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Abstract

This paper introduces measures for how each moment contributes to the precision of param-

eter estimates in GMM settings. For example, one of the measures asks what would happen

to the variance of the parameter estimates if a particular moment was dropped from the

estimation. The measures are all easy to compute. We illustrate the usefulness of the mea-

sures through two simple examples as well as an application to a model of joint retirement

planning of couples. We estimate the model using the UK-BHPS, and we find evidence of

complementarities in leisure. Our sensitivity measures illustrate that the estimate of the

complementarity is primarily informed by the distribution of differences in planned retire-

ment dates. The estimated econometric model can be interpreted as a bivariate ordered

choice model that allows for simultaneity. This makes the model potentially useful in other

applications.
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1 Introduction

Indirect inference and other nonlinear GMM estimators are used extensively in empirical re-

search. These estimators are, however, sometimes seen as black boxes. It can be difficult to

understand exactly what features of the data are informative about which parameters, and how

sensitive parameter estimates are to moments included in the objective function.

In this paper, we provide simple and easy-to-compute measures that can indicate how altering

the moments used in estimation affects the precision of parameter estimates. Informally, we think

of these as measures of how informative each moment is about a particular parameter. More

precisely, we provide measures of the effect on asymptotic standard errors from i) a marginal

increase in the noise associated with a moment, ii) completely removing a (set of) moments

from estimation, and iii) a marginal increase in the weight put on a moment.

The measures are derived from the asymptotic distribution of the class of GMM-type es-

timators considered here and are, for the most part, based on derivatives of the asymptotic

covariance matrix. The measures are almost costless to calculate because most of the required

quantities are already constructed when calculating asymptotic standard errors. Furthermore,

the measures have straightforward interpretations if scaled in a meaningful way.

There is a growing literature investigating sensitivity of estimators in economics. Recently,

for example, Andrews, Gentzkow and Shapiro (2017) proposed a measure to inform researchers

on the sensitivity of the asymptotic bias in estimators to misspecification of moments included

in the estimation function. We note that their measure is also related to the change in the

asymptotic variance from a marginal change in the included moments, which inspired our pro-

posed alternative measures. While we focus on the precision of the parameter estimates, more

recently Armstrong and Kolesár (2018) and Bonhomme and Weidner (2018) have also studied

local misspecification. Christensen and Connault (2019) studied global misspecification.

We illustrate the applicability of our measures through two simple examples and an empirical

application. The two examples are a binary outcome probit model and a proportional hazards

Weibull duration model with time-varying covariates. The application is a simple structural

model of joint retirement planning of dual-earner households. The model is founded in utility

maximization with household bargaining, but can also be interpreted as a bivariate ordered

choice model that allows for simultaneity. The parameters of the model are most easily estimated
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by indirect inference, but the complexity of the model makes it difficult to understand the link

between the data and the parameter estimates.

While a growing empirical literature has established that dual earner households tend to

retire simultaneously or in quick succession in age,1 the empirical evidence of joint retirement

planning of couples is much more scarce and with ambiguous findings.2 We contribute to this

literature by estimating a structural model of dual-earner retirement planning using indirect

inference and prospective retirement planning questions in the British Household Panel Survey

(BHPS). Our estimation results support the notion of leisure complementarities in retirement.

Our proposed sensitivity measures confirm the intuition that the parameter estimate measuring

leisure complementarities in the model is sensitive to the distribution of the difference in the

year of planned retirement between household members.

The remaining paper is organized as follows. In Section 2, we present the sensitivity measures

and show examples of their use in Section 3. In Section 4, we apply our measures to a novel

model of dual earner retirement planning before concluding with final remarks in Section 5.

2 Framework and Sensitivity Measures

Indirect inference and other nonlinear GMM estimators are sometimes seen as black boxes where

it can be difficult to understand exactly what features of the data are informative about which

parameters. In this section, we review and introduce a number of measures that are meant to

provide information about this.

To fix ideas, consider a set of moment conditions E [f (xi, θ0)] = 0, where xi is data for

observation i and it is assumed that this defines a unique θ0. The generalized method of moments

(GMM) estimator of θ0 is θ̂ = arg minθ
(

1
n

∑n
i=1 f (xi, θ)

)′
Wn

(
1
n

∑n
i=1 f (xi, θ)

)
, where Wn is a

symmetric, positive definite matrix. While some of the measures below also apply to just-

identified models, we focus here on over-identified models where the number of moments are

larger than the number of parameters in θ, and the weighting matrix thus plays a role.

1See e.g. Hurd (1990); Blau (1998); Gustman and Steinmeier (2000); Gustman and Steinmeier (2004); Coile
(2004); An, Christensen and Gupta (2004); Jia (2005); Blau and Gilleskie (2006); van der Klaauw and Wolpin
(2008); Banks, Blundell and Casanova (2010); Casanova (2010) and Honoré and de Paula (2018).

2See Pienta and Hayward (2002); Moen, Huang, Plassmann and Dentinger (2006); and de Grip, Fouarge and
Montizaan (2013).
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Subject to the standard regularity conditions, the derivation of the asymptotic distribution

of θ̂ gives

θ̂ = θ0 −
(
G′WG

)−1
G′W

(
1

n

n∑
i=1

f (xi, θ0)

)
+ op

(
n−1/2

)
, (1)

where G = E
[
∂f(xi,θ0)

∂θ

]
and W is the limit of Wn. See Hansen (1982). The limiting distribution

of the GMM estimator is
√
n
(
θ̂ − θ0

)
d−→ N (0,Σ) ,

where

Σ =
(
G′WG

)−1
G′WSWG

(
G′WG

)−1

and S = V [f (xi, θ0)] under random sampling. If we use the optimal weighting matrix, W = S−1,

the asymptotic covariance collapses to

Σopt = (G′S−1G)−1.

Intuitively, when there is little sampling variability in the moment functions, f , S will be small.

G is larger if the moment condition is more sensitive to perturbations in the parameter. Both

of these contribute to the precision of the estimates as the proposed measures highlight.

Andrews, Gentzkow and Shapiro (2017) proposed the sensitivity measure

M1 = −(G′WG)−1G′W.

It is clear from (1) that M1 provides the mapping from moment misspecification of the type

E [f (xi, θ0)] = ρ 6= 0 into parameter biases for small ρ. Alternatively, by noting that Σ =

M1SM
′
1, M1 tells us how additional noise in each of the sample moments 1

n

∑n
i=1 f (xi, θ0)

would result in additional noise in each element of θ̂. This is what motivates our alternative

measures that address the sensitivity of estimation precision to each moment.

