. Completion time versus maximum average transmit power of each
user.

In Fig. 5, we show the comparison of exact number of
required iterations with the upper bound derived in Theorem 1.
According to this figure, it is found that the gap of the exact
number of required iterations with the upper bound derived
in Theorem 1 decreases as the accuracy ξ0 decreases, which
indicates that the upper bound is tight for small value of ξ0.

B. Completion Time Minimization
We compare the proposed FL scheme with the FL FDMA

scheme with equal bandwidth b1 = ×××= bK (labelled as
‘EB-FDMA’), the FL FDMA scheme with fixed local accuracy
η = 1/2 (labelled as ‘FE-FDMA’), and the FL TDMA scheme
in [34] (labelled as ‘TDMA’). Fig. 6 shows how the completion
time changes as the maximum average transmit power of each
user varies. We can see that the completion time of all schemes
decreases with the maximum average transmit power of each
user. This is because a large maximum average transmit
power can decrease the transmission time between users and
the BS. We can clearly see that the proposed FL scheme
achieves the best performance among all schemes. This is
because the proposed approach jointly optimizes bandwidth
and local accuracy η, while the bandwidth is fixed in EB-
FDMA and η is not optimized in FE-FDMA. Compared to
TDMA, the proposed approach can reduce the completion
time by up to 27.3% due to the following two reasons. First,
each user can directly transmit result data to the BS after
local computation in FDMA, while the wireless transmission
should be performed after the local computation for all users
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Fig. 7. Comparison of completion time with different batch sizes.
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Fig. 8. Communication and computation time versus maximum average
transmit power of each user.

in TDMA, which needs a longer time compared to FDMA.
Second, the noise power for users in FDMA is lower than in
TDMA since each user is allocated to part of the bandwidth
and each user occupies the whole bandwidth in TDMA, which
indicates the transmission time in TDMA is longer than in
FDMA.

Fig. 7 shows the completion time versus the maximum
average transmit power with different batch sizes [40], [41].
The number of local iterations are keep fixed for these three
schemes in Fig. 7. From this figure, it is found that the
SGD method with smaller batch size (125 or 250) always
outperforms the GD scheme, which indicates that it is efficient
to use small batch size with SGD scheme.

Fig. 8 shows how the communication and computation time
change as the maximum average transmit power of each user
varies. It can be seen from this figure that both communication
and computation time decrease with the maximum average
transmit power of each user. We can also see that the compu-
tation time is always larger than communication time and the
decreasing speed of communication time is faster than that of
computation time.

C. Total Energy Minimization
Fig. 9 shows the total energy as function of the maximum

average transmit power of each user. In this figure, the EXH-
FDMA scheme is an exhaustive search method that can find
a near optimal solution of problem (19), which refers to the
proposed iterative algorithm with 1000 initial starting points.
There are 1000 solutions obtained by using EXH-FDMA, and
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Fig. 9. Total energy versus maximum average transmit power of each user
with T = 100 s.
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Fig. 10. Communication and computation energy versus maximum average
transmit power of each user.

the solution with the best objective value is treated as the near
optimal solution. From this figure, we can observe that the total
energy decreases with the maximum average transmit power
of each user. Fig. 9 also shows that the proposed FL scheme
outperforms the EB-FDMA, FE-FDMA, and TDMA schemes.
Moreover, the EXH-FDMA scheme achieves almost the same
performance as the proposed FL scheme, which shows that
the proposed approach achieves the optimum solution.

Fig. 10 shows the communication and computation energy
as functions of the maximum average transmit power of
each user. In this figure, it is found that the communication
energy increases with the maximum average transmit power
of each user, while the computation energy decreases with
the maximum average transmit power of each user. For low
maximum average transmit power of each user (less than 15
dB), FDMA outperforms TDMA in terms of both computation
and communication energy consumption. For high maximum
average transmit power of each user (higher than 17 dB),
FDMA outperforms TDMA in terms of communication energy
consumption, while TDMA outperforms FDMA in terms of
computation energy consumption.

