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Abstract

Epoch of Reionisation (EoR) data analysis requires unprecedented levels of accuracy in radio interferometer pipelines. We have developed an
imaging power spectrum analysis to meet these requirements and generate robust 21 cm EoR measurements. In this work, we build a signal
path framework to mathematically describe each step in the analysis, from data reduction in the Fast Holographic Deconvolution (FHD)
package to power spectrum generation in the e ppsilon package. In particular, we focus on the distinguishing characteristics of FHD/eppsilon:
highly accurate spectral calibration, extensive data verification products, and end-to-end error propagation. We present our key data analysis
products in detail to facilitate understanding of the prominent systematics in image-based power spectrum analyses. As a verification to
our analysis, we also highlight a full-pipeline analysis simulation to demonstrate signal preservation and lack of signal loss. This careful
treatment ensures that the FHD/eppsilon power spectrum pipeline can reduce radio interferometric data to produce credible 21 cm EoR
measurements.
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1. Introduction

Structure measurements of the Epoch of Reionisation (EoR) have
the potential to revolutionise our understanding of the early
universe. Many radio interferometers are pursuing these detec-
tions, including the MWA (Tingay et al. 2013; Bowman et al.
2013; Wayth et al. 2018), PAPER (Parsons et al. 2010), LOFAR
(Yatawatta et al. 2013; van Haarlem et al. 2013), HERA (Pober
et al. 2014; DeBoer et al. 2017), and the SKA (Mellema et al.
2013; Koopmans et al. 2014). The sheer amount of data to be pro-
cessed even for the most basic of interferometric analyses requires
sophisticated pipelines.

Furthermore, these analyses must be very accurate; the EoR
signal is many orders of magnitude fainter than the foregrounds.
Systematics from inaccurate calibration, spatial/frequency trans-
form artefacts, and other sources of spectral contamination will
preclude an EoR measurement. Understanding and correcting
for these systematics have been the main focus of improvements
for MWA Phase I EoR analyses, including the Fast Holographic
Deconvolution (FHD)/eppsilon pipeline, since their description in
Jacobs et al. (2016).

FHD/eppsilon power spectrum analyses have been prevalent
in the literature, including data reduction for MWA Phase I
(Beardsley et al. 2016), MWA Phase II (Li et al. 2018), and for
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PAPER (Kerrigan et al. 2018), with HERA analyses planned. It is
also flexible enough to be used for pure simulation, particularly
in investigating calibration effects (Barry et al. 2016; Byrne et al.
2019). Combined with its focus on spectrally accurate calibration,
as well as end-to-end data-matched model simulations and error
propagation, FHD/eppsilon is well suited for EoOR measurements
and studies.

In this work, we describe the FHD/eppsilon power spectrum
pipeline in full with a consistent mathematical framework, high-
lighting recent improvements and key features. We trace the signal
path from its origin through the main components of our data
reduction analysis. Our final power spectrum products, including
uncertainty estimates, are detailed extensively. We perform many
diagnostics with various types of power spectra, which provide
confirmations for our improvements to the pipeline.

As further verification of the FHD/eppsilon power spectrum
pipeline, we present proof of signal preservation. Confidence in
EoR upper limits relies on our ability to avoid absorption of
the signal itself. A full end-to-end analysis simulation within our
pipeline proves that we do not suffer from signal loss, thereby
adding credibility to our EoR upper limits.

First, we detail the signal path framework in Section 2 to
provide a mathematical foundation. In Section 3, we build an ana-
lytical description of FHD, focusing on the recent improvements
in calibration. Section 4 outlines the data products from FHD
and our choice of integration methodology. Propagating errors
and creating power spectra in eppsilon are described in Section
5. Finally, we illustrate all of our power spectra data products in
Section 6, including proof of signal preservation.
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2. The signal path framework

The sky signal is modified during the journey from when it was
emitted to when it was recorded. In order to uncover the EoR, the
true sky must be separated from all intervening effects, including
those introduced via the instrument. We describe all known signal
modifications to build a consistent, mathematical framework.

There are three main types of signal modification: those that
occur before, during, and after interaction with the antenna
elements, as shown in Figure 1. We adhere to notation from
Hamaker, Bregman, & Sault (1996) whenever possible in our brief
catalogue of interactions.

B: Before antenna

- Faraday rotation from interaction with the ionosphere, F.
- Source position offsets O due to variation in ionospheric
thickness.
- Unmodelled signals caused by radio frequency interfer-
ence (RFI), U.
S: At antenna

— Parallactic rotation P between the rotating basis of the
sky and the basis of the antenna elements.

- Antenna correlations from cross-talk between anten-
nas, X.

- Antenna element response, C, usually referred to as the
beam.?

- Errors in the expected nominal configuration and beam
model, D.

E: After antenna

- Electronic gain amplitude and phase R from a typical
response of each antenna.

- Gain amplitude changes from temperature effects T on
amplifiers.

- Gain amplitude and phase oscillations K due to cable
reflections, both at the end of the cables and at locations
where the cable is kinked.

- Frequency correlations A caused by aliasing in polyphase
filter banks or other channelisers.

Each contribution can be modelled as a matrix which depends
on [f,t, P, AB]: frequency, time, instrumental polarisation, and
antenna cross-correlations. The expected contributions along the
signal path are thus B=UOF, S =DCXP, and E=AKTR. The
visibility measurement equation takes the form

v ~ E § B I" + noise, (1)

meas

where v are the measured visibilities, is the true sky, B
are contributions that occur between emission and the ground,
S are contributions from the antenna configuration, and E are
contributions from the electronic response. We have included all
known contributions and modifications to the signal, including
the total thermal noise. However, there may be unknown contri-
butions, hence we describe Equation 1 as an approximation. All
components are summarised in Table 1 for reference.

Itrue

*Hamaker et al. (1996) use C to primarily account for a rotating feed; however,
we incorporate the antenna response as well. We also expect and model polarisation
correlation in the Jones matrices (Section 3.2), whereas Hamaker et al. (1996) does not.
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Table 1. Brief definitions of the variables used within the signal path framework,
organised by type. There are four types, (B) interactions that occur before the
antenna elements, (S) interactions that occur at the antenna elements, (E) inter-
actions that occur after the antenna elements, and (v) visibility-related variables.

Type Variables Definition
B F Faraday rotation
o] Source position offsets
v Unmodelled RFI
S P Parallactic rotation
X Cross-talk antenna correlations
C Antenna element response
D Errors in nominal configuration
E R Gain amplitude and phase
T Temperature changes
K Cable reflections
A Frequency correlations
v Jtrue True sky
ymeas Measured visibilities
noise Thermal noise
xH
x* o

FO

Figure 1. The signal path through the instrument. There are three categories of sig-
nal modification: before antenna, at antenna (coloured light blue), and after antenna.
Each modification matrix (green) is detailed in the text and Table 1.

The visibilities can be condensed into vectors since the mea-
surements are naturally independent over the [f, ¢, P, AB] dimen-
sions. However, the modification matrices can introduce correla-
tions across the dimensions, and thus cannot be reduced without
assumptions.
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One of the goals of an imaging EoR analysis is to reconstruct
the true sky visibilities, v""™¢, given the measured sky visibilities,
v This is achieved through the process of calibration. We
will use our generalised framework described in this subsection
to detail the assumptions and methodology for the FHD/eppsilon

pipeline.

3. Fast Holographic Deconvolution

FHD® is an open-source radio analysis package that produces
calibrated sky maps from measured visibilities. Initially built to
implement an efficient deconvolution algorithm (Sullivan et al.
2012), its purpose is now to serve as a vital step in EoR power
spectrum analysis.

FHD is a tool to analyse radio interferometric data and has
a series of main functions at its core: (1) creating model visi-
bilities from sky catalogues for calibration and subtraction, (2)
gridding calibrated data, and (3) making images for analysis and
integration.

Using the signal path framework described in Section 2, we
will describe the steps in building a gridding kernel (Section 3.2),
forming model visibilities (Section 3.3), calibrating data visibilities
(Section 3.4), and producing images (Section 3.5).

3.1. Pre-pipeline flagging

Before any analysis can begin, the data must be RFI-flagged. RFI,
particularly from FM radio and digital TV, can contaminate the
data. However, RFI has characteristic signatures in time and fre-
quency which allow it to be systematically removed by trained
packages.