The proposed measures are intended to complement the measure of sensitivity to misspecifi-

cation proposed by Andrews, Gentzkow and Shapiro (2017). Like M1, our measures are matrices

where the (j, k)’th element provides an answer to how the precision of the j’th element of θ̂

depends on the k’th moment.
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Our first measure asks the hypothetical question: How much precision would we lose if the

k’th moment is subject to a little additional noise? This measure is formally defined as

M2,k ≡
∂Σopt

∂S(kk)
= Σopt(G

′S−1OkkS
−1G)Σopt,

where Okk is a matrix with 1 in the (k, k) element and zero elsewhere. This measure assumes

that the optimal weighting matrix is used and updated. Alternatively, we could ask the same

question keeping the (possibly non-optimal) weighting matrix unchanged. This measure is

M3,k ≡
∂Σ

∂S(kk)
= (G′WG)−1G′WOkkWG(G′WG)−1 = M1OkkM

′
1.

The difference between M2,k and M3,k is that the former evaluates the potential information in

each moment while the latter evaluates the information actually used in the estimation. With

efficient GMM (so W = S−1), M3 equals M2. This is also true in the just-identified case where

the number of moments equals the number of parameters to be estimated.

Related to M2,k, we could consider the change in the asymptotic variance from completely

excluding the k’th moment,

M4,k ≡ Σ̃k − Σ,

where

Σ̃k = (G′W̃kG)−1G′W̃kSW̃kG(G′W̃kG)−1

W̃k = W � (ιkι
′
k).

Here � denotes element-wise multiplication and ιk is a J × 1 vector with ones in all elements

except the k’th element, which is zero. M4,k leaves the weighting matrix on the remaining

moments unchanged after we have excluded the k’th moment.

We note that this measure assumes that the parameter vector is identified after the k’th

moment has been excluded. Specifically, (G′W̃kG) needs to have full rank. Importantly, this

means that the original model has to be over-identified in the sense that it has more moments

than parameters. In practice, G has to be estimated, and violations of the full rank assumption

will result in (Ĝ′W̃kĜ) being close to singular. Extremely large values in the estimate of M4,k
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therefore suggest that the model is not point-identified when the k’th moment is excluded. This

can happen even if the original model was over-identified.

Alternatively, one could also consider measures that adjust the weighting matrix. For exam-

ple, one could consider a measure that compares the precision of the optimal GMM estimator

that uses all moments to the optimal GMM estimator that excludes that k’th moment,

M5,k = (G′−kS
−1
−kG−k)

−1 − (G′S−1G)−1,

where G−k is the same as matrix G except that the k’th row has been removed, and S−k is S

with the k’th row and column removed. This measure also assumes that the parameter vector is

identified after the k’th moment has been excluded, and it implicitly assumes that the original

number of moment conditions exceeds the number of parameters to be estimated.

M4 and M5 can also be used to gauge the sensitivity of the estimator to a set of moments.

This is potentially useful in cases where one can group moments in some natural way. One can

then address the question of how much of the precision in an estimator would be lost if one did

not use one of the groups of moments. For example, Gayle and Shephard (2019) talks about five

sets of moments (in their online appendix), and Honoré and de Paula (2018) get their moments

from the estimation of four different auxiliary reduced form models. A reparameterization of

those reduced form models would lead to moment conditions which are (asymptotically) linear

combinations of the original moment conditions. In that case, it might be useful to construct a

measure that reflects giving zero weight to all the moments that come from a specific auxiliary

model. This approach would be application-specific, and we therefore do not pursue it in this

paper.

Our final measure addresses the question: How would the precision of our estimates change

if we slightly increased the weight put on the kth moment? This measure is formally defined as

the derivative

M6,k ≡
∂Σ

∂W (k,k)
= −(G′WG)−1(G′OkkG)Σ + (G′WG)−1G′OkkSWG(G′WG)−1

+(G′WG)−1G′WSOkkG(G′WG)−1 − Σ(G′OkkG)(G′WG)−1.

We do not think of M6,k as a measure of moment sensitivity, but rather as a measure of how
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close the chosen weighting matrix is to being optimal. M6,k will be 0 when W is the optimal

weighting matrix. It will also be 0 in the just-identified case, where the number of moments

equals the number of parameters to be estimated.

These measures are not invariant to scale of the included moments in f(·). One approach,

which we take, is to report scaled measures. Concretely, we report the sensitivity of the j’th

parameter to the k’th moment as

E(j,k)
2 = M

(j,k)
2

S(k,k)

Σ
(j,j)
opt

E(j,k)
3 = M

(j,k)
3

S(k,k)

Σ(j,j)

E(j,k)
4 = M

(j,k)
4

1

Σ(j,j)

E(j,k)
5 = M

(j,k)
5

1

Σ
(j,j)
opt

E(j,k)
6 = M

(j,k)
6

W (k,k)

Σ(j,j)
,

where M
(j,k)
2 refers to the jth diagonal element of M2,k and similarly for M

(j,k)
3 , M

(j,k)
4 , M

(j,k)
5

and M
(j,k)
6 . Note that E(j,k)

2 , E(j,k)
3 and E(j,k)

6 are elasticities whereas E(j,k)
4 and E(j,k)

5 are the

relative changes in the asymptotic variance compared to the baseline with all moments included.

3 Examples

In this section, we illustrate the use of our proposed measures through two concrete examples.

The first example is a simple binary choice probit model and the second example is a proportional

hazards duration model. The first example is chosen because it is a case where one would

have a strong prior about which moments matter. The second example, on the other hand, is

complicated enough that this is not obvious.

For both examples, we use both the optimal weighting matrix and a diagonal weighting

matrix with the inverse of the moment variances on the diagonal. We chose the latter non-

optimal weighting matrix because it is very common in empirical applications.3

3There are many examples of this. This includes Eisenhauer, Heckman and Mosso (2015) and Gayle and
Shephard (2019) to name two. The motivation stems from Altonji and Segal (1996) who show that the optimal
weighting matrix can have quite poor finite sample properties. They suggest equally weighted moments (i.e.,
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3.1 Example 1: Method of Moments Estimation of a Probit Model

We first consider a simple probit model

yi =

 0 if y∗i > 0

1 else

y∗i = β0 + β1x1,i + β2x2,i + εi,

where (x1,i, x2,i) has a bivariate normal distribution with means equal to 0, variance 1 and

correlation 0.5. εi is independent of (x1,i, x2,i) and distributed according to a standard normal.

We set β0 = β1 = β2 = 1/
√

3. This makes V [β0 + β1x1,i + β2x2,i] = 1 and P (yi = 1) = 0.66.4

We consider the asymptotic distribution of a moment-based estimator of θ0 = (β0, β1, β2)

solving

θ̂ = arg min
θ
g(θ)′Wg(θ),

where we use the six moments:

(
E[e (θ)] E[e (θ)x1] E[e (θ)x2] E[e (θ)x2

1] E[e (θ)x1x2] E[e (θ)x2
2]
)′

and ei (θ) = yi − Φ (β0 + β1x1,i + β2x2,i). In the corresponding logit model, the first three

moments correspond to the first order conditions for maximum likelihood estimation. Although

they are formally different, the logit and probit models are quite similar. We therefore expect

the first three moments to be the most informative about θ0. Moreover, we expect the first

moment to be the most important for determining β̂0, and the second and third for determining

β̂1 and β̂2, respectively.

