
Temporality in Data Science Education:
Early Results From a Grounded Theory Study
of an NSF-Funded CyberTraining Workshop?

Elliott Hauser1[0000−0002−2547−0952] and
Will Sutherland2[0000−0002−3731−3129]

1 The University of North Carolina at Chapel Hill, Chapel Hill NC, USA
eah13@email.unc.edu

2 University of Washington, Seattle WA, USA willsk88@uw.edu

Abstract. Interest in data science, especially within the context of grad-
uate education, is exploding. In this study we present initial results from
an ongoing qualitative study of an interdisciplinary cyberinfrastructure-
focused NSF-funded graduate data science education workshop hosted
at an iSchool in the US. The complexity of the workshop curriculum, the
participants’ and instructors’ disparate disciplinary backgrounds, and
the technical tools employed are particularly suited to qualitative meth-
ods which can synthesize all of these aspects from rich observational,
ethnographic, and trace data collected as part of the authors’ role on
the grant’s qualitative evaluation team. The success of the workshop in
equipping participants to do reproducible computational science was in
part due to the successful acculturation process, whereby participants
comprehended, altered, and enacted new norms amongst themselves.
At the same time, we observed potential challenges for data science in-
struction resulting from the rhetorical framing of the technologies as
inescapably new. This language, which mirrors that of a successful grant
proposal, tends to obscure the deeply embedded and contingent history
of the command-line technologies required to preform computational sci-
ence, many of which are decades old. We conclude by describing our on-
going work, future theoretical sampling plans from this and future data,
and the contributions that our findings can provide to graduate data
science curriculum development and pedagogy.

Keywords: Data science education · Temporality · Grounded theory.

1 Introduction

Data science education is a pressing concern for funding agencies, universities
around the world, and members of the iSchools caucus. Recent work has explored
the role that iSchools might play in data science education, both as a mechanism
for modernizing the iSchool curriculum and a form of university service [9]. Data

? This work was partially supported by National Science Foundation grant 1730390.



2 Hauser and Sutherland

science is commonly presented as a ‘cross-cutting’ field which can be applied to
any ‘domain’ [13]. In this way it is similar to many of the fields that proceeded it,
such as statistics or, most pertinently, the so-called ‘metadiscipline’ of informa-
tion science [3]. As such, the iSchools and the broad fields of information studies
have much to bring to the initiatives, funded research, and curriculum updates.

The iSchools are particularly well-suited to contribute a socially informed
and yet technically rigorous perspective to data science education. While some
recent work has sought to clarify the role that iSchools might play in data science
education [9], more work is clearly needed. Other disciplines are bringing their
disciplinary norms and perspectives to bear upon this problem [6], and it is
critical that the information fields do so as well so that we remain full partners
in the transformations under way. While some of these contributions should
come from applications of existing literature or lessons learned from analogous
transitions in the field’s past, there is still much that is unique to the field of
data science that we don’t fully understand.

The present study is intended as a contribution in the latter vein. Our broader
study applies disciplinary perspectives from information studies to a qualitative
analysis of an NSF-funded data science workshop focused on cyberinfrastructure
skills at a US-based iSchool. Here we present some initial results of our ongoing
work, based on a grounded theory analysis of interview, survey, observational,
and digital trace data sources. We consider data science education a sociotechni-
cal phenomenon, where neither social or technical methods alone can adequately
explain what is observed [14]. iSchools initiatives such as the Data Science Ed-
ucation Committee seek to help define the iSchools’ role in higher education’s
data-scientific future. Studies which apply the insights of information studies
to rich data collected at the sites of ongoing efforts at transformation will be
well-positioned to help the iSchools not only find their way in this future but do
so in a manner that is consistent with the long history of holistic sociotechnical
innovation and research in the field.