We use the package AOFLAGGER! to RFI-flag the data
(Offringa et al. 2015). This removes bright line-like emission,
but has difficulty removing faint, broad emission like TV. We
completely remove any observations that have signatures of TV.
Therefore, we remove contributions from U by avoidance.

As demonstrated in Offringa, Mertens, & Koopmans (2019),
averaging over flagged channels can cause bias. However, this does
not affect the nominal FHD/eppsilon pipeline because it avoids
inverse-variance weighting of the visibilities. Any future incorpo-
ration of inverse-variance weighting will need to take this into
account.

3.2. Generating the beam

The measurement collecting area of an antenna element, C,
is commonly referred to as the primary beam. A deep knowl-
edge of the beam is critical for precision measurements with
widefield interferometers (Pober et al. 2016). Since our visibility
measurements are correlations of the voltage response between
elements, we must understand the footprint of each element’s
voltage response to reconstruct images (Morales & Matejek 2009).

We build the antenna element response from finely interpo-
lated beam images. This happens in the instrument’s coherency
domain, or instrumental polarisation. We assume each element
has two physical components p and g which are orthogonal, so
each visibility correlation between elements a and b will have

Phttps://github.com/EoRImaging/FHD

“Deconvolution in FHD is generally only used in building sky models for calibration
and subtraction.

dhttps://sourceforge.net/p/aoflagger/wiki/Home/

a P={pupp> Padb> GaPb> aqs} response in the coherency domain
(Hamaker et al. 1996). This is calculated from the two elements’
polarised response patterns. For example,

C.Duqb = anph

= ( (ann"x,m + Jy,pu"y>pb>

* * :
(Jx,unx,qb + J)’m”}hqa) ) 4 (2)

where C, ;, is the beam response for a p component in element a
and a g component in element b, J is the vector field for an ele-
ment (also known as the Jones matrix), and the subscript x, p,, is
the contribution of the p component in element a for the coordi-
nate x (and likewise for the other subscripts) (Sutinjo et al. 2015).
Each matrix is a function of spatial coordinates and frequency, and
each operation is done element-by-element.

The Jones matrices describe the transformation needed to
account for P, or parallactic rotation. Due to the wide field-of-
view and the lack of moving parts for most EoR instruments, this
is a natural requirement. Known inter-dipole mutual coupling, a
form of X, is also captured in the Jones matrices. We generate Cp
for a pair of elements, which can be applied to all other identical
element pairs.

We then take the various beams in direction cosine space {I, m}
and Fourier transform them to get beams in {u, v}. Since we plan
on using the beam as a gridding kernel later on, the beam must
vary as smoothly as possible. This is achievable by hyperresolving
beyond the usual uv-grid resolution of 3 A, down to typically =55 2.
We create this beam once to build a highly resolved reference table.

FHD does have the flexibility to generate unique beams for each
element given individual element metadata; however, this quickly
increases computing resources. Instead, we can build a coarse
beam per baseline with phase offsets in image space to account for
pixel centre offsets (Line 2017), which is built on-demand rather
than saved as a reference table. This corrects for one form of D, or
individual element variation and error.

When we generate model visibilities, we want to be as instru-
mentally accurate as possible. This necessitates a kernel which
represents the instrumental response to the best of our knowl-
edge. However, we can choose a separate, modified kernel for
uv-plane generation in power spectrum analysis, similar to a
Tapered Gridded Estimator (Choudhuri et al. 2014, 2016). As long
as the proper normalisations are taken into account in power
estimation, a modified gridding kernel acts as a weighting of the
instrumental response. This image-space weighting will correlate
pixels; we investigate contributions from pixel correlations in the
power spectrum in Section 6.1.

3.3. Creating model visibilities

We must calibrate our input visibilities. Due to our wide field-
of-view and accuracy requirements, FHD simulates all reliable
sources out to typically 1% beam level in the primary lobe and
the sidelobes to build a nearly complete theoretical sky. For the
MWA Phase I, the 1% beam level includes the first sidelobe out to
a field-of-view of approximately 100°. By comparing these model
visibilities to the data visibilities, we can estimate the instrument’s
contribution.

Generating accurate model visibilities is an important step in
calibration. Therefore, the estimate of the sky must be as complete
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as possible, including source positions, morphology, and bright-
ness. For example, we can use GLEAM (Hurley-Walker et al.
2017), an extragalactic catalogue with large coverage and high
completeness, to model sources for observations in the Southern
sky. For a typical MWA field off the galactic plane, we model
over 50 000 known sources using GLEAM. As for a typical PAPER
observation, we model over 10000 known sources above 1]y
(Kerrigan et al. 2018).

Not all sources are unpolarised. There are cases where a source
can be linearly or circularly polarised. Only ten out of the thou-
sands of sources seen in a typical MWA field off the galactic plane
are known to be reliably polarised (Riseley et al. 2018). Therefore,
we assume there are no polarised sources in making model visi-
bilities. With this assumption, we avoid complications from F, or
Faraday rotation in the polarisation components due to the iono-
sphere. Implicitly, we also assume the ionosphere is not structured,
therefore F does not affect unpolarised sources.

We disregard source position offsets O, a contamination result-
ing from ionospheric distortions. We minimise this contribution
by excluding data which is significantly modified by ionospheric
weather. We determine the quality of the observation using var-
ious metrics described in Beardsley et al. (2016), which can be
further supplemented by ionospheric data products (Jordan et al.
2017; Trott et al. 2018).

Not all sources are unresolved. We also can optionally include
extended sources by modelling their contribution as a series of
unresolved point sources (Carroll 2016). This can also be done for
creating models of diffuse synchrotron emission (Beardsley 2015).
However, the diffuse emission is significantly polarised (Lenc et al.
2016) and difficult to include.

With these assumptions, we now have a reliable sky model that
we can use to generate model visibilities. For each point source in
our catalogue, we perform a discrete Fourier transform using the
RA/Dec floating-point location and the Stokes I brightness. This
results in a discretised, model uv-plane for each source without
instrumental effects; typically at 1 A resolution. All uv-planes from
all sources are summed to create a model uv-plane of the sky, and
this process is repeated for each observation to minimise w-terms
associated with the instantaneous measurement plane (see Section
4 for more discussion).

Once a model uv-plane is created with all source contribu-
tions, we simulate what the instrument actually measures. The
hyperresolved uv-beam from Section 3.2 is the sensitivity of the
cross-correlation of two elements. We calculate the uv-locations of
each cross-correlated visibility, and multiply the model uv-plane
with the uv-beam sampling function. The sum of the sensitivity
multiplied by the model at the sampled points is the estimated
measured value for that cross-correlated visibility.

These visibilities represent our best estimate of what the instru-
ment should have measured, disregarding any source position
offsets O, polarised Faraday rotation F, and diffuse emission. Any
deviations from these model visibilities (whether instrumental or
not) will manifest as errors in the comparison between the data
and model during calibration.

Our model visibilities can be represented in the signal path
framework as

m~ S ™ (3)

where m are the estimated model visibilities, I""¢ is the true sky,
and S are contributions from the plane of the measurement. We
have not included any modifications in the signal path from before
the instrument, B, and have instead chosen to use an avoidance
technique for affected data.

N. Barry et al.

3.4. Calibration

We are left with one type of modification to the signal that has not
been accounted for by the model visibilities or by avoidance: E, the
electronic response. This is what we classify as our calibration.

At this point in the analysis, we have a measurement equation
that looks like

meas

v ~ E m + noise. (4)

We assume the electronic response E varies slowly with time,
and thus does not change significantly over an observation (e.g.
2 min for the MWA). Due to our model-based assumptions, we do
not have any non-celestial time correlations, antenna correlations,
or unknown polarisation correlations. The electronic response is
thus simply a time-independent gain G per observation which is
independent per element and polarisation.

We begin by rewriting Equation 4 using these assumptions.
The measured cross-correlated visibilities are a function of fre-
quency, time, and polarisation. Individual elements are grouped
into the sets A=/{ay,a,a,,...,a,} and B={by, by, b,,...,b,},
where a and b iterate through antenna pairs. A visibility is mea-
sured for each polarisation P ={p,pp, Paqp> 9aPs> 9aqs}> Where p
and q iterate through the two orthogonal instrumental polarisa-
tion components for each element a and b.

