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Abstract—The sudden outbreak of the coronavirus disease (also
known as COVID-19 or colloquially just as coronavirus) has
disrupted our lives in numerous ways. As the virus is spreading
by leaps and bounds, the healthcare systems of even the most
advanced countries have reached their capacity. This is primarily
because a large fraction of people infected with COVID-19 are
either asymptomatic or exhibit mild symptoms. This creates
a large number of reasonably healthy disease carriers, which
makes it easier for the virus to reach the more vulnerable
population. Because of this, contact tracing and infection tracking
are indispensable for containing the spread of this pandemic.
Fortunately, this coincides with the emergence of Internet of
Things (IoT), which is already being considered for healthcare
applications but is a match made in heaven for contact/infection
tracing because of its ubiquity. Inspired by this, we introduce
a new loT-based framework for contact and infection tracing,
which specifically incorporates symptom based detection that has
been ignored in the prior art on tracing models. The ability
of this framework to meaningfully merge real-time symptom
information (from the IoT devices) and the confirmed COVID-19
cases (from the medical tests) provides a fast and efficient way
of tracking the disease spread, which is eventually useful for the
effective utilization of the scarce resources (such as COVID-19
test Kkits). Simulation results corroborate the efficiency of our
infection tracing method.

I. INTRODUCTION

Despite going through multiple pandemics over the past
century, we have been caught gravely unprepared by COVID-
19. As evident from Bill Gates’ 2015 TED talk titled, “The
next outbreak? We're not ready”, the warnings of such an
outbreak were loud and clear. Caused by the severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2), the out-
break was first identified in Wuhan, China, in December 2019.
However within the span of a few months, the pandemic
engulfed almost the entire world, thereby forcing the World
Health Organization (WHO) to declare it as a Public Health
Emergency of International Concern on the 30" January
2020, followed by a pandemic on the 11** of March [1].
As of mid August 2020, a staggering 21 million cases are
already reported across the globe with a fatality count stand-
ing at a whopping 0.75 million. The mammoth number of
infected cases, hospitalizations and fatalities has overloaded
the health-care systems of many developed countries, not to
mention the agonizing condition of several developing and
under-developed countries. The pandemic has also triggered a
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remarkable economic disruption, resulting in the largest global
recession since the Great Depression, affecting hundreads of
millions of people. Moreover, postponement or cancellation
of major sports, religious, political, cultural and educational
events is raising a question over the socio-economic future of
the human civilization. Naturally, while grappling to cope up
with such a deplorable situation, a paramount concern lies in
thwarting or at least reducing any further spread of the virus.

While our understanding of COVID-19 is still evolving,
it is well-accepted that physical proximity and contact are
the primary reasons behind the transmission and spreading
of this disease [2]. Furthermore, it is known that the major
carriers of this disease are the small droplets produced by
coughing, sneezing, and even talking. Recent studies have
shown that the loud speech can generate thousands of such
droplets per second, which may remain suspended in the air
with time constants that may be higher than 10 minutes in
confined environments [3]. This increases the likelihood of
airborne transmission of COVID-19 in indoor spaces. More-
over, these droplets also contaminate surfaces, which spreads
the infection further [2]. Although most contagious during
the first three days after the onset of symptoms, the virus is
capable of spreading even before symptoms actually show up.
Major symptoms of COVID-19 include fever, cough, fatigue,
shortness of breath, and loss of sense of smell, with further
complications, like pneumonia and acute respiratory distress
syndrome. The time from exposure to onset of symptoms
generally range from two to fourteen days. In the absence of
a vaccine and effective antiviral treatments, we are only left
with symptomatic and supportive therapies.

