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It is well understood that classical sample selection models are not semiparamet-
rically identified without exclusion restrictions. Lee (2009) developed bounds for the
parameters in a model that nests the semiparametric sample selection model. These
bounds can be wide. In this paper, we investigate bounds that impose the full structure
of a sample selection model with errors that are independent of the explanatory vari-
ables but have unknown distribution. The additional structure can significantly reduce
the identified set for the parameters of interest. Specifically, we construct the identi-
fied set for the parameter vector of interest. It is a one-dimensional line segment in the
parameter space, and we demonstrate that this line segment can be short in practice.
We show that the identified set is sharp when the model is correct and empty when
there exist no parameter values that make the sample selection model consistent with
the data. We also provide non-sharp bounds under the assumption that the model is
correct. These are easier to compute and associated with lower statistical uncertainty
than the sharp bounds. Throughout the paper, we illustrate our approach by estimating
a standard sample selection model for wages.
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1. INTRODUCTION

THIS PAPER considers identification in the classical sample selection model (Heckman
(1976))

¥ =xiB+ e ()

where y; = y7 is observed if w)y + v; > 0. Early applications of the model assumed (¢;, v;)
is independent of (x;, w;) and distributed according to a bivariate normal distribution
where both means are 0 and the variance of »; is 1. This allows one to estimate 8 (and vy)
by maximum likelihood or by a two-step procedure; see Heckman (1979). Powell (1987)
and others later considered semiparametric estimation of 8 under the assumption that
(&, v;) is independent of (x;, w;) but without the normality assumption; see, for example,
Powell (1994). The key identifying assumption is that x; must have full rank conditional
on w'y. This is essentially an exclusion restriction that requires that w; include variables
that do not enter in x;. Ahn and Powell (1993) and Das, Newey, and Vella (2003) make a
similar exclusion restriction assumption in more nonparametric settings.!
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In this paper, we address the question of how much can be learned without an exclusion
restriction like the one assumed in the literature discussed above.> We consider this im-
portant because it is often difficult to find variables that both matter for selection and can
be credibly excluded from the main equation. For example, Krueger and Whitmore (2001)
assumed normality and wrote, “[i]dentification in these models is based on the assump-
tion of normal errors, as there is no exclusion restriction.” Lee (2009) and Krueger and
Whitmore (2001) considered set identification in a sample selection model which contains
(1) as a special case.> Unfortunately, these sets are often too large to be informative. For
example, Barrow and Rouse (2017) wrote, “[u]nfortunately, Lee bounds estimates (Lee
(2009)) are quite wide and largely uninformative.” This is the motivation for this paper.

We first gain insights by studying the simplest case where the only explanatory variable
is binary (Section 3). We demonstrate that in that model, the identified region for the
parameter of interest can be quite small, and we provide conditions under which the
upper or lower limits of the bound for the parameter coincide with the true parameter
value. These results are then generalized to a model with a single potentially nonbinary
explanatory variable.

We next study the sample selection model with a more general set of explanatory vari-
ables in Section 4. We show that in this case, the identified set is one-dimensional. This
observation is also implicit in Chamberlain (1986). Combining this insight with the results
from Section 3, we then construct the identified set for the parameter vector. We show
that if the model is correctly specified, our constructed identified region is sharp, and that
it is empty when there exist no parameter values that make the sample selection model
consistent with the data.

The population version of the identified set for 8 can be small enough to be empirically
interesting. However, the characterization of the sharp identified set for B relies heavily
on the whole distribution of y; (conditional on selection). This will make estimation of
the set based on a sample analog unattractive. We will therefore propose estimators of
slightly larger sets.

Throughout the paper, we illustrate our approach by estimating a classical sample selec-
tion model for wages. We introduce this application in Section 2 and expand the analysis
throughout the paper.

Notational Note

Throughout this paper, we use f with a subscript letter to denote the density of that
variable. If a variable, y, is subject to sample selection, that is, it is observed with proba-
bility less than 1, f, will integrate to the probability that y; is observed. For the unobserved
error terms, ¢; and v;, f, and f, denote the underlying densities and they each integrate
to 1.

2. EMPIRICAL ILLUSTRATION: WAGES AND ETHNICITY

Throughout the paper, we use a simple sample selection model for log wages to illus-
trate our approach. The emphasis will be on the effect of ethnicity on wages. Inspired

2We focus on the case where w7y is bounded from above, since otherwise, one might use “identification at
infinity” arguments to identify 8.

*Manski (1989) constructed bounds in a model that is neither more general nor more restrictive than our
setting. See also Manski (1990). Blundell et al. (2007) also constructed bounds in a sample selection model,
but in a much more nonparametric setting than the one considered here.



SELECTION WITHOUT EXCLUSION 1009

TABLE I
SUMMARY STATISTICS

Mexican Women White Women Mexican Men White Men
Mean sd Mean sd Mean sd Mean sd

California 0.38 0.49 0.46 0.50 0.37 0.48 0.47 0.50
Arizona 0.08 0.26 0.11 0.31 0.08 0.28 0.11 0.31
Texas 0.47 0.50 0.34 0.47 0.46 0.50 0.34 0.47
Real wage 2.16 0.57 2.42 0.63 2.34 0.58 2.61 0.61
Working 0.64 0.48 0.61 0.49 0.71 0.45 0.67 0.47
Age 40.66 10.76 44.34 10.81 40.56 10.74 43.99 10.92
Experience 21.63 11.19 23.88 11.15 21.65 10.97 23.63 11.08
Less than HS 0.16 0.37 0.04 0.20 0.16 0.37 0.05 0.21
Some college 0.33 0.47 0.34 0.48 0.31 0.46 0.33 0.47
College 0.12 0.32 0.27 0.44 0.11 0.31 0.26 0.44
Advanced degree 0.05 0.21 0.12 0.33 0.04 0.18 0.12 0.32
Married 0.53 0.50 0.62 0.49 0.55 0.50 0.61 0.49
Veteran 0.01 0.10 0.02 0.13 0.12 0.32 0.16 0.37
No. observations 26,698 103,209 21,402 97,016

by Mora (2008), we investigate the wage differential between third-generation Mexican-
Americans and other Americans after controlling for sample selection.