Table 1 shows results using the optimal weighting matrix and Table 2 shows results using

the diagonal weighting matrix with the inverse of the moment variances on the diagonal.5 We

think of the latter as a practical alternative to the efficient weighting matrix.

It is clear from Table 1 that the first three moments are indeed the most informative about

W = I) as an alternative. Of course, using equal weights will not be invariant to changes in units (or other
rescaling), which explains the practice we have adopted.

4We also supply Python code to illustrate our approach.

5We illustrate the proposed sensitivity measures through Monte Carlo simulation of the expected values using
107 simulated observations.
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β0, β1 and β2, respectively. As mentioned, this is expected since these moments would be the

first order conditions for maximum likelihood estimation of a logit model.

The elements in the last three columns of M1 in Table 1 are much smaller than the elements

in the first three. This suggests that the optimal GMM estimator is much less sensitive to

misspecification of the last three moments than to misspecification of the first three moments.

The reason is that the first three moments get almost all the weight (in the corresponding logit

model, they would literally get all the weight). As expected, this is less pronounced in Table

2. The values of E2 in Tables 1 and 2 confirm that the efficient GMM estimator of θ0 is driven

by the first three moments.6 Adding noise to the last three moments has essentially no effect

on the precision of the optimal GMM estimator of θ0, whereas adding noise to the first three

elements can have a big effect. The values of E3 in Table 2 illustrate that the precision of the

non-optimal GMM estimator is less sensitive to noise in the last three moments (because they

get relatively less weight) and more sensitive to adding noise to the first three moments (because

they get relatively more weight).

Next, E4 and E5 suggest that leaving out, for example, the second moment would increase

the asymptotic variance of both the efficient and the inefficient GMM estimator of β1 by around

400 percent. This confirms that E[ex1] is instrumental for precise estimation of β1.

The final measure, E6 in Table 1 is 0 by construction. Since we are using the weighting

matrix that minimizes the variance of the estimator of each element of θ, the derivative of the

variance with respect to the elements of the weighting matrix must be 0. E6 in Table 2 shows

that in this case, the diagonal weighting matrix with the inverse of the moment variances on the

diagonal puts too little weight on the first three moments.

3.2 Example 2: Duration Model

The probit example in Section 3.1 was chosen because it is an example where we have good

prior intuition about which moments matter for what parameter. We now turn to an example

where this is much less obvious.

Consider a duration, T , which follows a mixed proportional hazard model with time-varying

6E2 in Tables 1 and 2 differ only because of simulation error.
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covariates and a Weibull as the baseline hazard

h (t) = αtα−1 exp
(
x′ (t)β

)
η,

where α is the scale parameter which captures duration dependence and x′ (t)β is the effect of

the time-varying explanatory variables. An example of a two-dimensional time-varying set of

explanatory variables could be

x(t) =



(x1,1, x2,1) if t < t1

(x1,2, x2,2) if t1 ≤ t ≤ t2
...

...

(x1,k, x2,k) if tk−1 ≤ t.

Finally, η captures unobserved heterogeneity. Except for moment assumptions, no assumptions

are made on the distribution of η.

We then have the survival function for T ,

S ( t|x (·) , η) = exp

(
−η
∫ t

0
αsα−1 exp

(
x′ (s)β

)
ds

)
.

Since

S (T |x (·) , η) ∼ U (0, 1) ,

we have

η

∫ T

0
αsα−1 exp

(
x′ (s)β

)
ds ∼ Exp (1) , conditional on x (·) , η

or

log

(∫ T

0
αsα−1 exp

(
x′ (s)β

)
ds

)
∼ log (Exp (1))− log (η) , conditional on x (·) , η. (2)

Here, Exp (1) denotes an exponentially distributed random variable with mean 1, and − log (Exp (1))

follows a standard Gumbel distribution with E [− log (Exp (1))] = γ ≈ 0.57721 (Euler’s con-

stant) and V [− log (Exp (1))] = π2/6.
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Equation (2) suggests moment conditions of the type

E

[(
log

(∫ T

0
αsα−1 exp

(
x′ (s)β

)
ds

)
+ γ − β0

)
ψ (x (·))

]
= 0 (3)

for functions of the covariates, ψ. Here, β0 captures the mean of − log (η) which is assumed to

be finite.

When x (t) is time-invariant, (2) becomes

log
(
Tα exp

(
x′β
))
∼ log (Exp (1))− log (η)

or

log (T ) = −x′ (β/α) + “error”.

In other words, with time-invariant covariates the moments implied by (3) do not identify (β, α),

but only β/α. It turns out that it is possible to estimate α by other methods (see, for example,

Honoré (1990)), but it is not possible to estimate (β, α) at the usual
√
n rate (see Hahn (1994)).

This makes it interesting to investigate how precision in estimation of (β, α) depends on the

various moments in (3) when x does contain time-varying covariates.

We consider a data generating process with one time-invariant and one time-varying covari-

ate. Specifically, x (s) = (x1 (s) , x2 (s)) where

x (s) =


(x1, x21) for s ≤ 1

(x1, x22) for 1 < s ≤ 2

(x1, x23) for 2 < s

with x1 = Z1, x21 = Z2, x22 = (x21 + Z3)/
√

2 and x23 = (x22 + Z4)/
√

2. Z1 through Z4 follow

standard normal distributions. The heterogeneity term, η, follows a log-normal distribution,

where the underlying normal has mean 0 and variance 1/2. η is independent of x (·). Finally,

β =
(
−1, 1/

√
2, 1/
√

2
)′

and α = 2. With this, the median duration is approximately 1.3,

approximately 38% of the durations are less than 1, and 29% greater than 2. This design

is chosen because it is a simple example with sizable unobserved heterogeneity and duration

dependence, and where we expect that the time-varying covariate might have bite. The design
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is not meant to mimic any realistic empirical example.

We again consider a moment-based estimator of θ = (β0/α, β1/α, β2/α, α) solving

θ̂ = arg min
θ
g(θ)′Wg(θ),

where we use the five moments given by (3) with ψ (x (·)) = (1, x1, x21, x22, x23).

The sensitivity measures are given in Tables 3 and 4. In this design, the derivative of the first

two moments at the true parameter values are non-zero with respect to θ0 and θ1, respectively.

The derivatives are 0 with respect to the other parameters. This implies that G becomes singular

when we exclude either of the first two moments. This explains the extreme entries for E4 and

E5 in Tables 3 and 4.

The conclusions from the remaining parts of the sensitivity measures are fairly consistent.

