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Abstract

This paper introduces measures for how each moment contributes to the precision of param-
eter estimates in GMM settings. For example, one of the measures asks what would happen
to the variance of the parameter estimates if a particular moment was dropped from the
estimation. The measures are all easy to compute. We illustrate the usefulness of the mea-
sures through two simple examples as well as an application to a model of joint retirement
planning of couples. We estimate the model using the UK-BHPS, and we find evidence of
complementarities in leisure. Our sensitivity measures illustrate that the estimate of the
complementarity is primarily informed by the distribution of differences in planned retire-
ment dates. The estimated econometric model can be interpreted as a bivariate ordered
choice model that allows for simultaneity. This makes the model potentially useful in other

applications.
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1 Introduction

Indirect inference and other nonlinear GMM estimators are used extensively in empirical re-
search. These estimators are, however, sometimes seen as black boxes. It can be difficult to
understand exactly what features of the data are informative about which parameters, and how
sensitive parameter estimates are to moments included in the objective function.

In this paper, we provide simple and easy-to-compute measures that can indicate how altering
the moments used in estimation affects the precision of parameter estimates. Informally, we think
of these as measures of how informative each moment is about a particular parameter. More
precisely, we provide measures of the effect on asymptotic standard errors from i) a marginal
increase in the noise associated with a moment, i) completely removing a (set of) moments
from estimation, and #i7) a marginal increase in the weight put on a moment.

The measures are derived from the asymptotic distribution of the class of GMM-type es-
timators considered here and are, for the most part, based on derivatives of the asymptotic
covariance matrix. The measures are almost costless to calculate because most of the required
quantities are already constructed when calculating asymptotic standard errors. Furthermore,
the measures have straightforward interpretations if scaled in a meaningful way.

There is a growing literature investigating sensitivity of estimators in economics. Recently,
for example, Andrews, Gentzkow and Shapiro (2017) proposed a measure to inform researchers
on the sensitivity of the asymptotic bias in estimators to misspecification of moments included
in the estimation function. We note that their measure is also related to the change in the
asymptotic variance from a marginal change in the included moments, which inspired our pro-
posed alternative measures. While we focus on the precision of the parameter estimates, more
recently Armstrong and Kolesar (2018) and Bonhomme and Weidner (2018) have also studied
local misspecification. Christensen and Connault (2019) studied global misspecification.

We illustrate the applicability of our measures through two simple examples and an empirical
application. The two examples are a binary outcome probit model and a proportional hazards
Weibull duration model with time-varying covariates. The application is a simple structural
model of joint retirement planning of dual-earner households. The model is founded in utility
maximization with household bargaining, but can also be interpreted as a bivariate ordered

choice model that allows for simultaneity. The parameters of the model are most easily estimated



by indirect inference, but the complexity of the model makes it difficult to understand the link
between the data and the parameter estimates.

While a growing empirical literature has established that dual earner households tend to
retire simultaneously or in quick succession in age,! the empirical evidence of joint retirement
planning of couples is much more scarce and with ambiguous findings.? We contribute to this
literature by estimating a structural model of dual-earner retirement planning using indirect
inference and prospective retirement planning questions in the British Household Panel Survey
(BHPS). Our estimation results support the notion of leisure complementarities in retirement.
Our proposed sensitivity measures confirm the intuition that the parameter estimate measuring
leisure complementarities in the model is sensitive to the distribution of the difference in the
year of planned retirement between household members.

The remaining paper is organized as follows. In Section 2, we present the sensitivity measures
and show examples of their use in Section 3. In Section 4, we apply our measures to a novel

model of dual earner retirement planning before concluding with final remarks in Section 5.

2 Framework and Sensitivity Measures

Indirect inference and other nonlinear GMM estimators are sometimes seen as black boxes where
it can be difficult to understand exactly what features of the data are informative about which
parameters. In this section, we review and introduce a number of measures that are meant to
provide information about this.

To fix ideas, consider a set of moment conditions E [f (x;,0p)] = 0, where z; is data for
observation ¢ and it is assumed that this defines a unique 8y. The generalized method of moments
(GMM) estimator of g is § = arg ming (I3 f (s, 0))/ Wy (30, f (4,6)), where W, is a
symmetric, positive definite matrix. While some of the measures below also apply to just-

identified models, we focus here on over-identified models where the number of moments are

larger than the number of parameters in 8, and the weighting matrix thus plays a role.