While coping up with any viral pandemic, the popular
notion of Prevention is Better than Cure still prevails and
COVID-19 is no exception [4]. Recommended preventive
measures include washing of hands with sanitizers or soaps,
covering of mouth while coughing, maintaining a certain
distance from other people, wearing a face mask in public as
well as isolation of the infected people. While many regions
have increased their testing capacity, significant importance
is given to tracing the contacts of infected individuals. This
is especially important in the case of COVID-19 because of
the majority of the infected people being reasonably healthy
(either asymptomatic or exhibiting mild symptoms), which
makes it easier for the virus to spread to the more vulnerable
population. In a typical contact tracing process [5], the health
workers will talk to the infected (COVID-19-positive) individ-
uals and alert anyone they might have exposed, while main-
taining their confidentiality. As such, following a process that
involves monitoring symptoms, timely testing, self-isolation



if exposed, and medical care if infected has the potential
to unveil spread patterns and contain infection rates. More
importantly, contact tracing and monitoring helps in keeping
the utilization of healthcare infrastructure below capacity and
helps in gradually reopening the businesses. Naturally, the
burning question to our current digital age is: how to efficiently
use advanced communication and Internet technologies to
combat this pandemic? [6]

In order to effectively address the above question, we
need a communications solution that can monitor, trace, and
wirelessly report infections, thereby providing detailed view of
the infection spread to the decision makers. Quite incredibly,
this is exactly the type of problem for which the Internet of
Things (IoT) is being developed [7], [8]. The IoT comprises
of a collection of interconnected physical objects or “things”,
typically equipped with sensing and software capabilities for
autonomous information processing. Massive growth in smart
devices as well as the gradual penetration of 5G wireless and
advanced WiFi technologies have already set the stage for the
next industrial revolution based on IoT. The advent of IoT
is also introducing a gradual change in health care systems.
The current emphasis in this direction is mostly confined to
remote health monitoring and tele-health, which is increasing
the reach of health-care professionals from the hospitals to the
private environments, such as the patients’ home. However, the
future Healthcare Internet of Things (HIoT) [9] and Internet
of Medical Things (IoMT) [10] envision a wide variety of
features, starting from the maintenance of healthcare equip-
ment to efficient tracking of patients and health-care providers.
Continuing in these directions, it is expected that the future
IoHT and IoMT devices will unveil the concept of connected
and smart hospital, imbued with intelligent communication
technologies under the aegis of the next generation wireless
technologies.

In this article, we propose a novel IoT-based real-time
solution for the contact tracing and monitoring of COVID-19
infection spread. The specific novelty of this approach lies in
the use of IoT devices to identify potentially infected COVID-
19 individuals. More specifically, our major contributions are:

« We propose contact tracing of people based on their
handheld IoT devices using a graph theoretic approach
applied to wireless networks.

o The information obtained from the IoT devices is merged
with a contact tracing graph, created by a healthcare
server, along with the infection detection graph, devel-
oped using information about the confirmed COVID-
19 cases. This helps in developing an infection tracing
graph, which provides key insights into how this infection
spreads in a community.

o At the heart of this solution is the ability of wearable
devices to share vital information about the individuals
(such as temperature) with the healthcare server. We
propose to do this by establishing device-to-device (D2D)
communication links over 5G/4G wireless to share this
information with the user’s mobile phone, which will then
act as a relay to share it with the healthcare server.

« Infection tracing of people in close proximity of individ-
uals with high symptoms, and prompt identification of

possible virus carriers aids in fast isolation and quarantin-
ing of possible infections. This information is also useful
for the decision makers to properly route and dimension
scarce resources, such as the COVID-19 testkits.

o Another novelty of our proposed scheme lies in the
symbiotic merger of the information about symptoms
with the contact and infection detection graphs, which
is aided by the IoT network and is in stark contrast to
the existing work on contact tracing, such as [11]-[13],
which just uses contact and infection information (but not
the symptom information).

Given the devastating impact of the pedantic, it is natural
that many contact tracing and self assessment mobile appli-
cations have already been developed, such as the Aarogya
Setu App" of the Indian Government and the Self-Check App®
of the South Korean Government. It should be noted that
different from these existing solutions, our proposed method
uses loT-based wearable devices to notify not only when a
person comes in contact with an infected person, but also when
a contact is made with a person exhibiting high symptoms.
Moreover, if someone has come in contact with infected
individuals (or those exhibiting high symptoms), the proposed
scheme generates a notification including a probability of
getting infected in two cases: whether or not everyone is
wearing a mask. Furthermore, compared to both Arogya Setu
App and Self-Check App, our proposed scheme considers
symptoms and contact over a relatively longer period of time.