Most interestingly, the moments formed on the basis of the time-varying covariates contribute

to the identification of α, while the moment based on the time-invariant covariate does not.

This is exactly what the discussion above would predict. Interestingly, the first moment is also

important for α. Presumably, this is because this moment determines the estimate of the mean

of the (log of the) unobserved heterogeneity. It is well-known in the duration literature that

unobserved heterogeneity is poorly distinguished from duration dependence. As a result, we do

not consider this surprising.

4 Application: Joint Retirement Planning

In this section, we apply the proposed sensitivity measures to an extremely simple structural

model of the joint retirement planning of dual-earner couples.

4.1 Data and Institutional Setting

We use the British Household Panel Survey (BHPS), which is a completed panel of 18 waves

collected from 1991 through 2009. In waves 11 and 16 of the BHPS, each adult household

member is asked, “Even if this is some time away, at what age do you expect you will retire?”

11



We use this to measure the subjective retirement plans of each spouse.7 Based on the age at

the interview and the expected retirement age, we can calculate the expected retirement year of

each household member and use that to investigate joint retirement plans.

Besides retirement plans, we use information in the BHPS on annual labor market income,

the number of visits to the general practitioner (GP), subjective expectations about future health

status, eligibility for an employer provided pension scheme (EPP), and whether individuals save

any of their income in a private personal pension (PPP).8 Finally, we define individuals as highly

skilled if they have completed the first or second stage of tertiary education (ISCED codes 5 or

6).

We use information on households consisting of two opposite-sex household members who

are either married or cohabiting, and who meet the following sample selection criteria: i) Both

members are between 40 and 59 years old when interviewed, ii) At least one member is not

retired at the time of the interview, and iii) Retirement plans are observed in the age range 50

to 70 for at least one member not retired at the time of the interview. If a household satisfies

the criteria in both waves (11 and 16), we use both survey responses in the analysis. We refer to

each household member as husband or wife, although we also include households, where couples

are cohabiting, but not necessarily married.

The State Pension Age (SPA)

The state pension age (SPA) in the U.K. is the age where individuals become eligible to receive

state pension from the government. Individuals who have reached SPA and contributed to the

scheme for sufficiently many years are eligible to receive a weekly transfer with no means testing.

In 2009, the weekly rate was around £95. See Bozio, Crawford and Tetlow (2010), Blundell,

Meghir and Smith (2004) and Cribb, Emmerson and Tetlow (2013) for excellent descriptions of

the pension system in the U.K.

The SPA was 65 for men and 60 for women until the implementation of the Pension Act

1995. The Pension Act 1995 introduced an increase in the SPA of women born after April 6,

7The exact formulation in wave 11 is slightly different:“At what age do you expect to retire/will you consider
yourself to be retired?”

8The EPP includes both defined and contributed benefit (DB and CB) plans and we cannot distinguish between
them. Blundell, Meghir and Smith (2004) show, however, that DB plans were most common in the U.K. in this
period.
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1950. While the SPA for men was unaffected, the SPA for women was gradually increased by

one month every month (by date of birth) until the SPA for women reached 65 for cohorts born

later than (including) 1955. See Thurley and Keen (2017) for a comprehensive discussion of

the reform.9 Since this might affect individual expectations, our modelling framework explicitly

allows for an effect of the Pension Act 1995 on retirement planning.

Descriptive Statistics

Table 5 reports the descriptive statistics for the variables that we use. All statistics are based

on households in which both members are not retired at the time of the interview, which is

around 97 percent of our sample. Husbands in the estimation sample are approximately 1.5

years older than their wives, plan to retire two years later than their wives (at age 63 on

average), and the average difference in the planned retirement year is approximately 0.83 years.

This difference should be viewed in light of the fact that the SPA of men is 65, while it is

substantially lower for most women in our sample and as low as 60 for women born before 1950.

To illustrate simultaneous retirement planning, Figure 1 shows the distribution of the difference

in the planned year of retirement between husband and wife. The left panel illustrates the

unconditional distribution and the right panel conditions on the husband being at least 2 years

older than his wife. The peak around zero indicates joint retirement planning, and the mass to

the right of zero likely stems from men being older than women and women having a lower SPA.

When conditioning on the husband being at least 2 years older than his wife in the right panel,

we see a substantial mass at 0 (same planned retirement year); we now also see a substantial

mass at −2 (same planned retirement age).

Table 5 also shows that around 16 and 14 percent of men and women, respectively, are

classified as highly skilled, and we see that men tend to visit the GP much less than women.

Interestingly, however, men are more likely to expect their health to worsen in the future. The

labor income of husbands is around £25, 000 while that of the wives is on average around

£14, 000. Only around 13 percent of wives and 28 percent of husbands contribute to a private

pension (PPP), while around 47 percent of wives and 51 percent of husbands are eligible to some

9After the relevant waves in the BHPS (11 and 16) were conducted, the Pension Act 2007 further increased
the SPA for both men and women. Since the respondents were interviewed before this reform was passed (most
interviews was done no later than 2006), we abstract from this and other subsequent reforms.
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occupational retirement scheme (EPP).

4.2 A Model of Retirement Planning of Dual-Earner Households

In this section, we formulate a discrete time version of the continuous time bivariate duration

model proposed in Honoré and de Paula (2018). Specifically, we parameterize the difference

in the utility flow between being retired and working. Utility maximization then gives an

estimatable model for joint retirement planning of couples.

Consider first the husbands. We specify the difference in utility from being retired in period

t compared to working as

Uh(t, tw) = x′hβh + δh(t) + γ1{Ch(t)≥Cw(tw)} + εh,

where Ch (t) is the calendar time, tw is the retirement age of the wife, and Cw (tw) thus is the

calendar time at which the wife plans to retire. We interpret the term γ1{C(t)≥C(tw)} as a utility

externality that allows the husband to enjoy a higher utility flow from planned retirement if the

wife also plans to be retired at that time. We parameterize the planned retirement age function,

δh(t), as a linear trend plus indicator functions for t ≥ 55, t ≥ 60 and t ≥ 65. The histograms

in Figure 2 below suggest that these are empirically important. We interpret the first two as

reflecting either social norms or heaping, while the third also reflects the fact that the SPA for

men is 65.

Similarly, the difference in utility flow for the wife is

Uw(t, th) = x′wβw + δw(t) + γ1{Cw(t)≥Ch(th)} + α1{tw≥SPAw} + εw.

We again parameterize the function δw(t) as a linear trend plus indicator functions for t ≥ 55,

t ≥ 60 and t ≥ 65. The term α1{tw≥SPAw} reflects the idea that for women, there is variation in

the SPA as discussed above. This allows one to infer the effect of the SPA separately from the

dummies that reflect either heaping or institutional features (e.g., early and statutory retirement

ages) at 55, 60 and 65.