'See e.g. Hurd (1990); Blau (1998); Gustman and Steinmeier (2000); Gustman and Steinmeier (2004); Coile
(2004); An, Christensen and Gupta (2004); Jia (2005); Blau and Gilleskie (2006); van der Klaauw and Wolpin
(2008); Banks, Blundell and Casanova (2010); Casanova (2010) and Honoré and de Paula (2018).

2See Pienta and Hayward (2002); Moen, Huang, Plassmann and Dentinger (2006); and de Grip, Fouarge and
Montizaan (2013).



Subject to the standard regularity conditions, the derivation of the asymptotic distribution

of gives

0="00—(GWa)™" ( Zf xz,90> p (n772) (1)

where G = E {%} and W is the limit of W,,. See Hansen (1982). The limiting distribution
of the GMM estimator is

ﬁ(§—90> 4N (0,Y),

where
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and S = V [f (z;,00)] under random sampling. If we use the optimal weighting matrix, W = S,

the asymptotic covariance collapses to
opt (G/S IG)fl

Intuitively, when there is little sampling variability in the moment functions, f, S will be small.
G is larger if the moment condition is more sensitive to perturbations in the parameter. Both
of these contribute to the precision of the estimates as the proposed measures highlight.

Andrews, Gentzkow and Shapiro (2017) proposed the sensitivity measure
M, = —(G'WG)'G'W.

It is clear from (1) that M; provides the mapping from moment misspecification of the type
E[f (zi,00)] = p # 0 into parameter biases for small p. Alternatively, by noting that ¥ =
M SMj, M tells us how additional noise in each of the sample moments %Z?:l f (zi,00)
would result in additional noise in each element of 6. This is what motivates our alternative
measures that address the sensitivity of estimation precision to each moment.

The proposed measures are intended to complement the measure of sensitivity to misspecifi-
cation proposed by Andrews, Gentzkow and Shapiro (2017). Like M, our measures are matrices
where the (7, k)’th element provides an answer to how the precision of the j’th element of [

depends on the k’th moment.



Our first measure asks the hypothetical question: How much precision would we lose if the

k’th moment is subject to a little additional noise? This measure is formally defined as

0%, _ -
Mg = =0 = Sop(G'S ™1 OS ™1 G) Sope,

where Oy, is a matrix with 1 in the (k, k) element and zero elsewhere. This measure assumes
that the optimal weighting matrix is used and updated. Alternatively, we could ask the same

question keeping the (possibly non-optimal) weighting matrix unchanged. This measure is

)
My = ag(kk) = (G'WG)'\GWOLWGGWG)™! = M0y M;.

The difference between M, j, and M3, is that the former evaluates the potential information in
each moment while the latter evaluates the information actually used in the estimation. With
efficient GMM (so W = S~1), M3 equals Ms. This is also true in the just-identified case where
the number of moments equals the number of parameters to be estimated.

Related to Mj 1, we could consider the change in the asymptotic variance from completely
excluding the k’th moment,

M47k = ik — Z,

where

Y = (G'W,.G) LG WL SW,,G(G'W,G)
Wk =Wo (LkL;C).

Here ® denotes element-wise multiplication and ¢y is a J x 1 vector with ones in all elements
except the k’'th element, which is zero. M, leaves the weighting matrix on the remaining
moments unchanged after we have excluded the k’th moment.

We note that this measure assumes that the parameter vector is identified after the k’th
moment has been excluded. Specifically, (G’ WkG) needs to have full rank. Importantly, this
means that the original model has to be over-identified in the sense that it has more moments
than parameters. In practice, G has to be estimated, and violations of the full rank assumption

will result in ((A?’ Wké) being close to singular. Extremely large values in the estimate of My,



therefore suggest that the model is not point-identified when the £’th moment is excluded. This
can happen even if the original model was over-identified.

Alternatively, one could also consider measures that adjust the weighting matrix. For exam-
ple, one could consider a measure that compares the precision of the optimal GMM estimator

that uses all moments to the optimal GMM estimator that excludes that £’th moment,
Msp, = (G S4G ) = (G'ST'a) 7,

where G_;, is the same as matrix G except that the k’th row has been removed, and S_j is S
with the k’th row and column removed. This measure also assumes that the parameter vector is
identified after the k’th moment has been excluded, and it implicitly assumes that the original
number of moment conditions exceeds the number of parameters to be estimated.