Like Mora (2008), we use Current Population Survey (CPS) data on wages from Ari-
zona, California, New Mexico, and Texas. Our data span the years 2003-2016, and contain
129,907 women, of whom 26,698 are third-generation Mexican-Americans and 103,209
are non-Hispanic whites. There are 118,418 men. Of them, 21,402 are third-generation
Mexican-Americans and 97,016 are non-Hispanic whites. For women, the percentage
working is 64% for third-generation Mexican-Americans and 61% for non-Hispanic
whites. For men, the shares are 71% and 67%, respectively.

Summary statistics are provided in Table I. Appendix B provides details about the data.
The programs and data can be found at Honoré and Hu (2020).

3. SIMPLEST CASE: SINGLE REGRESSOR

Consider first the simple case with a scalar binary explanatory variable, x;,

yi=xip+ e, 2

where y; = y; is observed if x; +v; > 0 and (¢;, v;) is independent of x;. When x; +»; <0,
yi is not observed and y; is undefined. The coefficient on the sample selection equation is
only identified up to scale and its sign is identified. There is therefore no loss of generality
by assuming that the coefficient on x; is* 1. Our theorems below consider the more general
setting, but since point mass or limited support of the distribution of ¢; generally helps
with identification, it is useful to build intuition from the case where ¢; is continuously
distributed with full support conditional on »;. We will implicitly assume random sampling,
and occasionally drop the subscript i to aid readability.

“The exception is when the sample selection is independent of x. However, in that case, estimation of the
coefficient on x will not suffer from sample selection bias. Moreover, one can identify whether selection is
independent of x.
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Lee (2009) considers a more general sample selection model in which both the dis-
tribution of y; and the probability of selection depend on selection in a nonparamet-
ric manner and the object of interest is the average effect of the “treatment” x;. His
main assumption is a monotonicity assumption that requires that any individual who
is selected into the sample when x; = 0 would also have been selected in a counter-
factual scenario where x; = 1. As such, he essentially considered the same model, but
with (2) replaced by y; = h(x;, &;) for some unknown 4. The average treatment effect,
Ely*|x; = 1] — E[yF|x; = 0], is not identified in this case, but Lee constructed the sharp
identified set for the parameter E[y?|x; =1, s;] — E[y/|x; =0, 5;], where s, is the event that
y; would be observed whether x; =0 or x; = 1. The bounds are based on the insight that
an individual for whom y; is observed when x; = 0 would also have had an observed y; if x;
had been 1. On the other hand, some individuals would have observed y; only when x; = 1.
This follows from his monotonicity assumption, and it implies that one must “trim” some
observations from the distribution of y; conditional on x; = 1 in order to make it compa-
rable to the distribution of y; conditional on x; = 0. The extreme cases are to trim the top
and the bottom of the distribution of y; conditional on x; = 1.

Lee’s bounds are illustrated graphically in Figure 1 for a data-generating process with
(&;, v;) distributed according to a bivariate normal distribution, 8 =1, E[g;] =0, E[v;] =
3 vledl =1, v[y] =1, and cov(e;, »;) = 1. See also Example 1 below. The first panel
displays the “densities” of y; conditional on x; = 0 and x; = 1, respectively. They both
integrate to the respective probabilities of selection. The second and third panels display
the density of y; conditional on x; = 0 and the density of y; conditional on x; =1 after
being trimmed at the top or at the bottom.

The sample selection model considered here implies the monotonicity assumption in
Lee (2009). If y; is observed when x; = 0, then »; must be greater than 0; as a result, y,
will also be observed for the same draw of v; when x; = 1. Hence the sample selection
model (2) is the version of Lee’s setup in which the treatment effect is constant, and Lee’s
bounds can be thought of as non-sharp bounds on S.

To illustrate the approach in this paper, it is useful to define a binary variable for
whether y; is observed, d; = 1{x; + v; > 0}. For all ¢; < ¢,, we then have

Plei<e<c,di=1x,=0)<P(c; <& <c,d=1x;=1) 3)
or
P(C1 <yi<Cz,di=1|x,‘=O) SP(C] <yi—B§C2,di=1|X[=1). (4)

When the errors are continuously distributed, the restriction (4) can be expressed in
terms of the density of the observed y conditional on x;. Define

fy(C|xi) = fy*(c|xi)P(di =1lyi=c, x).

This is the “density of the observed y;, except that it does not integrate to 1 because y; is
not observed when d; = 0. With this notation, (4) can be expressed as’

filelxi=0) < fyc + Blxi=1) )

for all values of c.

SThis is reminiscent of the insight in Kitagawa (2015), who creates a test for instrument validity based on
whether one product of a density and a probability lies above a second product of a density and a probability
at all points. To map our insight into his, we would have to think of (a) his outcome as our y — x3, (b) his
instrument as our x, and (c) his treatment as our selection dummy.
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Observed Distributions of y Conditional on x =0 and z = 1

Distributions After Trimming According to Lee (2009)

FIGURE 1.—Construction of the Lee bounds for the data-generating process in Example 1.

Equation (5) is illustrated in Figure 2 using the same data-generating process as above.
The contour plot in the left panel shows the joint distribution of (&;, v;) before selection
and the solid line in the right panel depicts the corresponding marginal distribution of &;.
The selection implies that y} is not observed when v; < —x;. For x; = 0 and x; = 1, this
means that we “lose” the errors below the solid lines in the left panel of Figure 2. The
dashed lines in the right panel of Figure 2 show the density of the remaining es. These
densities integrate to the probability that y* is observed conditional on x;.

This logic relies on the full structure of the classical sample selection model. This in-
cludes independence between the explanatory variable and the error, monotone selection,
and parameter homogeneity. In Figure 2(b), the distribution of ¢ before selection needs
to be the same whether x; =0 or x; = 1. This would be violated without independence
between ¢; and x;. Without monotone selection, we could not conclude equation (3). Fi-
nally, it is the parameter homogeneity that allows us to translate the statement about the
unobserved &; in equation (3) into a statement about the observed y; in equation (4). In
contrast, Lee (2009) only assumed monotone selection, which is why our identified region
is smaller than his.

The following theorem establishes that the inequalities in equation (4) contain all the
available information. As a result they can be used to construct the identified region for 8.



1012 B. E. HONORE AND L. HU

before selection

€ 3
(a) Joint Distribution of (e, v) (b) Distribution of &

FIGURE 2.—Distribution of & before and after selection.