To close the model, we assume that (εh, εw) is jointly normal with mean zero and covariance

matrix Ω, where the off-diagonal element of Ω captures possibly correlated retirement preferences
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within households. We also assume that retirement is an absorbing state. When the difference in

utility from retirement compared to working is increasing in age, this is not a binding constraint

in the sense that individuals would not want to re-enter the labor market once retired.

If a husband and a wife plan to retire at ages rh and rw, their discounted individual utilities

are

Vh(rh, rw) =

Tmax∑
t=rh

ρt−agehUh(t, rw)

for a husband aged ageh and

Vw(rw, rh) =

Tmax∑
t=rw

ρt−agewUw(t, rh),

for a wife aged agew. Finally, the optimal retirement plan for a household is determined jointly

as

(Rh, Rw) = arg max
rh,rw

A(Vh(rh, rw), Vw(rw, rh)),

where A(·, ·) is a household aggregator. For the estimation, we choose A(Vh, Vw) = Vh + λVw

as in the Nash bargaining setting from Honoré and de Paula (2018) or, more generally, the

collective model framework surveyed in Browning, Chiappori and Weiss (2014).

It is clear that two scale normalizations are necessary in order to estimate the model. First,

the scale of A cannot be identified and we therefore normalize the variance of εh to be σ2
h = 1.

Secondly, the only effect of λ is to re-scale all the parameters in Vw. We therefore normalize

λ = 1. The model is thus in effect unitary.

Our parameterization is inspired by the ordered probit model. Consider the husbands. If

γ = 0 (such that there is no utility externality) and δh is increasing, then the utility maximation

will lead to planned retirement the first time x′hβh + δh(t) + εh > 0. In other words, the chosen

planned retirement age satisfies

−δh(Rh) < x′hβh + εh ≤ −δh(Rh − 1),

which is exactly the ordered probit model. In that sense, the proposed model is a generalization

of the ordered probit model to a bivariate case with simultaneity between the two outcomes.
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4.3 Indirect Inference Estimation

We estimate the model’s parameter vector θ = (γ, α, βh, βw, δh, δw, σ
2
w, σhw) through indirect

inference10,

θ̂ = arg min
θ∈Θ

g(θ)′Wg(θ).

The weighting matrix, W , is diagonal with the inverse of the variances of the moments in the

diagonal. g(θ) is a K × 1 vector of differences between statistics/moments in the data and

identical moments based on simulated data.

For each couple i, we simulate synthetic retirement plans by drawing Ssim vectors of taste

shocks εi = {ε(s)
i,h, ε

(s)
i,w}

Ssim
s=1 from the joint normal distribution and calculate the value of all

combinations of retirement ages

V
(s)
i (rh, rw) = Vh(rh, rw|xi, ε

(s)
i,h, ε

(s)
i,w) + λVw(rw, rh|xi, ε

(s)
i,h, ε

(s)
i,w),

where the individual values are calculated as in (??) and (??). We then find the simulated

retirement ages that maximize utility,

(R
(s)
i,h(θ), R

(s)
i,w(θ)) = arg max

rh,rw
V

(s)
i (rh, rw)

for a given value of θ.

To estimate the model parameters, we use four sets of auxiliary models/moments with a

total of K = 52 elements in g(θ). We describe in detail the construction of these moments in

the supplemental material and only list them here:

1. OLS coefficients from individual regressions of the planned retirement age on own and

spousal covariates xi,h and xi,w together with indicators for the wife’s birth cohort 1{1950 <

cohortw,i ≤ 1954} and 1{1955 ≤ cohortw,i}.

2. The share of individuals planning to retire at ages 50-54, 55, 56-59, 60, 61-64, and 65, split

by gender.

10See, for example, Smith (1993), and Gouriéroux, Monfort and Renault (1993). While we use the Wald
criterion function, indirect inference can also be performed using other metrics (for example, the likelihood ratio
or Lagrange multiplier). See Smith (2008).
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3. The covariance matrix of residuals from the regression in bullet 1 above for each household

member.

4. The share of couples with retirement plans such that i) the wife plans to retire 1–2 years

before her husband, ii) the husband plans to retire 1–2 years before his wife, or iii) the

couple plan to retire in the same year.

The first set of moments are primarily included to help estimate βh, βw, and α in the utility

function. The second set of moments are included primarily to help estimate the linear age trend

and age dummies in δh and δw. The third set of moments are primarily included to estimate the

covariance of the preference shocks for husband and wife, Ω. Recall that we normalize σ2
h = 1

and the remaining parameters in Ω are thus σ2
w and σhw. The final set of moments are included

to estimate the value of joint leisure, γ. We will use our proposed sensitivity measures below to

investigate these claims in a more systematic way.

4.4 Empirical Results

We use the BHPS data discussed above to estimate the model of joint retirement planning of

couples. We use the same moments as above and simulate Ssim = 2000 draws when approxi-

mating the expected moments. Table 6 reports the estimation results. We find a positive value

of coordination of around γ ≈ 0.026, around two to four times as large as the marginal utility

from additional labor income of £1, 000 and significant at the 5% level (p-value of 0.02).

Overall, the remaining statistically significant parameter estimates have the expected signs.

High skilled individuals value retirement less. Less healthy people value retirement more, and

having some form of pension savings increase the value of retirement. Having an employer

provided pension (EPS) especially increases the utility from retirement compared to working for

husbands. Perhaps surprisingly, we find that higher earning women value retirement more but

this could proxy for higher wealth, which could lead to a higher propensity to retire. All spousal

variables seem to matter less and are not statistically significant at most common significance

levels. Interestingly, we estimate a small positive and insignificant increase in the expected

retirement age of women in response to an increased SPA. This goes in line with other studies

finding a relatively low degree of awareness of the reform (Crawford and Tetlow (2010)).
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Figure 2 shows the histogram of planned retirement ages for women and men. We see that

the model does a quite good job fitting the empirical distribution. Likewise, Figure 3 shows

the empirical and predicted distribution of retirement year differences between couples. The

predicted distribution matches the empirical one well, although there are small deviations.

Table 7 show the proposed sensitivity measures together with the one proposed by Andrews,

Gentzkow and Shapiro (2017). We only report the measures for the parameter of interest

here: The value of joint leisure, γ. All reported measures are scaled as discussed in Section 2.

The measure proposed by Andrews, Gentzkow and Shapiro (2017) is scaled such that E(j,k)
1 =

M
(j,k)
1

√
S(k,k).

Clearly, the moments which γ is most sensitive to are related to simultaneous retirement. In

particular, we see from E4 and E5 that leaving out the moment “the share planning to retire the

same year” (moment 52) when estimating the model would increase the asymptotic variance of

γ by a factor of 8. This confirms the intuition that this moment is extremely informative about

the value of joint leisure. The share retiring within 2 years difference also seems important.