The resulting relation between the measured visibilities and the
model visibilities is

Vah,pq([fa) t])
~ Gup(for )Gy 4 (for fi)map g ([ fix £1)
+ Nap ([ fos t]), (5)

where Vg4 ([ fo, t]) are the measured visibilities and my, 4 ([ £, t1)
are the model visibilities. Both are frequency and time vectors
[f,t] of the visibilities over all A and B element pairs and over all
P polarisation products. G,,(fo, f;) is a frequency matrix of gains
given input frequencies f; which affect multiple output frequencies
fo for instrumental polarisations p for elements in A (and likewise
for g and B). Thermal noise n is independent for each visibility.
All variables used in this section are summarised in Table 2 for
reference.

Our notation has been specifically chosen. Naturally discrete
variables (element pairs and polarisation products) are described
in the subscripts. Naturally continuous variables (frequency and
time) are function arguments. We group frequency and time into
a set [ f, t] in the visibilities to create vectors. Since frequency and
time are independent, this notation is more compact. In contrast,
the gain matrices are not independent in frequency. A full matrix
must be used to accurately capture frequency correlation due to A,
which includes aliasing from common electronics like polyphase
filter banks or bandpasses.

To reduce Equation 5 significantly, we make the assump-
tion that the frequencies are independent in G. This forces the
frequency correlation contribution A =1, giving

Gap(fo, fi) ~ diag(g, (/). (6)

The instrumental gains g are now an independent vector of fre-
quencies for elements in A per instrumental polarisations p (and
likewise for g and B). We flag frequency channels which are most
affected by aliasing to make this assumption viable. The effect of
this flagging is dependent on the instrument; for the MWA, flag-
ging every 1.28 MHz to remove aliasing from the polyphase filter
banks introduces harmonic contamination in the power spectrum.
Thus, enforcing this assumption usually has consequences in the
power spectrum space.
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Table 2. Definitions of the variables used for calibration, organised by type.

Type Variables Definition

Observation & Scale Parameters f Measured frequencies of the observation.
p,q Orthogonal instrumental polarisations of the elements in the array.
a,b Elements in the array.
t Time steps within an observation.

Sets

Groups, Matrices, & Vectors

Functions

Discrete Fourier Transforms

A={ao, 01,02, ...an}
B = {bo, by, b2, ...bn}
P={papb; ---qaqb}

C = {cp, ...Co,

[ ¢0}
L=A{lo, 11,12, ..ln}
D={c,1,¢}

T=1{po;s P15 P25 +-+Pn}
[f,t]
o

or

Ga,p(fo, 1)

8ap(f)

mab,pq([ f,t])

“ab,pq([ f, tl)
Vab,pq([ f, t])

aa,p( f)
Ng,p(f)

All elements of the array. A and B can be iterated separately to form cross-correlated element pairs.

Polarisations in the coherency domain between two elements.

Coefficients of a low-order amplitude and phase polynomial across the

frequency band.

Sets of elements associated with cable lengths and types.

Amplitude, mode, and phase of a cable reflection fit across the frequency band.

Observation timing sets of physical time separations, such as pointings.

A combined set of all frequencies and times.

An element grouping, where parameters are per element group rather than per element.

A grouping of observation times, where parameters are per timing group rather than per observation
time.

The full gain matrix for each element in group A per p where input and output frequencies are
correlated.

Avectorised approximation of the gains G for each element in the group A per P over frequency.

A vector of the simulated model visibilities from a model sky with frequency-dependent beam effects
for each element pair ab and polarisation product pg over the set [ f, t].

A vector of the thermal noise for each element pair ab and polarisation product pq over the set [ f, t].
Avector of the uncalibrated data visibilities for each element pair ab and polarisation product pq over
theset [f, t].

The calculated auto-gain for each element in the group A per p over frequency.

Scaling relation of the discrepancy between the measured sky and the calibration modelin the
cross-correlations.

The calculated auto-gain for each element in the group A per p over frequency which has been scaled
to match the cross-correlations.

A polynomial fit as a function of frequency of the input.

Aresistant mean of the input vector over element set L (and optionally a time group 67). Outliers beyond
20 are excluded in the average.

The Nyquist frequency index of the Fourier dual of frequency.

The hyperfine sub-Nyquist frequency index of the Fourier dual of frequency, with resolution

at 1/20% of k.

The index of the frequency.

The total number of frequency channels.

The Fourier dual of frequency: a timing delay in the detection of the waveform between one element

and another. The « index indicates it runs over the hyperfine index.

We can now fully vectorise the variables in Equation 5:

vub,pq([fa t])

~ diag(g, ,(f))diag(g;, . (f))mappe ([ f> 1)

long-baseline arrays by excluding short baselines from calibration
since we lack a diffuse-emission model. However, this can poten-
tially introduce systematic biases at low A (Patil et al. 2016). For the
remainder of Section 3.4, we describe our attempts to remove the
systematics encoded within the gains due to an imperfect model.

+ Dappg ([ 1) (7)

3.4.1. Per Frequency Solutions

The gains calculated from solving Equation 7 will encode dif-
ferences between the model visibilities and the true visibilities.
This is a systematic; the gains will be contaminated with a
non-instrumental contribution. We can reduce this effect with

Equation 7 can be used to solve for the instrumental gains for
all frequencies and polarisations independently. This allows the
use of Alternating Direction Implicit (ADI) methods for fast
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and efficient solving of O(N?) (Mitchell et al. 2008; Salvini &
Wijnholds 2014). Due to this independence, parallelisation can
also be applied. Noise is ignored during the ADI for simplicity; the
least-squares framework is the maximum likelihood estimate for a
Gaussian distribution. However, if any noise has a non-Gaussian
distribution, it will affect the instrumental gains.

We begin solving Equation 7 by estimating an initial solution
for g; ,(f) to force the gains into a region with a local minimum.
Reliable choices are the average gain expected across all elements
or scaled auto-correlations.

With an input for gj (f), Equation 7 can then become a linear
least-squares problem.

Xep (LD = " Vanpg(Lf 1)

b

— diag(g, () diag(e}, (1)) maspa(Lf D] > (8)

where ga)P( f) is found given a minimisation of xfw([ f,t]) for
each element a and instrumental polarisation p. All time steps are
used to find the temporally constant gains over the observation.
For computation efficiency, we have also assumed P = {p,ps, 9.q»}
(e.g., XX and YY in linear polarisation) since these contributions
are most significant. Optionally, a full polarisation treatment can
be used given polarised calibration sources.

The current estimation of gz,q( f) is then updated with knowl-
edge from g, (f) by adding together the current and new esti-
mation and dividing by 2. By updating in partial steps, a smooth
convergence is ensured. The linear least-squares process is then
repeated with an updated g q( f) until convergence is reached.®

3.4.2. Bandpass

The resulting gains from the least-squares iteration process are
fully independent in frequency, element, observation, and polar-
isation. This is not a completely accurate representation of the
gains. It was necessary to make this assumption for the efficient
solving technique in Section 3.4.1, but we can incorporate our
prior knowledge of the nature of the instrument and its spectral
structure ex post facto.

For example, we did not account for noise contributions during
the per-frequency ADI fit; this adds spurious deviations from the
gain’s true value with mean of zero. Historically, we accounted for
these effects by creating a global bandpass,

& (Fs00| = (|81}

where the normalised amplitude average is taken over all elements

)

>
o

« as a function of frequency to create a global bandpass |gp( f; a)|

independent of elements. Figure 2 shows an example of the global
bandpass alongside the noisy per-frequency inputs for the MWA.

This methodology drastically reduces noise contributions to
the bandpass when there are many elements, and it reduces spec-
tral structure contributions due to imperfections in the model
(Barry et al. 2016). However, this averaging implicitly assumes
that all elements are identical. We must use other schemes to
capture more instrumental parameters while maintaining spectral
smoothness in the bandpass.

The level of accuracy required in the calibration to feasi-
bly detect the EoR is 1 part in 10° as a function of frequency

“We have found that allowing the first 10 iterations to only update the phase of g; ,(f)
helps to converge faster.

N. Barry et al.

Global bandpass for zenith observation 8/23/2013
1.2 T T T T

— XX
—YY

PP A

0.9

Normalized calibration amplitude
o

0.8

i

Figure 2. The MWA global bandpass for the zenith observation of 2013 August 23 for
polarisations pp = XX (blue) and gq =YY (red). All the per-frequency antenna solu-
tions used in the global bandpass average are shown in the background (grey). This
historical approach greatly decreased expected noise on the solutions.