THEOREM 1: Let x; be a scalar, nondegenerate, binary random variable, and let (&;,v;)
be independent of x;. If y¥ = x;8 + &; and if y; = y} is observed when d; = 1{x; + v; > 0}
equals 1, then the identified region for B is

B={beR:P(ci<yi<c,di=1lx;,=0)
<P(c<yi—b<c,d;=1x;=1) forall values of ¢, cz}

provided that P(d; =1|x;=1) > 0.

PROOF: This is a special case of Theorem 3 below. The proof here is more readable.
The discussion above established that the true 8 belongs to B. We will now argue that for
any b in B, there exists a joint (cumulative) distribution® G of (e, v) such that (G, b) will
be consistent with the observed distribution of (y, d) given x. First, define the marginal
distribution of & by

Py<a+b,d=1|x=1)
Pd=1x=1)

Next, define a conditional distribution function of v given & by’

F,(a) =

F(~lle<a)=1-Pd=1x=1)
and

P(y§a,d=1|x=0)_1 P(y<a,d=1|x=0)

F,(0le<a)=1— = -
Ole<a) Fua) P(y=a+bd=llx=1)

Pd=1lx=1)
when E(a) > 0, and E(0|a <a)=1when E(a) =0.

®For ease of exposition, we have dropped the subscript i in the proof.
It does not matter what the conditional distribution function of » given & is at points other than —1 and 0.
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5 This constrgction defines a cumulative distribution function if Fs,y(al, 0)+ F (ag, —1) —
F(a,,—1) — F(ay,0) >0 for all ay < a; (Durrett (2019), Theorem 1.1.11). It follows im-
mediately from the expressions above that

ﬁa,v(ah 0) + ﬁ(a(h _1) - ﬁ(ah _1) - ﬁ(a(h 0)
=Play<y—b<a,d=1x=1)—Play<y=<a;,d=1jx=0)
WhenF(a0)>O itis P(~oo<y—b<a;,d=1lx=1)-P(-c0o<y=<a,d=1/x=0)
when F (ap) =0 and F .(ay) > 0; finally, it is 0 when F (ap) =0 and F,(a,) = 0. Hence
FS,V satisfies the conditions for a cumulatlve distribution function if (and only if) b belongs
to B.
With this (F,,, b),
P(y<c,d=1lx=1)=F.(c—b)(1 - F,(~1ls <c — b))
_Ply<c,d=1x=1)

Pd=1x=1)=P(y<c,d=1lx=1)

Pd=1|x=1)
and
F(yfc,d:1|x:0)
=F.(c)(1-F,(0lz < )
R i
=P(y<c,d=1x=0).
This proves the theorem. Q.E.D.

The construction of the identified region in equation (5) is illustrated graphically in
Figure 3. The left side of Figure 3 shows the density of the observed y conditional on x

(a) Observed Distributions (b) Observed Distributions Shifted
by b in Identified Region

FIGURE 3.—lIllustration of bounds based on equation (5).
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multiplied by the conditional probability of selection for x; equal to 0 and 1. Theorem 1
characterized the identified region for B as the length of the horizontal shifts of one of
the curves that will result in one of the curves being above the other. This is illustrated in
the right hand side of Figure 3.

EXAMPLE 1: Let (g;, v;)’ be distributed according to a bivariate normal distribution
with B =1, E[e;] =0, E[v;]] = %, vie;] =1, v[v;] =1, and cov(eg;, v;) = % With these
P(d; =1|x; =0) =0.691 and P(d; = 1|x; = 1) = 0.933. This is the situation depicted in
Figure 3 and the identified region for 8 is [0.626, 1.00]. In contrast, the Lee bounds are®
[0.389, 1.238].

To estimate the identified region characterized by Theorem 1, one needs to compare
the estimated probabilities for all pairs of (cj, ¢;). This is clearly impossible. Moreover,
when ¢; and ¢, are close, this is akin to comparing estimated density of the observed y;
conditional on x; for x; =0 and x; = 1. This is troublesome because the probabilities will
typically both be close to 0 in the tails, and small estimation errors will have a big effect
on which one takes on the larger value. This suggests constructing an identified region
by exploring (4) for a finite number of pairs of (¢, ¢;). For example, one could calculate
the deciles of the observed y conditional on x; = 0 and then use (¢, ¢;) = (q;_1, gq;) for
j=1,...,10, where g; is the jth decile, gy = —o0, and g,y = co.

EXAMPLE 2—Example 1 continued: In this setup, the crude bounds described above
are [0.609, 1.025].

In Example 1, the upper bound of the identified set equals the true B. This is true in
general when the true (unknown) distribution of the errors is a bivariate normal with
positive correlation.

PROPOSITION 1: When the distribution of the errors is bivariate normal with positive cor-
relation, the upper limit of the identified region based on equation (5) is the true parameter
value. When the correlation is negative, the lower limit of the identified region is the true value.
With no selection, that is, independence of the errors, the identified region is the true value.

See Appendix A for the proof.
The proof of Proposition 1 is driven by the tail behavior of the normal distribution. As
a result, the proposition can be generalized as follows.

PROPOSITION 2: Suppose that ¢ is continuously distributed with a density which has
sufficiently thin tails that for a > 0, f(c)/f(c + a) — o0 as ¢ — oo and for a < 0,
f(©)/f(c+ a) — oo as c - —oo. Then the following options exist.

(i) Ifthe distribution of v given & = c, stochastically dominates the distribution of v given
& = ¢, whenever c; > c,, then the upper limit of the identified region is the true value.
(i) If the distribution of v given & = c, stochastically dominates the distribution of v given
& = ¢y whenever c| < c,, then the lower limit of the identified region is the true value.
(iii) If v and e are independent, then the identified region is the true value.

8To calculate the bounds, we use equation (5) in Muthén (1990) after correcting a typo in the second line
(the next to last subscript i should be subscript j).
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See Appendix A for the proof.

The assumption on the tail behavior of the marginal distribution of ¢ is slightly stronger
than log-concavity and is implied by tail behavior of the form exp(—ax?) for a > 0 and
v > 1. We interpret the stochastic dominance assumption in option (i) as positive selec-
tion: larger values of ¢ are associated with higher probability of selection. Likewise, we
interpret the stochastic dominance assumption in option (ii) as negative selection. The
setup in Proposition 2 is different from, but similar in spirit to, the approach in Heckman
(1990) and Andrews and Schafgans (1998). Both rely on “identification at infinity,” but
while Heckman (1990) and Andrews and Schafgans (1998) need an exclusion restriction
and rely on extreme values of the selection index, we do not need exclusion restrictions
and rely on extreme values of the outcome variable.