M, and Ms can also be used to gauge the sensitivity of the estimator to a set of moments.
This is potentially useful in cases where one can group moments in some natural way. One can
then address the question of how much of the precision in an estimator would be lost if one did
not use one of the groups of moments. For example, Gayle and Shephard (2019) talks about five
sets of moments (in their online appendix), and Honoré and de Paula (2018) get their moments
from the estimation of four different auxiliary reduced form models. A reparameterization of
those reduced form models would lead to moment conditions which are (asymptotically) linear
combinations of the original moment conditions. In that case, it might be useful to construct a
measure that reflects giving zero weight to all the moments that come from a specific auxiliary
model. This approach would be application-specific, and we therefore do not pursue it in this
paper.

Our final measure addresses the question: How would the precision of our estimates change
if we slightly increased the weight put on the kth moment? This measure is formally defined as

the derivative

)y _ _ _
Mok = =iy = —(G'WGE) HG'OG)E + (G'WG) LG O SWG(G'WE) !

+HGEWG)'GWSO0,,G(G'WGE) ™ — 2(G'0G)(GWaE) L.

We do not think of Mg ), as a measure of moment sensitivity, but rather as a measure of how



close the chosen weighting matrix is to being optimal. Mg will be 0 when W is the optimal
weighting matrix. It will also be 0 in the just-identified case, where the number of moments
equals the number of parameters to be estimated.

These measures are not invariant to scale of the included moments in f(-). One approach,
which we take, is to report scaled measures. Concretely, we report the sensitivity of the j’th

parameter to the k'th moment as

£UH) _ 3P 5(("?"’3)
Son
-5
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where MQ(j’k) refers to the j** diagonal element of My j, and similarly for Méj’k), Mij’k), Méj’k)
and Méj’k). Note that SQ(j’k), Eéj’k) and Séj’k) are elasticities whereas &Ej’k) and Eéj’k) are the

relative changes in the asymptotic variance compared to the baseline with all moments included.

3 Examples

In this section, we illustrate the use of our proposed measures through two concrete examples.
The first example is a simple binary choice probit model and the second example is a proportional
hazards duration model. The first example is chosen because it is a case where one would
have a strong prior about which moments matter. The second example, on the other hand, is
complicated enough that this is not obvious.

For both examples, we use both the optimal weighting matrix and a diagonal weighting
matrix with the inverse of the moment variances on the diagonal. We chose the latter non-

optimal weighting matrix because it is very common in empirical applications.?

3There are many examples of this. This includes Eisenhauer, Heckman and Mosso (2015) and Gayle and
Shephard (2019) to name two. The motivation stems from Altonji and Segal (1996) who show that the optimal
weighting matrix can have quite poor finite sample properties. They suggest equally weighted moments (i.e.,



3.1 Example 1: Method of Moments Estimation of a Probit Model

We first consider a simple probit model

0 ify >0
Yi =
1 else

yi = Bo+ Brx1i + Boxa + &,

where (21, x2;) has a bivariate normal distribution with means equal to 0, variance 1 and
correlation 0.5. ¢; is independent of (z1,,z2,) and distributed according to a standard normal.
We set 8y = 81 = By = 1/+/3. This makes V [3, + 8121, + Ba72:] = 1 and P (y; = 1) = 0.66.%

We consider the asymptotic distribution of a moment-based estimator of 6y = (5, 81, 82)

solving

S8

= argmin g(6)"Wg(6),

where we use the six moments:
(Ele®) Ele®) o] Ele@®)a] Ele©)al) Ele®) o) Ele®)a3] )

and e; (0) = y; — ®(Bg+ B121: + Pox2,). In the corresponding logit model, the first three
moments correspond to the first order conditions for maximum likelihood estimation. Although
they are formally different, the logit and probit models are quite similar. We therefore expect
the first three moments to be the most informative about 63. Moreover, we expect the first
moment to be the most important for determining BO, and the second and third for determining
Bl and EQ, respectively.

Table 1 shows results using the optimal weighting matrix and Table 2 shows results using
the diagonal weighting matrix with the inverse of the moment variances on the diagonal.> We
think of the latter as a practical alternative to the efficient weighting matrix.

It is clear from Table 1 that the first three moments are indeed the most informative about

W = I) as an alternative. Of course, using equal weights will not be invariant to changes in units (or other
rescaling), which explains the practice we have adopted.

4We also supply Python code to illustrate our approach.

5We illustrate the proposed sensitivity measures through Monte Carlo simulation of the expected values using
107 simulated observations.



Bo, B1 and [,, respectively. As mentioned, this is expected since these moments would be the
first order conditions for maximum likelihood estimation of a logit model.