II. ROLE OF IOT IN HEALTHCARE

With a general increase in life expectancy and onset of a va-
riety of chronic diseases, the health-care and medical systems
are poised for a drastic change in many countries. In order
to alleviate the burden on healthcare infrastructure, while si-
multaneously maintaining affordability, in-home telemedicine
systems are quickly gaining importance and popularity. Origi-
nally designed for achieving a small set of clinical objectives,
today’s telemedicine applications require higher sophistication
and scalability. Lately, this necessity has spawned Internet
of Medical Things (loMT) [10], which fuses the safety and
integrity of traditional medical devices with dynamic, scalable
and generic features of the IoT. Indeed, rapid technological
advances in wireless communications, specifically IoT, are
considered as a panacea of the inherent shortcoming in our
age-old healthcare systems.

Personalized, proactive, and cost-effective healthcare de-
mands wide deployment and availability of IoT devices in
almost all aspects of health management, thereby giving
birth to the notion of Healthcare IoT (HloT) [9]. Typically
HIoT devices are of two broad types: (1) Personal HIoT
devices, such as smart watches, which have already gained
significant popularity across a diverse range of consumers in
many countries. (2) Clinical HIoT devices, such as glucose
monitors, which need explicit intervention and regulation from
physicians and health-care professionals. Internet connectivity
is enabling the healthcare institutions to explore emerging 5G
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Fig. 1. Contact tracing using IoT and D2D communications.

wireless, cloud technologies, and large-scale data analytics for
providing efficient health diagnosis, to provide improved yet
affordable healthcare.

Unfortunately, the sudden emergence of the COVID-19
pandemic has disrupted the gradual creation of the HIoT
ecosystem by putting unprecedented timelines for finding
effective solutions. As stated already, contact and infection
tracing is our best bet until effective medical interventions are
available on a large scale. Analysis of the existing contact
tracing models, e.g., see [13], originally developed for similar
epidemics, like Severe Acute Respiratory Syndrome (SARS)
and Middle East Respiratory Syndrome (MERS), has pointed
out the necessity of fast and efficient data collection and
closed-loop communication between health administration,
researchers, and infected as well as exposed individuals. This
necessitates the need for novel solutions that collect almost
real-time information about health vitals using IoT devices and
merge it with the medical records in order to develop effective
infection tracing solutions.

Besides the healthcare system, IoT is also converging with
the social networking. The popularity of social networking has
invigorated the importance of social awareness in emerging
IoT applications and D2D communications, thereby giving
birth to the notion of Social IoT (SIoT) and Social D2D
(SD2D) networks [14]. The existing social relationships in
SIoT mimic the human social networks, where a relationship

is used as a sign of reliable connection, e.g., siblings and co-
workers. Interestingly, social relationship and communications
could also play a significant role in contact tracing, required
for the pandemic control, as there is always a higher possibility
of contact and proximity of persons belonging to the same
social network in a given area (especially the same family or
office). Equally importantly, the tools developed to incorporate
such relationships in the analysis of wireless networks, such
as [14], are useful templates for developing new contact tracing
tools as well.

III. PROPOSED IOT-BASED SOLUTION

Before we describe our proposed solution in detail, it must
be noted that there are many sensors, such as the one in [15],
that are being developed specifically for detecting COVID-19.
While this would make the pandemic management easier, none
of these will be ready for mass deployment any time soon,
because of which we will not assume the availability of such
sensors in our proposed solution. Instead, we just assume that
the IoT devices, such as wearables, are used for monitoring the
vital information (such as temperature) of their owners. This
information is then sent to a dedicated smart healthcare server
used for contact and infection tracing. One way to enable this
information transfer is to utilize the user’s mobile phone as a
D2D-based 4G/5G wireless relay, which collects information
from the IoT devices and sends it to the healthcare server. If the



Algorithm 1: IoT-based Contact Tracing Algorithm

Initialize Distiy, Smep, Timeyns, Timeiyo;

Distyy: Social distancing threshold allowed;

Symptom Flag SF, Smy: Symptoms threshold;

Timeyys: Minimum contact duration for spreading
infection from person with high symptom;

Timetns: Minimum contact duration for spreading
infection from infected person;

if distance < Distyy, and person is confirmed infected
then

immediate notification for quarantine;

notify medical authorities;

end

if SF > Sm;, then

notify symptom carriers;

self isolation;

end

if distance < Dist.y then

for all persons in proximity do

if persons with symptoms > Smyy, then

if contact duration > Timey; then
Notify infection probability with and

without masks;

end
end
if persons with confirmed infection then

if contact duration > Timey, then
Notify infection probability with and

without masks;

end

end

end
end

hand-held or wearable IoT device is unable to establish a D2D
connection with the the mobile phone, it can use any form of
capillary communications, like WiFi, Zigbee, Bluetooth, and
so on, to establish communication with the mobile phone.