3.1. Empirical lllustration Part 1

In this section, we illustrate the insights above graphically. Using the data described in
Section 2, we plot the densities (the product of the density conditional on selection and
the probability of selection) of log wages for Mexican-Americans and non-Hispanic white
Americans by gender. We restrict the sample to individuals whose highest degree is high
school. These are depicted by the solid lines in Figure 4. The areas under the Mexican-
American curves are larger than for non-Hispanic white Americans because the former
are more likely to work for pay.

The dashed lines are the curves for the non-Hispanic whites shifted by —0.11 for women
and by —0.18 for men. The shifted curves for whites almost fit under the curves for the
Mexican-Americans. This suggests that the assumptions of the classical sample selection
model are not too unreasonable in this case. Moreover, it is clear from the figure that
shifting the curves by a lot more or a lot less would lead to violations of equation (5). This
suggests that the identified regions are relatively small. In this case, the Lee bounds for the
log-wage differentials between Mexican-Americans and non-Hispanic white Americans
are (—0.210, —0.041) for women and (—0.249, —0.074) for men while the difference in
means of the observed data are —0.123 for women and —0.162 for men.

Heckman’s two-step estimator exploits variation in the conditional mean of the de-
pendent variable. When the only explanatory variable is binary, there will be perfect

Mexican

0.5 1 1.5 2 25 3 35 4 45 05 1 15 2 25 3 35 4 4.5

log(Wage) log(Wage)
(a) Women (b) Men

FIGURE 4.—Shifted and unshifted log-wage distributions. The dashed lines display the white log-wage den-
sities shifted by —0.11 for women and by —0.18 for men.
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collinearity between it and the sample selection correction term. The procedure there-
fore cannot be applied. In contrast, the maximum likelihood estimator for the log-wage
differentials between Mexican-Americans and non-Hispanic white Americans exploits in-
formation from the entire distribution of the dependent variable, and this estimator is
therefore in principle applicable, although it is likely to be fragile. For example, when we
tried to estimate the model using Stata,’ the routine failed to converge for the men and
located a coefficient on Mexican-American to be —0.174 for women and —0.208 for men.

3.2. Single Nonbinary Regressor

Theorem 1 applies to the case where x; is binary. When x; is not binary and unbounded
from above, identification at infinity arguments like those in Andrews and Schafgans
(1998) and Heckman (1990) yield point identification of 8. We therefore focus on the
case where x; is bounded from above.

When x; is not binary and bounded from above, applying (4) to all pairs of values in
the support of x; yields bounds on the identified region of 8. The following theorem
establishes that the intersection of these bounds is sharp.

THEOREM 2: Let (x;, &;, v;) be a random vector such that (&;, v;) is independent of x;,and
(&:, v;) has continuous and everywhere positive density. If y; = x,3 + &;, y; =y} is observed
when d; = 1{x; + v; > 0} equals 1, and the upper bound on the support of x; is Xy < 00,
then the identified region for B is'

B= {bERZP(Cl <yi562,d,«=1|x,«=§1)§P(c1 <yi_b5027di=1|xi=§2)
for all values of ¢ and &, < &, in the support of x}.

The proof follows from Theorem 3 below.
As discussed above, the identified set can also be expressed in terms of densities,

B={beR: fy(c+xbl&) < fy(c+x:bl&)
for all values of ¢ and &, < &, in the support of xi}

provided that these densities are well defined.
We finally note that the conclusion of Proposition 2 carries over to general distribution
of x;, specifically stated as follows.

PROPOSITION 3: Let x; be a random variable and let (&;, v;) be independent of x;. Assume
that (&;, v;) has continuous and everywhere positive density. Also assume that y; = x;8 + ¢;,
that y; =y is observed when d; = 1{x; + v; > 0} equals 1, and that the upper bound on
the support of X; IS Xyux < 00. If the density of ¢ has sufficiently thin tails that for a > 0,
fo)/f(c+a) — oo as c — oo and for a <0, f(c)/f(c+ a) - oo as ¢ > —o0, then we
have the following options:

(i) If the distribution of v given ¢ = ¢, stochastically dominates the distribution of v given
& = ¢y whenever c| > c,, then the upper limit of the identified region for B is the true value.

(i) If the distribution of v given & = c, stochastically dominates the distribution of v given
& = ¢y whenever c| < c,, then the lower limit of the identified region for B is the true value.

(ili) If v and e are independent, then the identified region for B is the true value.

9More precisely, the routine heckman in Stata version 14 with all the default options.
0Recall that f,,,, does not integrate to 1, since y; is not always observed.
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See Appendix A for the proof.

Needless to say, all of the analysis in this section could be performed conditional on a
set of covariates, x,, in which case the bounds derived here would become bounds on the
effect of x conditional on x,. In the next section, we investigate the alternative approach of
explicitly incorporating additional explanatory variables in the standard selection model.

4. MORE GENERAL SAMPLE SELECTION MODEL

We now return to the sample selection model with a k-dimensional vector of explana-
tory variables, x;,

Vi =xiB+e=xuB1+x,B:+ &, (6)

where y; = y* is observed if x\y 4+ v; > 0. When the support of x!y is unbounded from
above, identification at infinity arguments like those in Andrews and Schafgans (1998)
and Heckman (1990) can yield point identification of 8. We therefore focus on the case
where x'y is bounded from above.

To fix ideas, suppose that B, is the parameter of interest.

Conditions under which vy is identified up to scale are well understood; see, for ex-
ample, Powell (1994) and the references therein. In the following, we assume that these
conditions hold and that the necessary scale normalization has been imposed by nor-
malizing the first element of y to be'' 1. We will then write y = (1, v,)" to distinguish
between the variable of interest, x;;, and the other explanatory variables. As in the pre-
vious section, we assume independence between (g;,v;) and (x;, x;»), and we define
g(z) = Elg|lv; > —z, x;1, x;2]. We can then write

Yi=XuP1+x,B:+ g(m) +u; (7)

with E[u,»lxil, xiz] =0.

In this section, we will argue that the vector 8 is identified except for a single scale
parameter. In the following subsections, we will then show that bounds can be obtained
for this parameter. The intuition for why S is identified except for a single scale parameter
is very simple. Suppose we knew ;. We could then define w; =y — x;1 81 = x}, 8, + €.
The variable x; would then be excluded from the model for w?. On the other hand, by
normalizing the first coefficient in the selection equation to be 1, we have already assumed
that x;; matters for selection. Hence we have the necessary exclusion restriction, and the
parameter vector, 3, is identified except for the one-dimensional component 3. Here, we
give a slightly different argument because it makes the empirical implementation easier.

