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Recovering a Single Community with Side
Information

Hussein Saad, and Aria Nosratinia, Fellow, IEEE

Abstract—We study the effect of the quality and quantity of
side information on the recovery of a hidden community of size
K = o(n) in a graph of size n. Side information for each
node in the graph is modeled by a random vector in which
either the vector dimension or the LLR of each component
with respect to node labels is independent of n. These two
models represent the variation in quality and quantity of side
information. Under maximum likelihood detection, we calculate
tight necessary and sufficient conditions for exact recovery of the
labels. We demonstrate how side information needs to evolve with
n in terms of either its quantity, or quality, to improve the exact
recovery threshold. A similar set of results are obtained for weak
recovery. Under belief propagation, tight necessary and sufficient
conditions for weak recovery are calculated when the LLRs are
constant, and sufficient conditions when the LLRs vary with n.
Moreover, we design and analyze a local voting procedure using
side information that can achieve exact recovery when applied
after belief propagation.

Index Terms—Community detection, stochastic block model,
side information

A. Introduction

Detecting communities (or clusters) in graphs is a fun-
damental problem that has been studied in various fields,
statistics [3]–[7], computer science [8]–[12] and theoretical
statistical physics [13], [14]. It has many applications: finding
like-minded people in social networks [15], improving rec-
ommendation systems [16], detecting protein complexes [17].
In this paper, we consider the problem of finding a single
sub-graph (community) hidden in a large graph, where the
community size is much smaller than the graph size. Appli-
cations of finding a hidden community include fraud activity
detection [18], [19] and correlation mining [20].
Several models have been studied for random graphs that

exhibit a community structure [21]. A widely used model in
the context of community detection is the stochastic block
model (SBM) [22]. In this paper, the stochastic block model
for one community is considered [23]–[26]. The stochastic
block model for one community consists of a graph of size
n with a community of size K , where any two nodes are
connected with probability p if they are both within the
community, and with probability q otherwise.
The problem of finding a hidden community upon observing

only the graph has been studied in [23]–[25]. The information
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limits1 of weak recovery and exact recovery have been studied
in [24]. Weak recovery is achieved when the expected number
of misclassified nodes is o(K), and exact recovery when all
labels are recovered with probability approaching one. The
limits of belief propagation for weak recovery have been
characterized [23], [25] in terms of a signal-to-noise ratio
parameter λ = K2(p−q)2

(n−k)q . The utility of a voting procedure
after belief propagation to achieve exact recovery was pointed
out in [25].
In many practical applications, non-graphical relevant in-

formation is available that can aid the inference. For example,
social networks such as Facebook and Twitter have access to
other information other than the graph edges such as date of
birth, nationality, school. A citation network has the authors
names, keywords, and therefore may provide significant addi-
tional information beyond the co-authoring relationships. This
paper investigates when and by how much can side information
improve the information limit, as well as the phase transition
of belief propagation, in single-community detection.
We model a varying quantity and quality of side information

by associating with each node a vector (i.e., non-graphical)
observation whose dimension represents the quantity of side
information and whose (element-wise) log-likelihood ratios
(LLRs) with respect to node labels represents the quality
of side information. The contributions of this paper can be
summarized as follows:

• We calculate tight necessary and sufficient conditions for
both weak and exact recovery. We show that weak recov-
ery is achievable even when the size of the community
is random and unknown. We find conditions under which
achievability of weak recovery implies exact recovery.
Subject to some mild conditions on the exponential mo-
ments of LLR, the results apply to both discrete as well as
continuous-valued side information. When feature LLRs
vary with n, our results apply to finite side information
alphabet, and necessary and sufficient conditions for weak
recovery are not tight.

• The phase transition of belief propagation is characterized
with side information that has fixed dimension per node.
When the LLRs are fixed across n, tight necessary and
sufficient conditions are calculated for weak recovery.
We show that when belief propagation fails, no local
algorithm can achieve weak recovery, and also that belief
propagation is strictly inferior to the maximum likeli-
hood detector. We also calculate conditions under which

1The extremal phase transition threshold is also known as information
theoretic limit [22] or information limit [24]. We use the latter term throughout
this paper.
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belief propagation followed by a local voting procedure
achieves exact recovery. When the side information LLR
varies with n, the belief propagation error rate is calcu-
lated using density evolution. Our results generalize [26],
which only considered binary side information consisting
of noisy labels with vanishing noise.

We now present a brief review of the literature in the area
of side information for community detection and highlight the
distinctions of the present work. In the context of detecting
two or more communities: Mossel and Xu [27] showed that,
under certain condition, belief propagation with noisy label
information has the same residual error as the maximum a-
posteriori estimator for two symmetric communities. Cai et.
al [28] studied weak recovery of two symmetric communities
under belief propagation upon observing a vanishing fraction
of labels. Neither [27] nor [28] establishes a converse. For
two symmetric communities, Saad and Nosratinia [29], [30]
studied exact recovery under side information. Asadi [31]
studied the effect of i.i.d. vectors of side information on
the phase transition of exact recovery for more than two
communities. Kanade et. al [32] showed that observation of a
vanishing number of labels is unhelpful to correlated recov-
ery2 phase transition. Deshpandeet. al [33] studied the effect
of Gaussian distributed side information on the information
limits of correlated recovery. For single community detection,
Kadavankandy et al. [26] studied belief propagation with noisy
label information with vanishing noise (unbounded LLRs).
Finally, other works focused on the information-computation
gap [34]–[36].
The issue of side information in the context of single-

community detection has not been addressed in the literature
except for [26], whose results are generalized in this paper.
Analyzing the effect of side information on information limit
of weak recovery is a novel contribution of this work. A
converse for the local algorithms such as belief propagation
with side information has not been available prior to this work.
The study of side information whose LLRs vary with n is
largely novel. Whenever the side information LLR does not
grow with n, we are able to find a sufficient statistic that bears
a resemblance to the single-community detection problem
without side information, therefore tools and techniques can
be shared from, e.g., [24], [25]. When the LLR of each side
information features varies with n, then the statistic used for
detection will be heavily dependent on n, and in these cases
the proof techniques are distinct from earlier work.

I. SYSTEM MODEL AND DEFINITIONS

Let G be a realization from a random ensemble of graphs
G(n,K, p, q), where each graph has n nodes and contains a
hidden community C∗ with size |C∗| = K . The underlying
distribution of the graph is as follows: an edge connects a
pair of nodes with probability p if both nodes are in C∗ and
with probability q otherwise. Gij is the indicator of an edge
between nodes i, j. For each node i, a vector of dimension M
is observed consisting of side information, whose distribution

2Correlated recovery denotes probability of error that is strictly better than
a random guess, and is not a subject of this paper.

depends on the label xi of the node. By convention xi = 1
if i ∈ C∗ and xi = 0 if i /∈ C∗. For node i, the entries
of the side information vector are each denoted yi,m and can
be interpreted as different features of the side information.
The side information for the entire graph is collected into the
matrix Y n×M . The column vector ym = [y1,m, . . . , yn,m]t

collects the side information feature m for all nodes i.
The vector of true labels is denoted x∗ ∈ {0, 1}n. P and Q

are Bernoulli distributions with parameters p, q, respectively,
and

LG(i, j) = log
(P (Gij)

Q(Gij)

)

is the log-likelihood ratio of edge Gij with respect to P and
Q.
In this paper, we address the problem of single-community

detection, i.e., recovering x∗ from G and Y , under the
following conditions: K = o(n) while limn→∞ K = ∞,
p ≥ q, p

q = θ(1) and lim supn→∞ p < 1.
An estimator x̂(G,Y ) is said to achieve exact recovery of

x∗ if, as n → ∞, P(x̂ = x∗) → 1. An estimator x̂(G,Y )

is said to achieve weak recovery if, as n → ∞, d(x̂,x∗)
K → 0

in probability, where d(·, ·) denotes the Hamming distance. It
was shown in [24] that the latter definition is equivalent to the
existence of an estimator x̂ such that E[d(x̂,x∗)] = o(K).
This equivalence will be used throughout our paper.

II. INFORMATION LIMITS

A. Weak Recovery
In this subsection, the information limits of weak recovery

under two models of side information are presented. When the
dimension of side information,M , for each node varies but its
LLR is fixed across n, tight necessary and sufficient conditions
are presented. When the side information for each node
has fixed dimension but varying LLR, we derive necessary
conditions for weak recovery.
1) Fixed-Quality Features:
In this subsection, the side information for each node is

allowed to evolve with n by having a varying number of
independent and identically distributed scalar observations,
each of which has a finite (imperfect) amount of information
about the node label. By allowing the dimension of the side
information per-node to vary and its scalar components to be
identically distributed, the side information is represented with
fixed-quality quanta. The results of this section demonstrate
that as n grows, the number of these side information quanta
per-node must increase in a prescribed fashion in order to have
a positive effect on the threshold for recovery.
For all n, for all i = 1, . . . , n, define the distributions:

V (υ) , P(yi,m = υ|xi = 1) U(υ) , P(yi,m = υ|xi = 0)

Thus, the components of the side information for each node
(features) are identically distributed for all nodes and all
graph sizes n; we also assume all features are independent
conditioned on the node labels x∗. The dimension M of the
side information per node is allowed to vary as the size of the
graph n changes.
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In addition, we assume U, V are such that the resulting LLR
random variable, defined below, has bounded support:

LS(i,m) = log
(V (yi,m)

U(yi,m)

)

Throughout the paper, LS will continue to denote the LLR
random variable of one side information feature, and LG

denotes the random variable of the LLR of a graph edge.

Theorem 1. For single community detection under bounded-
LLR side information, weak recovery is achieved if and only
if:

(K − 1)D(P ||Q) +MD(V ||U) → ∞ ,

lim inf
n→∞

(K − 1)D(P ||Q) + 2MD(V ||U)

log( n
K )

> 2
(1)

Proof. For necessity please see Appendix B. For sufficiency,
please see Appendix C.

Remark 1. If the features are conditionally independent but
not identically distributed, it is easy to show the necessary and
sufficient conditions are:

(K − 1)D(P ||Q) +

M
∑

m=1

D(Vm||Um) → ∞ ,

lim inf
n→∞

(K − 1)D(P ||Q) + 2
∑M

m=1 D(Vm||Um)

log( n
K )

> 2

where Vm and Um are analogous to U and V earlier, except
specialized to each feature.

Remark 2. When the number of features,M , is assumed to be
constant but the LLR of each feature is allowed to vary with
n, the necessary conditions provided earlier hold. In other
words, for single community detection under varying-LLR side
information, weak recovery is achieved only if:

(K − 1)D(P ||Q) +

M
∑

m=1

(D(Vm||Um) +D(Um||Vm)) → ∞

lim inf
n→∞

(K − 1)D(P ||Q) + 2
∑M

m=1 D(Vm||Um)

log( n
K )

> 2

(2)

Remark 3. Theorem 1 shows how fast the number of side
information features must grow with n so that the information
limit of weak recovery is improved.

Remark 4. The condition of bounded support for the LLRs
can be somewhat weakened to Eqs. (65) and (68). As an
example U ∼ N (0, 1) and V ∼ N (µ, 1) with µ 6= 0
satisfies (65), (68) and the theorem continues to hold even
though the LLR is not bounded.

The assumption that the size of the community |C∗| is
known a-priori is not always reasonable: we might need to
detect a small community whose size is not known in advance.
In that case, the performance is characterized by the following
lemma.

Lemma 1. For single-community detection under bounded-
LLR side information, if the size of the community is not known
in advance but obeys a probability distribution satisfying:

P

(
∣

∣

∣
|C∗| −K

∣

∣

∣
≤ K

log(K)

)

≥ 1− o(1) (3)

for some known K = o(n). If conditions (1) hold, then:

P

( |Ĉ△C∗|
K

≤ 2ǫ+
1

log(K)

)

≥ 1− o(1) (4)

where

ǫ =
(

min(log(K), (K−1)D(P ||Q)+MD(V ||U))
)− 1

2 = o(1).

Proof. Please see Appendix D

Lemma 1 will be used in the sequel for characterizing the
sufficient conditions for exact recovery.

B. Exact Recovery
In this subsection, the information limits of exact recovery

under two models of side information are presented. However,
unlike Section II-A, tight necessary and sufficient conditions
are provided for both models of side information.
1) Fixed-Quality Features:
Recall the definitions of the random variables LS and LG,

as well as the distributions V , U , P , and Q.

Definition 1.

ψQU (t,m1,m2) , m1 log(EQ[e
tLG]) +m2 log(EU [e

tLS ])

(5)
ψPV (t,m1,m2) , m1 log(EP [e

tLG ]) +m2 log(EV [e
tLS ])

(6)
EQU (θ,m1,m2) , sup

t∈[0,1]

tθ − ψQU (t,m1,m2) (7)

EPV (θ,m1,m2) , sup
t∈[−1,0]

tθ − ψPV (t,m1,m2) (8)

where θ, m1 and m2 ∈ R.

The sufficient conditions for exact recovery are derived
using a two-step algorithm (see Table I). Its first step consists
of any algorithm achieving weak recovery, e.g. maximum
likelihood (see Lemma 1). The second step applies a local
voting procedure.

Lemma 2. Let Sk, C̃, and Ĉk be defined as in Table I. Define
C∗

k = C∗ ∩ Sk
c, and assume Ĉk achieves weak recovery, i.e.

P
(

|Ĉk△C∗
k | ≤ δK for 1 ≤ k ≤ 1

δ

)

→ 1 . (9)

If

lim inf
n→∞

EQU

(

log( n
K ),K,M

)

log(n)
> 1 (10)

then P(C̃ = C∗) → 1.

Proof. Please see Appendix E.

Then the main result of this section follows:
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TABLE I
ALGORITHM FOR EXACT RECOVERY.

Algorithm 1

1) Input: n, K , G, Y , δ ∈ (0, 1) : nδ, 1δ ∈ N.
2) Consider a partition of the nodes {Sk} with |Sk| = nδ. Gk and Y k are

the subgraph and side information corresponding to Sk
c, i.e., after each

member of partition has been withheld.
3) Consider estimator Ĉk(Gk,Y k) that produces |Ĉk| = ⌈K(1 − δ)⌉ and

further assume it achieves weak recovery.
4) For all Sk and all i ∈ Sk calculate ri = (

∑

j∈Ĉk
LG(ij))+

∑M
m=1 LS(i,m)

5) Output: C̃ = {Nodes corresponding to K largest ri}.

Theorem 2. In single community detection under bounded-
LLR side information, assume (1) holds, then exact recovery
is achieved if and only if:

lim inf
n→∞

EQU

(

log( n
K ),K,M

)

log(n)
> 1 (11)

Proof. For sufficiency, please see Appendix F. For necessity
see Appendix G.

Remark 5. The assumption that (1) holds is necessary be-
cause otherwise weak recovery is not achievable, and by
extension, exact recovery.

Remark 6. Theorem 2 shows how fast the number of side
information features must grow with n so that the information
limit of exact recovery is improved.

To illustrate the effect of side information on information
limits, consider the following example:

K =
cn

log(n)
, q =

b log2(n)

n
, p =

a log2(n)

n
(12)

for positive constants c, a ≥ b. Then, KD(P ||Q) =
O(log(n)), and hence, weak recovery is achieved without
side information, and by extension, with side information.
Moreover, exact recovery without side information is achieved
if and only if:

sup
t∈[0,1]

tc(a− b) + bc− bc(
a

b
)t > 1 (13)

Assume noisy label side information with error probability
α ∈ (0, 0.5). By Theorem 2, exact recovery is achieved if and
only if:

sup
t∈[0,1]

tc(a− b) + bc− bc(
a

b
)t−

M

log(n)
log((1 − α)tα(1−t) + (1− α)(1−t)αt) > 1

(14)

If M = o(log(n)), then (14) reduces to (13), thus side
information does not improve the information limits of exact
recovery. If M > o(log(n)), then log((1 − α)tα(1−t) + (1 −
α)(1−t)αt) < 0 since t ∈ [0, 1]. It follows that (14) is less
restrictive than (13), thus improving the information limit.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
α

-1

-0.5

0

0.5

1

1.5

ψ
-1

a=2*b
a=4*b
a=5*b

Recovery Region

Critical α

Fig. 1. Exact recovery threshold, ψ−1 for different values of α at c = b = 1.

Let ψ denote the left hand side of (14) with M = log(n),
i.e.,

ψ = sup
t∈[0,1]

tc(a− b) + bc− bc(
a

b
)t

− log((1− α)tα(1−t) + (1 − α)(1−t)αt) (15)

The behavior of ψ against α describes the influence of side
information on exact recovery and is depicted in Fig. 1.
2) Variable-Quality Features:
In this section, the number of features, M , is assumed to

be constant but the LLR of each feature is allowed to vary
with n. We begin by concentrating on the following regime,
and will subsequently show its relation to the set of problems
that are both feasible and interesting.