Fig. 11 shows the tradeoff between total energy consump-
tion and completion time. In this figure, we compare the
proposed scheme with the random selection (RS) scheme,
where 25 users are randomly selected out from K = 50
users at each iteration. We can see that FDMA outperforms
RS in terms of total energy consumption especially for low
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Fig. 11. Total energy versus completion time.

completion time. This is because, in FDMA all users can
transmit data to the BS in each global iteration, while only
half number of users can transmit data to the BS in each
global iteration. As a result, the average transmission time for
each user in FDMA is larger than that in RS, which can lead
to lower transmission energy for the proposed algorithm. In
particular, with given the same completion time, the proposed
FL can reduce energy of up to 12.8%, 53.9%, and 59.5%
compared to EB-FDMA, FE-FDMA, and RS, respectively.

VI. CONCLUSIONS

In this paper, we have investigated the problem of energy
efficient computation and transmission resource allocation of
FL over wireless communication networks. We have derived
the time and energy consumption models for FL based on
the convergence rate. With these models, we have formulated
a joint learning and communication problem so as to min-
imize the total computation and transmission energy of the
network. To solve this problem, we have proposed an iterative
algorithm with low complexity, for which, at each iteration,
we have derived closed-form solutions for computation and
transmission resources. Numerical results have shown that the
proposed scheme outperforms conventional schemes in terms
of total energy consumption, especially for small maximum
average transmit power.

APPENDIX A
PROOF OF LEMMA 1

Based on (12), we have:

Gk(w
(n),h

(n),(i+1)
k )

A1
≥ Gk(w

(n),h
(n),(i)
k )

δ
((( Gk(w

(n),h
(n),(i)
k )

(((2

+
Lδ2

2

((( Gk(w
(n),h

(n),(i)
k )

(((2

= Gk(w
(n),h

(n),(i)
k )

(2 Lδ)δ

2
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(n),h

(n),(i)
k )

(((2

.

(A.1)

Similar to (B.2) in the following Appendix B, we can prove
that:

∇ Gk(w
(n),hk)∇

2 � γ(Gk(w
(n),hk) Gk(w

(n),h
(n)∗
k )),

(A.2)

where h
(n)∗
k is the optimal solution of problem (11). Based

on (A.1) and (A.2), we have:

Gk(w
(n),h

(n),(i+1)
k ) Gk(w

(n),h
(n)∗
k )

≥ Gk(w
(n),h

(n),(i)
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(2 Lδ)δγ

2
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k ) Gk(w

(n),h
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k ))

≥

)
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2
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)
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2

[
(Gk(w

(n),0) Gk(w
(n),h
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k )),

(A.3)

where the last inequality follows from the fact that 1

x ≥ exp( x). To ensure that Gk(w
(n),h

(n),(i)
k )

Gk(w
(n),h

(n)∗
k ) ≥ η(Gk(w

(n),0) Gk(w
(n),h

(n)∗
k )), we

have (15).

APPENDIX B
PROOF OF THEOREM 1

Before proving Theorem 1, the following lemma is provid-
ed.

Lemma 5: Under the assumptions A1 and A2, the follow-
ing conditions hold:

1

L
∇ Fk(w

(n) + h(n)) Fk(w
(n))∇2

≥ ( Fk(w
(n) + h(n)) Fk(w

(n)))Th(n)

≥
1

γ
∇ Fk(w

(n) + h(n)) Fk(w
(n))∇2, (B.1)

and
∇ F (w)∇2 � γ(F (w) F (w∗)). (B.2)

Proof: According to the Lagrange median theorem, there
always exists a w such that
( Fk(w

(n) + h(n)) Fk(w
(n))) = 2Fk(w)h(n). (B.3)

Combining assumptions A1, A2, and (B.3) yields (B.1).
For the optimal solution w∗ of F (w∗), we always have
F (w∗) = 0. Combining (9) and (B.1), we also have γI �
2F (w), which indicates that