170 175 180 185
Frequency (MHz)

195

(Barry et al. 2016). As seen in Figure 2, instruments can be very
spectrally complicated. Therefore, more sophisticated calibration
procedures must be used.

Usually, these schemes are instrument-specific. For example,
in the MWA, sets of elements experience the same attenuation
as a function of frequency due to cable types, cable lengths, and
whitening filters. We group these elements into different cable
length sets L = {lp, I, L, ...I,}. We get

(10)

|gz,p(f;az)‘ = 72< gaeL,p(f)| ,20>,

where R is the resistant mean function’ calculated over each ele-
ment set &, for each polarisation and frequency. We choose the
resistant mean because outlier contributions are more reliably
reduced than median calculations. The variable change from a to
« indicates one parameter per group of elements.

If more observations are available, we follow a similar aver-
aging process over time. If the instrument is stable in time, a
normalised bandpass per antenna should be nearly identical from
one time to the next excluding noise contributions and potential
Van Vleck quantisation corrections (Vleck & Middleton 1966).
Gains from different local sidereal time (LST) will have different
spectral structure from unmodelled sources, and thus an average
will remove even more of this effect.

We create a time set T ={py, 01, 02, ...0n} Where times are
grouped by physical time separations based on the instrument. For
example, we group the MWA observations by pointings® because
they sample different beam errors, and thus averaging between
pointings would remove this instrumental feature. Whenever pos-
sible, we use

(11)

|gz,p(f; alxop)‘ =R< gaeL’P(f)| ,teT, 20),

where 8, runs over observations within physical time separations
in the set T and over as many days as applicable. The variable
change from t to @ indicates one parameter per group of times.

[The resistant mean function calculates the distribution of the amplitudes of a similar
element set a; for each frequency and polarisation and then calculates the mean of that
distribution after Gaussian 20 outliers have been excluded.

gA pointing defines a group of observations with the same electronic delay. As the
sky rotates throughout the night, different electronic delays are used to roughly point the
instrument to the same location in the sky.
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3.4.3. Low-order polynomials

An overall amplitude due to temperature dependence T in the
amplifiers must still be accounted for within the gains. These differ
from day to day and element to element, therefore they cannot be
included in the average bandpass. For well-behaved amplifiers, this
varies slightly as a function of frequency and is easily characterised
with a low-order polynomial for each element and observation.
In addition to fitting polynomials to the amplitude as a func-
tion of frequency, we must also account for the phase. There is an
inherent per-frequency degeneracy that cannot be accounted for
by sky-based calibration. Therefore, we reference the phase to a
specific element to remove this degeneracy, which makes the col-
lective phases smooth as a function of frequency for well-behaved
instruments. We have found that using a per-element polynomial
fit as the calibration phase solution has been a reliable estimate.
For the amplitude, we fit

(12)

Cnf”+---+clf+co:p<|gw(f)|),

Ig,(f; @)l

where the bandpass contribution, | 8 (fsa), is removed before the
fit and ¢, are the resulting coefficients. Any bandpass contribution
can be used; |g,(f;et)| is just an example. For the phase, we fit

¢nf"+~-~+¢1f+¢o=7’(argga,p(f)), (13)

where the polynomial fit is done over the phase of the residual and
¢, are the resulting coefficients. Due to phase jumps between —m
and 7, special care is taken to ensure the function is continuous
across the 7 boundary.” We can create a set of these coefficients,
C={cu - €15 C0> P> --» P1, P}, for easy reference.

In all cases, we choose the lowest-order polynomials possible
for these fits on the amplitude and phase. For example, the MWA
is described by a 2nd-order polynomial fit in amplitude and a lin-
ear fit in phase. As a general rule, we do not fit polynomials which
have modes present in the EoR window.

3.4.4. Cable reflections

Reflections due to a mismatched impedance must also be
accounted for within the gains (contribution K in the signal path
framework). Even though instrumental hardware is designed to
meet engineering specifications, residual reflection signals are still
orders of magnitude above the EoR and are different for each ele-
ment signal path. Averaging the gains across elements and time
in Section 3.4.2 artificially erased cable reflections from the solu-
tions, thus we must specifically incorporate them. Currently, we
only fit the cable reflection for elements with cable lengths that
can contaminate prime locations within the EoR window in power
spectrum space (Beardsley et al. 2016; Ewall-Wice et al. 2016).

We find the theoretical location of the mode using the nominal
cable length and the specified light travel time of the cable. We
then perform a hyperfine discrete Fourier transform of the gain
around the theoretical mode

M-1
_ ga,p(fm)
Buy(2) =2 (lgp(f;rx)l

— (cufp + -+ o) e"(“"“;“"”“)) e, (14)

m=0

"We ‘unwrap’ the phase by creating a new continuous plane from the Riemann sheets.
We then solve and ‘rewrap’. If the phase varies quickly, there can be ambiguity in which
Riemann sheet to place the phase, but this is not an issue with most instruments.

where 7, is the delay, [m, M] € Z, and « is the hyperfine index
component. Typically, we set the range of k to be [k, — 5k, k;, +

%k], where k., is the index of the theoretical mode and k is the
index in the range of [0, M — 1] (Beardsley 2015). Again, any
bandpass contribution can be used; |g,(f; @)| is just an example.

The maximum | ga)P(r,()l around k,, is chosen as the experi-
mental cable reflection. The associated amplitude c, phase ¢, and
mode 7 are then calculated to generate the experimental cable
reflection contribution ce~27"/+ to the gain for each observation.
Optionally, these coefficients can be averaged over sets of observa-
tions and times, depending on the instrument. We can create a set
of these coefficients, D = {c, 7, ¢}, for easy reference.

3.4.5. Auto-correlation bandpass

The fine-frequency bandpass is a huge potential source of error
in the power spectrum (Barry et al. 2016). As such, we have tried
averaging along various axes to reduce implicit assumptions while
maintaining spectral smoothness in Section 3.4.2. However, there
always remains an assumption of stability along any axis that we
average over, and this may not be valid enough for the level of
required spectral accuracy.

We can instead use the auto-correlations to bypass these
assumptions. An auto-correlation should only contain informa-
tion about the total power on the sky, instrumental effects, and
noise. No information about structure on the sky is encoded,
so spectral effects from unmodelled sources do not contribute.
However, there are two main issues with using auto-correlations
as the bandpass: improper scaling and correlated noise.

o The scale of the auto-correlations are dominated by the largest
modes on the sky. Currently, we do not have reliable models of
these largest modes. Either a large-scale calibration model must
be obtained, or the scaling must be forced to match the cross-
correlations.

o Thermal noise is correlated in an auto-correlation and will
contribute directly to the solutions. Truncation effects during
digitisation and channelisation can artificially correlate visibili-
ties. This will result in bit noise, which will also contribute to the
auto-correlations.

Whether or not auto-correlations can effectively be used for the
bandpass depends on the importance of their errors in power spec-
trum space and our ability to mitigate these errors. We solve for
the auto-correlation gains via the relation,

<Vaa,pp([fa t]))t

D= g (1),

(15)

where a,,(f) is the auto-gain for element a and polarisation p asa
function of frequency.

To correct for the scaling error and for the correlated thermal
noise floor, we define a cross-correlation scaling relation,

P (Igu, (f3 1., [CL, D)1

. 16
P (g ) (1

N.p(f) =

where P is a polynomial fit to the gains, usually limited to
just a linear fit. This captures the discrepancy between the
measured sky and the calibration model in the space of one
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cross-correlation gain. We then rescale the auto-gains to match
the cross-correlations,

a5, (f) = n4,(f) a0p(f)s

where a,,(f) is the scaled auto-gain for element a and polarisation
p as a function of frequency.

We have reduced scaling errors and correlated thermal noise
on the auto-gain solutions. However, we have not corrected for bit
noise, or a bias caused by bit truncation at any point along the sig-
nal path. These errors are instrument-specific and will persist into
power spectrum space. If the bits in the digital system are not arti-
ficially correlated due to bit truncation, then the auto-correlation
can yield a better fine-frequency bandpass.