K = ρ
n

log(n)
, p = a

log(n)2

n
q = b

log(n)2

n
(16)

with constants ρ ∈ (0, 1) and a ≥ b > 0.
The alphabet for each feature m is denoted with

{um
1 , um

2 , · · · , um
Lm

}, where Lm is the cardinality of featurem
which, in this section, is assumed to be bounded and constant
across n. The likelihoods of the features are defined as follows:

αm
+,ℓm , P(yi,m = um

ℓm |xi = 1) (17)
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αm
−,ℓm , P(yi,m = um

ℓm |xi = 0) (18)

Recall that in our side information model, all features are
independent conditioned on the labels. To ensure that the
quality of the side information is increasing with n, both αm

+,ℓm
and αm

−,ℓm
are assumed to be either constant or monotonic in

n.
To better understand the behavior of information limits, we

categorize side information outcomes based on the trends of
LLR and likelihoods. For simplicity we speak of trends for
one feature of cardinality L; extension to multiple features
is straightforward. Define hℓ to be the LLR of outcome ℓ,
where ℓ ∈ {1, · · · , L}. An outcome is called informative
if hℓ = O(log(n)) and non-informative if hℓ = o(log(n)).
An outcome is called rare if log(α±,ℓ) = O(log(n)) and
not rare if log(α±,ℓ) = o(log(n)). Among the four different
combinations, the worst case is when the outcome is both
non-informative and not rare for nodes inside and outside
the community. We will show that if such an outcome exists,
then side information will not improve the information limit.
The best case is when the outcome is informative and rare
for the nodes inside the community, or for the nodes outside
the community, but not both. Two cases are in between:
(1) an outcome that is non-informative and rare for nodes
inside and outside the community and (2) an outcome that
is informative and not rare for nodes inside and outside the
community. It will be shown that the last three cases can affect
the information limit under certain conditions.
For convenience we define:

T , log
(a

b

)

(19)

We introduce the following functions whose value, as shown
in the sequel, characterizes the exact recovery threshold:

η1(ρ, a, b) , ρ
(

b+
a− b

T
log

(a− b

ebT

)

)

(20)

η2(ρ, a, b, β) , ρb+
ρ(a− b)− β

T
log

(ρ(a− b)− β

ρebT

)

+ β

(21)

η3(ρ, a, b, β) , ρb+
ρ(a− b) + β

T
log

(ρ(a− b) + β

ρebT

)

(22)

For example in the regime (16), one can conclude using (11)
that exact recovery without side information is achieved if and
only if η1 > 1.
The LLR of each feature is denoted:

hm
ℓm , log

(αm
+,ℓm

αm
−,ℓm

)

(23)

We also define the following functions of the likelihood and
LLR of side information, whose evolution with n is critical to
the phase transition of exact recovery [30].

f1(n) ,
M
∑

m=1

hm
ℓm , (24)

f2(n) ,

M
∑

m=1

log(αm
+,ℓm), (25)

f3(n) ,

M
∑

m=1

log(αm
−,ℓm) (26)

In the following, the side information outcomes [u1
ℓ1
, . . . , uM

ℓM
]

are represented by their index [ℓ1, . . . , ℓM ] without loss of
generality. Throughout, dependence on n of outcomes and
their likelihood is implicit.

Theorem 3. In the regime characterized by (16), assume
M is constant and αm

+,ℓm
and αm

−,ℓm
are either constant or

monotonic in n. Define ξi , limn→∞
fi(n)
log(n) , i ∈ {1, 2, 3}.

Then, exact recovery occurs if and only if the following
conditions are satisfied:
Whenever for any sequence (over n) of side information
outcomes [ℓ1, . . . , ℓM ]

(i) ξ1 = ξ2 = ξ3 = 0, then η1(ρ, a, b) > 1 holds.
(ii) ξ1 = 0 and ξ2 = ξ3 < 0, then η1(ρ, a, b) + β > 1 holds

with β , −ξ2 = −ξ3.
(iii) 0 < ξ1 < ρ(a−b−bT ) and ξ2 = 0, then η2(ρ, a, b, β1) >

1 holds with β1 = ξ1.
(iv) 0 < ξ1 < ρ(a−b−bT ) and ξ3 = 0, then η3(ρ, a, b, β2) >

1 holds with β2 , ξ1.
(v) 0 < ξ1 < ρ(a−b−bT ) and ξ2 < 0, then η2(ρ, a, b, β3)+

β′
3 > 1 holds with β3 , ξ1 and β′

3 , −ξ3.
(vi) 0 < ξ1 < ρ(a−b−bT ) and ξ3 < 0, then η3(ρ, a, b, β4)+

β′
4 > 1 holds with β4 , ξ1 and β′

4 , −ξ3.

Proof. For necessity, see Appendix H. For sufficiency, see
Appendix I.

Remark 7. Each of Theorem 3 requirements could be trig-
gered by just one sequence of outcomes, therefore the nec-
essary and sufficient conditions might be an intersection of
two or more conditions above. For example, if some outcome
sequences satisfy ξ1 = 0, ξ2 = ξ3 < 0 (Item (ii)) and some
others satisfy 0 < ξ1 < ρ(a− b− bT ) and ξ2 = 0 (Item (iii)),
then the necessary and sufficient condition for exact recovery
is min{η1(ρ, a, b) + β , η2(ρ, a, b, β1)} > 1.

Remark 8. Theorem 3 does not address f1(n) = ω(log(n))
because it leads to a trivial problem. For example, for noisy
label side information, if the noise parameter α = e−n, then
side information alone is sufficient for exact recovery. Also,
when f1(n) = β log(n) with |β| ≥ ρ(a− b− bT ), a necessary
condition is easily obtained but a matching sufficient condition
for this case remains unavailable.

In the following, we specialize the results of Theorem 3 to
noisy-labels and partially-revealed-label side information.

Corollary 1. For side information consisting of noisy labels
with error probability α ∈ (0, 0.5), Theorem 3 combined with
Lemma 17 state that exact recovery is achieved if and only if:










η1(ρ, a, b) > 1, when log(1−α
α ) = o(log(n))

η2(ρ, a, b, β) > 1, when log(1−α
α ) = (β + o(1)) log(n),

0 < β < ρ(a− b− bT )

Figure 2 shows the error exponent for the noisy label side
information as a function of β.
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Corollary 2. For side information consisting of a fraction 1−ǫ
of the labels revealed, Theorem 3 states that exact recovery is
achieved if and only if:










η1(ρ, a, b) > 1, when log(ǫ) = o(log(n))

η1(ρ, a, b) + β > 1, when log(ǫ) = (−β + o(1)) log(n),

β > 0

Figure 3 shows the error exponent for partially revealed
labels, as a function of β.
We now comment on the coverage of the regime (16). If

the average degree of a node is o(logn), then the graph will
have isolated nodes and exact recovery is impossible. If the
average degree of the node is ω(logn), then the problem is
trivial. Therefore the regime of interest is when the average
degree is Θ(logn). This restricts Kp and Kq in a manner that
is reflected in (16). Beyond that, in the system model of this
paper K = o(n), so log( n

K
)

log(n) is either o(1) or approaching a
constant C ∈ (0, 1]. The regime (16) focuses on the former,
but the proofs are easily modified to cover the latter. For the

convenience of the reader, we highlight the places in the proof
where a modification is necessary to cover the latter case.

III. BELIEF PROPAGATION

Belief propagation for recovering a single community was
studied without side information in [23], [25] in terms of a
signal-to-noise ratio parameter λ = K2(p−q)2

(n−k)q , showing that
weak recovery is achieved if and only if λ > 1

e . Moreover,
belief propagation followed by a local voting procedure was
shown to achieve exact recovery if λ > 1

e , as long as
information limits allow exact recovery.
In this section M = 1, i.e. we consider scalar side infor-

mation random variables that are discrete and take value from
an alphabet size L. Extension to a vector side information is
straightforward as long as dimensionality is constant across n;
the extension is outlined in Corollary 3.
Denote the expectation of the likelihood ratio of the side

information conditioned on x = 1 by:

Λ ,

L
∑

ℓ=1

α2
+,ℓ

α−,ℓ
(27)

By definition, Λ = χ̃2 + 1, where χ̃2 is the chi-squared
divergence between the conditional distributions of side in-
formation. Thus, Λ ≥ 1.

A. Bounded LLR

We begin by presenting the belief propagation algorithm for
community recovery with bounded side information. Define
the message transmitted from node i to its neighboring node
j at iteration t+ 1 as:

Rt+1
i→j = hi −K(p− q) +

∑

k∈Ni\j
M(Rt

k→i) (28)

where hi = log(P(yi|xi=1)
P(yi|xi=0) ), Ni is the set of neighbors of node

i, M(x) = log(
p
q
ex−ν+1

ex−ν+1 ) and ν = log(n−K
K ).

The messages are initialized to zero for all nodes, i.e.,
R0

i→j = 0 for all i ∈ {1, · · · , n} and j ∈ Ni. The algorithm
executes for t− 1 iterations according to (28). At iteration t,
the belief of each node is:

Rt
i = hi −K(p− q) +

∑

k∈Ni

M(Rt−1
k→i) (29)

The algorithm then outputs the set of nodes corresponding to
the K largest Rt

i . This algorithm is shown in Table II.
To analyze this algorithm, we begin by demonstrating its

performance on a random tree with side information. Then,
we show that the same performance is achieved on a random
graph drawn from G(n,K, p, q) with side information. This
is made possible via a coupling lemma [25] expressing local
approximation of random graphs by trees.



7

TABLE II
BELIEF PROPAGATION ALGORITHM FOR COMMUNITY RECOVERY WITH SIDE INFORMATION.

Belief Propagation Algorithm

1) Input: n,K, t ∈ N, G and Y .
2) For all nodes i and j ∈ Ni, set R0

i→j = 0.
3) For all nodes i and j ∈ Ni, run t − 1 iterations of belief propagation as

in (28).
4) For all nodes i, compute its belief Rt

i based on (29).
5) Output C̃ = {Nodes corresponding to K largest Rt

i}.

1) Belief Propagation on a Random Tree with Side Infor-
mation:
We model random trees with side information in a manner

roughly parallel to random graphs. Let T be an infinite tree
with nodes i, each of them possessing a label τi ∈ {0, 1}. The
root is node i = 0. The subtree of depth t rooted at node i is
denoted T t

i . For brevity, the subtree rooted at i = 0 with depth
t is denoted T t. Unlike the random graph counterpart, the tree
and its node labels are generated together as follows: τ0 is a
Bernoulli-Kn random variable. For any i ∈ T , the number of its
children with label 1 is a random variable Hi that is Poisson
with parameter Kp if τi = 1, and Poisson with parameter Kq
if τi = 0. The number of children of node i with label 0 is a
random variable Fi which is Poisson with parameter (n−K)q,
regardless of the label of node i. The side information τ̃i takes
value in a finite alphabet {u1, · · · , uL}. The set of all labels
in T is denoted with τ , all side information with τ̃ , and the
labels and side information of T t with τ t and τ̃ t respectively.
The likelihood of side information continues to be denoted by
α+,ℓ, α−,ℓ, as earlier.
The problem of interest is to infer the label τ0 given

observations T t and τ̃ t. The error probability of an estimator
τ̂0(T

t, τ̃ t) can be written as:

pte ,
K

n
P(τ̂0 = 0|τ0 = 1) +

n−K

n
P(τ̂0 = 1|τ0 = 0) (30)

The maximum a posteriori (MAP) detector minimizes pte and
can be written in terms of the log-likelihood ratio as τ̂MAP =
1{Γt

0≥ν}, where ν = log(n−K
K ) and:

Γt
0 = log

(

P(T t, τ̃ t|τ0 = 1)

P(T t, τ̃ t|τ0 = 0)

)

(31)

The probability of error of the MAP estimator can be bounded
as follows [37]:

K(n−K)

n2
ρ2 ≤ pte ≤

√

K(n−K)

n
ρ (32)

where ρ = E
[

e
Γt
0
2

∣

∣τ0 = 0
]

.

Lemma 3. Let Ni denote the children of node i, Ni , |Ni|
and hi , log

(

P(τ̃i|τi=1)
P(τ̃i|τi=0)

)

. Then,

Γt+1
i = −K(p− q) + hi +

∑

k∈Ni

log

( p
q e

Γt
k−ν + 1

eΓ
t
k
−ν + 1

)

(33)

Proof. See Appendix K

a) Lower and Upper Bounds on ρ:
Define for t ≥ 1 and any node i:

ψt
i = −K(p− q) +

∑

j∈Ni

M(hj + ψt−1
j ) (34)

where

M(x) , log
(

p
q e

x−ν + 1

ex−ν + 1

)

= log
(

1 +

p
q − 1

1 + e−(x−ν)

)

.

Then, Γt+1
i = hi +ψt+1

i and ψ0
i = 0 ∀i ∈ T t. Let Zt

0 and Zt
1

denote random variables drawn according to the distribution of
ψt
i conditioned on τi = 0 and τi = 1, respectively. Similarly,

let U0 and U1 denote random variables drawn according to
the distribution of hi conditioned on τi = 0 and τi = 1,
respectively. Thus, ρ = E

[

e
1
2 (Z

t
0+U0)

]

= E
[

e
U0
2

]

E
[

e
Zt
0
2

]

.
Define:

bt , E

[ eZ
t
1+U1

1 + eZ
t
1+U1−ν

]

(35)

at , E
[

eZ
t
1+U1

]

(36)

Lemma 4. Let B = (pq )
1.5. Then:

E[e
U0
2 ]e

−λ
8 bt ≤ ρ ≤ E[e

U0
2 ]e

−λ
8B bt (37)

Proof. See Appendix L.

Thus to bound ρ, lower and upper bounds on bt are needed.

Lemma 5. For all t ≥ 0, if λ ≤ 1
Λe , then bt ≤ Λe.

Proof. See Appendix M.

Lemma 6. Define C = λ(2 + p
q ) and Λ′ = E[e3U0 ]. Assume

that bt ≤ ν
2(C−λ) . Then,

bt+1 ≥ Λeλbt(1− Λ′

Λ
e

−ν
2 ) (38)

Proof. See Appendix N.

Lemma 7. The sequences at and bt are non-decreasing in t.

Proof. The proof follows directly from [25, Lemma 5].

Lemma 8. Define log∗(ν) to be the number of times the
logarithm function must be iteratively applied to ν to get a
result less than or equal to one. Let C = λ(2 + p

q ) and
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Λ′ = E[e3U0 ]. Suppose λ > 1
Λe . Then there are constants

t̄o and νo depending only on λ and Λ such that:

bt̄o+log∗(ν)+2 ≥ Λe
λν

2(C−λ) (1 − Λ′

Λ
e

−ν
2 ) (39)

whenever ν ≥ νo and ν ≥ 2Λ(C − λ).

Proof. See Appendix O.

b) Achievability and Converse for the MAP Detector:

Lemma 9. Let Λ′ = E[e3U0 ], C = λ(2 + p
q ) and B = (pq )

1.5.
If 0 < λ ≤ 1

Λe , then:

pte ≥
K(n−K)

n2
E
2[e

U0
2 ]e

−λΛe
4 (40)

If λ > 1
Λe , then:

pte ≤
√

K(n−K)

n2
E[e

U0
2 ]e

−λΛ
8B e

λν
2(C−λ) (1−Λ′

Λ e
−ν
2 ) (41)

Moreover, since ν → ∞:

pte ≤
√

K(n−K)

n2
E[e

U0
2 ]e−ν(r+ 1

2 ) =
K

n
e−ν(r+o(1)) (42)

for some r > 0.

Proof. The proof follows directly from (32) and Lemmas 5
and 8.

2) Performance of Belief Propagation for Community Re-
covery with Side Information:
In this section, the inference problem defined on the ran-

dom tree is coupled to the problem of recovering a hidden
community with side information. This can be done via a
coupling lemma [25] that shows that under certain conditions,
the neighborhood of a fixed node i in the graph is locally
a tree with probability converging to one, and hence, the
belief propagation algorithm defined for random trees in
Section III-A1 can be used on the graph as well. The proof
of the coupling lemma depends only on the tree structure,
implying that it also holds for our system model, where the
side information is independent of the tree structure given the
labels.
Define Gt̂

u to be the subgraph containing all nodes that are
at a distance at most t̂ from node u and define xt̂

u and Y t̂
u to

be the set of labels and side information of all nodes in Gt̂
u,

respectively.

Lemma 10 (Coupling Lemma [25]). Suppose that t̂(n) are
positive integers such that (2 + np)t̂(n) = no(1). Then:

• If the size of community is deterministic and known, i.e.,
|C∗| = K , then for any node u in the graph, there exists
a coupling between (G,x,Y ) and (T, τ , τ̃ ) such that:

P((Gt̂
u,x

t̂
u,Y

t̂
u) = (T t̂, τ t̂, τ̃ t̂)) ≥ 1− n−1+o(1) (43)

where for convenience of notation, the dependence of t̂
on n is made implicit.

• If |C∗| obeys a probability distribution so that P(||C∗|−
K| ≥

√

3K log(n)) ≤ n
−1
2 +o(1) with K ≥ 3 log(n),

then for any node u, there exists a coupling between
(G,x,y) and (T, τ , τ̃ ) such that:

P((Gt̂
u,x

t̂
u,Y

t̂
u) = (T t̂, τ t̂, τ̃ t̂)) ≥ 1− n

−1
2 +o(1) (44)

We now return to the belief propagation algorithm high-
lighted in Table II. If we have t = t̂(n), according to
Lemma 10 with probability converging to one Rt

i = Γt
i, where

Γt
i was the log-likelihood defined for the random tree. Hence,

the performance of belief propagation is the same as the MAP
estimator defined as τ̂MAP = 1{Γt

i≥ν}, where ν = log(n−K
K ).

The only difference is that the MAP estimator decides based
on Γt

i ≥ ν while Algorithm II selects the K largest Rt
i . To

manage this difference, let Ĉ define the community recovered
by the MAP estimator, i.e. Ĉ = {i : Rt

i ≥ ν}. Since C̃ is the
set of nodes with the K largest Rt

i . Then,

|C∗△C̃| ≤ |C∗△Ĉ|+ |Ĉ△C̃|
= |C∗△Ĉ|+ ||Ĉ| −K| (45)

Moreover,

||Ĉ| −K| ≤ ||Ĉ| − |C∗||+ ||C∗| −K|
≤ |C∗△Ĉ|+ ||C∗| −K| (46)

Using (46) and substituting in (45):

|C∗△C̃| ≤ 2|C∗△Ĉ|+ ||C∗| −K| (47)

We will use (47) to prove weak recovery.
a) Weak Recovery:

Theorem 4.
Achievability: Suppose that (np)log

∗(ν) = no(1) and λ > 1
Λe .

Let t̂(n) = t̄o+log∗(ν)+2, where t̄o is a constant depending
only on λ and Λ. Apply Algorithm II with t = t̂(n) resulting
in estimated community C̃. Then:

E[|C∗△C̃|]
K

→ 0 (48)

for either |C∗| = K or random |C∗| such that K ≥ 3 log(n)

and P(||C∗| −K| ≥
√

3K log(n)) ≤ n
−1
2 +o(1).

Converse: Suppose that λ ≤ 1
Λe . Let t̂ ∈ N depend on n

such that (2 + np)t̂ = no(1). Then, for any local estimator Ĉ
of x∗

u that has access to observations of the graph and side
information limited to a neighborhood of radius t̂ from u,

E[|C∗△Ĉ|]
K

≥ (1 − K

n
)E2[e

U0
2 ]e

−λΛe
4 − o(1) (49)

Proof. For achievability, see Appendix P. For necessity, see
Appendix Q.