∇ F (w) F (w∗)∇� γ∇w w∗∇, (B.4)
and
F (w∗) � F (w)+ F (w)T (w∗ w)+

γ

2
∇w∗ w∇2. (B.5)

As a result, we have:
∇ F (w)∇2 = ∇ F (w) F (w∗)∇2

(B.4)
� γ∇ F (w) F (w∗)∇∇w w∗∇

� γ( F (w) F (w∗))T (w w∗)

= γ F (w)T (w w∗)
(B.5)
� γ(F (w) F (w∗)), (B.6)

which proves (B.2). �
For the optimal solution of problem (11), the first-order

derivative condition always holds, i.e.,

Fk(w
(n)+h

(n)∗
k ) Fk(w

(n))+ ξ F (w(n)) = 0. (B.7)

We are new ready to prove Theorem 1. With the above
inequalities and equalities, we have:
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According to the triangle inequality and mean inequality,
we have((((( 1
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Combining (B.8) and (B.9) yields:
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Based on assumption A2, we can obtain:

Fk(w
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Applying (B.11) to (B.10), we can obtain:
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From (B.1), the following relationship is obtained:

∇h
(n)∗
k ∇2 �

1

L2
∇ Fk(w

(n) + h
(n)∗
k )) Fk(w

(n))∇2.

(B.13)
For the constant parameter ξ, we choose

γ Lξ > 0. (B.14)
According to (B.14) and (B.12), we can obtain:

F (w(n+1))≥F (w(n))
(1 η)γ

2Kξ

K

k=1

∇h
(n)∗
k ∇2

(B.13)
≥ F (w(n))

(1 η)γ

2KL2ξ

K

k=1

]

∇ Fk(w
(n) + h

(n)∗
k ) Fk(w

(n))∇2
(

(B.7)
= F (w(n))

(1 η)γξ

2L2
∇ F (w(n))∇2

(B.2)
≥ F (w(n))

(1 η)γ2ξ

2L2
(F (w(n)) F (w∗)).

(B.15)

Based on (B.15), we get:
F (w(n+1)) F (w∗)

≥

)
1

(1 η)γ2ξ

2L2

[
(F (w(n)) F (w∗))

≥

)
1

(1 η)γ2ξ

2L2

[ n+1

(F (w(0)) F (w∗))

≥ exp

)
(n+ 1)

(1 η)γ2ξ

2L2

[
(F (w(0)) F (w∗)), (B.16)

where the last inequality follows from the fact that 1 x ≥
exp( x). To ensure that F (w(n+1)) F (w∗) ≥ ε0(F (w(0))
F (w∗)), we have (17).

APPENDIX C
PROOF OF THEOREM 2

According to (20), transmitting with minimal time is always
energy efficient, i.e., the optimal time allocation is t∗k = tmin

k .
Substituting t∗k = tmin

k into problem (20) yields:

min
η

α1 log2(1/η) + α2

1 η
(C.1)

s.t. tmin
k ≥ βk(η), Dk ∀ L , (C.1a)
0 ≥ η ≥ 1, (C.1b)

where

α1 = a

K

k=1

κAkf
2
k , α2 = a

K

k=1

tmin
k pk,

βk(η) =
(1 η)T

a
+

Ak log2 η

fmax
k

. (C.2)

From (C.2), it can be verified that βk(η) is a concave
function. Due to the concavity of βk(η), constraints (C.1a)
can be equivalently transformed to:
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ηmin
k ≥ η ≥ ηmax

k , (C.3)

where βk(η
min
k ) = βk(η

max
k ) = tmin

k and tmin
k ≥ tmax

k . Since
βk(1) = 0, limη→0+ βk(η) = ∈ and tmin

k > 0, we always
have 0 < tmin

k ≥ tmax
k < 1. With the help of (C.3), problem

(C.1) can be simplified as (23).