The elements in the last three columns of M; in Table 1 are much smaller than the elements
in the first three. This suggests that the optimal GMM estimator is much less sensitive to
misspecification of the last three moments than to misspecification of the first three moments.
The reason is that the first three moments get almost all the weight (in the corresponding logit
model, they would literally get all the weight). As expected, this is less pronounced in Table
2. The values of & in Tables 1 and 2 confirm that the efficient GMM estimator of 6 is driven
by the first three moments.® Adding noise to the last three moments has essentially no effect
on the precision of the optimal GMM estimator of 6y, whereas adding noise to the first three
elements can have a big effect. The values of £ in Table 2 illustrate that the precision of the
non-optimal GMM estimator is less sensitive to noise in the last three moments (because they
get relatively less weight) and more sensitive to adding noise to the first three moments (because
they get relatively more weight).

Next, & and &5 suggest that leaving out, for example, the second moment would increase
the asymptotic variance of both the efficient and the inefficient GMM estimator of 5; by around
400 percent. This confirms that E[ez] is instrumental for precise estimation of ;.

The final measure, & in Table 1 is 0 by construction. Since we are using the weighting
matrix that minimizes the variance of the estimator of each element of @, the derivative of the
variance with respect to the elements of the weighting matrix must be 0. & in Table 2 shows
that in this case, the diagonal weighting matrix with the inverse of the moment variances on the

diagonal puts too little weight on the first three moments.

3.2 Example 2: Duration Model

The probit example in Section 3.1 was chosen because it is an example where we have good
prior intuition about which moments matter for what parameter. We now turn to an example
where this is much less obvious.

Consider a duration, T', which follows a mixed proportional hazard model with time-varying

6&, in Tables 1 and 2 differ only because of simulation error.



covariates and a Weibull as the baseline hazard
h(t) = at*Vexp (o (£) B) .

where « is the scale parameter which captures duration dependence and 2’ (t) § is the effect of
the time-varying explanatory variables. An example of a two-dimensional time-varying set of

explanatory variables could be

(1‘1’1,55271) ift <t

(12, 22) ift1 <t <ty

(1, x0) iftp_q <t

Finally, n captures unobserved heterogeneity. Except for moment assumptions, no assumptions
are made on the distribution of 7.

We then have the survival function for T,

S(tz(-),n) = exp (-n /Ot as® L exp (2! () ) ds) .

Since
we have
T
77/ s Lexp (z' (s) B) ds ~ Exp (1), conditional on z (-) ,n
0
or

T
log (/0 as® Lexp (2/ (s) B) ds) ~log (Exp (1)) —log (n), conditional on = (-),n.  (2)

Here, Exp (1) denotes an exponentially distributed random variable with mean 1, and — log (Exp (1))
follows a standard Gumbel distribution with F [—log (Ezp(1))] = v = 0.57721 (Euler’s con-
stant) and V [~ log (Ezp (1))] = 72/6.



Equation (2) suggests moment conditions of the type

B[ (tos ([ ot e (0 99)d5) 2= 50 ) v a()] =0 8

for functions of the covariates, 1. Here, 3, captures the mean of —log (1) which is assumed to
be finite.

When z (t) is time-invariant, (2) becomes

log (TO‘ exp (ac'ﬁ)) ~ log (Exp (1)) — log (n)

or

log (T) = —2' (8/a) + “error”.

In other words, with time-invariant covariates the moments implied by (3) do not identify (53, «),
but only /a. It turns out that it is possible to estimate o by other methods (see, for example,
Honoré (1990)), but it is not possible to estimate (3, «) at the usual y/n rate (see Hahn (1994)).
This makes it interesting to investigate how precision in estimation of (3, «) depends on the
various moments in (3) when x does contain time-varying covariates.

We consider a data generating process with one time-invariant and one time-varying covari-

ate. Specifically, z (s) = (z1 (s), 22 (s)) where

(x1,291) for s<1
HJ(S): (331,3322) for 1<s<2

($1,$23) for 2<s

with o1 = Z1, 291 = Za, 292 = (291 + Z3)/ /2 and x93 = (292 + Z4)/ V2. Z; through Z, follow
standard normal distributions. The heterogeneity term, 7, follows a log-normal distribution,
where the underlying normal has mean 0 and variance 1/2. 7 is independent of z (). Finally,
68 = (—1,1/\@,1/\@)/ and @ = 2. With this, the median duration is approximately 1.3,
approximately 38% of the durations are less than 1, and 29% greater than 2. This design
is chosen because it is a simple example with sizable unobserved heterogeneity and duration

dependence, and where we expect that the time-varying covariate might have bite. The design

10



is not meant to mimic any realistic empirical example.