In particular, the correlation between the OLS regression residuals are important. This is also

intuitive since this moment captures a combination of correlated shocks and preferences for joint

leisure.

5 Concluding Remarks

Structural econometric models are often estimated by matching moments that depend on the

parameters and on the data in a highly nonlinear way. This can make it difficult to develop

intuition for which moments of the data are informative about which parameter. In this paper,

we have proposed a number of very simple sensitivity measures that are meant to shed light on

this.

We have illustrated our measures in two artificial examples. The first is a simple probit

model and the second a mixed proportional hazard model with time-varying covariates. The

first illustrates that the proposed measures are reasonable in a setting where the answer is rather

obvious ex ante. The second is chosen because it illustrates how the measures can be used to

gain insights, which are not so obvious.

We also illustrated the measures in a simple structural econometric model of household retire-
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ment planning. This application is of independent interest because it highlights the importance

of modelling wives’ and husbands’ retirement decisions jointly.

The econometric model for retirement that we develop can be interpreted as a bivariate

ordered choice model with simultaneity. Specifically, if the “utility externality” parameter is 0,

then the model that we estimate simplifies to a bivariate ordered probit model. This may make

it tractable in other applications.
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Table 1: Sensitivity Measures, Probit Model, Optimal Weight-
ing

Moment

E [e] E [ex1] E [ex2] E
[
ex2

1

]
E [ex1x2] E

[
ex2

2

]
M1

β0 4.261 1.475 1.469 0.192 0.378 0.184
β1 1.190 6.570 −1.286 0.223 0.141 −0.069
β1 1.193 −1.286 6.567 −0.073 0.152 0.214

E2

β0 1.104 0.088 0.087 0.003 0.004 0.003
β1 0.060 1.207 0.046 0.003 0.000 0.000
β1 0.060 0.046 1.205 0.000 0.000 0.003

E3

β0 1.104 0.088 0.087 0.003 0.004 0.003
β1 0.060 1.207 0.046 0.003 0.000 0.000
β1 0.060 0.046 1.205 0.000 0.000 0.003

E4

β0 1.206 0.292 0.291 0.005 0.003 0.005
β1 0.065 4.014 0.155 0.004 0.006 0.000
β1 0.065 0.153 4.034 0.000 0.006 0.004

E5

β0 1.203 0.292 0.291 0.001 0.003 0.001
β1 0.065 4.014 0.155 0.001 0.000 0.000
β1 0.065 0.153 4.034 0.000 0.000 0.001

E6

β0 0.000 0.000 0.000 0.000 0.000 0.000
β1 0.000 0.000 0.000 0.000 0.000 0.000
β1 0.000 0.000 0.000 0.000 0.000 0.000

Notes: Simulations based on 107 observations.
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Table 2: Sensitivity Measures, Probit Model, Diagonal Weighting

Moment

E [e] E [ex1] E [ex2] E
[
ex2

1

]
E [ex1x2] E

[
ex2

2

]
M1

β0 3.374 1.633 1.630 1.036 −0.681 1.035
β1 1.354 5.656 −1.185 −0.853 −1.360 0.882
β1 1.351 −1.185 5.658 0.881 −1.360 −0.851

E2

β0 1.104 0.088 0.087 0.003 0.004 0.003
β1 0.060 1.207 0.046 0.003 0.000 0.000
β1 0.060 0.046 1.205 0.000 0.000 0.003

E3

β0 0.651 0.101 0.101 0.080 0.013 0.080
β1 0.071 0.817 0.036 0.037 0.034 0.039
β1 0.070 0.036 0.817 0.039 0.034 0.037

E4

β0 1.076 0.341 0.340 −0.010 −0.011 −0.011
β1 0.042 3.783 0.116 −0.038 −0.031 −0.028
β1 0.042 0.114 3.802 −0.028 −0.032 −0.038

E5

β0 1.203 0.292 0.291 0.001 0.003 0.001
β1 0.065 4.014 0.155 0.001 0.000 0.000
β1 0.065 0.153 4.034 0.000 0.000 0.001

E6

β0 −0.101 0.002 0.002 0.040 0.017 0.041
β1 0.011 −0.142 0.002 0.044 0.048 0.037
β1 0.011 0.002 −0.142 0.037 0.048 0.044

Notes: Simulations based on 107 observations.
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Table 3: Sensitivity Measures, Weibull Model, Optimal
Weighting

Moment

E [e] E [ex1] E [ex21] E [ex22] E [ex23]

M1

β0 −0.503 0.001 3.375 −2.053 −1.934
β1 −0.000 −0.500 0.018 −0.015 −0.014
β2 −0.000 0.000 −0.228 −0.251 −0.184
α −0.019 0.009 24.478 −15.092 −14.181

E2

β0 0.028 0.000 1.282 0.474 0.421
β1 0.000 0.998 0.001 0.001 0.001
β2 0.000 0.000 0.155 0.187 0.100
α 0.000 0.000 1.299 0.494 0.436

E3

β0 0.028 0.000 1.282 0.474 0.421
β1 0.000 0.998 0.001 0.001 0.001
β2 0.000 0.000 0.155 0.187 0.100
α 0.000 0.000 1.299 0.494 0.436

E4

β0 >100∗ >100∗ 4.841 0.196 0.274
β1 0.324∗ >100∗ 0.005 0.000 0.001
β2 0.012∗ >100∗ 0.584 0.077 0.065
α 3.935∗ >100∗ 4.904 0.203 0.284

E5

β0 >100∗ >100∗ 4.841 0.196 0.274
β1 0.324∗ >100∗ 0.005 0.000 0.001
β2 0.012∗ >100∗ 0.584 0.077 0.065
α 3.935∗ >100∗ 4.904 0.203 0.284

E6

β0 0.000 −0.000 0.000 0.000 0.000
β1 −0.000 −0.000 0.000 0.000 0.000
β2 0.000 0.000 −0.000 0.000 0.000
α −0.000 −0.000 0.000 0.000 0.000

Notes: Simulations based on 107 observations.
∗

As mentioned in the text, large values of E4 and E5 suggest that
the model is not identified after the moment has been removed
from estimation.
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Table 4: Sensitivity Measures, Weibull Model, Diagonal
Weighting

Moment

E [e] E [ex1] E [ex21] E [ex22] E [ex23]

M1

β0 −0.503 0.001 3.066 −1.117 −2.679
β1 −0.000 −0.500 0.016 −0.010 −0.019
β2 −0.000 0.000 −0.234 −0.234 −0.197
α −0.021 0.009 22.219 −8.255 −19.619

E2

β0 0.028 0.000 1.282 0.474 0.421
β1 0.000 0.998 0.001 0.001 0.001
β2 0.000 0.000 0.155 0.187 0.100
α 0.000 0.000 1.299 0.494 0.436