(17)

3.4.6. Final calibration solutions
Our final calibration solution using only cross-correlations is

8up (31,0, [CLID) = g, (e, 6,)

—_—
bandpass Section 3.4.2

((C,Lfn+...+C0)ei(¢"f"+"'+¢u) + C672nirf+i¢) , (18)

low-order polynomials Section 3.4.3 reflection Section 3.4.4

for elements with fitted cable reflections, and

ga,p(f;al’ 0,,[C])

= | (f2.0))] @f" + )@, ag)

———
bandpass Section 3.4.2

low-order polynomials Section 3.4.3

for all other elements. The bandpass amplitude solution is gen-
erated over a set of elements with the same cable/attenuation
properties (e;) and includes many observations within a timing
set (0,) covering many days. The same bandpass is applied to
all elements of the appropriate type and all observing times from
the respective time set. In contrast, the polynomials and the cable
reflection are fit independently for each observation and per ele-
ment. We divide the data visibilities by the applicable form of g g;
to form our final, calibrated visibilities.

Alternatively, our final calibration solution harnessing the
auto-correlations is

8.,(fs1,0,,[Cl, [D],3)

olars g‘,,,,(f;al,ﬂp,[c],[D]), (20)
N— e’

= ﬁwp (f)
——

auto-gain Section 3.4.5 phase from Eq. 18

where the amplitude is described by the scaled auto-gains and the
phase is described by the cross-gains.

For EoR science, we want to reduce spectral structure as much
as possible but still capture instrumental parameters. Our auto-
gain calibration solution performs the best in the most sensitive,
foreground-free regions. Therefore, we currently use Equation 20 in
creating EoR upper limits with the MWA. This is an active area of
research within the EoR community; reaching the level of accuracy
required to detect the EoR is ongoing.

3.5. Imaging

The final stage of FHD transforms calibrated data visibilities into
a space where they can be combined across observations. To begin

N. Barry et al.

this process, we perform an operation called gridding on the
visibilities.

We take each complex visibility value and multiply it by the
corresponding uv-beam in the coherency domain calculated in
Section 3.2 through a process called Optimal Map-Making. In
essence, this takes visibility values integrated by the instrument
and estimates their original spatial uv-response given our knowl-
edge of the beam. These are approximations of the instrument
power response for each baseline to a set of regular gridding points
(e.g. Myers et al. 2003; Bhatnagar et al. 2008; Morales & Matejek
2009; Sullivan et al. 2012; Dillon et al. 2014; Shaw et al. 2014; Zheng
etal. 2017).

We separately perform gridding to individual uv-planes for
calibrated data visibilities, model visibilities, and residual visibil-
ities generated from their difference. By gridding each separate
data product, we can make a variety of diagnostic images. For
example, images generated from residual visibilities help to ascer-
tain the level of foreground removal in image space, and thus are
important for quality assurance.

We also grid visibilities of value 1 with the beam gridding ker-
nel to create natural uv-space weights. This generates a sampling
map which describes how much of a measurement went into each
pixel. In addition, we separately grid with the beam-squared ker-
nel to create a variance map. The variance map relates to the
uncertainty for each uv-pixel, which will be a vital component for
end-to-end error propagation in eppsilon.

We then have three types of uv-plane products: the sampling
map, the variance map, and the data uv-planes. From these, we
can create weighted-data uv-planes using the sampling map and
data uv-planes. All these products are transformed via 2D FFTs to
image space in slant orthographic projection.!

At this point, the various images are made for two different
purposes: (1) the sampling map, variance map, and data image
planes are for power spectrum packages and (2) the weighted-
data image plane is for diagnostic images per observation. The
result of calibrated data and residual snapshot images for a zenith
observation with Phase I of the MWA is shown in Figure 3.

Our slant orthographic images are in a basis that changes with
LST. Therefore, we perform a bilinear interpolation to HEALPix
pixel centres’ (Gérski et al. 2005), which are the same for all
LSTs. We interpolate the calibrated data, model, sampling map,
and variance map to HEALPix pixel centres separately for use in
eppsilon. If we want to combine multiple observations, we will
need to do a weighted average. Therefore, we keep the numera-
tor (data) separate from the denominator (sampling map) for this
purpose.

3.6. Interleaved cubes

The images that will be used for power spectrum analysis are split
by interleaved time steps, grouped by even index and odd index.
The even-odd distinction is arbitrary; what really matters is that
they are interleaved. While this doubles the number of Fourier
transforms to perform, it allows for crucial error analysis.

The sky should not vary much over sufficiently small integra-
tion intervals. Any significant variation can be attributed to either
RFI (which has been accounted for in Section 3.1) or thermal noise
on the observation. By subtracting the even-odd groupings and

ISlant orthographic projection: a flat projection of the sky that is slanted to be parallel
with the measurement plane.
JHEALPix: the Hierarchical Equal Area isoLatitude Pixelisation of a sphere.
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Figure 3. An example of images output from FHD: calibrated data (top) and residual (bottom) Stokes | images from the MWA for the zenith observation of 2013 August 23. There
is significant reduction of sources and point spread functions in the residual. However, the diffuse synchrotron emission can be seen in the residual because it was not in the

subtraction model.

enforcing consistent flagging, we should be left with the thermal
noise contribution to the observation.

We carry even-odd interleaved cubes throughout the power
spectrum analysis and check at various stages against noise cal-
culations. It is a robust way to ensure that error propagation and
normalisation have occurred correctly, and it allows us to build
more diagnostic data products while still building the cross-power
spectrum (see Section 5.4).

Thus, there are at least eight images per polarisation product
output from FHD for use in a power spectrum analysis: the cal-
ibrated data, model, sampling map, and variance map for each
even-odd set.

4, Integration

In order to reduce noise to reach the signal-to-noise required to
detect the EoR, we must now integrate. This requires integration
of thousands of observations (Beardsley et al. 2013).

FHD outputs a variety of data cubes that we must integrate
together before input into our next package, eppsilon (described
in Section 5). These RA/Dec frequency slices are numerators and
denominators which create meaningful maps in uv-space. The
various cubes are:

« Calibrated data cubes: HEALPix images for each frequency
of the unweighted calibrated data.
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« Model data cubes: HEALPix images for each frequency of
the unweighted generated model.

« Sampling map cubes: HEALPix images for each frequency
of the sampling estimate.

o Variance map cubes: HEALPix images for each frequency
of the variance estimate.

These cube types are split by instrumental polarisation and by
an interleaved time sampling set of even and odd time indices
(detailed in Section 3.6). Each even-odd polarisation grouping
is added across observations, pixel by pixel, using the HEALPix
coordinate system. Averaging in image space, rather than in uv-
space, is a crucial aspect of the analysis. Either approach can
theoretically be used, but the computational requirements vary
greatly.

The measurement plane is not parallel to the tangent plane
of the sky for non-zenith measurements. The instruments mea-
surement plane appears tilted compared to the wave’s propagation
direction; this tilt causes a measurement delay. Since each mea-
surement plane will measure different phases of the wave prop-
agation, different uv-planes cannot be coadded. This is a classic
decoherence problem in Fourier space.

There are two methodologies to account for this decoherence.
The first is to project the measurement uv-plane to be parallel
to the tangent plane of the sky. This is called w-projection since
it projects {u, v, w}-space to {u, v, w = 0}-space (Cornwell, Golap,
& Bhatnagar 2008). Unfortunately, the projection requires the
propagation of a Fresnel pattern for every visibility to reconstruct
the wave on the w=0 plane. This requires intense computa-
tional overhead, but has been successfully implemented by other
packages (Trott et al. 2016).

The second methodology is to integrate in image space.
We create an image for each observation by performing a 2D
spatial FFT of the uv-plane, which results in a slant orthographic
projection of the sky. This inherently assumes the array is copla-
nar; the integration time must be relatively small and altitude
variations must be insignificant or absorbed into unique kernel
generation (Section 3.2). For the MWA Phase I, a mean w-offset of
0.15 A in the imaged modes is small enough to not be a dominating
systematic for current analyses.

We can then easily interpolate from the slant orthographic pro-
jection to the HEALPix projection (Ord et al. 2010), which is
a constant basis. We do not need to propagate waves in image
space in order for coherent integration, thus it is computationally
efficient in comparison.