2 Theoretical Methods

Given the nascence of data science methods in the sciences, we avoid applying a
ready-made frame, and instead rely on a grounded theory approach to sensitize
ourselves to the critical points of engagement emerging between data science
and scientific practice. Grounded theory has a range of different traditions, id-
ioms, and disciplinary adaptations [2]. For this work, the authors primarily rely
on Charmaz [4]. Grounded theory has a history of application in information
studies [15], and has been widely used to study both software development [11,
10, 1] and educational issues in technical and scientific education [7, 8]. Though
qualitative work commonly relies upon ethnographic observation as a primary
data source, Charmaz emphasizes that “All is Data” in grounded theory. This
study takes advantage of grounded theory’s data agnosticism to combine tradi-
tional qualitative data sources such as ethnographic observation, participatory
interaction, semi-structured interviews, and surveys with trace ethnography of



Temporality in Data Science Education 3

the extensive digital artifacts generated at the study site by both participants
and instructors [5]. While trace ethnography has traditionally applied to the
large scale data such as server logs, our application of it here applies it to small
scale but rich digital artifacts created by the participants, described in detail
in section 3. Treating these as material artifacts with specific situated histories
[12], they became essential supplementary pieces of our constant comparative
analysis of our data.

3 Study Setting & Data Collection Methods

The site of the study was a workshop aimed at instructing scientists and engi-
neers from a wide variety domains in using computational and data management
tools in their work. The workshop was held at an information school at a large
US public university, and hosted doctoral and postdoctoral participants from a
large number of institutions across the US. Instructors were professors in the
fields of information or computer science, research scientists, and research staff
from NSF-funded cyberinfrastructure projects. A summary of the participants
and some descriptive information is provided in table 1.

The workshop was designed as a two-week, intensive introduction to repro-
ducible computational science. The workshop’s class sessions lasted most of the
day each day, and breakfast and lunch were provided on-site. The first week
of the workshop consisted of class sessions, including lecture as well as signifi-
cant hands-on work. In the second week, the participants worked on a variety
of group projects, which involved applying computational methods, such as ma-
chine learning, or reproducing scientific processing pipelines (in some cases the
participants’ own).

Table 1. Instructors (n=17) and participant (n=21) career stages. All staff, including
those who did not formally teach sessions, are listed as instructors.

PhD Students Postdocs Asst. Prof Assoc. Prof Full Prof. Staff Industry

Instructors 3 – – 2 2 8 2

Participants 13 8 – – – – –

3.1 Data Collection, Analysis, and Theoretical Sampling

The study utilizes a variety of data sources and formats. Surveys, conducted after
the first and second week of the workshop, provided more broadly comparable
textual responses to the course content. Participants provided anonymous feed-
back by filling out sticky note responses identifying what went well and what did
not go well about each session, which were collected and transcribed. Direct ob-
servation was carried out as the authors participated in the workshop as mentors,



4 Hauser and Sutherland

helping participants with technical breakdowns and project work throughout the
workshop and over the intervening weekend. Informal interactions during meals
and breaks supplemented formal observation and helped develop rapport. One
of the authors taught two sessions on project collaboration tools Git and GitHub
during the workshop, by request of the organizers. In addition to the above, the
authors had access to and reviewed a large amount of digital artifacts generated
by instructors and/or participants. These include:

– Group Slack chats
– Collaborative notetaking via HackMD
– GitHub code repositories and documentation created by participants
– Instructor presentations
– Participant final presentations

Interviews were conducted in the second half of the second week of the workshop,
lasting from 20–60 minutes each. Interviews contained a structured common
core of questions and were supplemented by a changing list of topics which
had emerged from the current state of our constant comparative analysis and
theoretical sampling process. For participants, these included:

– The nature of technical difficulties encountered by the participants.
– Problems participants had conceptualizing the tools and procedures being

taught.
– The participants’ experience and history with computational tools.
– The relevance of the workshop content to problems they were facing in their

work.
– The relevance of the workshop content to their careers as researchers.

Finally, the authors completed many of the workshop activities themselves, pro-
ducing field notes from this process. Constant comparative analysis has contin-
ued with digital traces and field notes after the event, and theoretical sampling
has guided the researchers’ engagement with the voluminous amount of digital
trace data.

4 Initial Results

The initial results presented here all deal with the construction of temporality
in the workshop: where the present is situated in relation to the past, and what
value the past might have to understanding the present. These topics were chosen
for their theoretical saturation, coherence with each other, and as examples of
the insights we are seeking to generate with our work.