Corollary 3. The same result holds for side information
consisting of multiple features, i.e., constant M ≥ 1. In
other words, using the same notation as in Section II-B2,
weak recovery is possible if and only if λ > 1

Λe where
Λ =

∑L1

ℓ1=1 · · ·
∑LM

ℓM=1(
∏M

m=1

(αm
+,ℓm

)2

αm
−,ℓm

).

Remark 9. It was shown in [25] that belief propagation
achieves weak recovery without side information for all
λ > CK

n log( n
K ), for some positive constant C. Building
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on this observation, Theorem 4 shows that belief propaga-
tion (with side information) achieves the maximum likelihood
performance (without side information) when Λ → ∞ fast
enough, i.e., Ω( n

K log( n
K

)) ). In Section III-B, we show that
belief propagation could achieve weak recovery for any fixed
λ > 0 when Λ → ∞ at a specific rate.

b) Exact Recovery:
In Section II-B, it was shown that under certain conditions

any estimator that achieves weak recovery on a random cluster
size will also achieve exact recovery if followed by a local
voting process. This can be used to demonstrate sufficient
conditions for exact recovery under belief propagation. To
do so, we employ a modified form of the algorithm in
Table I, where in Step 3 for weak recovery we use the belief
propagation algorithm presented in Table II.

Theorem 5. Suppose that (np)log
∗(ν) = no(1) and λ > 1

Λe .
Let δ ∈ (0, 1) such that 1

δ ∈ N, nδ ∈ N and λ(1 − δ) > 1
Λe .

Let t̂ = t̄o + log∗(n) + 2, where t̄o is a constant depending
only on λ(1 − δ) and Λ as described in Lemma 8. Assume
that (11) holds. Let C̃ be the estimated community produced
by the modified version of Algorithm I with t = t̂(n). Then
P(C̃ = C∗) → 1 as n → ∞.

Proof. See Appendix R.

c) Comparison with Information Limits:
Since K → ∞ and the LLRs are bounded, the weak recov-

ery result in Theorem 1 reduces to lim infn→∞
KD(P ||Q)
2 log( n

K
) > 1.

This condition can be written as [25]:

λ > C
K

n
log(

n

K
) (50)

for some positive constant C. Thus, weak recovery only
demands a vanishing λ. On the other hand, belief propagation
achieves weak recovery for λ > 1

Λe , where Λ is greater than
one and bounded as long as LLR is bounded. This implies
a gap between the information limits and belief propagation
limits for weak recovery. Since Λ ≥ 1, side information
diminishes the gap.
For exact recovery, the following regime is considered:

K =
cn

log(n)
, q =

b log2(n)

n
, p = 2q (51)

for fixed positive b, c as n → ∞. In this regime,KD(P ||Q) =
O(log(n)), and hence, weak recovery is always asymptoti-
cally possible. Also, λ = c2b. Moreover, exact recovery is
asymptotically possible if cb(1 − 1+log log(2)

log(2) ) > 1. For belief
propagation, we showed that exact recovery is possible if
cb(1− 1+log log(2)

log(2) ) > 1 and λ > 1
Λe .

Figure 4 compares the regions where weak recovery is
achieved for belief propagation with and without side infor-
mation, as well as exact recovery with bounded-LLR side
information. Side information with L = 2 is considered, where
each node observes a noisy label with cross-over probability
α = 0.3. In Region 1, the belief propagation algorithm
followed by voting achieves exact recovery with no need for
side information. In Region 2, belief propagation followed by
voting achieves exact recovery with side information, but not

100 200 300 400 500 600 700 800 900 1000 1100
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Fig. 4. Phase diagram with K = c n

log(n)
, q =

b log2(n)
n

, p = 2q and
α = 0.3 for b, c fixed as n → ∞.
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Fig. 5. Phase diagram with K = c n

log(n)
, q = b log2(n)

n
, p = 2q and

α = 0.3, 0.1 for b, c fixed as n → ∞.

without. In Region 3, weak recovery is achieved by belief
propagation with no need for side information, but exact
recovery is not asymptotically possible. In Region 4, weak
recovery is achieved by the belief propagation as long as
side information is available; exact recovery is not asymptot-
ically possible. In Region 5, exact recovery is asymptotically
possible, but belief propagation without side information or
with side information whose α = 0.3 cannot achieve even
weak recovery (needs smaller α, i.e., better side informa-
tion). In Region 6, weak recovery, but not exact recovery,
is asymptotically possible via optimal algorithms, but belief
propagation without side information or with side information
whose α = 0.3 cannot achieve even weak recovery.
Figure 5 explores the effect of different values of α, showing

that as quality of side information improves (smaller α), the
gap between the belief propagation limit and the information
limit decreases.
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B. Unbounded LLR
The results of the previous section suggest that when

Λ → ∞ arbitrarily slowly, belief propagation achieves weak
recovery for any fixed λ > 0. In this section we prove this
result for scalar side information with finite cardinality and Λ
that grows at a specific rate.
The proof technique uses density evolution of Γt

i. More
precisely, we assume that ν, α+,ℓ

α−,ℓ
, and λ are constants

independent of n, while nq,Kq
n→∞
−−→ ∞, which implies

that p
q

n→∞
−−→ 1. This assumption allows us to precisely

characterize the conditional probability density function of Γt
i

(asymptotically Gaussian), and hence, calculate the fraction of
misclassified labels via the Q-function. Then, n

K is allowed to
grow and the behavior of the fraction of misclassified labels
is studied as ν and the LLR of the side information grow.
Recall the definition of ψt

i from (34) and Γt
i from (31) as

well as the definitions of Zt
0, Zt

1, U0 and U1 defined directly
afterward.

Lemma 11. Assume λ, α+,ℓ

α−,ℓ
and ν are constants independent

of n while nq,Kq
n→∞
−−→ ∞. Then, for all t ≥ 0:

E[Zt+1
0 ] =

−λ

2
bt + o(1) (52)

E[Zt+1
1 ] =

λ

2
bt + o(1) (53)

var(Zt+1
0 ) = var(Zt+1

1 ) = λbt + o(1) (54)

Proof. See Appendix S.

The following lemma shows that the distributions of Zt
1 and

Zt
0 are asymptotically Gaussian.

Lemma 12. Assume λ, α+,ℓ

α−,ℓ
and ν are constants independent

of n while nq,Kq
n→∞
−−→ ∞. Let φ(x) be the cumulative

distribution function (CDF) of a standard normal distribution.
Define v0 = 0 and vt+1 = λEZ,U1 [

1

e−ν+e−(
vt
2

+
√

vtZ)−U1
],

where Z ∼ N (0, 1). Then, for all t ≥ 0:

sup
x

∣

∣P
(Zt+1

0 + vt+1

2√
vt+1

≤ x
)

− φ(x)
∣

∣ → 0 (55)

sup
x

∣

∣P
(Zt+1

1 − vt+1

2√
vt+1

≤ x
)

− φ(x)
∣

∣ → 0 (56)

Proof. See Appendix T.

Lemma 13. Assume λ, α+,ℓ

α−,ℓ
and ν are constants independent

of n while nq,Kq
n→∞
−−→ ∞. Let Ĉ define the community

recovered by the MAP estimator, i.e. Ĉ = {i : Γt
i ≥ ν}.

Then,

lim
nq,Kq→∞

lim
n→∞

E[Ĉ△C∗]
K

=
n−K

K
EU0 [Q(

ν + vt
2 − U0√
vt

)]

+ EU1 [Q(
−ν + vt

2 + U1√
vt

)] (57)

where v0 = 0 and vt+1 = λEZ,U1 [
1

e−ν+e−(
vt
2

+
√

vtZ)−U1
], and

Z ∼ N (0, 1).

Proof. Let pe,0, pe,1 denote Type I and Type II errors for
recovering τ0. Then the proof follows from Lemmas 11 and 12,
and because

E[Ĉ△C∗]
K

=
n

K
pte =

n−K

K
pe,0 + pe,1.

Lemma 13 applies for side information with cardinality L ≥
1, and hence, generalizes [26] which was limited to L = 2.
Now n

K is allowed to grow and the behavior of the fraction
of misclassified labels is studied as ν and the LLR of the
side information grows without bound. The following lemma
shows that if Λ → ∞ such that |hℓ| = | log(α+,ℓ

α−,ℓ
)| < ν, belief

propagation achieves weak recovery for any fixed λ > 0 upon
observing the tree structure of depth t∗+2 and side information
with finite L, where t∗ = log∗(ν) is the number of times the
logarithm function must be iteratively applied to ν to get a
result less than or equal to one.

Lemma 14. Let Ĉ be the output of the MAP estimator for
the root of a random tree of depth t∗ + 2 upon observing the
tree structure and side information with cardinality L < ∞.
Assume as n

K → ∞, Λ → ∞ such that |hℓ| < ν. Then for
any fixed λ > 0:

lim
n
K

→∞
lim

nq,Kq→∞
lim
n→∞

E[Ĉ△C∗]
K

= 0 (58)

Proof. See Appendix U.

Although Lemma 14 is for L-ary side information, it focuses
on one asymptotic regime of side information where |hℓ| < ν.
To study other asymptotic regimes of side information, one
example is considered for L = 2, i.e., side information takes
values in {0, 1}. For constants η, β ∈ (0, 1) and γ > 0, define:

α+,1 = P(y = 1|x∗ = 1) = ηβ

α−,1 = P(y = 1|x∗ = 0) =
η(1 − β)

(n−K
K )γ

(59)

Thus, Λ → ∞ and h1 = (1 + o(1))γ log(n−K
K ) and h2 =

(1 + o(1)) log(1 − ηβ). For 0 < γ < 1, Lemma 14 shows
that belief propagation achieves weak recovery for any fixed
λ > 0. This implies that belief propagation achieves weak
recovery also for γ ≥ 1 because γ ≥ 1 implies higher-quality
side information. This generalizes the results obtained in [26]
which was only for γ = 1.
1) Belief Propagation Algorithm for Community Recovery

with Unbounded Side Information:
Lemma 13 characterizes the performance of the optimal

estimator of the root of a random tree upon observing the tree
of depth t and the side information. Similar to Section III-A2,
the inference problem defined on the random tree is coupled
to the problem of recovering a hidden community with side
information. This is done via Lemma 10, which together
with Equation (47) allow us to use Algorithm II (as long
as (np)t = no(1)). Let C̃ be the output of Algorithm II,
i.e., the set of nodes with the K largest Rt

i . Then, using
Equation (47) we have: E[C̃△C∗]

K ≤ 2E[Ĉ△C∗]
K . Thus, the

results of Lemma 14 and the special case (59) hold. This also
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suggests that belief propagation (Algorithm II) achieves weak
recovery for any λ > 0 when Λ grows with n

K arbitrarily
slowly.

IV. CONCLUSION

This paper studies the effect of the quality and quantity
of side information on the recovery of a hidden community
of size K = o(n). Under maximum likelihood detection,
tight necessary and sufficient conditions are calculated for
exact recovery, where we demonstrate how side information
must evolve with n in terms of either quantity or quality to
improve the exact recovery threshold. A similar set of results
are obtained for weak recovery. Under belief propagation,
tight necessary and sufficient conditions for weak recovery
are calculated when the LLRs are constant, and sufficient
conditions when the LLRs vary with n. It is established
that belief propagation followed by a local voting procedure
achieves exact recovery, and its performance gap with respect
to ML is reduced by side information. Simulations on finite
synthetic data-sets show that the asymptotic results of this
paper are relevant in assessing the performance of belief
propagation at finite n.

APPENDIX

A. Auxiliary Lemmas For Information Limits
Lemma 15. Define

ÊQU (θ,m1,m2) , sup
t∈R

tθ −m1 logQ(E[e
tLG ])

−m2 logU (E[e
tLS ])

ÊPV (θ,m1,m2) , sup
t∈R

tθ −m1 logP (E[e
tLG ])

−m2 logV (E[e
tLS ])

For θ ∈ [−m1D(Q||P ) − m2D(U ||V ),m1D(P ||Q) +
m2D(V ||U)], the following holds:

ÊQU (θ,m1,m2) = EQU (θ,m1,m2) (60)
ÊPV (θ,m1,m2) = EPV (θ,m1,m2) (61)

Moreover, for δ : −m1D(Q||P )−m2D(U ||V ) ≤ θ ≤ θ+δ ≤
m1D(P ||Q) +m2D(V ||U)], the following holds:

EQU (θ,m1,m2) ≤ EQU (θ + δ,m1,m2)

≤ EQU (θ,m1,m2) + δ (62)
EPV (θ,m1,m2) ≥ EPV (θ + δ,m1,m2)

≥ EPV (θ,m1,m2)− δ (63)

Proof. Equations (60) and (61) follow since
EPV (θ,m1,m2) = EQU (θ,m1,m2)− θ and because:

EQU (−m1D(Q||P )−m2D(U ||V ),m1,m2) = 0

EPV (m1D(P ||Q) +m2D(V ||U),m1,m2) = 0

ψ′
QU (m1,m2, 0) = ψ′

PV (m1,m2,−1) =

−m1D(Q||P )−m2D(U ||V )

ψ′
QU (m1,m2, 1) = ψ′

PV (m1,m2, 0) =

m1D(P ||Q) +m2D(V ||U) (64)

Equations (62) and (63) follow since EPV (EQU )
is decreasing (increasing) for θ ∈ [−m1D(Q||P ) −
m2D(U ||V ),m1D(P ||Q) +m2D(V ||U)].

Lemma 16. Assume |LG| ≤ B and |LS| ≤ B′ for some
positive constantsB and B′. Define B′′ = max{B,B′}. Then,
for t ∈ [−1, 1] and η ∈ [0, 1],

ψ′′
QU (m1,m2, t) ≤ 2e5B

′′
(

min
{

m1D(Q||P ) +m2D(U ||V ),

m1D(P ||Q) +m2D(V ||U)
}

)

(65)

ψQU (m1,m2, t) ≤ (m1D(Q||P ) +m2D(U ||V ))

× (−t+ e5B
′′
t2) (66)

EQU

(

m1,m2,−(1− η)(m1D(Q||P ) +m2D(U ||V ))
)

≥ η2

4e5B′′ (m1D(Q||P ) +m2D(U ||V )) (67)

ψ′′
PV (m1,m2, t) ≤ 2e5B

′′
(

min
{

m1D(Q||P ) +m2D(U ||V ),

m1D(P ||Q) +m2D(V ||U)
}

)

(68)

ψPV (m1,m2, t) ≤ (m1D(P ||Q) +m2D(V ||U))

× (t+ e5B
′′
t2) (69)

EPV (m1,m2, (1 − η)(m1D(P ||Q) +m2D(V ||U)))

≥ η2

4e5B′′ (m1D(P ||Q) +m2D(V ||U)) (70)

where ψ′′
QU (m1,m2, t) and ψ′′

PV (m1,m2, t) denote the sec-
ond derivatives with respect to t.

Proof. By direct computation of the second derivative,

ψ′′
QU (m1,m2, t) ≤ m1

EQ[L
2
Ge

tLG ]

EQ[etLG ]
+m2

EU [L
2
Se

tLS ]

EU [etLS ]
(a)

≤ m1e
2B

EQ[L
2
G] +m2e

2B′
EU [L

2
S ] (71)

where (a) follows by the assumption that |LG| ≤ B, |LS | ≤
B′ and holds for all t ∈ [−1, 1].
Now consider the following function: φ(x) = ex − 1 − x

restricted to |x| ≤ B. It is easy to see that φ(x) is non-negative,
convex with φ(0) = φ′(0) = 0 and φ′′(x) = ex. Hence,
e−B ≤ φ′′(x) ≤ eB. From Taylor’s theorem with integral
remainder [38], we get: e−Bx2

2 ≤ φ(x) ≤ eBx2

2 , which implies
x2 ≤ 2eBφ(x). Using this result for x = LG and x = LS :

EQ[L
2
G] ≤ 2eBEQ[φ(LG)] = 2eBD(Q||P ) (72)

EU [L
2
S] ≤ 2eB

′
EU [φ(LS)] = 2eB

′
D(U ||V ) (73)

Combining (71), (72), (73) lead to ψ′′
QU (m1,m2, t) ≤

2m1e
3BD(Q||P ) + 2m2e

3B′
D(U ||V ) for t ∈ [−1, 1]. Sim-

ilarly, it can shown for t ∈ [0, 2]: ψ′′
QU (m1,m2, t) ≤

2m1e
5BD(Q||P ) + 2m2e

5B′
D(U ||V ).

On the other hand, using φ(x) = e−x − 1 + x with
|x| ≤ B, it can be shown that ψ′′

PV (m1,m2, t) ≤
2m1e

5BD(P ||Q) + 2m2e
5B′

D(V ||U), for t ∈ [0, 2]. By
definition, ψQU (m1,m2, t) = ψPV (m1,m2, t−1), and hence,
ψ′′
QU (m1,m2, t) ≤ 2m1e

5BD(P ||Q)+2m2e
5B′

D(V ||U), for
t ∈ [−1, 1], which concludes the proof of (65). The proof
of (68) follows similarly.
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Now since ψQU (m1,m2, 0) = 0 and ψ′
QU (m1,m2, 0) =

−m1D(Q||P ) − m2D(U ||V ), then using Taylor’s theorem
with integral remainder, we have for t ∈ [−1, 1]:

ψQU (m1,m2, t)

= ψQU (m1,m2, 0) + tψ′
QU (m1,m2, 0)

+

∫ 0

t

(λ− t)ψ′′
QU (m1,m2, t)dλ

(a)

≤ −t(m1D(Q||P ) +m2D(U ||V ))

+ e5B
′′
(m1D(Q||P ) +m2D(U ||V ))t2 (74)

where (a) follows using (65). Similarly, it can be shown that:

ψPV (m1,m2, t) ≤ t(m1D(P ||Q) +m2D(V ||U))

+ e5B
′′
(m1D(P ||Q) +m2D(V ||U))t2 (75)

Combining (74) and (75) concludes the proof of (66), (69).
Using (66) and (69), we get:

EQU

(

m1,m2,−(1− η)(m1D(Q||P ) +m2D(U ||V ))
)

≥ sup
t∈[0,1]

t(−(1− η)(m1D(Q||P ) +m2D(U ||V )))

+ t(m1D(Q||P ) +m2D(U ||V )) (76)
− e5B

′′
(m1D(Q||P ) +m2D(U ||V ))t2

=
η2

4e5B′′ (m1D(Q||P ) +m2D(U ||V )) (77)

Similarly,

EPV

(

m1,m2, (1− η)(m1D(P ||Q) +m2D(V ||U))
)

≥ η2

4e5B′′ (m1D(P ||Q) +m2D(V ||U)) (78)

Combining (76) and (78) concludes the proof of (67), (70).