APPENDIX D
PROOF OF THEOREM 3

To minimize
∑K

k=1 tkpk, transmit power pk needs to be
minimized. To minimize pk from (28a), we have:

p∗k =
N0bk
gk

)
2

s
tkbk 1

(
. (D.1)

The first order and second order derivatives of p∗k can be
respectively given by

∂p∗k
∂bk

=
N0

gk

)
e

(ln 2)s
tkbk 1

(ln 2)s

tkbk
e

(ln 2)s
tkbk

[
, (D.2)

and
∂2p∗k
∂b2k

=
N0(ln 2)

2s2

gkt2kb
3
k

e
(ln 2)s
tkbk � 0. (D.3)

From (D.3), we can see that ∂p∗
k

∂bk
is an increasing function

of bk. Since limbk→0+
∂p∗

k

∂bk
= 0, we have ∂p∗

k

∂bk
< 0 for 0 <

bk < ∈ , i.e., p∗k in (D.1) is a decreasing function of bk. Thus,
maximum transmit power constraint p∗k ≥ pmax

k is equivalent
to:

bk � bmin
k � (ln 2)s

tkW

)
(ln 2)N0s
gkpmax

k tk
e
− (ln 2)N0s

gkpmax
k

tk

[
+ (ln 2)N0s

gkpmax
k

,

(D.4)
where bmin

k is defined in (32).
Substituting (D.1) into problem (28), we can obtain:

min
b

K

k=1

N0tkbk
gk

)
2

s
bktk 1

(
, (D.5)

s.t.
K

k=1

bk ≥ B, (D.5a)

bk � bmin
k , Dk ∀ L , (D.5b)

According to (D.3), problem (D.5) is a convex function,
which can be effectively solved by using the Karush-Kuhn-
Tucker conditions. The Lagrange function of (D.5) is:

O(b, μ) =
K

k=1

N0tkbk
gk

)
2

s
bktk 1

(
+ μ

)
K

k=1

bk B

∑
,

(D.6)
where μ is the Lagrange multiplier associated with constraint
(D.5a). The first order derivative of O(b, μ) with respect to bk
is:
∂O(b, μ)

∂bk
=

N0

gktk

)
e

(ln 2)s
tkbk 1

(ln 2)s

tkbk
e

(ln 2)s
tkbk

[
+μ. (D.7)

We define bk(μ) as the unique solution to ∂L(b,μ)
∂bk

= 0. Given
constraint (D.5b), the optimal b∗k can be founded from (30).
Since the objective function (D.5) is a decreasing function of
bk, constrain (D.5a) always holds with equality for the optimal
solution, which shows that the optimal Lagrange multiplier is
obtained by solving (34).

APPENDIX E
PROOF OF LEMMA 2

Assume that problem (35) with T = T̄ < T ∗ is feasi-
ble, and the feasible solution is (T̄ , t̄, b̄, f̄ , p̄, η̄). Then, the
solution (T̄ , t̄, b̄, f̄ , p̄, η̄) is feasible with lower value of the
objective function than solution (T ∗, t∗, b∗,f∗,p∗, η∗), which
contradicts the fact that (T ∗, t∗, b∗,f∗,p∗, η∗) is the optimal
solution.

For problem (35) with T = T̄ > T ∗, we can always
construct a feasible solution (T̄ , t∗, b∗,f∗,p∗, η∗) to problem
(35) by checking all constraints.

APPENDIX F
PROOF OF LEMMA 3

To prove this, we first define function

y = x ln

)
1 +

1

x

[
, x > 0. (F.1)

Then, we have

y′ = ln

)
1 +

1

x

[
1

x+ 1
, y′′ =

1

x(x+ 1)2
< 0. (F.2)

According to (F.2), y′ is a decreasing function. Since
limti→+∞ y′ = 0, we can obtain that y′ > 0 for all
0 < x < +∈ . As a result, y is an increasing function, i.e., the
right hand side of (36b) is an increasing function of bandwidth
bk.