E3

β0 0.027 0.000 1.017 0.135 0.775
β1 0.000 0.998 0.001 0.000 0.001
β2 0.000 0.000 0.162 0.163 0.115
α 0.000 0.000 1.027 0.142 0.800

E4

β0 >100∗ >100∗ 4.612 0.149 0.224
β1 0.323∗ >100∗ 0.005 0.000 0.000
β2 0.011∗ >100∗ 0.583 0.077 0.065
α 3.737∗ >100∗ 4.667 0.155 0.232

E5

β0 >100∗ >100∗ 4.841 0.196 0.274
β1 0.324∗ >100∗ 0.005 0.000 0.001
β2 0.012∗ >100∗ 0.584 0.077 0.065
α 3.935∗ >100∗ 4.904 0.203 0.284

E6

β0 0.000 −0.000 −0.049 −0.054 0.102
β1 0.000 0.000 −0.000 −0.000 0.000
β2 0.000 −0.000 0.002 −0.006 0.004
α 0.000 −0.000 −0.049 −0.056 0.105

Notes: Simulations based on 107 observations.
∗

As mentioned in the text, large values of E4 and E5 suggest
that the model is not identified after the moment has been
removed from estimation.
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Table 5: Descriptive Statistics

Mean Std. Min Max Obs.

Age, husband 49.613 5.53 40 59 1730
Age, wife 48.128 5.34 40 59 1730
Planned retirement age, husband 62.606 3.87 50 70 1730
Planned retirement age, wife 60.301 3.72 50 70 1730
Diff. in planned retirement year (husband-wife) 0.823 5.71 -20 27 1730
High skilled, husband 0.157 0.36 0 1 1730
High skilled, wife 0.139 0.35 0 1 1730
10+ GP visits, husband 0.039 0.19 0 1 1729
10+ GP visits, wife 0.080 0.27 0 1 1729
Expect worse health, husband 0.182 0.39 0 1 1641
Expect worse health, wife 0.115 0.32 0 1 1645
Labor income (£1,000), husband 25.248 17.12 0 244 1600
Labor income (£1,000), wife 13.815 10.78 0 109 1442
Private pension, husband 0.280 0.45 0 1 1730
Private pension, wife 0.134 0.34 0 1 1730
Employer pension, husband 0.514 0.50 0 1 1730
Employer pension, wife 0.466 0.50 0 1 1730

27



Table 6: Estimation Results, Indirect Inference

Husband Wife

γ Joint leisure 0.026 (0.011) 0.026 (0.011)
α SPA age − − 0.105 (0.122)

Explanatory variables (β)
High skilled −0.129 (0.100) −0.148 (0.110)
10+ GP visits 0.315 (0.291) 0.152 (0.157)
Expect worse health 0.091 (0.112) 0.001 (0.109)
Labor income (1,000£) 0.006 (0.003) 0.011 (0.005)
Has private pension (PPP) 0.194 (0.092) −0.005 (0.084)
Has employer provided pension (EPS) 0.610 (0.089) −0.044 (0.060)
Birth year (minus 1955) 0.005 (0.005) −0.005 (0.007)
Labor income (1,000£), spouse 0.005 (0.004) 0.003 (0.003)
Has private pension (PPP), spouse 0.074 (0.093) −0.005 (0.077)
Has employer provided pension (EPS), spouse 0.171 (0.076) 0.013 (0.080)

Age variables (δ)
Constant −2.413 (0.128) −1.667 (0.474)
Time trend (minus 25) 0.036 (0.004) 0.020 (0.007)
Retirement age 55 dummy 0.632 (0.068) 0.729 (0.177)
Retirement age 60 dummy 0.867 (0.038) 1.323 (0.362)
Retirement age 65 dummy 1.978 (0.078) 1.452 (0.418)

σ variance 1.000 0.917
σhw covariance 0.359 0.359

Notes: The table reports the estimated simultaneous retirement planning model using the BHPS
data using indirect inference. Asymptotic standard errors reported in brackets.
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Table 7: Sensitivity of γ

Moment E1 E2 E3 E4 E5 E6

Regression, husband
1 Constant −0.006 0.259 0.000 −0.001 0.009 0.001
2 High skilled, husband 0.075 0.041 0.024 0.270 0.216 −0.010
3 10+ GP visits, husband 0.018 0.008 0.001 0.065 0.049 −0.002
4 Expect worse health, husband −0.003 0.001 0.000 −0.008 0.009 0.000
5 Labor income, husband 0.007 0.000 0.000 −0.005 0.000 0.001
6 Has private pension, husband −0.066 0.023 0.019 0.256 0.097 −0.004
7 Has employer provided pension, husband −0.032 0.005 0.004 0.040 0.003 −0.005
8 Birth year (minus 1955), husband −0.036 0.001 0.006 −0.006 0.001 0.004
9 High skilled, wife 0.015 0.001 0.001 −0.004 0.001 0.003
10 10+ GP visits, wife −0.007 0.001 0.000 −0.002 0.001 0.002
11 Expect worse health, wife −0.005 0.005 0.000 0.001 0.004 −0.001
12 Labor income, wife −0.017 0.005 0.001 0.010 0.009 −0.001
13 Has private pension, wife 0.105 0.039 0.048 0.904 1.033 0.014
14 Has employer provided pension, wife 0.009 0.005 0.000 0.022 0.011 −0.001
15 Birth year, wife 0.003 0.003 0.000 0.001 0.000 −0.001
16 Birth year, wife in 1951–1955 −0.003 0.072 0.000 −0.002 0.030 0.002
17 Birth year, wife later than 1955 −0.005 0.130 0.000 −0.001 0.006 0.001
Regression, wife
18 Constant −0.024 0.075 0.002 −0.006 0.005 0.005
19 High skilled, husband 0.025 0.013 0.003 0.002 0.007 −0.000
20 10+ GP visits, husband 0.011 0.005 0.001 −0.002 0.004 0.002
21 Expect worse health, husband −0.005 0.007 0.000 0.000 0.004 −0.000
22 Labor income, husband −0.012 0.007 0.001 0.008 0.015 −0.001
23 Has private pension, husband 0.106 0.044 0.050 0.899 0.733 0.012
24 Has employer provided pension, husband −0.062 0.012 0.017 0.003 0.048 0.009
25 Birth year (minus 1955), husband 0.023 0.090 0.002 0.009 0.032 −0.005
26 High skilled, wife 0.064 0.015 0.018 0.053 0.054 0.003
27 10+ GP visits, wife 0.009 0.001 0.000 0.033 0.010 −0.001
28 Expect worse health, wife 0.057 0.016 0.014 0.276 0.155 0.001
29 Labor income, wife −0.017 0.007 0.001 0.028 0.025 −0.001
30 Has private pension, wife −0.060 0.014 0.016 0.755 0.337 0.003
31 Has employer provided pension, wife 0.009 0.011 0.000 0.034 0.045 −0.001
32 Birth year, wife −0.028 0.062 0.003 0.011 0.009 −0.005
33 Birth year, wife in 1951–1955 −0.013 0.039 0.001 0.003 0.013 −0.002
34 Birth year, wife later than 1955 −0.024 0.021 0.003 −0.003 0.001 0.002