5. Error propagated power spectrum with interleaved
observed noise

Error Propagated Power Spectrum with Interleaved Observed
Noise, or eppsilon,* is an open source power spectrum analysis
package designed to take integrated images and create various
types of diagnostic and limit power spectra. It was created as a
way to propagate errors into power spectrum space, rather than
having estimated errors. Other image-based power spectrum anal-
yses exist for radio interferometric data (Paciga et al. 2011; Shaw
et al. 2014; Patil et al. 2014; Shaw et al. 2015; Dillon et al. 2015;
Ewall-Wice et al. 2016; Patil et al. 2017); however, the end-to-end
error propagation of eppsilon and CHIPS (Trott et al. 2016) is
uncommon.

“https://github.com/EoRImaging/eppsilon

N. Barry et al.

The main functions of eppsilon are to transform integrated
images into {u, v, f}-space (Section 5.1), calculate observed noise
using even-odd interleaving (Section 5.2), transform frequency
to k-space (Section 5.3), and average k-space voxels together for
diagnostic and limit power spectra (Section 5.4). Detailing these
processes will build the groundwork needed to describe 2D power
spectra, 1D power spectra, and their respective uncertainty esti-
mates in Section 6.

5.1. From integrated images to uv-space

The input products of eppsilon are integrated image cubes per fre-
quency. While this space was necessary for integration, the error
bars in image space are complicated; every pixel is covariant with
every other pixel. Our measurements were inherently taken in uv-
space, and that is where our uncertainties on the measurement are
easiest to propagate.

We then Fourier transform the integrated image back into
uv-space using a direct Fourier transform between the curved
HEALPix sky and the flat, regularly spaced uv-plane. Since this
happens once per observation integration set, rather than once
per observation, the slower direct Fourier transform calculation is
computationally feasible. The modified gridding kernel described
in Section 3.2 acts as a window in the HEALPix image. In order
to propagate our uncertainties correctly, this must be done during
the generation of the kernel.

After transforming into uv-space, we calculate the result-
ing {k., k,}-values for each pixel. The uv-space is related to the
wavenumber space by the simple transforms (Morales & Hewitt
2004)

u2m V2w
x = ky = > (21)
Dy (2) Dy (2)
where Dy;(z) is the transverse comoving distance dependent on

redshift (Hogg 1999).

In addition, we also perform the 3D pixel-by-pixel subtraction
of the integrated model from the integrated data to create residual
cubes. We could instead perform this after we have transformed
f to k, to save on computation time, but it is helpful to make
diagnostic plots of the residual cube in {u, v, f}-space. By creating
diagnostics at every important step in the analysis, we can better
understand our systematics.

5.2. Mean and noise calculation

We now have twenty various uv-products: calibrated, model,
residual, sampling map, and variance map data, for each polari-
sation product pp and qq, and for each interleaved even-odd time
sample set. We have kept the numerators and denominators (data
and weights) separate up until this point so that we can perform
variance-weighted sums and differences.

First, we weight the calibrated data, model, and residual by
the sampling map, thereby upweighting well-measured modes
and downweighting poorly measured modes. Second, we weight
the variance map by the square of the sampling map to scale
our uncertainty estimates with our choice of weighting scheme.
We then perform sums and differences using our sampling-map-
weighted uncertainty estimates as the weights,
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where [i is the mean, 7 is the noise, {e, 0} are the interleaved
even-odd sets, x is the sampling-map-weighted data (calibrated
data, model, or residual) for a given even-odd set, and o2 is
the sampling-map-weighted variance map for a given even-odd
set. The calculated mean and noise are the maximum likelihood
estimates for a weighted Gaussian probability distribution, hence
using the variables /i and 7 instead of 1« and n.

Finally, we also calculate our uncertainty estimates using the
maximum likelihood estimation:

1
&=5— (23)
at

0,

®po
Q
o™

where {e, 0} are the interleaved even-odd sets and o2 is the
sampling-map-weighted variance map for a given even—odd set.

These analytical uncertainty estimates are propagated through
the analysis to create our uncertainty on the cross power spec-
trum. We assume that there are no cross-correlations in the
noise; each noise pixel in uv-space is assumed to be indepen-
dent. Various techniques, including spatial/frequency windowing,
increases pixel-to-pixel correlation. We investigate the strength of
the correlations by comparing the analytic noise propagation to
the observed noise in the power spectrum in Section 6.1.

5.3. Transforming frequency to k-space

We now have a variety of cubes in {k, k,, f}-space. In order to go
to power spectrum space, we must perform a spectral transform in
the frequency direction to go from f to k.. Due to the nature of the
data, this includes several steps.

While the binned data are regularly spaced as a function of fre-
quency, the sampling distribution is not constant. We have flagged
channels due to RFI in Section 3.1 and due to channeliser aliasing
in Section 3.4. The sampling of the uv-plane is also inherently non-
regular as a function of frequency due to baseline length evolving
with frequency. As a result, the sin and cos basis functions of the
Fourier transform are not orthogonal to the noise distribution on
our sampling; the noise is not independent in the sin and cos basis.
However, we can find a basis which is orthogonal.

We use the Lomb-Scargle periodogram to find this basis
(Lomb 1976; Scargle 1982). A rotation phase is found for each
spectral mode that creates orthogonal cos-like and sin-like eigen-
functions in the noise distribution. This periodogram effectively
erases the phase of the data, though this is suitable given that our
final goal is to create a power spectrum (a naturally phase-less
product).

The spectral transformation of a relatively small, finite set of
data will cause leakage. We mitigate this by multiplying the data
by a Blackman-Harris window function in frequency. This will
decrease the leakage by about 70 dB at the first sidelobe, but at the
cost of half the effective bandwidth.

The uneven sampling as a function of frequency can also cause
leakage from the bright foregrounds into higher k,. To reduce
leakage from the uneven sampling and from the finite spec-
tral transform window, we remove the mean of the data before
applying the window function. To preserve the DC term in the
power spectrum, we add this value back to the zeroth mode after
our spectral transform. This preserves power while improving
dynamic range.

We do not expect this mean subtraction and reinsertion to
affect our measured EoR power spectrum because the vast major-
ity of the DC-mode power is from foregrounds. In addition, the

11

zeroth k,-mode is not included in our EoR estimates. All our sig-
nal loss simulations include this technique to verify that there is
no unexpected effect on higher k,-modes.

The periodogram dual, 7, is related to wavenumber space
through

~ 2T HoleE(Z)

“ c(1+2)?

where c is the speed of light, z is redshift, Hy is the Hubble constant
in the present epoch, f3; is the frequency of the 21 cm emission
line, E(z) describes how Hy evolves as a function of redshift, and k,
is the wavenumber along the line-of-sight. This is an approxima-
tion; it is valid for all reasonable parameters and avoids a frequency
kernel (Morales & Hewitt 2004).

We have chosen our power estimator to be along k, rather
than along the time delay of the electric field propagation between
elements k,. This subsequently determines how the foreground
contaminates our final power spectrum (Morales et al. 2018).
Given our choice of basis, we are constructing an imaging (or
reconstructed sky) power spectrum.

n (24)

5.4. Power spectrum products

We now have the power spectra estimates for the mean, the noise,
and the uncertainty estimates as a function of {k,, k,, k.}.

We construct our power spectra by subtracting the power of the
even-odd difference from the power of the even-odd summation,
and dividing by 4:

EAE
o2 o2

pa—pi R0
4 4 L+L

0,

p= (25)
This gives us the same result as the cross power between the even
and odd cubes, and the additional products also allow us to build
more diagnostics and to carry the noise throughout the pipeline.

We would like to perform averages over these cubes to generate
the best possible limits and to generate diagnostics. To do so, we
must assume that the EoR is spatially homogeneous and isotropic,
which allows for spherical averaging in Fourier space (Morales &
Hewitt 2004). Much like the creation of even-odd sum and differ-
ence cubes, we perform the weighted average of pixels. The only
difference is that the variances o2 are no longer Gaussian, but
rather Erlang variances which can be propagated from the original
variances.

We can now create various power spectrum products in 2D
and 1D with our 3D power spectrum cube. Uncertainty estimates,
measured noise contributions, and expectation values that we have
generated in eppsilon will also be used in our diagnostics.