4.1 “Five Years Ago”: The Temporal Framing of Computational
Tools

Multiple instructors framed the importance of their subjects by emphasizing the
differences between the present and “five years ago.” A variety of tool names, usu-
ally proper nouns, were cited as evidence for this, tools that either had changed



Temporality in Data Science Education 5

scientific practice during that time or, sometimes, were invented during this time.
Rhetorically, this places the learner at the cusp of a new and exciting techno-
logical world, one which the instructor is familiar with. The names of particular
tools stood in for acquired or desired skillsets (“machine learning with Keras”,
“reproducibility with Docker”, “workflows with Snakemake”, etc.), and, on a
larger scale, the broad application or literacy with these tools established a tem-
poral framing in which a participant, or even a scientific field might be ”behind”
or ”ahead” others in adopting computational methods.

An implication of this construction is that the currently used technologies
will themselves be obsolete five years hence, an implication conspiratorially ac-
knowledged by Instructor 10: “of course, no one wants to think about that the
technologies we’re learning today will be obsolete in five years’ time, but that’s
another story.” This implication is held up as justification for the need for con-
stant training, and perhaps to make learners glad that they are getting caught
up now. Participant 3 described his motivation for attending the workshop as,
“I think I fell back a bit so I need to keep up and learn these new technologies”.
This sea of constant change is presented as an easy-to-deny but ultimately un-
deniable fact, and one that will allow learners to separate themselves from their
peers and maintain their professional relevance.3

4.2 The Obscured Past

When the workshop participants sat down to learn these cutting edge computa-
tional methods, they immediately stumbled upon an array of older, prerequisite
technologies. In order to learn cloud systems participants had to struggle with
accessing remote machines using SSH, and editing files with command line ed-
itors like nano or vim. Furthermore, where participants were able to quickly
understand the tools being presented, it was often because they had encoun-
tered older technologies that were analogous in some way. Some participants
reported picking up the concept of containers more easily, for instance, because
of their prior experience with virtual machines.

These encounters with invisible old technologies highlighted a disconnect in
the narrative of 5-year technological churn. That narrative obscured the fact
that many, if not most, of the technologies, operating systems, platforms, and
protocols used during the workshop were comparatively ancient. Command line
utilities like ssh, vi, and bash have existed for decades and have a deep history.
Version control and social collaboration site GitHub, cited by many participants
as one of the most revolutionary tools encountered during the workshop, was
founded in 2007 as an easier way to host git repositories. Open source version
control software git, first developed in 2005 by Linux inventor Linus Torvalds,

3 Professional relevance in this context is not limited to academic science. A major
theme we will address in future work is the role and involvement of industry in
scientific training. Genomics researchers we talked to, for instance, noted that many
of their peers completed their doctorate and went to work for, for instance, social
media or finance companies.



6 Hauser and Sutherland

uses the Vim command-line text editor by default. Vim was first released in
1991.4 Git and GitHub both make use of SSH (the binary program and the
file transfer protocol), first released in 1995. The historical contingencies and
mutual dependencies of these technologies extend in all directions. We cannot
give a complete account of them here but rather seek to place the notion of “five
years ago” into the context that it helps obscure. Five years hence, it is very
likely that GitHub, git, Vim, and SSH will all still be in use. The technologies
developed in this span will most likely be as deeply imbricated with current-day
technologies as each of these is with the then-current technologies at the time of
its initial development.

4.3 “Freezing” the Past: Versions, Tags, and Names

The complex relationship with the past informs the nexus of innovation and
preservation constituted by practices of unambiguous naming in software devel-
opment. Software is deeply embedded within a complex network of historically
contingent binaries, programming languages, protocols, interfaces, and idioms.
And yet there is immense pressure to collapse this complexity into comprehen-
sible concepts, like “deep learning,” “cloud,” “container,” or “workflow”. This
pressure is in one respect cognitive, making ‘hooks’ for understanding. In an-
other respect it is a commodification, an implied equivalence that allows this
cloud platform to be substituted for that one, this container to be equivalent
from that one (provided they were built from the same image), and this work-
flow to generate the same results. Technological labels such as Python, Docker,
or Ubuntu encapsulate a range of potential versions of their type: Python 3.7,
Ubuntu 14.04 LTS, etc. They allow someone to say “I can code Python” or “I
know Docker” even as the precise referent of these statements changes over time,
sometimes markedly.5 The version name, the commit, and the tag play dual roles
in this process, marking innovation and enabling preservation. Version control
technology marks a potential boundary between cultures which seek to innovate,
those that seek to preserve, and those that are negotiating the relative value of
each.