Notes: The table reports the sensitivity measures of γ for the estimated joint retirement planning model.
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Table 7: Sensitivity of γ (continued)

Moment E1 E2 E3 E4 E5 E6

Retirement age, husband
35 Share at ages 50–54 0.005 0.000 0.000 0.003 0.000 −0.001
36 Share at age 55 0.030 0.000 0.004 0.036 0.000 −0.009
37 Share at ages 56–59 −0.040 0.081 0.007 0.050 0.042 −0.009
38 Share at age 60 −0.003 0.043 0.000 −0.001 0.005 0.000
39 Share at ages 61–64 0.015 0.000 0.001 0.032 0.000 −0.003
40 Share at age 65 0.005 0.027 0.000 0.002 0.004 −0.000
Retirement age, wife
41 Share at ages 50–54 0.024 0.011 0.002 0.007 0.007 −0.001
42 Share at age 55 0.010 0.067 0.000 0.007 0.019 −0.002
43 Share at ages 56–59 −0.024 0.014 0.003 −0.009 0.007 0.002
44 Share at age 60 −0.001 0.250 0.000 −0.001 0.020 0.000
45 Share at ages 61–64 0.024 0.040 0.003 0.058 0.037 −0.002
46 Share at age 65 0.006 0.082 0.000 0.004 0.018 −0.001
Simultaneous retirement
47 var(eh) −0.008 0.002 0.000 −0.004 0.000 0.001
48 var(ew) −0.005 0.076 0.000 −0.005 0.021 0.001
49 cov(eh, ew) −0.145 0.204 0.092 0.757 0.557 −0.040
50 diff [-2,-1] 0.018 0.035 0.001 0.018 0.037 −0.007
51 diff [1,2] −0.113 0.000 0.056 −0.067 0.000 0.077
52 Joint retirement 0.343 0.684 0.516 8.019 5.541 −0.030

Notes: The table reports the sensitivity measures of γ for the estimated joint retirement
planning model.
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Figure 1: Joint Retirement Planning
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Notes: Figure 1 illustrates the difference in the year of retirement between husband and wife. The peak around

zero indicates joint retirement planning. Because the SPA of women is lower from that of men for most cohorts,

it is expected that the distribution is right-tailed. The left panel illustrates the unconditional distribution and the

right panel illustrates the distribution conditional on the husband being at least 2 years older than his spouse.

Figure 2: Model Fit, Individual Retirement

Women

50 55 60 65 70
Planned retirement age

0

0.1

0.2

0.3

0.4

0.5

0.6

sh
ar

e

Men

50 55 60 65 70
Planned retirement age

0

0.1

0.2

0.3

0.4

0.5

0.6

sh
ar

e

Data
Model

31



Figure 3: Model Fit, Joint Retirement
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Online supplemental material

Definition of Moments used for Estimation

Individual OLS Moment Conditions. Let Ri,j denote the planned retirement age of mem-

ber j in household i and Xi = (1, x′i,h, x
′
i,w,1{1950 < cohortw,i ≤ 1954},1{1955 ≤ cohortw,i})′

denote the set of control variables. We include as the first set of moments

M1(θ) =
1

N

N∑
i=1

1

S

S∑
s=1

 Xie
(s)
i,h(θ)

Xie
(s)
i,w(θ)


where, for j = {h,w},

e
(s)
i,j (θ) = R

(s)
i,j (θ)−X ′iβ̂

OLS

j

where β̂
OLS

j = (X ′X)−1X ′Rj are the OLS regression coefficients using the data.

Covariance Matrix of Regression Residuals. The second set of moments are related to the

regression above. Particularly, we include as the second set of moments the simulated difference

in the moments of the error terms

M2(θ) =
1

N

N∑
i=1

1

S

S∑
s=1


e2
i,h − (e

(s)
i,h(θ))2

e2
i,w − (e

(s)
i,w(θ))2

ei,hei,w − e
(s)
i,h(θ)e

(s)
i,w(θ)


where ei,j = Ri,j −X ′iβ̂

OLS

j is the residuals from the regression using the data.

Planned Retirement Age Groups. Next, we include the share of individuals retiring in 6

particular age-groups, k = {50−54, 55, 56−59, 60, 61−64, 65}. Denote as Si,j = (di,j,1, . . . , di,j,6)′

the 6-element column vector of dummies where di,j,k is one if member j in household i is in

group k and zero otherwise. Likewise, denote S(s)
i,j (θ) as the simulated counter-part of this set

of dummies. We then include as the third set of moments,

M3(θ) =
1

N

N∑
i=1

1

S

S∑
s=1

 Si,h − S(s)
i,h (θ)

Si,w − S(s)
i,w(θ)

 .
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Simultaneous retirement. The final moments included relate to the retirement timing of

couples. Defining the retirement calendar year as Ci,m and the simulated counterpart as C(s)
i,m(θ),

the final moments are

M4(θ) =
1

N

N∑
i=1

1

S

S∑
s=1


1{Ci,h − Ci,w ∈ {−2,−1}} − 1{C(s)

i,h (θ)− C(s)
i,w(θ) ∈ {−2,−1}}

1{Ci,h − Ci,w ∈ {1, 2}} − 1{C(s)
i,h (θ)− C(s)

i,w(θ) ∈ {1, 2}}

1{Ci,h = Ci,w} − 1{C(s)
i,h (θ) = C(s)

i,w(θ)}

 .

Stacking all moments together gives

g(θ) = (M1(θ),M2(θ),M3(θ),M4(θ))′

and the estimator of θ is

θ̂ = arg min
θ∈Θ

g(θ)′Wg(θ)

where we use as weighting a matrix, W , the inverse of the bootstrapped variances of the moments

on the diagonal and zero everywhere else.

We solve the minimization problem by successively applying different minimization routines

in Matlab. We perform the sequence of estimators four times and report the estimates yielding

the lowest criteria function. For each of the four estimation runs, we start with MATLABs

particleswarm which is a “global” optimization routine using randomization to search through

the parameter space. We use 80 particles and switch to Nelder-Mead (fminsearch in MATLAB)

using the best candidates from the converged particleswarm. We use Ssim = 100 simulation

draws for this estimation. After the four sequences of these two algorithms, we increase the

number of simulation draws to Ssim = 2, 000 and do one final Nelder-Mead minimization starting

at the parameters yielding the lowest objective function over the four sequences of estimators.

We then report the parameter values that solves this final minimization.
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