Lemma 17. η3(ρ, a, b, β) ≥ η2(ρ, a, b, β), for 0 < β < ρ(a−
b− bT ).

Proof. It is easy to show that η3(ρ, a, b, β)−β is convex in β >
0. Thus, the optimal β can be calculated as β∗ = ρ(aT−a+b)
at which η3(ρ, a, b, β

∗)− β∗ = 0. Thus, η3(ρ, a, b, β) ≥ β for
all a ≥ b > 0.
Furthermore, note that η2(ρ, a, b, β) is convex and increas-

ing in 0 < β < ρ(a − b − bT ). By direct substitution, it can
be shown that at β = ρ(a− b − bT ): η2(ρ, a, b, β) = β. This
implies that at β = ρ(a− b− bT ):

η3(ρ, a, b, β)− η2(ρ, a, b, β) = η3(ρ, a, b, β)− β ≥ 0 (79)

Using (79) together with the fact that η3(ρ, a, b, β) −
η2(ρ, a, b, β) is convex in β > 0, leads to the conclusion that
η3(ρ, a, b, β) ≥ η2(ρ, a, b, β) for 0 < β < ρ(a− b − bT ).

Lemma 18. Let X1, · · · , Xn be a sequence of i.i.d random
variables. Define Γ(t) = log(E[etX ]). Define S =

∑n
i=1 Xi,

then for any ǫ > 0 and a ∈ R:

P
(

S ≥ a− ǫ
)

≥ e−
(

t∗a−nΓ(t∗)+|t∗|ǫ
)

(

1−
nσ2

X̂

ǫ2

)

(80)

P
(

S ≤ a+ ǫ
)

≥ e−
(

t∗a−nΓ(t∗)+|t∗|ǫ
)

(

1−
nσ2

X̂

ǫ2

)

(81)

where t∗ = arg supt∈R
ta−Γ(t), X̂ is a random variable with

the same alphabet as X but distributed according to et
∗x

P(x)
EX [et∗x]

and µX̂ , σ2
X̂
are the mean and variance of X̂ , respectively.

Proof.

P
(

S ≥ a− ǫ
)

≥ P
(

a− ǫ ≤ S ≤ a+ ǫ
)

=

∫

a−ǫ≤S≤a+ǫ

P(x1) · · ·P(xn)dx1 · · · dxn

(a)

≥ e−(ta−nΓ(t))−|t|ǫ
∫

a−ǫ≤S≤a+ǫ

n
∏

i=1

(

etxiP(xi)

EX [etx]
dxi

)

(b)
=e−(ta−nΓ(t))−|t|ǫ

PX̂n

(

a− ǫ ≤ S ≤ a+ ǫ
)

(c)

≥e−(ta−nΓ(t))−|t|ǫ
(

1−
nσ2

X̂
+ (nµX̂ − a)2

ǫ2

)

(82)

where, for all finite E[etX ], (a) is true because et
∑

xi ≤
en(ta+|t|ǫ) over the range of integration, (b) holds because
etxPX(x)
EX [etX ] is a valid distribution [39], and (c) holds by Cheby-
shev inequality and by defining µX̂ , σ2

X̂
to be the mean and

variance of X̂ , respectively. Since ta − nΓ(t) is concave in
t, to find t∗ = arg supt(ta − nΓ(t)) we set the derivative to
zero, finding a = nEX [xet

∗x]

E[et∗x]
. Also, by direct computation of

µX̂ , it can be shown that µX̂ = EX [xetx]
E[etx] . This means that at

t = t∗, nµX̂ = a. Thus, substituting back in (82) leads to:

P
(

S ≥ a− ǫ
)

≥ e−(t∗a−nΓ(t∗))−|t∗|ǫ(1−
nσ2

X̂

ǫ2
)

This concludes the proof of (80). The proof of (81) follows
similarly.
In our model ǫ = log

2
3 (n) and nσ2

X̂
is O(log(n)), and

hence,

P
(

S ≥ a− ǫ
)

≥ e−(t∗a−nΓ(t∗))−|t∗|ǫ(1− o(1)
)

which concludes the proof.

B. Necessity of Theorem 1
Let x∗

\i,j represent the vector x
∗ with two coordinates i, j

removed.We wish to determine x∗
i via an observation ofG,Y ,

as well as a node index J and the expurgated vector of labels
x∗
\i,J , where node J is randomly and uniformly chosen from

inside (outside) the community if node i is outside (inside)
the community, i.e., {j : x∗

j 6= x∗
i }. Then:

P(G,Y , J,x∗
\i,J |x∗

i = 0)

P(G,Y , J,x∗
\i,J |x∗

i = 1)

=
P(G|Y , J,x∗

\i,J , x
∗
i = 0)

P(G|Y , J,x∗
\i,J , x

∗
i = 1)

×
P(x∗

\i,J |J, x∗
i = 0,Y )

P(x∗
\i,J |J, x∗

i = 1,Y )

P(Y , J |x∗
i = 0)

P(Y , J |x∗
i = 1)

(a)
=

P(G|J,x∗
\i,J , x

∗
i = 0)

P(G|J,x∗
\i,J , x

∗
i = 1)

P(yi,1 · · · , yi,M |x∗
i = 0)

P(yi,1 · · · , yi,M |x∗
i = 1)

× P(yJ,1, · · · , yJ,M |J, x∗
i = 0)

P(yJ,1, · · · , yJ,M |J, x∗
i = 1)
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=

(

∏

k 6=i,J
x∗
k=1

Q(Gik)P (GJk)

P (Gik)Q(GJk)

)( M
∏

m=1

U(yi,m)V (yJ,m)

V (yi,m)U(yJ,m)

)

(83)

where (a) holds because G and Y are independent given the
labels, P(J |x∗

i = 0) = P(J |x∗
i = 1) and P(x∗

\i,J |J, x∗
i =

0,Y ) = P(x∗
\i,J |J, x∗

i = 1,Y ).
Denote the set of nodes inside the community, excluding

i, J , with K = {k 6= i, J : x∗
k = 1}, and construct a vector

from four sets of random variables as follows:

T ,

[

{yi,m}Mm=1, {yJ,m}Mm=1, {Gik}k∈K, {GJk}k∈K
]

.

where the members of each set appear in the vector in
increasing order of their varying index. From (83), T is a
sufficient statistic of (G,Y , J,x∗

\i,J) for testing x∗
i ∈ {0, 1}.

Moreover, conditioned on x∗
i = 0, T is distributed according

to U⊗MV ⊗MQ⊗(K−1)P⊗(K−1) and conditioned on x∗
i = 1,

T is distributed according to V ⊗MU⊗MP⊗(K−1)Q⊗(K−1).
Then, for any estimator x̂(G,Y ) achieving weak recovery:

E[d(x̂,x∗)]

=

n
∑

i=1

P(x∗
i 6= x̂i)

≥
n
∑

i=1

min
x̃i(G,Y )

P(x∗
i 6= x̃i)

≥
n
∑

i=1

min
x̃i(G,Y ,J,x∗

\i,J )
P(x∗

i 6= x̃i)

= n min
x̃i(G,Y ,J,x∗

\i,J)
P(x∗

i 6= x̃i)

= n min
x̃i(G,Y ,J,x∗

\i,J)

(

K

n
P(x∗

i 6= x̃i|x∗
i = 1)

+
n−K

n
P(x∗

i 6= x̃i|x∗
i = 0)

)

≥ n min
x̃i(G,Y ,J,x∗

\i,J)

(

K

n
P(x∗

i 6= x̃i|x∗
i = 1)

+
K

n
P(x∗

i 6= x̃i|x∗
i = 0)

)

= K min
x̃i(G,Y ,J,x∗

\i,J )

(

P(x∗
i 6= x̃i|x∗

i = 1)

+ P(x∗
i 6= x̃i|x∗

i = 0)
)

(84)

Since by assumption, E[d(x̂,x∗)] = o(K), then by (84), the
sum of Type-I and II probabilities of error is o(1), which
implies that as n → ∞ [40]:

TV
(

U⊗MV ⊗MQ⊗(K−1)P⊗(K−1),

V ⊗MU⊗MP⊗(K−1)Q⊗(K−1)
)

→ 1 (85)

where TV (·, ·) is the total variational distance between prob-
ability distributions. By properties of the total variational
distance and KL divergence [40], for any two distributions
P̃ , Q̃: D(P̃ ||Q̃) ≥ log( 1

2(1−TV (P̃ ||Q̃))
). Hence, using (85):

D
(

U⊗MV ⊗MQ⊗(K−1)P⊗(K−1)
∣

∣

∣

∣

∣

∣

V ⊗MU⊗MP⊗(K−1)Q⊗(K−1)
)

= M
(

D(U ||V ) +D(V ||U)
)

+ (K − 1)
(

D(P ||Q) +D(Q||P )
)

→ ∞
(86)

Since the LLRs are bounded by assumption, using Lemma 16
in Appendix A,

(K − 1)D(P ||Q) +MD(V ||U)

= EQU

(

(K − 1)D(P ||Q) +MD(V ||U),K − 1,M
)

≥ EQU

(

− (K − 1)D(Q||P ) +MD(U ||V )

2
,K − 1,M

)

≥ C
(

(K − 1)D(Q||P ) +MD(U ||V )
)

(87)

for some positive constant C. Substituting in (86) leads to:

MD(V ||U) + (K − 1)D(P ||Q) → ∞ (88)

which proves the first condition in (1).
x∗ is drawn uniformly from the set {x ∈ {0, 1}n : w(x) =

K} and w(x) =
∑n

j=1 xj ; therefore xi’s are individually
Bernoulli-Kn . Then, for any estimator x̂(G,Y ) achieving
weak recovery we have the following, where H(·) and I(·; ·)
are the entropy and mutual information of their respective
arguments.

I(G,Y ;x∗)
(a)

≥ I(x̂(G,Y );x∗)
(b)

≥ min
E[d(x̃,x∗)]≤ǫnK

I(x̃(G,Y );x∗) (89)

≥ H(x∗)− max
E[d(x̃,x∗)]≤ǫnK

H(d(x̃,x∗))

(c)
= log

(

(

n

K

)

)

− nh(
ǫnK

n
)

(d)

≥ K log(
n

k
)(1 + o(1)) (90)

where (a) is due to the data processing inequality [40],
in (b) we defined ǫn = o(1), (c) is due to the fact that
maxE(w(X))≤pn H(X) = nh(p) for any p ≤ 1

2 [24], where
h(p) , −p log(p)− (1− p) log(1− p), and (d) holds because
(

n
K

)

≥ ( n
K )K , the assumption K = o(n) and the bound

h(p) ≤ −p log(p)+p for p ∈ [0, 1]. Denoting by P (G,Y ,x∗)
the joint distribution of the graph, side information, and node
labels, and using [40]:

I(G,Y ;x∗)

= min
Q̃

D
(

P(G,Y |x∗)
∣

∣

∣

∣ Q̃
∣

∣ P(x∗)
)

≤ D
(

P(G|x∗)
M
∏

m=1

(P(ym|x∗))
∣

∣

∣

∣

∣

∣
Q⊗(n2)

M
∏

m=1

(U⊗n)
∣

∣P(x∗)
)

=

(

K

2

)

D(P ||Q) +KMD(V ||U) (91)

Combining (90) and (91):

lim inf
n→∞

(K − 1)D(P ||Q) + 2MD(V ||U) ≥ 2 log(
n

K
) (92)

which proves the second condition in (1).
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C. Sufficiency of Theorem 1
The sufficient conditions for weak recovery is derived for

the maximum likelihood (ML) detector. Define:

e1(S, T ) ,
∑

i∈S

∑

j∈T

LG(i, j) (93)

e2(S) ,
∑

i∈S

M
∑

m=1

LS(i,m) (94)

for any subsets S, T ⊂ {1, · · · , n}. Using these definitions, the
maximum likelihood detection can be characterized as follows:

Ĉ = ĈML = argmax
C⊂{1,··· ,n}

|C|=K

(

e1(C,C) + e2(C)
)

(95)

Let R , |Ĉ ∩ C∗|, then |Ĉ△C∗| = 2(K −R), and hence,
to show that maximum likelihood achieves weak recovery, it
is sufficient to show that there exists positive ǫ = o(1), such
that P

(

R ≤ (1− ǫ)K
)

= o(1).
To bound the error probability of ML, we characterize

the separation of its likelihood from the likelihood of the
community C∗.

e1(Ĉ, Ĉ) + e2(Ĉ)−
(

e1(C
∗, C∗) + e2(C

∗)
)

= e1(Ĉ\C∗, Ĉ\C∗) + e1(Ĉ\C∗, Ĉ ∩ C∗)− e1(C
∗\Ĉ, C∗)+

e2(Ĉ\C∗)− e2(C
∗\Ĉ) (96)

By definition |C∗\Ĉ| = |Ĉ\C∗| = K − R. Thus, for any
0 ≤ r ≤ K − 1,

P(R = r)

≤ P

(

{

Ĉ : |Ĉ| = K, |Ĉ ∩C∗| = r,

e1(Ĉ, Ĉ) + e2(Ĉ)− e1(C
∗, C∗)− e2(C

∗) ≥ 0
}

)

= P

(

{

S ⊂ C∗, T ⊂ (C∗)c : |S| = |T | = K − r,

e1(S,C
∗) + e2(S) ≤ e1(T, T ) + e1(T,C

∗\S) + e2(T )
}

)

≤ P

(

{

S ⊂ C∗ : |S| = K − r, e1(S,C
∗) + e2(S) ≤ θ

}

∪
{

S ⊂ C∗, T ⊂ (C∗)c : |S| = |T | = K − r,

e1(T, T ) + e1(T,C
∗\S) + e2(T ) ≥ θ

}

)

(97)

where θ = (1−η)(aD(P ||Q)+(K−r)MD(V ||U)), for some
η ∈ (0, 1) and a =

(

K
2

)

−
(

r
2

)

. We further assume random
variables LG,i are drawn i.i.d. according to the distribution
of LG, and LS,m,j are similarly i.i.d. copies of LS . Then,
using (97) and a union bound:

P(R = r)

≤
(

K

K − r

)

P

(

a
∑

i=1

LG,i +

K−r
∑

j=1

M
∑

m=1

LS,m,j ≤ θ
)

+

(

K

K − r

)(

n−K

K − r

)

P

(

a
∑

i=1

LG,i +
K−r
∑

j=1

M
∑

m=1

LS,m,j ≥ θ
)

(a)

≤ e(K−r) log( Ke
K−r

)

× e− supt≥0 −tθ−a logP (E[e−tLG ])−(K−r)M logV (E[e−tLS ])

+ e
(K−r) log( (n−K)Ke2

(K−r)2
)

× e− supt≥0 tθ−a logQ(E[etLG ])−(K−r)M logU (E[etLS ])

(b)

≤ e(K−r) log( Ke
K−r

)−EPV (θ,a,M(K−r))

+ e
(K−r) log( (n−K)Ke2

(K−r)2
)−EQU (θ,a,M(K−r))

(c)
= e(K−r) log( Ke

K−r
)−EPV (θ,a,M(K−r))

+ e
(K−r) log( (n−K)Ke2

(K−r)2
)−EPV (θ,a,M(K−r))−θ

(d)

≤ e(K−r) log( Ke
K−r

)−EPV (θ,a,M(K−r))

+ e−(K−r)
(

(1−η)((K−1
2 )D(P ||Q)+MD(V ||U))−log(n−K

K
)
)

× e2(K−r) log( e
ǫ
)−EPV (θ,a,M(K−r))

(e)

≤ 2e2(K−r) log( e
ǫ
)−EPV (θ,a,M(K−r)) (98)

where (a) holds by Chernoff bound and because
(

a
b

)

≤ ( eab )
b,

(b) holds from Lemma 15 in Appendix A, (c) holds because
EPV (θ, a,M(K−r)) = EQU (θ, a,M(K−r))−θ, (d) holds
because a ≥ (K−r)(K−1)

2 , r ≤ (1 − ǫ)K and (e) holds by
assuming that lim infn→∞(K−1)D(P ||Q)+2MD(V ||U) >
2 log( n

K ), which implies that

(1−η)((
K − 1

2
)D(P ||Q)+MD(V ||U))− log(

n−K

K
) ≥ 0.

Lemma 15 in Appendix A shows that

EPV (θ, a,M(K−r)) ≥ C(aD(P ||Q)+(K−r)MD(V ||U)]).

Using a ≥ (K−r)(K−1)
2 and substituting in (98),

P(R = r) ≤2e−(K−r)
(

C(K−1
2 D(P ||Q)+MD(V ||U))−2 log( e

ǫ
)
)

≤2e−(K−r)
(

C
2 ((K−1)D(P ||Q)+MD(V ||U))−2 log( e

ǫ
)
)

(99)

Choose ǫ =
(

(K − 1)D(P ||Q) + MD(V ||U)
)− 1

2 and let
E =

(

C
2 ((K − 1)D(P ||Q) +MD(V ||U))− 2 log( eǫ )

)

. Thus,

P(R ≤ (1 − ǫ)K) =

(1−ǫ)K
∑

r=0

P(R = r) ≤
(1−ǫ)K
∑

r=0

2e−(K−r)E

(a)

≤2

∞
∑

r′=ǫK

e−r′E ≤ 2
e−ǫKE

1− e−E

(b)

≤ o(1)

(100)

where (a) holds by defining r′ = K − r and (b) holds by
assuming that (K − 1)D(P ||Q) +MD(V ||U) → ∞ and by
the choice of ǫ. This concludes the proof of Theorem 2.