We again consider a moment-based estimator of 6 = (8/a, 81/, B3/, @) solving

>

= argmin g(6)"Wg(6),

where we use the five moments given by (3) with ¢ (z (+)) = (1,21, z21, x22, T23).

The sensitivity measures are given in Tables 3 and 4. In this design, the derivative of the first
two moments at the true parameter values are non-zero with respect to 8y and 61, respectively.
The derivatives are 0 with respect to the other parameters. This implies that G becomes singular
when we exclude either of the first two moments. This explains the extreme entries for £, and
&5 in Tables 3 and 4.

The conclusions from the remaining parts of the sensitivity measures are fairly consistent.
Most interestingly, the moments formed on the basis of the time-varying covariates contribute
to the identification of «, while the moment based on the time-invariant covariate does not.
This is exactly what the discussion above would predict. Interestingly, the first moment is also
important for a. Presumably, this is because this moment determines the estimate of the mean
of the (log of the) unobserved heterogeneity. It is well-known in the duration literature that
unobserved heterogeneity is poorly distinguished from duration dependence. As a result, we do

not consider this surprising.

4 Application: Joint Retirement Planning

In this section, we apply the proposed sensitivity measures to an extremely simple structural
model of the joint retirement planning of dual-earner couples.
4.1 Data and Institutional Setting

We use the British Household Panel Survey (BHPS), which is a completed panel of 18 waves
collected from 1991 through 2009. In waves 11 and 16 of the BHPS, each adult household

member is asked, “Fven if this is some time away, at what age do you expect you will retire?”

11



We use this to measure the subjective retirement plans of each spouse.” Based on the age at
the interview and the expected retirement age, we can calculate the expected retirement year of
each household member and use that to investigate joint retirement plans.

Besides retirement plans, we use information in the BHPS on annual labor market income,
the number of visits to the general practitioner (GP), subjective expectations about future health
status, eligibility for an employer provided pension scheme (EPP), and whether individuals save
any of their income in a private personal pension (PPP).8 Finally, we define individuals as highly
skilled if they have completed the first or second stage of tertiary education (ISCED codes 5 or
6).

We use information on households consisting of two opposite-sex household members who
are either married or cohabiting, and who meet the following sample selection criteria: i) Both
members are between 40 and 59 years old when interviewed, i) At least one member is not
retired at the time of the interview, and i) Retirement plans are observed in the age range 50
to 70 for at least one member not retired at the time of the interview. If a household satisfies
the criteria in both waves (11 and 16), we use both survey responses in the analysis. We refer to
each household member as husband or wife, although we also include households, where couples

are cohabiting, but not necessarily married.

The State Pension Age (SPA)

The state pension age (SPA) in the U.K. is the age where individuals become eligible to receive
state pension from the government. Individuals who have reached SPA and contributed to the
scheme for sufficiently many years are eligible to receive a weekly transfer with no means testing.
In 2009, the weekly rate was around £95. See Bozio, Crawford and Tetlow (2010), Blundell,
Meghir and Smith (2004) and Cribb, Emmerson and Tetlow (2013) for excellent descriptions of
the pension system in the U.K.

The SPA was 65 for men and 60 for women until the implementation of the Pension Act

1995. The Pension Act 1995 introduced an increase in the SPA of women born after April 6,

"The exact formulation in wave 11 is slightly different: “At what age do you expect to retire/will you consider
yourself to be retired?”

8The EPP includes both defined and contributed benefit (DB and CB) plans and we cannot distinguish between
them. Blundell, Meghir and Smith (2004) show, however, that DB plans were most common in the U.K. in this
period.

12



1950. While the SPA for men was unaffected, the SPA for women was gradually increased by
one month every month (by date of birth) until the SPA for women reached 65 for cohorts born
later than (including) 1955. See Thurley and Keen (2017) for a comprehensive discussion of
the reform.” Since this might affect individual expectations, our modelling framework explicitly

allows for an effect of the Pension Act 1995 on retirement planning.