4.4 Honoring Legacy Code: Resisting Invisibility

The constructions of temporality we observed were not univocal, or even nec-
essarily consistent. Participants and instructors also utilized constructions of

4 Vim was a clone of and improvement on vi, first released in 1976 as a visual mode
improvement on the ex line editor program for UNIX systems. Vim itself was based
upon the 1988 C code of an Amiga port of STEVIE (ST Editor for vi Enthusiasts),
a 1987 vi clone for the Atari ST. Development of Vim has been near-constant since
the 1990s, and new versions are released every few months.

5 An example of this is the discontinuities between Python 2 and 3, which played a
role in the workshop as a Participant 7 updated his old processing pipeline from
Python 2 to Python 3 as part of the workshop’s project phase.



Temporality in Data Science Education 7

temporality that placed their work in dialog with technologies and computa-
tional artifacts from the past. In many cases these constructions emphasized
the scientific relevance of work completed in the past. Instructor 3 framed her
lecture around a story that many participants could relate to: when she started
her PhD, she inherited code from an outgoing student and then spent almost
a year trying to get it working, before being able to get started on any “real”
science. The point of her framing was to help stoke participants’ interest in the
principles of reproducibility, and it was successful in doing so. During this lecture
we learned that, in addition to the instructor, two other participants had used
code written in FORTRAN 77 that was critical to their research. FORTRAN
77 was finalized in 1978 and was heavily used in scientific research for decades,
but obscure and rarely used today.6 This instructor defined “legacy code” as old
software that does its job well but is hard to run on modern computers. This
is a non-idiomatic usage of a term originally from software engineering. Legacy
code in the software industry is any old software that is difficult to work with,
prone to breakage, and expensive to maintain. It remains merely because it is
too expensive or impractical to replace it with something better. For Instructor
3, legacy code represented something deserving of respect: a valuable, ‘validated’
computational artifact, a literal legacy left to the field by prior researchers. The
history it represents is a connection with disciplinary expertise and scientific
values.

5 Discussion

The construction of temporality in the workshop we observed placed the partic-
ipants at the culmination of the past five years of development, and situated the
course content as the cusp of innovation in scientific methodology. While this
may be an appealing rhetorical framing for funding agencies, deans, and other
units of the university, when applied too forcefully it can obscure the deeply
historical and embedded nature of the command-line tools used in data science.

We observed participants encounter and successfully utilize many kinds of
software tools for the first time. Some, like Singularity, were recently developed,
while others, like Git, vi, SSH, or bash, were decades old. All of the software
used existing protocols, libraries, conventions, and data formats in ways that
were not novel and many activities would have been technically feasible five
years ago. What this suggests to us is that computational tools do not travel
alone. They embody a history of technological accretion, contain an array of lit-
eral and figurative dependencies, and embed practices which give them scientific
meaning and value. This has strong implications for how researchers learn data
science and scientific software development, but also for the changes that might
emerge in various disciplines as computational methods are adopted. The ne-
gotiated temporality we observed in our workshop, simultaneously emphasizing

6 FORTRAN stands for Formula Translator and was intended for easily translating
mathematical formulas, which many scientists were familiar with, into compiled
machine code, which they were not.



8 Hauser and Sutherland

novelty and mobilizing the past to inform the present, is perhaps a microcosm of
larger processes that are playing out in all disciplines which must contend with
the adoption and integration of computational methods into their practices and
norms.

Our findings show this dynamic at work for participants and instructors alike.
On the one hand they were committed to the new cutting edge methods of data
science which are redefining their work. On the other hand they were committed
to the meticulous preservation activities of reproducibility, through which they
work to construct continuity with the past. These combined as a motivation to
use tools for computational reproducibility, as a way of making their present
work valuable to a hypothetical future.