6. Power spectrum diagnostics

We create a variety of diagnostic power spectrum plots using
various averaging schemes. These are essential to understanding
contributions to the power spectrum and are vital to assessing
changes to the analysis. In this section, we use MWA Phase I data
as a specific example; however, all of these diagnostic plots are part
of any analysis with FHD/eppsilon.

6.1. 2D power spectrum

The most useful diagnostic we have is the 2D power spectrum.
We average our {ki, k,, k.}-power measurements along only the
angular wavenumbers {k,, k,} in cylindrical shells. The resulting
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Figure 4. A schematic representation of a 2D power spectrum. Intrinsic foregrounds
dominate low k; (modes along the line-of-sight) for all k; (modes perpendicular to
the line-of-sight) due to their relatively smooth spectral structure. Chromaticity of
the instrument mixes foreground modes up into the foreground wedge. The primary-
field-of-view line and the horizon line are contamination limits dependent on how far
off-axis sources are on the sky. Foreground-free measurement modes are expected to
be in the EoR window.

power spectrum is a function of modes perpendicular to the line-
of-sight (k) and modes parallel to the line-of-sight (k;) shown in
Figure 4. The {k;, k, }-axes have been converted into {7, 1} on the
right and top axes—delay in nanoseconds and baseline length in
wavelengths, respectively.

Wavenumber space is crucial for statistical measurements due
to the spectral characteristics of the foregrounds. Diffuse syn-
chrotron emission and bright radio sources, while distributed
across the sky, vary smoothly in frequency (e.g. Matteo et al.
2002; Oh & Mack 2003). Only small kj-values are theoretically
contaminated by bright, spectrally smooth astrophysical fore-
grounds. Since the foreground power is restricted to only a few
low kj-modes, larger k-values tend to be free of these intrinsic
foregrounds in wavenumber space.

However, interferometers are naturally chromatic. This chro-
maticity distributes foreground power into a distinctive fore-
ground wedge due to the mode-mixing of power from small
ky-values into larger kj-values as illustrated in Figure 4 (Datta,
Bowman, & Carilli 2010; Morales et al. 2012; Vedantham, Shankar,
& Subrahmanyan 2012; Parsons et al. 2012; Trott, Wayth, &
Tingay 2012; Hazelton, Morales, & Sullivan 2013; Thyagarajan
et al. 2013; Pober et al. 2013; Liu, Parsons, & Trott 2014). The
primary field-of-view line and the horizon line are the expected
contamination limits caused by measured sources in the pri-
mary field-of-view and the sidelobes, respectively. The remaining
region, called the EoR window, is expected to be contaminant-free.
Because the power of the EoR signal decreases with increasing k),
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the most sensitive measurements are expected to be in the lower,
left-hand corner of the EoR window.

The intrinsic foregrounds, the foreground wedge, the primary
field-of-view line, the horizon line, and the resulting EoR window
all have characteristic shapes in 2D power spectrum space. Thus,
it is a very useful diagnostic space for identifying contamination
in real data. We generate a 2D power spectrum as a function of
k) and kj for each of the calibrated data, model, and residual data
sets in polarisations pp = XX and gq = YY. Shown in Figure 5 is
an example 2D power spectrum panel from a MWA integration of
2013 August 23.

We use this 2D power spectrum panel to help determine if
expected contamination occurred in expected regions. In addition
to the features shown in Figure 4, there is harmonic k; con-
tamination in the EoR window which is constant in k. This is
caused from regular flagging of aliased frequency channels due to
the polyphase filter banks in the MWA hardware, which creates
harmonics in k-space.

In order to verify our error propagation, we also calculate
observed and expected 2D noise power spectra. The expected
noise, observed noise, propagated error, and noise ratio 2D power
spectra are shown in Figure 6. The observed noise is the power
spectrum of the maximum likelihood noise in Equation 22, so it
is the realisation of the noise in the data. The expected noise and
error are the expectation value and the square root of the variance,
respectively, of the analytically propagated error distributions. We
calculate these by propagating the initial Gaussian distributions
through the full analysis:

M=
8-
L,

0 i

Var[N] = E[N] =" (26)

-
&l
L

Il
o

- 1
Z 401
i=0 '

where Var[N] is the variance on the noise, E[N] is the expected
noise, n is the number of pixels in the average, and o? is the
original Gaussian variance.

The final plot in Figure 6 is the ratio of our observed noise to
our expected noise. This investigates our assumption of uncor-
related pixels in uv-space during noise propagation. There will
be fluctuations given different noise realisations on the observed
noise, but the ratio should fluctuate around one. In practice, this is
approximately true; the mean of the noise ratio from 10 to 50 A
is ~0.9. The propagated noise is therefore slightly higher, indi-
cating that we overestimate our noise due to assuming a lack of
correlation.

6.2. 1D power spectrum

Averaging to a 1D power spectrum harnesses as much data as pos-
sible, thereby making the limits with the lowest noise. However,
the 1D power spectrum also has the ability to be an excellent
secondary diagnostic after the 2D power spectrum. While char-
acteristic locations of contamination are easier to distinguish on
2D plots, 1D diagnostics are more able to distinguish subtleties.
The most simplistic 1D power spectrum is an average in spher-
ical shells of all voxels in the 3D power spectrum cube which
surpass a low-weight cutoff (see Appendix A for more details).
This includes all areas of contamination explored in Section 6.1
which can obscure low-power regions. Therefore, a typical sec-
ondary diagnostic is a 1D power spectrum generated only from
pixels which fall within 10 and 50 A in k,, shown in Figure 7.
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Figure 5. The 2D power spectra for the calibrated data, model, and residual for polarisations XX and YY of an integration of 64 MWA observations (~2 h of data) from 2013 August
23. The characteristic locations of contamination are very similar to Figure 4, with the addition of contamination at k; harmonics due to flagged frequencies with channeliser

aliasing. Voxels that are negative due to thermal noise are dark purple-blue.

This will include intrinsic foregrounds and some of the fore-
ground wedge, but will avoid contaminated k, -modes with poor
uv-coverage for the MWA. The exact k, -region for this diagnostic
will depend on the instrument.

The typical characteristic contamination shapes are present in
Figure 7, like the intrinsic foregrounds, foreground wedge, and
flagging harmonics, all of which are expected given the 2D power
spectra. However, a new contamination feature occurs at about
0.7 hMpc!. This contamination is from a cable reflection in the

elements with 150 m cables. It was significantly reduced due to the
calibration technique in Section 3.4.4, but spectral structure from
unmodelled sources limit the precision (Barry et al. 2016). Much
like with the aliased channel flagging, spectrally repetitive signals
will appear as a bright contamination along k, , translating to a
near-constant 1D contribution if high in k.

This highlights the potential of utilising multiple types of
power spectra. The 2D power spectrum is a powerful diagnostic
due to characteristic locations of contamination. However, it is
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Figure 6. The 2D power spectra for expected noise, observed noise, error bars, and noise ratio of an integration of 64 observations from 2013 August 23 in instrumental XX for the
MWA. The observed noise (No) and expected analytically propagated noise (Ng) have a ratio near 1, indicating our assumptions are satisfactory. The error bars are related to the

observed noise via Equation 26.

useful to also use 1D diagnostic power spectra to more quantita-
tively measure contamination, which helps in discerning smaller
contributions.

The cable reflections and flagged aliased channels lead to bright
contamination due to their modulation as a function of frequency.
This is an important revelation; we must minimise all forms of
spectrally repetitive signals during power spectrum analysis. If a
spectral mode is introduced in the instrument or in the processing,
that mode cannot be used to detect the EoR.

6.3. 2D difference power spectrum

Often, we would like to compare a new data analysis technique to
a standard to assess potential improvements. We can do this with

a side-by-side comparison of 2D power spectra, but are limited by
the large dynamic range of the colour bar. Instead, we create 2D
difference power spectra.

We take a 3D bin-by-bin difference between two {ki, k,, k. }-
cubes and then average to generate a 2D difference power spec-
trum. The reference or standard is subtracted from the new run,
and the 2D difference power spectrum varies positive and negative
depending on power levels. We choose a red-blue log-symmetric
colour bar to indicate sign, where red indicates an increase in
power relative to the reference and blue indicates a decrease in
power.