D. Proof of Lemma 1
The proof has similarities with the sufficiency of Theorem 1.

For brevity, we only provide a sketch. The complete proof is
provided online [41].
Recall the definition of Ĉ from (95). Note that under the

conditions of this Lemma, Ĉ may no longer be the maximum
likelihood solution because |C∗| need not be K . Let |C∗| =
K ′. Then, by assumption, with probability converging to one,
|K ′ − K| ≤ K

log(K) . Let R = |Ĉ ∩ C∗|. Thus, |Ĉ△C∗| =
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K+K ′− 2R. Hence, it is sufficient to show that P(R ≤ (1−
ǫ)K − |K ′ −K|) = o(1), where ǫ is defined in the statement
of the Lemma. Let a =

(

K
2

)

−
(

r
2

)

and a′ =
(

K′

2

)

−
(

r
2

)

, then
for any r ≤ (1− ǫ)K − |K ′ −K| and by the choice of ǫ, the
following holds as n → ∞:

K

K ′ → 1 ,
K − r

K ′ − r
→ 1 ,

a

a′
→ 1 (101)

The proof then follows along the ideas of the proof of
sufficiency of Theorem 2.

E. Proof of Lemma 2
Lemma 19. Suppose that (11) holds. Let {Wℓ} and {W̃ℓ}
denote sequences of i.i.d. copies of LG under P and Q,
respectively. Also, for any node i, let Z and Z̃ denote
∑M

m=1 LS(i,m) under V and U , respectively. Then, for
sufficiently small, but constant, δ and γ =

log( n
K

)

K :

P
(

K(1−δ)
∑

ℓ=1

W̃ℓ + Z̃ ≥ K(1− δ)γ
)

= o(
1

n
)

(102)

P
(

K(1−2δ)
∑

ℓ=1

Wℓ +

δK
∑

ℓ=1

W̃ℓ + Z ≤ K(1− δ)γ
)

= o(
1

K
)

(103)

Proof. By Chernoff bound:

P
(

K(1−δ)
∑

ℓ=1

W̃ℓ + Z̃ ≥ K(1− δ)γ
)

≤ e−(1−δ) supt≥0 tKγ−K log(EQ[etLG ])− M
1−δ

log(EU [etLS ])

(104)

From (1) it follows that for some positive ǫo:

Kγ ≤ KD(P ||Q)

2 + ǫo
+

MD(V ||U)

1 + ǫo
2

≤ KD(P ||Q) +MD(V ||U)

≤ KD(P ||Q) +
M

1− δ
D(V ||U) (105)

Hence, using Lemma 15 in Appendix A, supt≥0 is replaced
by supt∈[0,1]. Also, log(EU [e

tLS ]) = (t − 1)Dt(V ||U) ≤
0 where the first equality holds by the definition of the
Rényi-divergence between distributions V and U [40] and
the second inequality because t ∈ [0, 1]. This implies that
M
1−δ log(EU [e

tLS ]) ≤ M log(EU [e
tLS ]). Substituting in (104):

P
(

K(1−δ)
∑

ℓ=1

W̃ℓ + Z̃ ≥ K(1− δ)γ
)

≤ e−(1−δ)EQU (Kγ,K,M)

≤ e−(1−δ)(1+ǫ) log(n)

(106)

where (106) follows since (11) holds by assumption, i.e.,
there exists ǫ ∈ (0, 1) : EQU (Kγ,K,M) ≥ (1 + ǫ) log(n).
Equation (106) implies that (102) holds for sufficiently small
δ.

To show (103), Chernoff bound is used:

P
(

K(1−2δ)
∑

ℓ=1

Wℓ +

δK
∑

ℓ=1

W̃ℓ + Z ≤ K(1− δ)γ
)

(a)

≤ etKγ(1−δ)+K(1−2δ) log(EP [e−tLG ])+Kδ log(EQ[e−tLG ])

× eM(1−δ) log(EV [e−tLS ])+Mδ log(EU [e−tLS ])

= e(1−2δ)(tKγ+K log(EP [e−tLG ])+M 1−δ
1−2δ log(EV [e−tLS ]))

× eδ(tKγ+K log(EQ[e−tLG ])+M log(EU [e−tLS ]))

(b)

≤ e(1−2δ)(tKγ+K log(EP [e−tLG ])+M log(EV [e−tLS ]))

× eδ(tKγ+K log(EQ[e−tLG ])+M log(EU [e−tLS ])) (107)

where (a) and (b) hold because 1−δ
1−2δ ≥ 1 for sufficiently small

δ and log(EV [e
−tLS ]) = (t− 1)Dt(U ||V ) ≤ tDt+1(U ||V ) =

log(EU [e
−tLS ]), where Dt(V ||U) is the Rényi-divergence

between distributions V and U , which is non-decreasing in
t ≥ 0 [40].
By definition −EPV (Kγ,K,M) = − supλ∈[−1,0] λKγ −

K log(EP [e
λLG ]) − M log(EV [e

λLS ]) = −λ∗Kγ +
K log(EP [e

λ∗LG ]) +M log(EV [e
λ∗LS ]). Hence, by choosing

t = −λ∗ ∈ [0, 1] and substituting in (107),

P
(

K(1−2δ)
∑

ℓ=1

Wℓ +

δK
∑

ℓ=1

W̃ℓ + Z ≤ K(1− δ)γ
)

≤ e−(1−2δ)EPV (Kγ,K,M)

× eδ(Kγ+K log(EQ[e−tLG ])+M log(EU [e−tLS ])) (108)

By Lemma 16 and convexity of ψQU (t,m1,m2):

ψQU (−t,K,M) ≤ ψQU (−1,K,M)

≤ A(KD(Q||P ) +MD(U ||V )) (109)

for some positive constant A. Moreover, by Lemma 16,
EQU (Kγ,K,M) ≥ EQU (0,K,M) ≥ A1(KD(Q||P ) +
MD(U ||V )), for some positive constant A1. Hence, by sub-
stituting in (108), for some positive constant A2:

P
(

K(1−2δ)
∑

ℓ=1

Wℓ +

δK
∑

ℓ=1

W̃ℓ + Z ≤ K(1− δ)γ
)

≤ e−(1−2δ)EPV (Kγ,K,M)+δ(Kγ+A2EQU (Kγ,K,M))

(a)

≤ e−EQU (Kγ,K,M)(1−2δ−δA2)+(1−δ)Kγ

(b)
= e− log(n)((1+ǫ)(1−2δ−δA2)+δ−1)−log(K)(1−δ)

(c)
= o(

1

K
) (110)

where (a) holds because EPV (Kγ,K,M) =
EQU (Kγ,K,M) − Kγ from Lemma 16, (b) holds by
the assumption that (11) holds, which implies that there exists
ǫ ∈ (0, 1) : EQU (Kγ,K,M) ≥ (1 + ǫ) log(n) and (c) holds
for sufficiently small δ.
Equations (106) and (110) concludes the proof of

Lemma 19.
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Now we use Lemma 19 to prove Lemma 2. Define the event
E , {(Ĉk, C

∗
k) : |Ĉk△C∗

k | ≤ δK ∀k}; then conditioned on
E we have:

|Ĉk ∩ C∗
k | ≥ |Ĉk| − |Ĉk△C∗

k |
= ⌈K(1− δ)⌉ − |Ĉk△C∗

k |
≥ K(1− 2δ)

Thus, in Algorithm I, for nodes i within the community C∗,
ri is stochastically greater than or equal to (

∑K(1−2δ)
ℓ=1 Wℓ)+

(
∑Kδ

ℓ=1 W̃ℓ) + Z by Lemma 19 and (107). For i /∈ C∗, ri
has the same distribution as (

∑K(1−δ)
ℓ=1 W̃ℓ) + Z̃ . Thus, by

Lemma 19, with probability converging to 1,

ri > K(1− δ)γ, i ∈ C∗

ri < K(1− δ)γ, i /∈ C∗

Hence, P(C̃ = C∗) → 1 as n → ∞.

F. Sufficiency of Theorem 2

The cardinality |C∗
k | is a random variable that corresponds to

sampling, without replacement, from the nodes of the original
graph. Let Z be a binomial random variable Bin(n(1−δ), Kn ).
The Chernoff bound for Z:

P

(

∣

∣

∣
Z − (1− δ)K

∣

∣

∣
≥ K

log(K)

)

≤ e
−Ω( K

log2(K)
) (111)

A result of Hoeffding [42, Theorem 4] for sampling with and
without replacement indicates that E[φ(|C∗

k |)] ≤ E[φ(Z)] for
any convex φ. This can be applied to (111) on the negative
and positive side, individually. Putting them back together, we
get a bound on the tails of |C∗

k |:

P

(

∣

∣

∣
|C∗

k | − (1− δ)K
∣

∣

∣
≥ K

log(K)

)

≤ e
−Ω( K

log2(K)
)

≤ o(1) (112)

Since (1) holds, for sufficiently small δ,

lim inf
n→∞

⌈(1− δ)K⌉D(P ||Q) + 2MD(V ||U) > 2 log(
n

K
)

which together with (112) indicates, via Lemma 1, that ML
achieves weak recovery. The idea of a two-step procedure for
this proof has a precedent in [24].
Thus, for any 1 ≤ k ≤ 1

δ :

P

( |Ĉk△C∗
k |

K
≤ 2ǫ+

1

log(K)

)

≥ 1− o(1) (113)

with ǫ = o(1). Since δ is constant, by the union bound

P

( |Ĉk△C∗
k |

K
≤ 2ǫ+

1

log(K)
, ∀k

)

≥ 1− o(1) (114)

Since ǫ = o(1), the desired (9) holds.

G. Necessity of Theorem 2
The following Lemma characterizes necessary conditions

that are weaker than needed for Theorem 2, i.e., the Lemma
is stronger than needed at this point, but will subsequently be
used for unbounded LLR as well.

Lemma 20. Let {Wℓ} and {W̃ℓ} denote sequences of i.i.d.
copies of LG under P and Q, respectively. For any node i
inside the community, let Z denote a random variable drawn
according to the distribution of

∑M
m=1 LS(i,m). Let Z̃ be

the corresponding random variable when i is outside the
community. Let Ko → ∞ such that Ko = o(K). Then, for any
estimator Ĉ achieving exact recovery, there exists a sequence
θn such that for sufficiently large n:

P

(

K−Ko
∑

ℓ=1

Wℓ + Z ≤ (K − 1)θn − θ̃n

)

≤ 2

Ko
(115)

P

(

K−1
∑

ℓ=1

W̃ℓ + Z̃ ≥ (K − 1)θn

)

≤ 1

n−K
(116)

where
θ̃n , (Ko − 1)D(P ||Q) + 6

√

Koσ (117)

and σ2 is the variance of LG under P .

Proof. Recall that ML is optimal for exact recovery since C∗

is chosen uniformly. Assume P(ML fails) = o(1). Define

io , arg min
i∈C∗

e1(i, C
∗) +

M
∑

m=1

LS(i,m)

C̃ , C∗\{io} ∪ {j} for j /∈ C∗ (118)

Also, define the following event:

FM ,

{

(G,Y ) : min
i∈C∗

e1(i, C
∗) +

M
∑

m=1

LS(i,m)

≤ max
j /∈C∗

e(j, C∗\{io}) +
M
∑

m=1

LS(j,m)
}

(119)

Since P(ML fails) = o(1), using (95):

e1(C̃, C̃) + e2(C̃)− e1(C
∗, C∗)− e2(C

∗)

=
(

e(j, C∗\{io}) +
M
∑

m=1

LS(j,m)
)

−
(

e1(i, C
∗) +

M
∑

m=1

LS(i,m)
)

(120)

For observations belonging to FM , the expression (120) is non-
negative, implying ML fails with non-zero probability. Then,

P(FM ) ≤ P(ML fails) = o(1) (121)

since ML achieves exact recovery.
Define θ′n, θ′′n and the events E1 and E2 as follows:

θ′n ,

inf

{

x ∈ R : P
(

K−Ko
∑

ℓ=1

Wℓ + Z ≤ (K − 1)x− θ̃n

)

≥ 2

Ko

}

(122)
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θ′′n ,

sup

{

x ∈ R : P
(

K−1
∑

ℓ=1

W̃ℓ + Z̃ ≥ (K − 1)x
)

≥ 1

n−K

}

(123)
E1 ,

{

(G, Y ) : max
j /∈C∗

(

e(j, C∗\{io}) +
M
∑

m=1

LS(j,m)
)

≥ (K − 1)θ′′n
}

(124)
E2 ,

{

(G, Y ) : min
i∈C∗

(

e1(i, C
∗) +

M
∑

m=1

LS(i,m)
)

≤ (K − 1)θ′n
}

(125)

where θ̃n is defined in (117).
By definition, E1 and E2 are independent. Since

P(ML fails) = o(1) implies that P(FM ) = o(1), it follows
that:

P(E1 ∩E2 ∩ F c
M ) ≥ P(E1 ∩ E2)− P(FM )

= P(E1)P(E2)− o(1)

= Ω(1) (126)

where (126) holds since by Lemma 21, P(E1) = Ω(1) and
P(E2) = Ω(1).
It is easy to see that E1∩E2∩F c

M ⊂ {θ′n > θ′′n}. It follows
P(θ′n > θ′′n) = Ω(1) for sufficiently large n. Let θn =

θ′
n+θ′′

n

2 .
For sufficiently large n, θn < θ′n and θn > θ′n. Combining this
with the definitions of θ′n and θ′′n, implies that (115) and (116)
hold simultaneously.

Lemma 21. P(E1) = Ω(1) and P(E2) = Ω(1).

Proof. Available online [41], but omitted here for brevity.

We now use Lemma 20 to prove the necessity of Theorem 2,
which has similarities with [24], and hence, we provide only
a sketch. The complete proof is provided online [41].
The proof sketch expresses the following: subject to con-

ditions (1), exact recovery implies (11). Lemma 20 shows
that exact recovery implies (115) and (116). It remains to be
shown that (115) and (116) imply (11). We show that by
contraposition.
Assume (11) does not hold, then for arbitrarily small ǫ > 0

and sufficiently large n

EQU

(

log(
n

K
),K,M

)

≤ (1 − ǫ) log(n) (127)

Let
γ ,

log( n
K )

K

and define S ,
∑K−1

ℓ=1 W̃ℓ+Z̃ and a , (K−1)γ+δ, for some
δ > 0. Since (1) holds, for sufficiently large n and arbitrary
small ǫo > 0:

Kγ ≤ KD(P ||Q)

2 + ǫo
+

MD(V ||U)

(1 + ǫo
2 )

≤ KD(P ||Q) +MD(V ||U) (128)

Following a variant of Lemma 18, it follows that at θn = γ:

P
(

K−1
∑

ℓ=1

W̃ℓ + Z̃ ≥ (K − 1)γ
)

=

∫

S≥(K−1)γ

P
(

w̃1, · · · , w̃K−1, z̃
)

(a)

≥ e−
(

ta−ψQU (K−1,M,t)
)

−|t|δ

×
(

1−
(

(K − 1)σ̃2
LG

+Mσ̃2
LS

)

+
(

(K − 1)µ̃LG
+Mµ̃LS

− a
)2

δ2

)

(129)

where in (a): t ∈ R, P(W̃ℓ)e
tW̃ℓ

E[etW̃ℓ ]
and P(Z̃)etZ̃

E[etZ̃ ]
define two new

probability distributions Q̃ and Ũ over the same support of
Q and U , respectively, and σ̃2

LG
, µ̃LG

, σ̃2
LS

and µ̃LS
are

the variances and means of LG and LS under Q̃ and Ũ ,
respectively.
Since ta−ψQU (K − 1,M, t) is concave in t, finding t∗ =

arg supt∈R
ta − ψQU (K − 1,M, t), and by the definition of

Q̃ and Ũ , it follows that:

(K − 1)µ̃LG
+Mµ̃LS

=
(K − 1)EQ[LGe

tLG ]

EQ[etLG ]
+M

EU [LSe
tLS ]

EU [etLS ]

= a.

Thus, by substituting in (129):

PQU

(

K−1
∑

ℓ=1

W̃ℓ + Z̃ ≥ (K − 1)γ
)

≥ e−
(

t∗a−ψQU (K−1,M,t∗)
)

−|t∗|δ(1− (K − 1)σ̃2
LG

+Mσ̃2
LS

δ2
)

(130)

Choose δ =
(

(K − 1)D(P ||Q) +MD(V ||U)
)

2
3 . Then, for

sufficiently large n:

PQU

(

K−1
∑

ℓ=1

W̃ℓ + Z̃
)

≥ e−EQU (a,K,M)−δ (131)

where (131) holds because for sufficiently large n:

a = (K − 1)γ + δ

(a)

≤ KD(P ||Q) +MD(V ||U)(
1

1 + ǫo
2

+ o(1)) (132)

where (a) holds from (128).
Moreover,

EQU (a,K,M) ≤ EQU (Kγ,K,M) + δ (133)

where (133) holds because t ∈ [0, 1] and by (132).
Also, by Lemma 16, for some positive constant B:

EQU (0,K − 1,M) ≥ B′((K − 1)D(P ||Q) +MD(V ||U))
(134)
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Thus, for sufficiently large n, and for some positive constant
B′′:

δ ≤ (B′′EQU (Kγ,K,M))
2
3 (135)

Combining Equations (133), (134), (135):

EQU (a,K,M) + δ

≤ EQU (Kγ,K,M) + 2(B′′EQU (Kγ,K,M))
2
3 (136)

Substituting in (131):

PQU

(

K−1
∑

ℓ=1

W̃ℓ + Z̃ ≥ (K − 1)γ
)

≥ e−(EQU (Kγ,K,M)+2(B′′EQU (Kγ,K,M))
2
3 )

(a)

≥ e−((1−ǫ) log(n)+2(B′′(1−ǫ) log(n))
2
3 )

≥ e−(1−ǫ) log(n)(1+o(1)) (137)

where (a) comes from the contraposition assumption that (11)
does not hold, i.e., EQU (Kγ,K,M) ≤ (1 − ǫ) log(n) for
arbitrary small ǫ > 0. Equation (137) shows that

nPQU (
K−1
∑

ℓ=1

W̃ℓ + Z̃ ≥ (K − 1)γ) ≥ nǫ(1+o(1))

which implies that (116) does not hold for θn = γ.
Similarly, we will show that (115) does not hold for θn = γ.