6 Future Work

The authors continue to study data science workshops as site to further develop
this work. More broadly, though, the authors would like to expand out meth-
ods to include other data science education formats. Many data science cur-
riculum initiatives are underway, including semester-length NSF CyberTraining
programs at several institutions in the US. The authors hope to select one or
more of these longer format classes as a future site. The less intensive data col-
lection schedule should allow for a more thorough constant comparative analysis
than the opportunistic short-term access utilized in this study can provide.

As data science becomes integrated more completely into curricula at iSchools
and beyond, shaping what happens in the classroom and its effects upon subse-
quent research will become all the more important. The authors hope to employ
insights from what is working at their study sites to the semester-length gradu-
ate data science curriculum at an iSchool. The resulting work will to contribute
to the ongoing conversation about the role the iSchools can plan in the future
of data science education.

References

1. Adolph, S., Hall, W., Kruchten, P.: Using grounded theory to study the experience
of software development. Empirical Software Engineer 16(4), 487–513 (Jan 2011)

2. Apramian, T., Cristancho, S., Watling, C., Lingard, L.: (Re)Grounding grounded
theory: a close reading of theory in four schools. Qualitative research: QR 17(4),
359–376 (Oct 2016)

3. Bates, M.J.: The invisible substrate of information science. Journal of the American
Society for Information Science 50(12), 1043–1050 (1999)

4. Charmaz, K.: Constructing Grounded Theory: A Practical Guide Trough Qualita-
tive Analysis. SAGE Publications, London, UK (2006)

5. Geiger, R.S., Ribes, D.: Trace ethnography: Following coordination through docu-
mentary practices. In: 2011 44th Hawaii International Conference on System Sci-
ences. pp. 1–10 (Jan 2011)

6. Hicks, S.C., Irizarry, R.A.: A guide to teaching data science. The American statis-
tician 72(4), 382–391 (Nov 2018)



Temporality in Data Science Education 9

7. Kampov-Polevoi, J., Hemminger, B.M.: A curricula-based comparison of biomedi-
cal and health informatics programs in the USA. Journal of the American Medical
Informatics Association: JAMIA 18(2), 195–202 (Mar 2011)

8. Kinnunen, P., Simon, B.: My program is ok – am i? computing freshmen’s expe-
riences of doing programming assignments. Computer Science Education 22(1),
1–28 (2012)

9. Ortiz-Repiso, V., Greenberg, J., Calzada-Prado, J.: A cross-institutional analysis
of data-related curricula in information science programmes: A focused look at
the ischools. Journal of Information Science and Engineering 44(6), 768–784 (Dec
2018)

10. Pang, A., Anslow, C., Noble, J.: What programming languages do developers use?
a theory of static vs dynamic language choice. In: 2018 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). pp. 239–247 (Oct 2018)

11. Prechelt, L., Schmeisky, H., Zieris, F.: Quality experience: A grounded theory
of successful agile projects without dedicated testers. In: 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). pp. 1017–1027 (May
2016)

12. Ribes, D.: Materiality methodology, and some tricks of the trade in the study
of data and specimens. In: Vertesi, J., Ribes, D. (eds.) digitalSTS, pp. 43–60.
Princeton University Press, Princeton, NJ (2019)

13. Ribes, D., Hoffman, A.S., Slota, S.C., Bowker, G.C.: The logic of domains. Social
studies of science 49(3), 281–309 (Jun 2019)

14. Sawyer, S., Jarrahi, M.: Sociotechnical approaches to the study of information
systems. In: Topi, H., Tucker, A. (eds.) Computing Handbook, Third Edition,
vol. 19, pp. 5–1–5–27. Chapman and Hall/CRC (May 2014)

15. Star, S.L.: Living grounded theory: Cognitive and emotional forms of pragmatism.
In: Bowker, G.C., Timmermans, S., Clarke, A.E., Balka, E. (eds.) Boundary Ob-
jects and Beyond: Working with Leigh Star, pp. 121–142. MIT Press, Cambridge
(2015)