Note that social networking also plays an integral part in
such contact tracing, as individuals within the same social
group have a high probability of being in proximity for
longer period of time. Moreover, knowledge of the social re
tionships also aids the devices to find other devices belongi
to the same owner, thus increasing the possibility of commu
cations and contact tracing. On the device level, our propos
framework ensures integrity by assuring communication ot
among the devices of the same owner. However, at f
network level, the wireless operator as well the server need
guarantee the integrity and privacy of all the individuals. Fig
highlights the proposed contact tracing and infection detecti
framework. The overall system is composed of four differ:
stages. T1 represents the initial stage of the system. At °
every individual is checked for (1) symptoms, like fever, cou
and fatigue with their corresponding infection rates and
individuals with confirmed infection. At this stage, individuals
showing high symptoms are identified. At stage T3, individuals

exposed to the infected patients or individuals showing high
symptoms are identified depending on their proximity. Finally,
in stage T4 the infected patients are quarantined and the
exposed individuals are isolated. The wearable IoT devices
establish fast and efficient communications with the server
by exploiting D2D 4G/5G communications or WiFi/Bluetooth,
while preserving data integrity. As noted already, the ability
of identifying individuals with high symptoms is where the
proposed approach significantly diverges from the state-of-the-
art contact tracing methods. Algorithm 1 outlines the high-
level flow of our IoT-based contact tracing framework.

Our proposed scheme explores an underlying Contact Trac-
ing graph G1(V1, E1). Every node in G represents a person
with his/her mobile or wearable device, with associated data
and two major pieces of information: (1) mobility in the form
of geographical location, i.e. (x,y) coordinates over time and
(2) dynamics of symptoms over time, using either wearable or
handheld devices or medical equipment. On the other hand,
every edge in G; between two nodes actually represents the
human-to-human contact or proximity information between
two individuals. The wearable devices will utilize D2D-based
5G or 4G wireless communications to report this information
to a centralized server, by using mobile phone or handheld
device as the relay node. The centralized server is dedicated to
keep track of each node in the network. At time ¢, the server
can estimate and identify which person has been in contact
with whom.

Given that a node is identified as a confirmed case,
the server can mark and form Infection Detection graph
G4o(Va, E5). The information required for this operation in-
cludes (a) Contact Tracing Graph G4(Vi, E1) and (b) Con-
firmed infection detection, either by getting information from
hospitals or testing centers. Note that the edges in the Infection
Detection graph inherit human-to-human contact or proximity
information between the two individuals from the Contact
Tracing graph (1. Finally, given that the server has complete
information of nodes and current active cases, the potential
victims can be identified. One easy approach is to check if at
time ¢ a node v, is within a distance threshold of an infected
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Fig. 2. Graph-based contact tracing model.



(COVID-19 positive) node for a specific duration. This forms
the Infection Tracing graph, where every infected person is
marked or colored based on its disease. Two different colors
or patterns could be used: one to mark confirmed COVID-
19 cases (black coronavirus icon in Fig. 1) and another to
identify the potentially infected people (red-white pattern in
Fig. 1). The set of edges now represent traces of infection
transmission. It is interesting to investigate the likelihood
with which each of these potentially infected people (i.e.,
nodes marked with the red-white pattern) will have COVID-
19. Naturally, key parameters, such as the distance threshold,
infection rate, contact duration and symptoms induce dynamics
in this solution.