Define

Ko =
K

log(K)
= o(K)

δ′ =
(Ko − 1)(D(P ||Q)− γ) + 6

√
Koσ

(K −Ko)D(P ||Q) +MD(V ||U)
(138)

Note that δ′ = o(1), which holds because Kγ ≤
KD(P ||Q) + MD(V ||U), Ko = o(K) and Koσ

2 =

Ko
d2(log(EQ[etLG ]))

dt2 |t=1 ≤ BKoD(P ||Q) by Lemma 16 for
some positive constant B. Let a = (K−Ko)(γ−δ′D(P ||Q)−

δ′

K−Ko
MD(V ||U)) − δ, for some δ > 0. Then, by a similar

analysis as in (129):

PPV

(

K−Ko
∑

ℓ=1

Wℓ + Z ≤ (K − 1)γ + θ̃n
)

≥ e−(t∗a−ψPV (K−Ko,M,t∗))−|t∗|δ(1− o(1)) (139)

in which the inequality holds for δ = ((K −Ko)D(P ||Q) +
MD(V ||U))

2
3 , t∗ = arg supt∈R

ta− ψPV (K −Ko,M, t).
Following similar analysis as in (131), and (128), it follows

that:

PPV

(

K−Ko
∑

ℓ=1

Wℓ + Z ≤ (K − 1)γ + θ̃n
)

≥ e− log(K)(1−ǫ+o(1))

(140)

for arbitrary small ǫ > 0. Equation (140) shows:

KoPPV (

K−Ko
∑

ℓ=1

Wℓ + Z ≤ (K − 1)γ + θ̃n) ≥ Kǫ(1+o(1))

which implies that (115) does not hold for θn = γ.

Thus, if (11) does not hold, both (137) and (140) show that
(115) and (116) does not hold simultaneously at θn = γ. Thus,
for any θn > γ, (115) will not hold and for any θn < γ, (116)
will not hold, and hence, if (11) does not hold, then there does
not exist θn such that (115) and (116) hold simultaneously.
This concludes the proof.

H. Necessity of Theorem 3
Recall that Definition 1 introduced Chernoff-information-

type functions for the LLR of the graph plus side information;
for convenience we now introduce a narrowed version of the
same functions that focus on graph information only.

Definition 2.

ψQ(t,m1) , m1 log(EQ[e
tLG ]) (141)

ψP (t,m1) , m1 log(EP [e
tLG ]) (142)

EQ(θ,m1) , sup
t∈[0,1]

tθ − ψQ(t,m1) (143)

EP (θ,m1) , sup
t∈[−1,0]

tθ − ψP (t,m1) (144)

The quantities introduced in Definition 1 reduce to Defini-
tion 2 by setting m2 = 0, therefore Lemma 15 continues to
hold.
In view of Lemma 20, it suffices to test whether there exists

θn such that both (115) and (116) hold. We will show that if
one of the conditions (1)-(6) of Theorem 3 is not satisfied,
then there does not exist θn such that (115) and (116) hold
simultaneously. For brevity, we provide only a sketch of the
proof. The complete proof is provided online [41].
Let θn = γ =

log( n
K

)

K , and a = (K − 1)γ −∑M
m=1 h

m
ℓm

+ δ

for δ = log(n)
2
3 .

P
(

K−1
∑

ℓ=1

W̃ℓ + Z̃ ≥ (K − 1)γ
)

=

L1
∑

ℓ1=1

· · ·
LM
∑

ℓM=1

[

(

M
∏

m=1

αm
−,ℓm)

× PQ

(

K−1
∑

ℓ=1

W̃ℓ ≥ (K − 1)γ −
M
∑

m=1

hm
ℓm

)

]

(a)

≥
L1
∑

ℓ1=1

· · ·
LM
∑

ℓM=1

[

(
M
∏

m=1

αm
−,ℓm)

× e−(t∗a−(K−1) log(EQ[et
∗LG ]))−|t∗|δ(1− o(1))

]

(145)

where (a) holds by Lemma 18, where t∗ = arg supt∈R
(ta−

(K − 1) log(EQ[e
tLG ]))3.

Under (16):

KD(Q||P ) = ρ(a− b− bT )(1 + o(1)) log(n)

KD(P ||Q) = ρ(aT + b− a)(1 + o(1)) log(n)

Thus, according to conditions of Theorem 3,

a ∈
[

−KD(Q||P ),KD(P ||Q)
]

.

3For ease of notation, we omit any subscript for both a and t∗ . However,
both depend on the outcomes of the features as shown in their definitions.
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So, by Lemma 15,

t∗ = arg sup
t∈R

(ta− (K − 1) log(EQ[e
tLG ]))

= arg sup
t∈[0,1]

(ta− (K − 1) log(EQ[e
tLG]))

Without loss of generality, we focus on one term of the
nested sum in (145). Assume

∑M
m=1 h

m
ℓm

= o(log(n)) and
both

∑M
m=1 log(α

m
+,ℓm

) and
∑M

m=1 log(α
m
−,ℓm

) are o(log(n)),
then by evaluating the supremum and by substituting in (145),

P
(

K−1
∑

ℓ=1

W̃ℓ + Z̃ ≥ (K − 1)γ
)

≥ n−η1(ρ,a,b)+o(1) (146)

Thus, if η1(ρ, a, b) ≤ 1 − ε for some 0 < ε < 1, then (n −
K)P(

∑K−1
ℓ=1 W̃ℓ + Z̃ ≥ (K − 1)γ) ≥ nε+o(1) which shows

that (116) does not hold for θn = γ. This establishes the first
case in Theorem 3. Other cases are derived in a somewhat
similar manner, whose proof is omitted here for brevity but
provided online [41].
Now we show that (115) does not hold for θn = γ. Let

Ko = K
log(K) = o(K). Also, let a = (K − 1)γ + θ̃n −

∑M
m=1 h

m
ℓm

− δ for δ = log(n)
2
3 . Then,

P
(

K−Ko
∑

ℓ=1

Wℓ + Z ≤ (K − 1)γ + θ̃n
)

(a)

≥
L1
∑

ℓ1=1

· · ·
LM
∑

ℓL=1

(
M
∏

m=1

αm
+,ℓm)

× e−(t∗a−(K−Ko) log(EP [et
∗LG ]))−|t∗|δ(1− o(1))

(b)
=

L1
∑

ℓ1=1

· · ·
LM
∑

ℓL=1

(

M
∏

m=1

αm
+,ℓm)

× e−(λ∗a−(K−Ko) log(EQ[eλ
∗LG ]))+a−|λ∗−1|δ(1 − o(1))

(147)

where (a) holds by Lemma 18, where t∗ = arg supt∈R
(ta −

(K −Ko) log(EP [e
tLG ])) and (b) holds for λ∗ = 1 + t∗ and

by Lemma 15.
Thus, according to conditions of Theorem 3,

a ∈
[

−KD(Q||P ),KD(P ||Q)
]

. (148)

Hence, by Lemma 15, arg supt∈R
is replaced by

arg supt∈[−1,0].
Thus, if

∑M
m=1 h

m
ℓm

= o(log(n)) and both
∑M

m=1 log(α
m
+,ℓm

) and
∑M

m=1 log(α
m
−,ℓm

) are o(log(n)), then
by evaluating the supremum and by substituting in (147),

P
(

K−Ko
∑

ℓ=1

Wℓ + Z ≤ (K − 1)γ + θ̃n
)

≥ n−η1(ρ,a,b)+o(1)

Thus, if η1(ρ, a, b) ≤ 1 − ε for some 0 < ε < 1, then
KP(

∑K−Ko

ℓ=1 Wℓ + Z ≤ (K − 1)γ + θ̃n) ≥ nε+o(1) which
shows that (115) does not hold for θn = γ. This establishes the
first case in Theorem 3. Other cases are derived in a somewhat
similar manner, whose proof is omitted here for brevity but
provided online [41].

To summarize, when θn = γ, if one of the conditions (1)-
(6) of Theorem 3 does not hold, then (115) and (116) cannot
hold simultaneously. Thus, for any θn > γ, (115) will not
hold and for any θn < γ, (116) will not hold, and hence, if
one of the conditions (1)-(6) of Theorem 3 does not hold,
then there does not exist θn such that (115) and (116) hold
simultaneously. This concludes the proof of the necessary
conditions.

I. Sufficiency of Theorem 3

The sufficient conditions are derived via Algorithm I pro-
vided in Section II-B with only one modification in the weak
recovery step. Since the LLRs of the side information may
not be bounded, the maximum likelihood detector with side
information presented in Lemma 1 cannot be used for the
weak recovery step. Instead the maximum likelihood detector
without side information provided in [24] will be used.
The following lemma gives sufficient conditions for Algo-

rithm I to achieve exact recovery.

Lemma 22. Define C∗
k = C∗ ∩ Sk

c and assume Ĉk achieves
weak recovery, i.e.

P
(

|Ĉk△C∗
k | ≤ δK for 1 ≤ k ≤ 1

δ

)

→ 1 (149)

Under conditions (16), if conditions (1)-(6) of Theorem 3 hold,
then P(C̃ = C∗) → 1.

Proof. To prove Lemma 22, we follow essentially the same
strategy used for Lemma 2 in Appendix E. Namely, we intend
to show that the total LLR for nodes inside and outside the
community are, asymptotically, stochastically dominated by a
certain constant. Since the strategy is essentially similar to an
earlier result, we only provide a sketch in this appendix.

Lemma 23. In the regime (16), suppose conditions (1)-(6) of
Theorem 3 hold. Let {Wℓ} and {W̃ℓ} denote two sequences of
i.i.d copies of LG under P andQ, respectively. Also, let Z be a
random variable whose distribution is identical to

∑M
m=1 hi,m

conditioned on i ∈ C∗, and Z̃ drawn according to the same
distribution conditioned on i /∈ C∗. Then, for sufficiently small
constant δ and γ =

log( n
K

)

K :

P

(

K(1−δ)
∑

ℓ=1

W̃ℓ + Z̃ ≥ K(1− δ)γ
)

= o(
1

n
)

(150)

P

(

K(1−2δ)
∑

ℓ=1

Wℓ +
δK
∑

ℓ=1

W̃ℓ + Z ≤ K(1− δ)γ
)

= o(
1

K
)

(151)

Proof. Using the Chernoff bound:

P

(

K(1−δ)
∑

ℓ=1

W̃ℓ + Z̃ ≥ K(1− δ)γ
)

≤ P

(

K
∑

ℓ=1

W̃ℓ + Z̃ ≥ K(1− δ)γ
)
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≤
L1
∑

ℓ1=1

· · ·
LM
∑

ℓM=1

(

M
∏

m=1

αm
−,ℓm

)

× e− supt≥0 t(K(1−δ)γ−∑M
m=1 hm

ℓm
)−K log(EQ[etLG ]) (152)

The terms inside the nested sum in (152) are upper bounded
by:

• n−η1(ρ,a,b)+o(1), if
∑M

m=1 h
m
ℓm

= o(log(n)) and both
∑M

m=1 log(α
m
+,ℓm

) and
∑M

m=1 log(α
m
−,ℓm

) are o(log(n)).

• n−η1(ρ,a,b)−β+o(1), if
∑M

m=1 h
m
ℓm

= o(log(n)) and
∑M

m=1 log(α
m
+,ℓm

) =
∑M

m=1 log(α
m
−,ℓm

) = −β log(n) +
o(log(n)), β > 0.

• n−η2(ρ,a,b,β)+o(1), if
∑M

m=1 h
m
ℓm

= β log(n) +

o(log(n)), 0 < β < ρ(a− b − bT ),
∑M

m=1 log(α
m
+,ℓm

) =
o(log(n)).

• n−η3(ρ,a,b,β)+o(1), if
∑M

m=1 h
m
ℓm

= −β log(n) +

o(log(n)), 0 < β < ρ(a− b− bT ),
∑M

m=1 log(α
m
−,ℓm

) =
o(log(n)).

• n−η2(ρ,a,b,β)−β′+o(1), if
∑M

m=1 h
m
ℓm

= β log(n) +

o(log(n)), 0 < β < ρ(a− b − bT ),
∑M

m=1 log(α
m
+,ℓm

) =
−β′ log(n) + o(log(n)).

• n−η3(ρ,a,b,β)−β′+o(1), if
∑M

m=1 h
m
ℓm

= −β log(n) +

o(log(n)), 0 < β < ρ(a− b− bT ),
∑M

m=1 log(α
m
−,ℓm

) =
−β′ log(n) + o(log(n)).

Since M and Lm are independent of n and finite, it follows
that if items (1)-(6) of Theorem 3 are satisfied, then Equa-
tion (150) holds.
To show (151), Chernoff bound is used.

P

(

K(1−2δ)
∑

ℓ=1

Wℓ +
δK
∑

ℓ=1

W̃ℓ + Z ≤ K(1− δ)γ
)

≤
L1
∑

ℓ1=1

· · ·
LM
∑

ℓM=1

(

M
∏

m=1

αm
+,ℓm)

× et(K(1−2δ)γ−∑M
m=1 hm

ℓm
)+K(1−2δ) log(EP [e−tLG ])

× eKδ log(EQ[e−tLG ])+tKγδ (153)

Without loss of generality, we focus on one term inside the
nested sum in(153):
If
∑M

m=1 h
m
ℓm

= o(log(n)) and both
∑M

m=1 log(α
m
+,ℓm

) and
∑M

m=1 log(α
m
−,ℓm

) are o(log(n)), then:

(

M
∏

m=1

αm
+,ℓm)et(K(1−2δ)γ−∑M

m=1 hm
ℓm

)+K(1−2δ) log(EP [e−tLG ])

× eKδ log(EQ[e−tLG ])+tKγδ

≤ (

M
∏

m=1

αm
+,ℓm)e(1−2δ)

(

t(kγ−
∑M

m=1 hm
ℓm

1−2δ )+K log(EP [e−tLG ])
)

× eδ
(

tKγ+K log(EQ[e−tLG ])
)

(154)

Since
∑M

m=1 h
m
ℓm

= o(log(n)), it is easy to show that

Kγ −
∑M

m=1 h
m
ℓm

1− 2δ
∈ [−KD(Q||P ) , KD(P ||Q)].

Define θ , Kγ−
∑M

m=1 hm
ℓm

1−2δ and choose t∗ ∈ [0, 1], such that
t∗θ+K log(E[e−t∗LG ]) = −EP (θ,K). Substituting in (154):

(

M
∏

m=1

αm
+,ℓm)et(K(1−2δ)γ−∑M

m=1 hm
ℓm

)+K(1−2δ) log(EP [e−tLG ])

× eKδ log(EQ[e−tLG ])+tKγδ

≤ (
M
∏

m=1

αm
+,ℓm)e−(1−2δ)EP (θ,K)+δ

(

t∗Kγ+K log(EQ[e−t∗LG ])
)

≤ (

M
∏

m=1

αm
+,ℓm)e−(1−2δ)EP (θ,K)+δ

(

Kγ+K log(EQ[e−t∗LG ])
)

(155)

where the last inequality holds because t∗ ∈ [0, 1]. Also, by
Lemma 16 and convexity of log(EQ[e

−tLG ]), the following
holds for some positive constant A:

K log(EQ[e
−t∗LG ]) ≤ K log(EQ[e

−LG ]) ≤ AKD(Q||P )
(156)

Moreover, by Lemma 16, EP [θ,K] = EQ[θ,K] − θ and
EQ[θ,K] ≥ EQ[0,K] ≥ A1KD(Q||P ). Combining the last
observation with (156), for some positive constant A2,

(

M
∏

m=1

αm
+,ℓm)et(K(1−2δ)γ−∑M

m=1 hm
ℓm

)+K(1−2δ) log(EP [e−tLG ])

× eKδ log(EQ[e−tLG ])+tKγδ

≤ (

M
∏

m=1

αm
+,ℓm)e−(1−2δ)(EQ(θ,K)−θ)+δKγ+δA2EQ(θ,K)

= (

M
∏

m=1

αm
+,ℓm)e−EQ(θ,K)(1−2δ−δA2)+(1−2δ)θ+δKγ (157)

Since
∑M

m=1 log(α
m
+,ℓm

) = o(log(n)), evaluating the supre-
mum in EQ[θ,K] and substituting in (157) leads to:

(

M
∏

m=1

αm
+,ℓm)et(K(1−2δ)γ−∑M

m=1 hm
ℓm

)+K(1−2δ) log(EP [e−tLG ])

× eKδ log(EQ[e−tLG ])+tKγδ

≤ e− log(n)(1−2δ−δA2)(η1+o(1))

≤ n−(1+ε)(1−2δ−δA2)+o(1)) (158)

where (158) holds by assuming η1 ≥ 1 + ε for some ε > 0.
Multiplying (158) by K:

K(

M
∏

m=1

αm
+,ℓm)

× et(K(1−2δ)γ−∑M
m=1 hm

ℓm
)+K(1−2δ) log(EP [e−tLG ])

× eKδ log(EQ[e−tLG ])+tKγδ

≤ n1−(1+ε)(1−2δ−δA2)+o(1)) (159)

Thus, for any ε > 0, there exists a sufficiently small δ such
that (1 + ε)(1 − 2δ − δA2) > 1. This concludes the proof
of the first case of Theorem 3. This establishes the first case
in Theorem 3. Other cases are derived in a somewhat similar
manner, whose proof is omitted here for brevity but provided
online [41].
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In view of Lemma 23, the proof of Lemma 22 then follows
similarly as the proof of Lemma 2.

In view of Lemma 22, it suffices to show that there exists
an estimator that achieves weak recovery for a random cluster
size and satisfies (149). We use the estimator presented in [24,
Lemma 4], where it was shown that the maximum likelihood
estimator can achieve weak recovery for a random cluster size
upon observing only the graph if:

KD(P ||Q) → ∞ (160)

lim inf
n→∞

(K − 1)D(P ||Q) ≥ 2 log(
n

K
) (161)

P

(∣

∣

∣

∣

|C∗
k | − (1− δ)K

∣

∣

∣

∣

≥ K

log(K)

)

≤ o(1) (162)

It is obvious that in the regime (16), both (160) and (161) are
satisfied. Thus, it remains to show that (162) holds too. Let Ĉk

be the ML estimator for C∗
k based on observingGk defined in

Algorithm I. The distribution of |C∗
k | is obtained by sampling

the indices of the original graph without replacement. Hence,
for any convex function φ: E[φ(|C∗

k |)] ≤ E[φ(Z)], where Z is
a binomial random variable Bin(n(1− δ), K

n ). Therefore, the
Chernoff bound for Z also holds for |C∗

k |. Thus,

P

(
∣

∣

∣
|C∗

k | − (1− δ)K
∣

∣

∣
≥ K

log(K)

)

≤ o(1) (163)

Thus, (162) holds, which implies that ML achieves weak
recovery with K replaced with ⌈(1 − δ)K⌉ in [24, Lemma
4]. Thus, from [24, Lemma 4], for any 1 ≤ k ≤ 1

δ :

P

( |Ĉk△C∗
k |

K
≤ 2ǫ+

1

log(K)

)

≥ 1− o(1) (164)

with ǫ = o(1). Since δ is constant, by the union bound over
all 1 ≤ k ≤ 1

δ , we have:

P

( |Ĉk△C∗
k |

K
≤ 2ǫ+

1

log(K)
∀1 ≤ k ≤ 1

δ

)

≥ 1− o(1)

(165)
Since ǫ = o(1), the desired (149) holds.