Following, for example Robinson (1988), we start by noting that (7) implies that

Yi— E[yilxi-'y] = (xil - E[xil |x;7])ﬁ1 + (xi2 - E[xi2|x;7])/32 + u;. 8)
Next note that
(xil - E[xi1|x;-’)’]) + (xiz - E[xi2|x;»')’]),’)’2 = (Xn - E[xi1|x;’)’]) + (xiz’}’z - E[xi2|x;7]/')/2)
= ¥y~ E[xylxy] =0.
"This implicitly rules out that all coefficients in the selection equation are 0. However, in that case, es-

timation of B does not suffer from sample selection bias. Moreover, one can identify whether selection is
independent of x.
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In other words, (x;; — E[x;1|x;y]) = —(x» — E[x|x}y])"y,. Equation (8) can then be writ-
ten as

= (—(xiz - E[xi2|x;‘7])/72)31 + (Xiz - E[xi2|x2’)’]),52 +u;
= (xi2 — E[xi2|x;7]),(.32 —v2B1) +u;
= (xiz - E[xi2|x;-7]),a2 +u;, )

where a, = (8, — ¥, 81). We can therefore identify o, = (8, — ¥, 81) subject to a rank con-
dition on (x; — E[x;|x;y]). Since v, is identified, this implies that for a given value of 3,
B- is identified. In other words, the identification problem is essentially one-dimensional,
and bounds on B; will imply bounds of the whole 8 vector.

Yi— E[Yi|x;")’]

4.1. Sharp Bounds
With the result of the previous section, we can write
Vi =xaPi+xpB:+ &
= xi1B1 + Xp(ar + ¥2B1) + &
or
Vi = xXpon = (xn + x,7)B1 + &, (10)

where vy, and «, are identified as above and y; = y; (and hence y; — x,,a, =y — x),a,) is
observed when d; = 1{x;; + x/,v> + v; > 0}. We can then apply Theorem 2 to bound S; to
the region

B= {b] eR: P(C] <Yi— x;zafz - (xil + x;z')/Z)bl =0, di = 1|x;7’ = 'fl)
< P(Cl <Yi— x;zozz — (x,-l + X;z'yz)bl <, di = 1|x;y = fz)
for all values of ¢; < ¢, and &, < &, in the support of x;y}. (11)

The identified region for the whole vector, B, is then the one-dimensional line segment

b i
(220 ).

The identified region can also be written in terms of the density of the observed data,
{b1 e R: fu(c+ xipon + (xi1 + X 72) bilxiy = &)
< fye(e + X + (xi1 + Xpp72) bilx}y = £5)
for all values of ¢ and all &, < &, in the support of x;y}, (12)

provided that these densities are well defined.
The bounds implied by B are sharp by Theorem 3.

THEOREM 3: Suppose that (i) (&;, v;) is independent of x;, (ii) Ele;|v; > al is finite for all
a, (iii) there is no proper linear subspace of R* that contains x; with probability 1, and (iv)

yi=xiB+e&
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is observed if d; = 1{x\y + v; > 0} equals 1 for some B and some y with y, = 1. If P(d =
1) > 0, vy is identified, and the support of xy is bounded from above, then B is the (sharp)
identified region for B,.

PROOF: The discussion in the text established that the true B8, belongs to B and that
B2 = ay + y,81. We next need to argue that for any b = (b4, o), + v,b,)’ with b; in B, there
exists a joint distribution, F, of (&,v) such that the distribution implied by the model
combined with (F b) is the same as the observed distribution of (y, d) conditional on
x = ¢ for all € in the support of x.

Let X be such that X'y is the upper bound of the support of x'y.

First, define the marginal distribution of & by

P(y<a+Xb,d=1|x =X)

Fola)= Pd=1x=%)

The definition of B guarantees that this gives the same ﬁg(a) for all choices of x such
that X'y is the upper bound of the support of x'y. The assumption that P(d =1) > 0
guarantees that the denominator is nonzero. Next, we define the conditional cumulative
distribution function of » given & over the support of —x’y. Let g be a point in that support
and let x, be such that x|,y = —g. We then define

P(y<a+x,b,d=1|x =x,)
F.(a)
Ply<a+xb,d=1|x=x,)
P(y<a+xb,d=1]x=7%)

F,(gle<a)=1-

=1—

Pld=1jx=%)

when F.(ag) > 0, and 1 otherwise. The definition of B guarantees that this gives the same
F, (gle < a) for all choices of x, such that x,y = —g.

This construction defines a cumulative dlstrlbutlon function if F (a,81) + F (ag, 80) —
F(al, 80) — F(ao, g1) > 0for all ay < a, and gy < g (Durrett (2019), Theorem 1.1.11). It
follows immediately from the expressions above that

f(al, g+ ﬁ(ao, 8o) — ﬁ(al, 8o) — 1?(610, &)
=Plag<y<a,d=1lx=x,)—Plag<y=<a,d=1lx=x,)
when fg(ao) > 0 and E(al) > (0. Since x(’%y > x:g] v, this is nonnegative by the definition
of B. Also,
ﬁ(ala g1+ ﬁ(ao, 8o0) — ﬁ(al, &) — ﬁ(Clo, &)
=P(-oco<y<a;+x,b,d=1x=1x,)—P(—oo<y=<a +x,b,d=1x=1xy)
when ﬁg(a0)~= 0 and ﬁggl) > 0. This is again nonnegative by the definition of B. Finally,

F(ai, 1)+ F(ao, g) — F(ai, g) — F(ao, g1) =0 when F.(ag) =0 and F,(a;) = 0. Hence
F defines a bivariate cumulative distribution function.
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With this (F, b), the model yields
ﬁ(y <c,d=1|x=x)
= F.(c — x;b)(1 — F,(=x)yle < ¢ — x)b, x = xy))
P(y<sc—xb+Xb,d=1\x=X) P(y < c—x,b+x;b,d =1|x = x,)
P(d=1|x=X) P(y<c—xpb+Xb,d=1|x=X)
x P(d=1|x =%)
=P(y<c,d=1|x = xy).

This proves the theorem. Q.E.D.

Theorem 3 states that B characterizes the identified region for 8; when the model is
correct. Theorem 4 below establishes that when B is not empty, the linear sample selection
model cannot be rejected by the data.