To ensure that the maximum bandwidth constraint (36c) can
be satisfied, the left hand side of (36b) should be as small as
possible, i.e., tk should be as long as possible. Based on (36a),
the optimal time allocation should be:

t∗k =
(1 η)T

a
+

Ak log2 η

fmax
k

, Dk ∀ L . (F.3)

Substituting (F.3) into (36b), we can construct the following
problem:

min
b,η

K

k=1

bk (F.4)

s.t. vk(η) ≥ bk log2

)
1 +

gkp
max
k

N0bk

[
, Dk ∀ L , (F.4a)

0 ≥ η ≥ 1, (F.4b)
bk � 0, Dk ∀ L , (F.4c)

where vk(η) is defined in (39). We can observe that set (36a)-
(36e) is nonempty if an only if the optimal objective value of
(F.4) is less than B. Since the right hand side of (36b) is an
increasing function, (36b) should hold with equality for the
optimal solution of problem (F.4). Setting (36b) with equality,
problem (F.4) reduces to (37).

APPENDIX G
PROOF OF LEMMA 4

We first prove that vk(η) is a convex function. To show this,
we define:

φ(η) =
s

η
, 0 ≥ η ≥ 1, (G.1)

and

ϕk(η) =
(1 η)T

a
+

Ak log2 η

fmax
k

, 0 ≥ η ≥ 1. (G.2)

According to (39), we have: vk(η) = φ(ϕk(η)). Then, the
second-order derivative of vk(η) is:

v′′k (η) = φ′′(ϕk(η))(ϕ
′
k(η))

2 + φ′(ϕk(η))ϕ
′′
k(η). (G.3)
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According to (G.1) and (G.2), we have:

φ′(η) =
s

η2
≥ 0, φ′′(η) =

2s

η3
� 0, (G.4)

ϕ′′
k(η) =

Ak

(ln 2)fmax
k η2

≥ 0. (G.5)

Combining (G.3)-(G.5), we can find that v′′k (η) � 0, i.e., vk(η)
is a convex function.

Then, we can show that uk(η) is an increasing and convex
function. According to Appendix B, uk(η) is the inverse
function of the right hand side of (36b). If we further define
function:

zk(η) = η log2

)
1 +

gkp
max
k

N0η

[
, η � 0, (G.6)

uk(η) is the inverse function of zk(η), which gives
uk(zk(η)) = η.

According to (F.1) and(F.2) in Appendix B, function zk(η)
is an increasing and concave function, i.e., z′k(η) � 0 and
z′′k (η) ≥ 0. Since zk(η) is an increasing function, its inverse
function uk(η) is also an increasing function.

Based on the definition of concave function, for any η1 � 0,
η2 � 0 and 0 ≥ θ ≥ 1, we have:

zk(θη1 + (1 θ)η2) � θzk(η1) + (1 θ)zk(η2). (G.7)
Applying the increasing function uk(η) on both sides of (G.7)
yields:

θη1 + (1 θ)η2 � uk(θzk(η1) + (1 θ)zk(η2)). (G.8)
Denote η̄1 = zk(η1) and η̄2 = zk(η2), i.e., we have η1 =
uk(η̄1) and η2 = uk(η̄2). Thus, (G.8) can be rewritten as:

θuk(η̄1) + (1 θ)uk(η̄1) � uk(θη̄1 + (1 θ)η̄2), (G.9)
which indicates that uk(η) is a convex function. As a result, we
have proven that uk(η) is an increasing and convex function,
which shows:

u′
k(η) � 0, u′′

k(η) � 0. (G.10)
To show the convexity of uk(vk(η)), we have:
u′′
k(vk(η)) = u′′

k(vk(η))(v
′
k(η))

2 + u′
k(vk(η))v

′′
k (η) � 0,

(G.11)

according to v′′k (η) � 0 and (G.10). As a result, uk(vk(η)) is
a convex function. REFERENCES
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