Figure 8 shows an example of a 2D difference power spectra.
The new data analysis run is the left panel, the reference is the
middle panel, and the 2D difference is the right panel. For this
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Figure 8. The subtraction of a residual 2D power spectrum (left) and a reference residual 2D power spectrum (middle) to create a difference 2D power spectrum (right). Red
indicates a relative excess of power, and blue indicates a relative depression of power. This diagnostic is helpful in determining differences in plots that inherently cover twelve

orders of magnitude.

example, we have chosen a new data analysis run that had excess
power in the window and a decrease in power in the foreground
wedge compared to the reference. In general, we make 2D differ-
ence power spectra for dirty, model, and residual, for both XX and
YY polarisations to match the six-panel plot in Figure 5.

7. Signal loss simulation

The FHD/eppsilon pipeline can be used as an in situ simulation to
test for signal loss. This validates our final power spectra results,
allowing for confidence in our EoR upper limits.

FHD is an instrument simulator by design; we create model vis-
ibilities from all reliable point sources and realistic beam kernels.

We can use these model visibilities as the base of an input sim-
ulation of the instrument and sky. A statistical Gaussian EoR
is Fourier-transformed to uv-space, encoded with instrumental
effects via the uv-beam, and added to point source visibilities to
create data that we can test for signal loss. These in situ simula-
tion visibilities are input into the FHD/eppsilon pipeline. They are
treated like real data and are subject to all real data analyses.
We perform four in situ simulations to validate our pipeline:

o Compare input EoR signal to output EoR signal with no addi-
tional foregrounds or calibration. This simple test demonstrates
consistency in power spectrum normalisation and signal preser-
vation.
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Figure 9. The signal loss simulations of the FHD/eppsilon pipeline. We recover the
input EoR signal (purple) for most k modes if: (1) an EoR signal is propagated through
the pipeline without foregrounds or calibration (orange, dashed), (2) all foregrounds
are used for calibration and are perfectly subtracted (blue), and (3) all foregrounds are
used for calibration but are not perfectly subtracted (green). We do not recover the EoR
if there are calibration errors (red); however, these errors are not indicative of signal
loss.

o Allow all sources to be used in the calibration and subtraction
model and compare the output power to the input EoR signal.
By recovering the input EoR signal, we demonstrate that the
addition of foregrounds and calibration does not result in signal
loss.

o Use an imperfect model for calibration and subtraction and
compare the output power to the input EoR signal. Particularly,
we calibrate with a global bandpass (Equation 9) in the compar-
ison. The calibration errors caused by spectral structure from
unmodelled sources cause contamination in the EoR window
(see Barry et al. 2016), but there is no evidence of signal loss.

« Use an imperfect model for subtraction but a perfect model for
calibration, and compare the output power in the EoR window
to the input EoR signal. We can recover the EoR signal in some
of the EoR window, demonstrating that we can theoretically
detect the EoR even with unsubtracted foregrounds.

Figure 9 shows the output power from each test alongside the
underlying, input EoR signal. For these simulations, we use
the MWA Phase I instrument without channeliser effects. They
perform as expected, recovering the EoR signal when possible.
However, at high k-modes, the foreground simulation without
calibration errors is contaminated due to a gridding resolution
systematic (Beardsley et al. 2016).

If regular flagging of aliased channeliser effects is included,
more modes are contaminated in the EoR window, as seen
in the model data of Figure 7. This is a consequence of the
lack of inverse-variance weighting during the spectral transform.
Implementing a more complex weighting scheme and/or modify-
ing the actual instrument will be necessary to recover those modes
in the future.

It is important for an EoR power spectrum analysis to char-
acterise potential signal loss in order for EoR limits to be valid
(Cheng et al. 2018). These tests demonstrate that we are not subject
to signal loss within our pipeline. None of our analysis method-
ologies, from FHD all the way through eppsilon, is artificially
removing the EoR signal. In addition, these simulations can be
expanded to include other effects in the future, such as channeliser
structure, diffuse emission, and beam errors.

These signal loss simulations can only test relative forms of sig-
nal loss. For example, this cannot test the validity of the initial
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encoded instrument effects on the input (i.e. the in situ simula-
tion or EoR visibilities), nor can it test the accuracy of the sky
temperature used in normalisation.

8. Overview

We have built an analysis framework that takes large quanti-
ties of measured visibilities and generates images, power spec-
tra, and other diagnostics. Four modularised components exist:
pre-analysis flagging and averaging, calibration and imaging, inte-
gration, and error-propagated power spectrum calculations. The
accuracy of each component is crucial due to the level of precision
needed in an EoR experiment. In particular, the analysis handled
by FHD and eppsilon is complicated and multifaceted, necessi-
tating constant refinement and development to ensure accuracy,
precision, and reproducibility.

Many data products are produced with our analysis pipeline.
We make instrumental polarisation images for each observation
for calibrated, model, and residual data. As for power spectra,
we make 2D and 1D representations for the calibrated, model,
and residual data from integrated cubes along with propagated
noise and propagated uncertainty estimates. These form the basic
outputs within the FHD/eppsilon pipeline.

All examples provided have been from MWA Phase I data;
however, FHD/eppsilon is more generally applicable. It has been
used to publish MWA Phase II data (Li et al. 2018) and PAPER
data (Kerrigan et al. 2018), with plans to analyse HERA data.
Flexibility within the pipeline allows for constant cross-validation
and a wide variety of use cases.

It is crucial to have a fully verifiable pipeline, and this has been
the major motivation behind FHD/eppsilon. All of our diagnostic
outputs, error propagation products, and signal loss simulations
are a part of a signal preservation narrative. By establishing con-
fidence in our data analysis, we can pursue and publish credible
EoR upper limits and measurements.

The FHD/eppsilon pipeline is readily available online and
developed fully in public. Anyone can view our progress and
critically analyse our methodologies. This is a resource for the
community; FHD/eppsilon is an open-source example of the nec-
essary precision techniques required for EoR power spectrum
analysis.
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Appendix A. Power spectrum volume normalisation

The data products handed from FHD to eppsilon are reconstructions of the
apparent sky—a 1]y source at the half-power point of the beam will appear
asa % Jy source. A volume factor is needed to convert the power spectrum of
the apparent image into a properly normalised cosmological power spectrum.
The normalisation factor needed for an area of the uv-plane estimated from
an isolated baseline differs from the normalisation factor for an area estimated
from many overlapping baselines. Formally, this is related to the covariance
of the overlapping visibilities, as described in Liu et al. (2014). Carrying the
full covariance through the pipeline is computationally intractable, so we
separately normalise regions with dense and poor uv-coverage.

We demonstrate this effect with end-to-end simulations in FHD/eppsilon
of a flat power spectrum signal (constant power as a function of k) and ran-
domly located baselines with increasing density in the uv-plane. For each
simulation, a baseline density is selected and baselines are randomly placed in
a uv-plane. The corresponding visibilities are simulated for a stochastic signal
with a flat power in k, and then gridded to calculate a 1D power spectrum. The
reconstructed 1D power spectra are flat in k, but the normalisation relative to
the calculated sparse normalisation depends on baseline density, as shown in
Figure A.1. In the limit of very sparse baselines, there are almost no overlaps
and the sparse normalisation is correct, but as the density increases the normal-
isation decreases quickly and asymptotes to half the sparse normalisation. This
factor of 2 in the denominator can be understood as a doubling of the effective
area of the uv-plane that contributes to the gridded value at any location in the
gridded uv-plane.

Formally, there is a transition region where the normalisation is difficult to
calculate without fully propagating the covariance. However, virtually all our
sensitivity comes from regions of the uv-plane with very dense overlap. We do
not discard the low-density regions in our 2D power spectra, because 2D spec-
tra are primarily diagnostic in nature and are useful in helping us to identify
systematics. However, for EoR upper limits and 1D power spectra we discard
low density regions to avoid uncertainty in the normalisation. Discarding the
sparse areas of the uv-plane does not significantly decrease our sensitivity and
alleviates the need to fully propagate the covariance matrix.
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Figure A.1. Results of our end-to-end simulations through FHD/e ppsilon of a flat power
spectrum signal. The blue points give the ratio of the reconstructed 1D power spec-
tra using the calculated sparse normalisation to the input power level (which is flat in
k). The x-axis is a measure of baseline density—it gives the average baseline weight
gridded to each uv-pixel in the simulation. In constructing limits and 1D power spec-
tra, we only use regions of the uv-plane where the minimum weight (as a function of
frequency) is greater than or equal to 1.
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