THEOREM 4: Suppose that the data-generating process for the observed distribution of
(d;, yi, x;) is such that (1) y; is only observed when d; = 1, (ii) P(d; = 1|x;) can be written
as a nondecreasing, right-continuous function of x'7y for some vy = (1, v,)’, (iii) the support
of x'y is bounded from above, and (iv) the density of y; given x; is positive everywhere for all
X; in the support of x;.

If, for a, defined in (9), B in (11) is not empty, then for every B in B, there exists a distri-
bution of (&;, v;) such that the observed distribution is the same as the one generated from a
model in which (&;, v;) is independent of x;,

Y= x;B + &,
and y; =y} is observed if d; = 1{x/y + v; > 0} equals 1."2

PROOF: Let b, be an element of B, b, = a, + y,b1, and b = (b, b/ZN)/. As in the proof of
Theorem 3, we need to argue that there exists a joint distribution, F, of (&, v) such that
the distribution implied by the model combined with (F, b) is the same as the observed
distribution of (y, d) conditional on x = £ for all £ in the support of x. This is done exactly
as in the proof of Theorem 3, except that there, the model yields that the constructed
conditional cumulative distribution function of v given ¢ < a is right continuous. Here it
follows from assumption (ii). Q.E.D.

4.2. Non-Sharp Bounds

One could in principle estimate bounds on B, based on the density inequalities in (5)
above. We do not pursue this approach because the resulting estimates would depend
on the tails of nonparametrically estimated densities. In this section, we instead present
non-sharp bounds based on moments that can be estimated using sample averages.

Equation (11) implies that for &; < &, in the support of x;; + x/,»,

E(l{Cl <y — X0 <0, di=1}|x;’y=§1)
=< E(l{cl <Yi—Xp+ (& —E)b <6, di= 1}|x;y = fz) (13)

2Here v; is allowed to take the value —oo.
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for any b; in the identified set. Note that ¢; and ¢, in (13) can depend on by, &,
and &,.
This implies the moment inequalities

E[l{Q < Yi— X0 — (xb’)ﬁl <o,di= 1}|(x,~1 =+ x;z')/Z) € Al]
< E[l{Cl <Y — x;zaz — (x;’)/)Bl <, di = 1}|(Xi1 + x;z’}/Q) € Az] (14)

for all sets A;, A, where all elements in A, are strictly below the elements in A4,. The
moment inequalities (14) can be used to estimate non-sharp bounds for 8 in (6) by con-
sidering a finite number of A4 sets combined with a finite number of pairs of (¢, ¢,).

The following example suggests that the sizes of these non-sharp identified sets are
likely to be small enough to be useful. To do this, we compare the sets to the estimation
uncertainty that a researcher would face if she estimated an identified parametric version
of the same model.

EXAMPLE 3: Consider the following data-generating process:

e We have (v;, ;) bivariate normal with v[v;] =1, v[g;] =2, cov(v;, &) =1, E[v;] =
and E[g;] =0.

e We have x = Uy + Z; for k =1,2,3, where Uy ~ U(—3,1) and Z; ~ N (0, 5-) (all
independent).

e We have B=(1,1,1) and y = (0.45, 0.55, 0, 55) (before normalization).

We calculate the (non-sharp) identified region for 8; based on equation (14) with the
As based on quintiles of x;; + Xy Y2, and ¢; and ¢, adjacent deciles of y; — x),as — (X1 +
x,,v2)b; are (0.658,1.003). When we decreased the number of inequalities by only con-
sidering A; = (—oo, median(x;; + X}yY2)) and A, = (median(x;; + XjyY2), 00), and ¢; and
¢, adjacent quintiles of y; — x,,a, — (x;1 + x),y2)b;, the (non-sharp) identified region for
B increased to (0.529, 1.031).

By comparison, the 5th and 95th percentiles of Heckman’s two-step estimator for 3;
based on 1000 observations from this design are 0.332 and 1.714.%

1
29

4.3. Empirical lllustration Part 2

To investigate the usefulness of the approach from Section 4.2 in empirical settings, we
return to the question in Section 2. In this application, the parameter of interest is the co-
efficient on being third-generation Mexican-American as opposed to non-Hispanic white.
The other explanatory variables are age, age squared, experience, experience squared, ed-
ucation dummies (less than high school, some college, college, and advanced degree, with
high school as the omitted category), dummies for being a veteran and being married,
state dummies, and year dummies.

We first estimate the model under the assumption of joint normality of the errors, using
both the maximum likelihood estimator and Heckman’s two-step estimator. The estima-
tion results are presented in the first two data columns of Tables II and III. To implement
the idea in Section 4.2, we define a sample analog of the solutions to the population in-

BThe bounds based on (14) are calculated using a sample with 100,000,000 observations. The percentiles of
Heckman’s two-step estimator are calculated in Matlab by Monte Carlo using 100,000 replications.



1022 B. E. HONORE AND L. HU

TABLE II
ESTIMATED WAGE REGRESSION (WOMEN)?

MLE Two-Step Estimated Bounds

Mexican—American —0.078 -0.013 [—0.086, —0.080]
(0.005) (0.017)

Age 0.113 0.213 [0.096, 0.106]
(0.007) (0.026)

Age squared —0.047 —-0.118 [—0.000, —0.000]
(0.005) (0.018)

Experience —0.070 —0.127 [—0.067, —0.062]
(0.006) (0.016)

Experience squared 0.006 0.036 [—0.000, —0.000]
(0.004) (0.009)

Less than HS —0.177 -0.372 [—0.193, —0.178]
(0.015) (0.050)

Some college 0.033 0.017 [0.026, 0.028]
(0.011) (0.014)

College 0.155 0.084 [0.136,0.142]
(0.025) (0.036)

Advanced degree 0.199 0.113 [0.167,0.174]
(0.034) (0.047)

Veteran 0.030 0.037 [0.029, 0.030]
(0.016) (0.020)

Married 0.033 —0.079 [0.042,0.052]
(0.005) (0.028)

California 0.204 0.178 [0.206, 0.208]
(0.007) (0.011)

Arizona 0.098 0.103 [0.097, 0.097]
(0.009) (0.012)

Texas 0.031 0.064 [0.025, 0.028]
(0.008) (0.013)

Year dummies Yes Yes Yes

No. observations 127,738 127,738 127,738

aStandard errors for point-identified parameters are given in parentheses.

equalities in equation (14) as the maximizers of Q,(b;), where

0,(b) =— Zmax{E\[l{c@ < yi—xhoh — (x17)by < ¢y, di =1} X7 € Ai]
ok

— E[l{c[ < yi— X0 — (x13)by < cur, di = 1}1X1y € Ajai ], 0}2.