J. Auxiliary Lemmas For Belief Propagation
Lemma 24. Recall the definition of Γt

0 from (31). For any
measurable function g(.):

E[g(Γt
0)|τ0 = 0] = E[g(Γt

0)e
−Γt

0 |τ0 = 1] (166)

Proof. Let Y = (T t, τ̃ t) denote the observed tree and side
information. Then,

E[g(Γt
0)|τ0 = 0] = EY |τ0=0[g(Γ

t
0)]

=

∫

Y

g(Γt
0)
P(Y |τ0 = 0)

P(Y |τ0 = 1)
P(Y |τ0 = 1)

=

∫

Y

g(Γt
0)e

−Γt
0P(Y |τ0 = 1)

= EY |τ0=1[g(Γ
t
0)e

−Γt
0 ]

= E[g(Γt
0)e

−Γt
0 |τ0 = 1] (167)

Lemma 25. Let bt = E[ eZ
t
1+U1

1+eZ
t
1
+U1−ν

] and at = E[e2(Z
t
0+U0)].

Let Λ = E[eU1 ] = E[e2U0 ]. Then, for any t ≥ 0

at+1 = E[eZ
t
1+U1 ] = Λeλbt (168)

E[e3(Z
t
0+U0)] = E[e2(Z

t
1+U1)]

= E[e3U0 ]e
3λbt+

λ2

K(p−q)
E[( e

Zt
1+U1

1+e
Zt
1+U1−ν

)2]
(169)

Proof. The first equality in (168) holds by Lemma 24 for
g(x) = e2x. Similarly, the first equality in (169) holds by
Lemma 24 for g(x) = e3x.
Let f(x) = 1+ p

q
x

1+x = 1 +
p
q
−1

1+x−1 . Then:

at+1 = E[e2(Z
t
0+U0)]

(a)
= e−2K(p−q)

E[e2U0 ]E[(E[f2(eZ
t
1+U1−ν)])Hu ]

× E[(E[f2(eZ
t
0+U0−ν)])Fu ]

(b)
= Λe−2K(p−q)eKq(E[f2(eZ

t
1+U1−ν)]−1)

× e(n−K)q(E[f2(eZ
t
0+U0−ν)]−1) (170)

where (a) holds by the definition of Zt
0 and U0, (b) holds by

the definition of Λ and by using the fact that E[cX ] = eλ(c−1)

for X ∼ Poi(λ) and c > 0. By the definition of f(x):

Kq
(

E
[

f2(eZ
t
1+U1−ν)

]

− 1
)

+ (n−K)q
(

E
[

f2(eZ
t
0+U0−ν)

]

− 1
)

= KqE

[

2(pq − 1)

1 + e−(Zt
1+U1−ν)

+
(pq − 1)2

(1 + e−(Zt
1+U1−ν))2

]

+ (n−K)qE

[

2(pq − 1)

1 + e−(Zt
0+U0−ν)

+
(pq − 1)2

(1 + e−(Zt
0+U0−ν))2

]

(a)
= 2K(p− q) +Kq(

p

q
− 1)2E

[

1

1 + e−(Zt
1+U1−ν)

]

(b)
= 2K(p− q) + λbt (171)

where (a) holds by Lemma 24 and (b) holds by the definition
of λ and bt.
Using (171) and substituting in (170) concludes the proof

of (168). The proof of (169) follows similarly using f3(x)
instead of f2(x).

K. Proof of Lemma 3
The independent splitting property of the Poisson distribu-

tion is used to give an equivalent description of the numbers
of children having a given label for any vertex in the tree.
An equivalent description of the generation of the tree is as
follows: for each node i, generate a set Ni of children with
Ni = |Ni|. If τi = 1, we generate Ni ∼ Poi(Kp+(n−K)q)
children. Then for each child j, independent from everything
else, let τj = 1 with probability Kp

Kp+(n−K)q and τj = 0 with
probability (n−K)q

Kp+(n−K)q . If τi = 0 generate Ni ∼ Poi(nq),
then for each child j, independent from everything else, let
τj = 1 with probability K

n and τj = 0 with probability (n−K)
n .

Finally, for each node i in the tree, τ̃i is observed according
to α+,ℓ, α−,ℓ. Then:

Γt+1
0 = log

(

P(T t+1, τ̃ t+1|τ0 = 1)

P(T t+1, τ̃ t+1|τ0 = 0)

)
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= log

(

P(N0, τ̃0, {T t
k}k∈N0 , {τ̃ tk}k∈N0 |τ0 = 1)

P(N0, τ̃0, {T t
k}k∈N0 , {τ̃ tk}k∈N0 |τ0 = 0)

)

(a)
= log

(

P
(

N0, τ̃0|τ0 = 1
)

P
(

N0, τ̃0|τ0 = 0
)

)

+ log

(

∏

k∈N0
P
(

T t
k, τ̃

t
k|τ0 = 1

)

∏

k∈N0
P
(

T t
k, τ̃

t
k|τ0 = 0

)

)

(b)
= log

(

P
(

N0|τ0 = 1
)

P
(

N0|τ0 = 0
)

)

+ log

(

P
(

τ̃0|τ0 = 1
)

P
(

τ̃0|τ0 = 0
)

)

+
∑

k∈N0

log

(
∑

τk∈{0,1} P
(

T t
k, τ̃

t
k|τk

)

P
(

τk|τ0 = 1
)

∑

τk∈{0,1} P
(

T t
k, τ̃

t
k|τk

)

P
(

τk|τ0 = 0
)

)

(c)
= −K(p− q) + h0 +

∑

k∈N0

log(

p
q e

Γt
k−ν + 1

eΓ
t
k
−ν + 1

) (172)

where (a) holds because conditioned on τ0: 1) (N0, τ̃0)
are independent of the rest of the tree and 2) (T t

k, τ̃
t
k) are

independent random variables ∀k ∈ N0, (b) holds because
conditioned on τ0, N0 and τ̃0 are independent, (c) holds by
the definition of N0 and h0 and because τk is Bernoulli-

Kp
Kp+(n−K)q if τ0 = 1 and is Bernoulli-Kn if τ0 = 0.

L. Proof of Lemma 4

Let f(x) , 1+ p
q
x

1+x , then:

E
[

e
Zt
0
2

]

= e
−K(p−q)

2 EH0

[

(EZ1U1 [f
1
2 (eZ

t
1+U1−ν)])H0

]

× EF0

[

(EZ0U0 [f
1
2 (eZ

t
0+U0−ν)])F0

]

(a)
= e

−K(p−q)
2 eKq(E[f

1
2 (eZ

t
1+U1−ν)]−1)

× e(n−K)q(E[f
1
2 (eZ

t
0+U0−ν)]−1)

(173)

where (a) holds using E[cX ] = eλ(c−1) for X ∼ Poi(λ) and
c > 0.
By the intermediate value form of Taylor’s theorem, for

any x ≥ 0 there exists y with 1 ≤ y ≤ x such that
√
1 + x =

1 + x
2 − x2

8(1+y)1.5 . Therefore,

√
1 + x ≤ 1 +

x

2
− x2

8(1 +A)1.5
, 0 ≤ x ≤ A (174)

Let A = p
q − 1 and B = (1 + A)1.5. By assumption, B is

bounded. Then,
(

1 + p
q e

Zt
0+U0−ν

1 + eZ
t
0+U0−ν

)
1
2

=
(

1 +

p
q − 1

1 + e−(Zt
0+U0−ν)

)
1
2

≤ 1 +
1

2

p
q − 1

1 + e−(Zt
0+U0−ν)

− 1

8B

(pq − 1)2

(1 + e−(Zt
0+U0−ν))2

(175)

It follows that:

Kq
(

E[f
1
2 (eZ

t
1+U1−ν)]− 1

)

+ (n−K)q
(

E[f
1
2 (eZ

t
0+U0−ν)]− 1

)

≤
Kq(pq − 1)

2

(

E

[

1

1 + e−(Zt
1+U1−ν)

]

+ eνE

[

1

1 + e−(Zt
0+U0−ν)

])

−
Kq(pq − 1)2

8B

(

E

[

1

(1 + e−(Zt
1+U1−ν))2

]

+ eνE

[

1

(1 + e−(Zt
0+U0−ν))2

])

(a)
=

K(p− q)

2
− K(p− q)2

8Bq
E

[

1

1 + e−(Zt
1+U1−ν)

]

(176)

=
K(p− q)

2
− λ

8B
bt (177)

where (a) holds by the following consequence of Lemma 24
(from Appendix J):

E

[

1

1 + e−(Zt
1+U1−ν)

]

+ eνE

[

1

1 + e−(Zt
0+U0−ν)

]

= 1

E

[

1

(1 + e−(Zt
1+U1−ν))2

]

+ eνE

[

1

(1 + e−(Zt
0+U0−ν))2

]

= E

[

1

1 + e−(Zt
1+U1−ν)

]

(178)

Using (173) and (177):

E

[

e
Zt
0+U0
2

]

≤ E
[

e
U0
2

]

e
−λ
8B bt (179)

Similarly, using the fact that
√
1 + x ≥ 1 + x

2 − x2

8 for all
x ≥ 0:

E

[

e
Zt
0+U0
2

]

≥ E
[

e
U0
2

]

e
−λ
8 bt (180)

M. Proof of Lemma 5
Fix λ > 0 and define (vt : t ≥ 0) recursively by v0 = 0 and

vt+1 = λΛevt . From Lemma 25 in Appendix J, at+1 = Λeλbt .
We first prove by induction that λbt ≤ λat ≤ vt+1 for

all t ≥ 0. a0 = E[eU1 ] = Λ and λb0 = λE[ eU1

1+eU1−ν ] ≤
λE[eU1 ] = λa0. Thus, λb0 ≤ λa0 = λΛ = v1. Assume
that λbt−1 ≤ λat−1 ≤ vt. Then, λbt ≤ λat = λΛeλbt−1 ≤
λΛevt = vt+1, where the first inequality holds by the def-
inition of at and bt and the second inequality holds by the
induction assumption. Thus, λbt ≤ λat ≤ vt+1 for all t ≥ 0.
Next we prove by induction that vt

λ is increasing in t ≥ 0.
We have vt+1

λ = Λevt . Then, v1
λ = Λ ≥ 0 = vo

λ . Now assume
that vt

λ > vt−1

λ . Then, vt+1

λ = Λevt = Λeλ(
vt
λ
) > Λevt−1 =

vt
λ . Thus, we have:

vt+1

λ > vt
λ for all t ≥ 0.

Note that vt+1

λ = Λeλ(
vt
λ
) has the form of x = Λeλx, which

has no solutions for λ > 1
Λe and has two solutions for λ ≤ 1

Λe ,
where the largest solution is Λe. Thus, for λ ≤ 1

Λe , bt ≤
vt+1

λ ≤ Λe.

N. Proof of Lemma 6
By definition of at, we have:

at+1 − E
[

e−ν+2(Zt+1
1 +U1)

]

= E
[

eZ
t+1
1 +U1(1− eZ

t+1
1 +U1−ν)

]

≤ E

[

eZ
t
1+U1

1 + eZ
t
1+U1−ν

]
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= bt+1

where the first inequality holds because 1− x ≤ 1
1+x . Then,

bt+1 ≥ at+1 − E[e−ν+2(Zt+1
1 +U1)]

(a)
= Λeλbt − e−νΛ′e

3λbt+
λ2

K(p−q)
E

[

( e
Zt
1+U1

1+e
Zt
1+U1−ν

)2
]

(b)

≥ Λeλbt − Λ′eCbt−ν

= Λeλbt
(

1− Λ′

Λ
e−ν+(C−λ)bt

)

(c)

≥ Λeλbt
(

1− Λ′

Λ
e

−ν
2

)

(181)

where (a) holds from Lemma 25, (b) holds because
( ex

1+ex−ν )
2 ≤ eν( ex

1+ex−ν ), which holds because eν ≥ ex

1+ex−ν

for all x, and (c) holds by the assumption that bt ≤ ν
2(C−λ) .

O. Proof of Lemma 8
Given λ with λ > 1

Λe , assume ν ≥ νo and ν ≥ 2Λ(C − λ)
for some positive νo. Moreover, select the following constants
depending only on λ and the LLR of side information:

• D and νo large enough such that λΛeλD(1− Λ′

Λ e−νo) > 1

and Λλe(1− Λ′

Λ e−νo) ≥
√
λΛe.

• wo > 0 so large that

woλΛe
λD(1− Λ′

Λ
e−νo)− λD ≥ wo. (182)

• A positive integer t̄o large enough such that
λ(Λ(λΛe)

t̄o
2 −1 −D) ≥ wo

The goal is to show that there exists some t̃ after which
ν = o(bt).
Let t∗ = max{t > 0 : bt <

ν
2(C−λ)} and t̄1 = log∗(ν). The

first step is to show that t∗ ≤ t̄o + t̄1.
By the definition of bt,

b0 = E
[ eU1

1 + eU1−ν

]

< E[eU1 ] = Λ

Since ν ≥ 2Λ(C − λ), we get b0 < ν
2(C−λ) .

Since for all t ≤ t∗, bt < ν
2(C−λ) , then by Lemma 6:

bt+1 ≥ Λeλbt(1− Λ′

Λ
e

−ν
2 )

≥ Λeλbt(1− Λ′

Λ
e

−νo
2 ) (183)

where the last inequality holds since ν ≥ νo. Thus,

b1 ≥ Λeλb0(1− Λ′

Λ
e

−νo
2 )

≥ Λ(1− Λ′

Λ
e

−νo
2 )

≥
√

Λ

λe
(184)

where the last inequality holds by the choice of νo. Moreover,

bt+1 ≥ Λeλbt(1− Λ′

Λ
e

−νo
2 )

(a)

≥ Λeλbt(1−
Λ′

Λ
e

−νo
2 )

(b)

≥
√
Λλebt (185)

where (a) holds because eu ≥ eu for all u > 0 and (b) holds
by choice of ν0. Thus, for all 1 ≤ t ≤ t∗+1: bt ≥

√
Λλebt−1.

Since b1 ≥
√

Λ
λe , it follows by induction that:

bt ≥ Λ(λΛe)
t
2−1 for all 1 ≤ t ≤ t∗ + 1 (186)

We now divide the analysis into two cases. First, if t̄o is
such that bt̄o−1 ≥ ν

2(C−λ) . This implies that t̄o − 1 ≥ t∗ + 1

by the definition of t∗. Thus, t∗ ≤ t̄o − 2 ≤ t̄o + t̄1, which
proves our claim for the first case.
If t̄o is such that bt̄o−1 < ν

2(C−λ) . Then, t̄o ≤ t∗ +1. Thus,
bt̄o ≥ Λ(λLe)

t̄o
2 −1. Let to = min{t : bt ≥ Λ(λΛe)

t̄o
2 −1}.

Thus, by Lemma 7, we get to ≤ t̄o. Moreover, by the choice
of to and wo:

wo ≤ λ(Λ(λΛe)
t̄o
2 −1 −D) ≤ λ(bto −D) (187)

Now define sequence (wt : t ≥ 0): wt+1 = ewt , where wo

was chosen according to (182). We already showed that wo ≤
λ(bto −D). Assume that wt−1 ≤ λ(bto+t−1−D) for to+ t−
1 ≤ t∗. Then,

λ(bto+t −D)
(a)

≥ λ(Λeλbto+t−1(1− Λ′

Λ
e−νo)−D)

(b)

≥ λ(ΛeλD+wt−1(1 − Λ′

Λ
e−νo)−D)

(c)
= λΛeλDwt(1 −

Λ′

Λ
e−νo)− λD

(d)

≥ wt

where (a) holds by Lemma 6, (b) holds by the assumption
that wt−1 ≤ λ(bto+t−1 − D), (c) holds by the definition of
the sequence wt and (d) holds by the choice of wo and the
fact that wt ≥ wo. Thus, we showed by induction that

wt ≤ λ(bto+t −D) for 0 ≤ t ≤ t∗ − to + 1. (188)

By the definition of t̄1 and since w1 ≥ 1, we have ν ≤
wt̄1+1. Thus, wt̄1+1 ≥ ν −λD. Since, by the definition of C,
λ ≤ 2(C − λ). Therefore, wt̄1+1 ≥ νλ

2(C−λ) − λD. We will
show that t∗ ≤ t̄o + t̄1 by contradiction. Let t∗ > t̄o + t̄1.
Thus, from (188), for t = to + t̄1 + 1:

bto+t̄1+1 ≥ wt̄1+1

λ
+D ≥ ν

2(C − λ)
(189)

which implies that to + t̄1 + 1 ≥ t∗ + 1, i.e., to + t̄1 ≥ t∗,
which contradicts the assumption that t∗ > t̄o + t̄1.
To sum up, we have shown so far that if λ > 1

Λe , then
t∗ ≤ t̄o + t̄1.
Since t∗ is the last iteration for bt < ν

2(C−λ) . Then, bt∗+1 ≥
ν

2(C−λ) . We begin with bt∗+1 = ν
2(C−λ) . Then by Lemma 6:

bt∗+2 ≥ Λeλbt∗+1(1− Λ′

Λ
e

−ν
2 ) (190)
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By Lemma 7, the sequence bt is non-decreasing in t. We
also known t∗ + 2 ≤ t̄o + t̄1 + 2. Using (190):

bt̄o+log∗(ν)+2 ≥ Λe
λν

2(C−λ) (1 − Λ′

Λ
e

−ν
2 ) (191)

which concludes one case of the proof.
When bt∗+1 > ν

2(C−λ) , we use the truncation process [25,
Lemma 6], which depends only on the tree structure. Applying
this truncation process, it can directly be shown that the tree
can be truncated such that with probability one the value
of bt∗+1 in the truncated tree is ν

2(C−λ) . The truncation
process [25, Lemma 6] depends only on the structure of
the tree. In this paper, the side information is independent
of the tree structure given the labels, therefore the same
truncation process holds for our case, which concludes the
proof using (190) and (191).