Considering mobility and physical contacts, infection de-
tection and tracing could be periodically updated to represent
dynamic connections between users. Random graph models
are explored to capture these dynamics, where the probability
of proximity between any two users is represented as dynamic
appearance and disappearance of the corresponding edges.
Such a graph-theoretic model efficiently abstracts continuous
histories of users’ proximity and contacts. Assuming that the
proximity and contacts between any two users at any time
instant depend on the corresponding proximity and commu-
nications at previous time instances, such a contact tracing
graph can be analyzed using a Markov Process of a particular
order. The proximity and contacts are updated at specific
rates, thus resulting in the appearance and disappearance of
edges. While the specific order of the model depends on the
set of previous time instances considered, complex, higher-
order Markov models generally contain more information than
the corresponding lower-order models. As IoT devices are
typically low power and the contact tracing calls for fast
action, a suitable compromise between model optimization and
implementation feasibility needs to be considered.

Using this model, we can analyze the contact tracing graph
with varying density and degree distribution. As the rate of
change in user-specific contacts (appearance and disappear-
ance of edges in the Contact Tracing graph) is lower than the
rate of model observation instances, the consecutive snapshots
of the graph will be correlated. For example, there is a strong
effect of a user’s previous contacts or proximity on the prob-
ability of future contacts. Independent analysis using a simple
memory-less model at individual time instants often ignores
the underlying internal dependencies and fails to capture the
rich correlations. Our graph theoretic model gains over most
of the existing methods in this respect. Using suitable graph
traversal across all the vertices, representing the (potential)
infected persons and updating the edges, representing the
infection transmission, this model provides an effective way
of contact tracing.

IV. SIMULATION EXPERIMENTS AND RESULTS

We have conducted representative simulation experiments to
mimic the COVID-19 virus spread in Python. The simulation
generates a population density of 250 to 1, 500 per square km,
with each individual having properties, like a global unique
identifier, current location, a disease flag (DF), and a symptom

TABLE I
KEY SIMULATION PARAMETERS
Total People 250 — 1,500
Total Area 1 km?
Mobility Model Random Walk
Speed [1 — 10] meters/time unit
Distance Threshold 5 meters
Symptom Threshold 0.9
COVID Patients [10 - 20]
Infection probability without mask 0.6
Infection probability with mask 0.3
Contact duration with 10 time units
infected individual
Symptoms persistence duration 60 time units

flag (SF). The initial positions are generated as per a binomial
point process, where a relatively sparse and dense population
densities are simulated using 250 and 1500 points per square
km, respectively. The simulation area is chosen as 1 square km.
Note that, as our interest is in understanding the underlying
trends, the absolute values are not of much interest and the
simulations could be scaled to a larger population size, with
more computational power. DF € [0,1] is a binary identifi-
cation of a person, having COVID-positive status, set by a
designated health center. The SF € [0, 1] is our contribution,
which is calculated using a weighted sum of the symptoms.
A symptom for a particular person is estimated using smart
wearable devices or diagnostics by a health apparatus. We
include programmable parameters related to the COVID-19
spread. Considering that a person is exposed to an infected
individual, the infection probabilities with and without masks
are set to 0.3 and 0.6, respectively. Since our understanding of
the infection probabilities is still evolving, these are reasonable
choices to study performance trends. Furthermore, the virus
does not infect on momentary interaction but requires some
time. We programmed the time as 10 time units (equivalently,
epochs) to contract the virus by staying in the proximity of
an infected person. The absolute time units are again not
important because of our interest in the trends. The symptoms
are monitored continuously and a warning is triggered if
symptoms are higher than a predefined symptoms threshold
for more than 60 time units. The simulation also observes
each individual’s movement and health vitals, using a random-
walk mobility model over an area of 1 square km for up to
300 time units. Assuming that a person is at position (x,y) at
a given epoch, his/her position is updated at the next epoch
by first randomly selecting a direction from 9 possibilities (8
directions and 1 staying at the same position) and then moving
him/her in that direction using a random speed between 0 and
10 meters per epoch. The entire simulation is repeated 100
times with different random seeds and the average results are
reported. The contact tracing process is triggered in three steps,
as mentioned below:

1) Social distancing violation: Continuous monitoring of
inter-device distances identifies the initial trigger when
two or more devices come in close proximity of each
other. The immediate detection of distancing violation
is followed by further checking.
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2) Possible disease spread infections: Given that the de-
vices have been in close proximity, the DF and SF are
measured to identify potential carriers.