Figure 5 displays the objective function and the 5% critical value function calculated
using subsampling (see Canay and Shaikh (2017)) with subsample size equal to 15,000
and 1,000 subsamples. The parameter v is estimated by logit maximum likelihood'* and
a; = (B2 — y2B1) is estimated from (9), where the conditional expectations are estimated
by kernel regressions with standard normal kernel and bandwidth equal to 0.2 times the
standard deviation of x}y (in the sample where y; is observed). We choose ¢; = —00, c;—¢y
are the deciles of {y; — x/,a, — (x}y)b;} in the sample where y, is observed, and ¢,y = 0.

1 Alternatively, one could use a semiparametric estimator such as Han’s (1987) maximum rank correlation
estimator in the first step.
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TABLE III
ESTIMATED WAGE REGRESSION (MEN)?

MLE Two-Step Estimated Bounds

Mexican—-American —0.113 —0.084 [—0.109, —0.097]
(0.005) (0.012)

Age 0.079 0.112 [0.077,0.091]
(0.006) (0.014)

Age squared —0.047 -0.072 [—0.001, —0.000]
(0.004) (0.010)

Experience —0.025 —0.045 [—0.032, —0.023]
(0.005) (0.009)

Experience squared —0.014 —0.007 [—0.000, —0.000]
(0.004) (0.005)

Less than HS -0.170 —0.222 [—0.193, —0.174]
(0.012) (0.023)

Some college 0.051 0.043 [0.048, 0.050]
(0.009) (0.011)

College 0.235 0.205 [0.222,0.232]
(0.023) (0.026)

Advanced degree 0.257 0.194 [0.231, 0.254]
(0.031) (0.041)

Veteran —0.001 0.015 [—0.001, 0.005]
(0.006) (0.008)

Married 0.136 0.185 [0.133,0.154]
(0.005) (0.019)

California 0.151 0.140 [0.147,0.151]
(0.007) (0.009)

Arizona 0.042 0.052 [0.042, 0.045]
(0.009) (0.010)

Texas 0.015 0.045 [0.013, 0.026]
(0.008) (0.014)

Year dummies Yes Yes Yes

No. observations 118,250 118,250 118,250

aStandard errors for point-identified parameters are given in parentheses.

The sets A, corresponds to the intervals between quintiles of xy. All parameters, includ-
ing the bandwidths in the kernel regressions, and c,—cy are recalculated in each subsam-
ple. The figure also displays the maximum likelihood estimator and Heckman’s two-step
estimator for B; along with their 95% confidence intervals. The estimated bounds"™ on
the parameters are presented in the third data column of Tables II and III. The 95%
confidence interval for the log-wage differentials between Mexican-Americans and non-
Hispanic white Americans case are the points in Figure 5 for which Q, is larger than the
critical value function. They are (—0.107, —0.046) for women and (—0.134, —0.085) for
men.

As expected, the implied confidence intervals for the identified sets are longer than the
confidence intervals based on the maximum likelihood estimators. On the other hand,
they are roughly equivalent to the length of the confidence intervals for the two-step es-

5 As explained in Manski and Tamer (2002), the set of maximizers of Q, will not (in general) yield a con-
sistent estimator of the identified region of B;. It is therefore customary to define the estimator as the set of
points for which the objective function is within a small distance from its maximum. For the bounds in Tables II
and III, we have chosen this distance to be 1. Judging from Figure 5, we think that this is a conservative choice.
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FIGURE 5.—The term Q, as a function of the coefficient on third-generation Mexican-Americans.

timator. Our set estimate contains the maximum likelihood estimate for both samples.
For men, it is also close to the two-step estimate. For women, the two-step estimate is,
however, quite different from our estimated set as well as from the maximum likelihood
estimate. This casts doubt on the validity of the normality assumption for women. On the
other hand, the moment inequalities implied by the independence assumption (equation
(13)) are not rejected by the data in either sample.

5. CONCLUDING REMARKS

This paper has studied identification in a classical semiparametric sample selection
model in which both the selection mechanism and outcome of interest depend linearly
on the same explanatory variables, and the errors are independent of the explanatory
variables. This model is not semiparametrically point-identified, but the sharp identified
set is one-dimensional. Toy examples as well as an empirical application suggest that the
identified set can be quite small in practice. In this respect, the practical takeaway of this
paper is similar to papers in different areas of economics which have demonstrated that
the identified regions of nonidentified parameters can be small enough to be useful in em-
pirical applications. The papers by Haile and Tamer (2003), Honoré and Lleras-Muney
(2006), and Blundell et al. (2007) are early examples of this.

The numerical calculations presented in this paper illustrate that the bounds obtained
under the semiparametric model considered here are much tighter than those obtained
in Lee’s (2009) nonparametric setting. We leave it for future research to investigate in-
termediate assumptions that are weaker than those imposed here, but strong enough to
generate identified sets that are small enough to be empirically informative.

APPENDIX A: PROOFS OF PROPOSITIONS

PROOF OF PROPOSITION 1: This proposition is a special case!® of Proposition 2. Here
we provide a more readable proof that explicitly uses properties of the normal distribu-

tion. Recall that if
v N 7 1 po
G~ (%) (oo %))

16We have kept this because the concreteness of the calculation helped us understand the results.
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then
V|y7x~N</"L+ g(y_x/:B)’ 1 _pZ)

Hence

FOIX)Pw > —x|y, x)
P(v > —x|x)

P /
_1 y—x'B x—i—,u—i-;(y—xﬁ)
—;@( - )‘D( i )/‘I)(xﬂw)

fOlv>—x,x)=

and therefore

p /
f(|x)—1 o o x+u+;(y—xﬁ)
Y P G- 1—p? '
Now consider a b in the identified region B. For that b, the inequality f,(c|x = 0) <
fy(c+ b|x =1) holds for all values of c. This can be written as

fy(clx =0)
file+blx=1) =~

Under normality, the inequality becomes

1 c IJ«+£C
) ()
fi(clx=0) _ o \o 1—p?
fyle+blx=1) 1 c+b—B 1+,U«+£(C+b—.8)
o )
o o 1—p?