P. Proof of Sufficiency of Theorem 4
The assumption (np)log

∗(ν) = no(1) ensures that (np)t̂ =

no(1). Since K2(p−q)2

q(n−K) → λ, p ≥ q and p
q = θ(1), then

(n−K
K )2 = O(np). Since K = o(n), then np → ∞. Thus,

(np)t̂ = no(1) can be replaced by (np + 2)t̂ = no(1),
and hence, the coupling Lemma 10 holds. Moreover, since
(n−K

K )2 = O(np) and np = no(1), K = n1−o(1).
Consider a modified form of Algorithm II whose output is

Ĉ = {i : Rt̂
i ≥ ν}. Then for deterministic |C∗| = K , the

following holds:

pe = P(No coupling)pe|no coupling + P(coupling)pe|coupling

≤ n−1+o(1) +
K

n
e−ν(r+o(1)) (192)

where the last inequality holds by Lemmas 10 and 9 for some
positive constant r. Multiplying (192) by n

K :

E[|C∗△Ĉ|]
K

≤ no(1)

K
+ e−ν(r+o(1)) → 0 (193)

where the last inequality holds because K = n1−o(1) and
ν → ∞.
Now going back to Algorithm II and its output C̃, using

Equation (47):

E[|C∗△C̃|]
K

≤ 2
E[|C∗△Ĉ|]

K
→ 0 (194)

which concludes the proof under deterministic |C∗| = K .
When |C∗| is random such thatK ≥ 3 log(n) and P(||C∗|−

K| ≥
√

3K log(n)) ≤ n
−1
2 +o(1), we have E[||C∗| − K|] ≤

n
1
2+o(1). Thus, for C̃ , using Equation (47):

E[|C∗△C̃|]
K

≤ 2
E[|C∗△Ĉ|]

K
+

E[||C∗| −K|]
K

→ 0 (195)

which concludes the proof.

Q. Proof of Necessity of Theorem 4
Since (np + 2)t̂ = no(1), the coupling Lemma 10 holds.

Moreover, since (n−K
K )2 = O(np) and np = no(1), K =

n1−o(1). Consider a deterministic |C∗| = K . Then, for any
local estimator Ĉ:

pe = P(No coupling)pe|no coupling + P(coupling)pe|coupling

≥ K(n−K)

n2
E
2[e

U0
2 ]e

−λΛe
4 − n−1+o(1) (196)

where the last inequality holds by Lemmas 10 and 9. Multi-
plying (196) by n

K :

E[|C∗△Ĉ|]
K

≥
(

1− K

n

)

E
2[e

U0
2 ]e

−λΛe
4 − o(1) (197)

where the last inequality holds because K = n1−o(1). Thus,
for λ ≤ 1

Λe ,
E[|C∗△Ĉ|]

K is bounded away from zero for any
local estimator Ĉ .
It can be shown that under a non-deterministic |C∗| that

obeys a distribution in the class of distributions mentioned
earlier, the local estimator will do no better, therefore the same
converse will hold.

R. Proof of Theorem 5
Let Z be a binomial random variable Bin(n(1 − δ), K

n ).
In view of Lemma 2, it suffices to verify (9) when Ĉk for
each k is the output of belief propagation for estimating C∗

k

based on observing Gk and Y k. The distribution of |C∗
k | is

obtained by sampling the indices of the original graph without
replacement. Thus, for any convex function φ: E[φ(|C∗

k |)] ≤
E[φ(Z)]. Therefore, Chernoff bound for Z also holds for |C∗

k |.
This leads to:

P

(

∣

∣|C∗
k | − (1− δ)K

∣

∣ ≥
√

3K(1− δ) log(n)
)

≤ n−1.5+o(1)

≤ n
−1
2 +o(1)

(198)

Thus, by Theorem 4, belief propagation achieves weak recov-
ery for recovering C∗

k for each k. Thus:

P
(

|Ĉk△C∗
k | ≤ δK for 1 ≤ k ≤ 1

δ

)

→ 1 (199)

which together with Lemma 2 conclude the proof.

S. Proof of Lemma 11
First, we expand M(x) using Taylor series:

M(x) =

p
q − 1

1 + e−(x−ν)
− 1

2

(

p
q − 1

1 + e−(x−ν)

)2

+ O

(

(

p
q − 1

1 + e−(x−ν)

)3
)

(200)

Thus:

E[Zt+1
0 ] =−K(p− q) +KqE[M(Zt

1 + U1)]

+ (n−K)qE[M(Zt
0 + U0)]

=−K(p− q) +K(p− q)E
[ 1

1 + e−(Zt
1+U1−ν)

]

+ (n−K)(p− q)E
[ 1

1 + e−(Zt
0+U0−ν)

]

− K(p− q)2

2q
E

[

( 1

1 + e−(Zt
1+U1−ν)

)2
]
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− (n−K)(p− q)2

2q
E

[

( 1

1 + e−(Z0
1+U0−ν)

)2
]

+O

(

K(p− q)3

q2
E

[

( 1

1 + e−(Zt
1+U1−ν)

)3
]

+
(n−K)(p− q)3

q2
E

[

( 1

1 + e−(Zt
0+U0−ν)

)3
]

)

(201)

Using Lemma 24 for g(x) = 1
1+e−(x−ν) ,

K(p− q)E
[ 1

1 + e−(Zt
1+U1−ν)

]

+ (n−K)(p− q)E
[ 1

1 + e−(Zt
0+U0−ν)

]

= K(p− q) (202)

Similarly:
K(p− q)2

2q
E

[

( 1

1 + e−(Zt
1+U1−ν)

)2
]

+
(n−K)(p− q)2

2q
E

[

( 1

1 + e−(Z0
1+U0−ν)

)2
]

=
K(p− q)2

2q
E

[ 1

1 + e−(Zt
1+U1−ν)

]

(203)

and,
K(p− q)3

q2
E

[

( 1

1 + e−(Zt
1+U1−ν)

)3
]

+
(n−K)(p− q)3

q2
E

[

( 1

1 + e−(Zt
0+U0−ν)

)3
]

=
K(p− q)3

q2
E

[

( 1

1 + e−(Zt
1+U1−ν)

)2
]

(204)

Using (202), (203) and (204) and substituting in (201):

E[Zt+1
0 ] = − λ

2
bt +O

(

K(p− q)3

q2
E[
( 1

1 + e−(Zt
1+U1−ν)

)2
]

)

= − λ

2
bt + o(1) (205)

where the last equality holds by the definition of λ and bt
and because K(p−q)3

q2 = λ n
K (1 − K

n )(pq − 1) which is o(1)
because of the assumptions of the lemma which also implies
that p

q → 1.
To show (53), we use Taylor series: M(x) =

p
q
−1

1+e−(x−ν) +

O(
(

p
q
−1

1+e−(x−ν)

)2
). Then,

E[Zt+1
1 ] = E[Zt+1

0 ] +K(p− q)E[M(Zt
1 + U1)]

= E[Zt+1
0 ] +

K(p− q)2

q
E

[ 1

1 + e−(Zt
1+U1−ν)

]

+O

(

K(p− q)3

q2
E

[

( 1

1 + e−(Zt
1+U1−ν)

)2
]

)

= E[Zt+1
0 ] + λbt + o(1) =

λ

2
bt + o(1) (206)

We now calculate the variance. For Y =
∑L

i=1 Xi, where
L is Poisson distributed and {Xi} are independent of Y and
are i.i.d., it is well-known that var(Y ) = E[L]E[X2

1 ]. Thus,

var(Zt+1
0 )

= KqE[M2(Zt
1 + U1)] + (n−K)qE[M2(Zt

0 + U0)]

(a)
=

K(p− q)2

q2
E

[

( 1

1 + e−(Zt
1+U1−ν)

)2
]

+
(n−K)(p− q)2

q2
E

[

( 1

1 + e−(Zt
0+U0−ν)

)2
]

+O

(

K(p− q)3

q2
E

[

( 1

1 + e−(Zt
1+U1−ν)

)3
]

+
(n−K)(p− q)3

q2
E

[

( 1

1 + e−(Zt
0+U0−ν)

)3
]

)

(b)
= λbt + o(1) (207)

where (a) holds because log2(1 + x) = x2 + O(x3) for all
x ≥ 0 and (b) holds by similar analysis as in (205).
Similarly,

var(Zt+1
1 ) = var(Zt+1

0 )

+O

(

K(p− q)3

q2
E

[

( 1

1 + e−(Zt
1+U1−ν)

)2
]

)

= λbt + o(1) (208)

T. Proof of Lemma 12
Before we prove the lemma, we need the following lemma

from [43, Theorem 3].

Lemma 26. Let Sγ = X1 + · · · + XNγ
, where Xi : i ≥ 1

are i.i.d. random variables with mean µ, variance σ2 and
E[|Xi|3] ≤ ρ3, and for some γ > 0, Nγ is a Poi(γ) random
variable independent of (Xi : i ≥ 1). Then,

sup
x

∣

∣P
( Sγ − γµ
√

γ(µ2 + σ2)
≤ x

)

− φ(x)
∣

∣ ≤ 0.3041ρ3
√

γ(µ2 + σ2)3

(209)

For t ≥ 0, Zt+1
0 can be represented as follows:

Zt+1
0 = −K(p− q) +

Nnq
∑

i=1

Xi (210)

where Nnq is distributed according to Poi(nq), the random
variables Xi, i ≥ 1 are mutually independent and independent
of Nnq and Xi is a mixture:

Xi =
(n−K)q

nq
M(Zt

0 + U0) +
Kq

nq
M(Zt

1 + U1).

Starting with (210), using the properties of compound
Poisson distribution, and then applying Lemma 11:

nqE[X2
i ] = var(Zt+1

0 ) = λbt + o(1) (211)

Also, using log3(1 + x) ≤ x3 for all x ≥ 0:

nqE[|X3
i |] ≤

K(p− q)3

q2
E

[

( 1

1 + e−(Zt
1+U1)+ν

)3
]

+
(n−K)(p− q)3

q2
E

[

( 1

1 + e−(Zt
0+U0)+ν

)3
]

(a)

≤ K(p− q)3

q2

(b)
= o(1) (212)
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where (a) holds by Lemma 24 for g(x) = 1
1+e−(x−ν) and (b)

holds since p
q → 1.

Combining (211) and (212) yields E[|X3
i |]√

nqE3[X2
i ]

=

nqE[|X3
i |]√

(nqE[X2
i ])

3
→ 0, which together with Lemma 26 yields:

sup
x

∣

∣P
(Zt+1

0 + λbt
2√

λbt
≤ x

)

− φ(x)
∣

∣ → 0 (213)

Similarly, for t ≥ 0, Zt+1
1 can be represented as follows:

Zt+1
1 = −K(p− q) +

1
√

(n−K)q

N(n−K)q+Kp
∑

i=1

Yi (214)

whereN(n−K)q+Kp is distributed according to Poi((n−K)q+
Kp), the random variables Yi, i ≥ 1 are mutually independent
and independent of N(n−K)q+Kp and Yi is a mixture:

Yi =
(n−K)q

(n−K)q +Kp
M(Zt

0 + U0)

+
Kp

(n−K)q +Kp
M(Zt

1 + U1).

Starting with (214), using the properties of compound
Poisson distribution, and then applying Lemma 11:

((n−K)q +Kp)E[Y 2
i ] = var(Zt+1

1 ) = λbt + o(1) (215)

Also, using log3(1 + x) ≤ x3 for all x ≥ 0:

((n−K)q +Kp)E[|Y 3
i |] = nqE[|Xi|3]

+K(p− q)E

[

(

p
q − 1

1 + e−(Zt
1+U1)+ν

)3
]

≤ o(1) (216)

where (216) holds since p
q → 1.

Combining (215) and (216) yields E[|Y 3
i |]√

(n−K)q+Kp)E3[Y 2
i ]

→
0, which together with Lemma 26 yields:

sup
x

∣

∣P
(Zt+1

1 − λbt
2√

λbt
≤ x

)

− φ(x)
∣

∣ → 0 (217)

Hence, using (213) and (217), it suffices to show that λbt →
vt+1, which implies that (55) and (56) are satisfied. We use
induction to prove that λbt → vt+1. At t = 0, we have: v1 =
λE[ 1

e−ν+e−U1
] = λb0. Hence, our claim is satisfied for t = 0.

Assume that λbt → vt+1. Then,

bt+1 = E[
1

e−ν + e−(Zt+1
1 +U1)

] = EU1 [EZ1 [
1

e−ν + e−(Zt
1+u)

]]

= EU1 [EZ1 [f(Z
t+1
1 ;u, ν)]] = EU1 [EZ1 [En]] (218)

where f(z;u, ν) = 1
e−ν+e−(z+u) and En is a sequence of

random variables representing f(Z;u, ν) as it evolves with
n. Let G(s) denote a Gaussian random variable with mean s

2
and variance s.
From (217), we have Kolm

(

Zt+1
1 , G(λbt)

)

→ 0 where
Kolm(·, ·) is the Kolmogorov distance (supremum of
absolute difference of CDFs). Since f(z;u, ν) is non-
negative and monotonically increasing in z and since
the Kolmogorov distance is preserved under monotone
transformation of random variables, it follows that

Kolm
(

f(Zt+1
1 ;u, ν), f(G(λbt);u, ν)

)

→ 0 . Since
limz→∞ f(z;uν) = eν , using the definition of Kolmogorov
distance and by expressing the CDF of f(G(λbt);u, ν) in
terms of the CDF of G(λbt) and the inverse of f(z;u, ν), we
get:

sup
0<c<eν

∣

∣

∣
FEn

(c)− FG(λbt)

(

log
( ce−u

1− ce−ν

)

)∣

∣

∣
→ 0 (219)

From the induction hypothesis, λbt → vt+1. Thus,

sup
0<c<eν

∣

∣

∣
FEn

(c)− FG(vt+1)

(

log
( ce−u

1− ce−ν

)

)
∣

∣

∣
→ 0 (220)

which implies that the sequence of random variables En
converges in Kolmogorov distance to a random variable

1

e−ν+e−(G(vt+1)+u) as n → ∞. This implies the following
convergence in distribution:

En i.d.→ 1

e−ν + e−(G(vt+1)+u)
(221)

Moreover, the second moment of En is bounded from above
independently of n:

E[E2
n]

(a)

≤ e2ν
(b)

≤ A (222)

where (a) holds by the definition of En, and (b) holds for
positive constant A since based on the assumptions of the
lemma, ν is constant as n → ∞.
By (220), (221) and (222), the dominated convergence

theorem implies that, as n → ∞, the mean of En converges to
the mean of the random variable 1

e−ν+e−(G(vt+1)+u) . Since the
cardinality of side information is finite and independent of n,
it follows that:

bt+1 = EU1

[

E[En]
]

(a)→ EU1

[

EZ

[

1

e−ν + e−(
vt+1

2 +
√
vt+1Z)−u

]]

=
vt+2

λ
(223)

where in (a) we define Z ∼ N (0, 1). Equation (223) implies
that λbt+1 → vt+2, which concludes the proof of the lemma.

U. Proof of Lemma 14
Let κ = n

K . Since for all ℓ: |hℓ| < ν, it follows that for any
t ≥ 0 and for sufficiently large κ:

vt+1 = λ EZ,U1

[

1

e−ν + e−(
vt
2 +

√
vtZ)−U1

]

= λ

L
∑

ℓ=1

α2
+,ℓ

α−,ℓ
EZ

[

1

e−ν(1−hℓ
ν
) + e−(

vt
2 +

√
vtZ)

]

(a)
= λ

L
∑

ℓ=1

α2
+,ℓ

α−,ℓ
EZ

[

1

e−Clν + e−(
vt
2 +

√
vtZ)

]

(b)
= λΛevt(1 + o(1)) (224)

where (a) holds for positive constants Cℓ, ℓ ∈ {1, · · · , L} and
(b) holds because EZ [e

vt
2 +

√
vtZ ] = evt .

Consider the sequence wt+1 = ewt with w0 = 0. Define
t∗ = log∗(ν) to be the number of times the logarithm function
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must be iteratively applied to ν to get a result less than or
equal to one. Since w1 = 1 and wt is increasing in t, we have
wt∗+1 ≥ ν (check by applying the log function t∗ times to
both sides). Thus, as κ grows, we have ν = o(wt∗+2).
Since Λ → ∞ as κ grows, it follows by induction that for

any fixed λ > 0:

vt ≥ wt (225)

for all t ≥ 0 and for all sufficiently large κ. Thus,

vt∗+2 ≥ wt∗+2 (226)

which implies that as κ grows, ν = o(vt∗+2) and hℓ =
o(vt∗+2) for all ℓ. Since vt is increasing in t, using (224)
and (226), we get for all sufficiently large κ and after t∗ + 2
iterations of belief propagation (or for a tree of depth t∗ +2):

EU0

[

Q(
ν +

vt∗+2

2 − U0√
vt∗+2

)
]

= Q
(1

2

√
vt∗+2(1 + o(1))

)

(227)

EU1

[

Q(
−ν +

vt∗+2

2 + U1√
vt∗+2

)
]

= Q
(1

2

√
vt∗+2(1 + o(1))

)

(228)

Since Q(x) ≤ e−
1
2x

2

for x ≥ 0, then using (226), (227)
and (228):

n−K

K
Q
(1

2

√
vt∗+2(1 + o(1))

)

→ 0 (229)

Q
(1

2

√
vt∗+2(1 + o(1))

)

→ 0 (230)

Using (229) and (230) and Lemma 13, we get:

lim
n
K

→∞
lim

nq,Kq→∞
lim
n→∞

E[Ĉ△C∗]
K

= 0 (231)
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analysis of the stochastic block model for modular networks and its
algorithmic applications,” Phys. Rev. E, vol. 84, p. 066106, Dec. 2011.

[14] P. Zhang, F. Krzakala, J. Reichardt, and L. Zdeborová, “Comparative
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