3) Potential infected cases based on symptoms: If any
device owner has contracted the disease (DF = 1) or
has symptoms higher than the threshold (SF > Smyy,), an
immediate alert is sent out to the health authorities and
the infected individual without disclosing their identity.

We evaluate our solutions using the following metrics:

e (i) Number of people exposed (based on proximity) to a
confirmed (infected) COVID-19 patient, (ii) potentially
infected individuals in two cases: either everyone is
wearing a mask or no one is wearing a mask, and (iii)
the number of individuals showing high symptoms after
coming in contact with an infected person. We ignore
temporal dependence for the development of symptoms
because of which the last metric does not truly depend
upon whether the masks were used or not. However, this
can be generalized by running a more realistic simulation
with temporal dependence of symptoms. The trends are,
however, expected to remain similar.

e Same as (i) and (ii) above, but now our focus is on
counting persons exposed to individuals exhibiting high
symptoms (instead of confirmed COVID-19 patients that
was the case above).

Fig. 3 demonstrates the dynamics of people exposed to an
infected person or a person with high symptoms. The density
of people exposed to the infected individual increases with the
increase in the number of individuals. Out of all the exposed
individuals, assuming everyone is wearing a mask, the density
of potentially infected individuals reaches up to three. On the
other hand, with no masks, this count reaches to almost five. A
different, albeit interesting information is an individual having
high symptoms after getting exposed to an infected person.
This is the set of people having high probability to have
contracted the disease. Our framework also considers that a
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Fig. 4. Illustration of infection spread over time.
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Fig. 5. The density of exposed individuals as a function of time.

person with high symptoms can also transmit the infection
to other exposed persons. The number of exposed people
increases beyond 300 (per square km) for a population density
of 1500 per square km. Around 100 people (per square km)
could be potentially infected even after using masks. Without
masks, however, this number increases to more than 200.
Over an observation window of 300 time units, we identify
the percentage of potentially exposed and infected people
with and without masks, by considering people having high
symptoms. Fig. 4 shows that without appropriate intervention,
the percentage of infected people increases to as much as
15%. Therefore, it is important to promptly isolate exposed
individuals to reduce further spread. In the proposed solution,
the IoT-based wearable devices can drastically reduce the
disease spread with timely actions. Fig. 5 illustrates that
number of individuals exposed to the infected person increases
with the increase in the number of people considered in the
mobility model. This directly translates to the smart lock



downs and reduced outdoor activities. Nevertheless, with the
passage of time, the virus spreads if no other interventions
are put in place. Our proposed scheme not only identifies and
tracks the infected individual but also traces back all exposed
individuals to restrict the disease spread.

V. CONCLUSIONS AND DISCUSSION

The year 2020 will always be remembered as the year
of the COVID-19 pandemic. Since every cloud has a silver-
lining, this has also presented an almost perfect global use
case for the IoT that has the potential of making it the most
pervasive technology on the planet. With the COVID-specific
sensors years away from mass deployment, current IoT de-
vices, such as wearables, can be used to detect key symptoms
of COVID-19, which can then be fused with contact tracing
graph and information about confirmed COVID-19 cases to
identify the potentially infected individuals. In this paper,
we have developed the first framework to achieve this using
the presently available IoT technology. The proposed frame-
work facilitates real-time identification of potentially infected
individuals, which is absolutely vital at the time when the
healthcare infrastructure is reaching its limits even in the most
developed countries. Specifically, this information can be used
to identify infection clusters, which is useful for the decision
makers to properly distribute scarce healthcare resources, such
as protective equipment and COVID-19 testkits. This work can
be extended in may directions, like incorporating the indoor
location information and the privacy and protection of the
health data. Moreover, we used simple mobility and symptom
evolution models for our simulations to demonstrate the proof-
of-concept. However, our framework is general and similar
results can be easily obtained for the actual mobility traces
and related COVID-19 data, whenever it becomes available.
Most importantly, the evaluation of our proposed scheme is
currently confined to simulation-based experiments. Therefore,
a natural next step is to develop prototypes and refine them
into products that could be used on a large scale.
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