,LL—I—BC
(%)
1—p?
1+pu+lecrb—p
o(—f=—)
1—p?

Now assume that p > 0 and consider the limit as ¢ — oco. If b > B, the first term in the
product increases to oo, while the second term converges to 1. This contradicts the in-
equality, and we conclude that b < 8. Hence B is the upper endpoint of B.

When p < 0, we consider the limit as ¢ — —oo and conclude that b > 8. Hence B is the
lower endpoint of B.

Finally, when p = 0, the inequality becomes

D(u)
O(1+ )

for all values of c. This can only be true if b= 8 and B is point-identified.
This completes the proof. Q.E.D.

<1.

=exp((b— B)c+ (b — B)*/207)

(b B)e < —log( )— (b— B2
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PROOF OF PROPOSITION 2:

Assumption 1. The distribution of v given & = ¢; stochastically dominates the distribu-
tion of v given ¢ = ¢, if ¢; > ¢,.

Assumption 2. The density of ¢ has sufficiently thin tails that for a > 0, f(¢)/f(c+a) —
oo as ¢ — oo and for a < 0, f(c¢)/f(c+ a) — oo as ¢ - —oo.

Recall that

fi(clx) = f(c)P(v > —x|y* =¢)
= f.(c—xB)P(v > —x|le =c— xPB).

Now consider a b in the identified region B. For that b, the inequality f,(c|x =0) <
fy(c+ blx =1) holds for all values of c. In other words

fy(clx =0) fe(©)P(w>0le=0c)

— <1

filc+blx=1) fuc+b—BPw>—-lle=c+b—B) ~

Suppose that b > 8. Then

P(v>0le=c) P(v>0le=c)
> .
Pv>—-lle=c+b—B) 1

The right hand side is increasing in ¢ by Assumption 1. Hence it is bounded from below
by some positive constant, k. Therefore

fi(clx=0) k fe(0)
filc+blx=1)" " fuc+b-p)’

where the ratio on the right hand side increases to oo as ¢ goes to co. This contradicts the
inequality, and we conclude that no b in B can be greater than the true 8. Hence B is the
upper endpoint of B.

Now consider the case where the distribution of v given ¢ = ¢; stochastically dominates
the distribution of » given & = ¢, if ¢; < ¢,. Suppose that b < 8. Then again

Plv>0le=c)
Pv>—-lle=c+b—pB)

>Pv>0le=c)>Py>0e=0)

for all ¢ < 0. Therefore

Klex=0) . f(0)
fle+blx=1) " f(c+b—p)
for ¢ < 0. Taking the limit as ¢ — —oo brings the right hand side above 1, and we conclude

that a b for which b < B cannot belong to the set B. Hence B is the lower endpoint of B.
Finally, when ¢ and v are independent, the inequality defining B is

fg(c)P(v >0le =c) _ fg(c)P(v > 0) <1
filc+b—P)Pw>—1lle=c+b—B) fAc+b—BP¥>-1)" "

Taking the limit as ¢ — —oo generates a contradiction when b < 8 and taking the limit as
¢ — oo generates a contradiction when b > B. Therefore B ={}.
This completes the proof. Q.E.D.
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PROOF OF PROPOSITION 3: First consider case (i) (with positive selection). The identi-
fied set can be written as

B={beR: f.(c+xb|&) < fy.(c+xb|&)

for all values of ¢ and &; < &, in the support of x}

= ﬂ [beR: fi(c+ &blE) < fyu(c+ &DbIE) for all values of ¢}
&1<é

= ﬂ {beR: fi_gpr(clé) < frgpn(c + (& — €)D|E,) for all values of c}.
&1<6

Now consider one of the sets on the right hand side above. By Proposition 2, the upper
limit of (&, — &1)b will be (&, — &) B. This implies that the upper limit of all the sets in the
intersection above is the true 8. Hence, the upper limit on the intersection is .

The proofs of cases (ii) and (iii) are similar. Q.E.D.

APPENDIX B: DATA DETAILS

This analysis utilizes the Merged Outgoing Rotation Groups (MORG) files of the Cur-
rent Population Survey (CPS), which were prepared by the National Bureau of Economic
Research (NBER). Following Mora (2008), we restrict our sample to non-Hispanic whites
and Mexican-Americans between the ages of 25 and 62 (inclusive) who live in Arizona,
California, New Mexico, or Texas. We further limit our analysis to those who have at least
one parent born in the United States (i.e., third-generation Americans). We also drop the
top 1.67% of earners in each year’s income distribution from our analysis, and we mul-
tiply top-coded earnings by 1.33. Finally, in our wage samples, we exclude self-employed
workers, as well as individuals who report that they are working but do not report either
hours worked or earnings.

The variables are the following:

e Log hourly wage: Calculated by taking the natural log of an individual’s weekly
earnings divided by his usual hours worked, adjusted for inflation.

e Veteran status: Indicator variable that equals 1 if an individual ever reported serv-
ing in the U.S. military and 0 otherwise.

e Married: Indicator variable that equals 1 if an individual reports that she or he is
either (i) a married civilian with spouse present, (ii) a married Armed Forces member
with spouse present, or (iii) married with spouse absent or separated, and 0 otherwise.

e Experience: For individuals who have completed at least seventh grade, their labor
market experience is defined as their age (in single years) minus their education-years
minus 6. Individuals whose educational attainment is less than seventh grade are assigned
an experience level equal to their age minus 13.

e Education-years: Following Mora, we assign education-years based on the level of
education attainment reported in the data as follows:

— Less than 1st grade = 0 years of education

— 1st-4th grade = 2.5 years of education

— 5th or 6th grade = 5.5 years of education

— 7th or 8th grade = 7.5 years of education

— 9th = 9 years of education

— 10th = 10 years of education
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— 11th = 11 years of education

12th grade (no diploma) = 12 years of education

— High school graduate, diploma, or GED = 12 years of education

Some college but no degree = 13.5 years of education

Associate’s degree—occupational/vocational = 14 years of education

— Associate’s degree—academic program = 14 years of education

Bachelor’s degree (i.e., BA, AB, BS) = 16.5 years of education

Master’s degree (i.e., MA, MS, MEng, MSW, MBA) = 18 years of education
Professional school degree (i.e., MD, DDS, DVM, LLB, JD) = 18 years of education
Doctorate degree (i.e., PhD, EdD) = 20 years of education.
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