Descriptive Statistics

Table 5 reports the descriptive statistics for the variables that we use. All statistics are based
on households in which both members are not retired at the time of the interview, which is
around 97 percent of our sample. Husbands in the estimation sample are approximately 1.5
years older than their wives, plan to retire two years later than their wives (at age 63 on
average), and the average difference in the planned retirement year is approximately 0.83 years.
This difference should be viewed in light of the fact that the SPA of men is 65, while it is
substantially lower for most women in our sample and as low as 60 for women born before 1950.
To illustrate simultaneous retirement planning, Figure 1 shows the distribution of the difference
in the planned year of retirement between husband and wife. The left panel illustrates the
unconditional distribution and the right panel conditions on the husband being at least 2 years
older than his wife. The peak around zero indicates joint retirement planning, and the mass to
the right of zero likely stems from men being older than women and women having a lower SPA.
When conditioning on the husband being at least 2 years older than his wife in the right panel,
we see a substantial mass at 0 (same planned retirement year); we now also see a substantial
mass at —2 (same planned retirement age).

Table 5 also shows that around 16 and 14 percent of men and women, respectively, are
classified as highly skilled, and we see that men tend to visit the GP much less than women.
Interestingly, however, men are more likely to expect their health to worsen in the future. The
labor income of husbands is around £25,000 while that of the wives is on average around
£14,000. Only around 13 percent of wives and 28 percent of husbands contribute to a private

pension (PPP), while around 47 percent of wives and 51 percent of husbands are eligible to some

9 After the relevant waves in the BHPS (11 and 16) were conducted, the Pension Act 2007 further increased
the SPA for both men and women. Since the respondents were interviewed before this reform was passed (most
interviews was done no later than 2006), we abstract from this and other subsequent reforms.

13



occupational retirement scheme (EPP).

4.2 A Model of Retirement Planning of Dual-Earner Households

In this section, we formulate a discrete time version of the continuous time bivariate duration
model proposed in Honoré and de Paula (2018). Specifically, we parameterize the difference
in the utility flow between being retired and working. Utility maximization then gives an
estimatable model for joint retirement planning of couples.

Consider first the husbands. We specify the difference in utility from being retired in period

t compared to working as

Un(t, tw) = 23,85 + 0n(t) + YLic, ()>Cu(tw)} + €

where Cj, (t) is the calendar time, t,, is the retirement age of the wife, and Cy, (f,) thus is the
calendar time at which the wife plans to retire. We interpret the term y1c()>c(s,,)} as a utility
externality that allows the husband to enjoy a higher utility flow from planned retirement if the
wife also plans to be retired at that time. We parameterize the planned retirement age function,
dp(t), as a linear trend plus indicator functions for ¢ > 55, ¢ > 60 and ¢ > 65. The histograms
in Figure 2 below suggest that these are empirically important. We interpret the first two as
reflecting either social norms or heaping, while the third also reflects the fact that the SPA for
men is 65.

Similarly, the difference in utility flow for the wife is

Uw(t,th) = 20,8y + 0w (t) + YLic, (t)>chtn)} + ity >5PAy} T Ew-

We again parameterize the function §,,(¢) as a linear trend plus indicator functions for ¢t > 55,
t > 60 and ¢ > 65. The term aly >g5pa, ) reflects the idea that for women, there is variation in
the SPA as discussed above. This allows one to infer the effect of the SPA separately from the
dummies that reflect either heaping or institutional features (e.g., early and statutory retirement
ages) at 55, 60 and 65.

To close the model, we assume that (e, &,,) is jointly normal with mean zero and covariance

matrix €2, where the off-diagonal element of € captures possibly correlated retirement preferences

14



within households. We also assume that retirement is an absorbing state. When the difference in
utility from retirement compared to working is increasing in age, this is not a binding constraint
in the sense that individuals would not want to re-enter the labor market once retired.

If a husband and a wife plan to retire at ages rp and ry,, their discounted individual utilities

are

Tmu.z

Vi(rn,mw) = D p' 9 Up(t, 1)

t=rp,

for a husband aged agep and

Tma:l:

Vw(’l"w,’l"h) = Z pt—agewa(t’,rh)’

t=ryw

for a wife aged age,,. Finally, the optimal retirement plan for a household is determined jointly
as

(Rp, Ry) = arg max AV (Th, Tw), Vi (T, 7))

ThyTw
where A(-,-) is a household aggregator. For the estimation, we choose A(Vp, Vi) = Vi + AV,
as in the Nash bargaining setting from Honoré and de Paula (2018) or, more generally, the
collective model framework surveyed in Browning, Chiappori and Weiss (2014).

It is clear that two scale normalizations are necessary in order to estimate the model. First,
the scale of A cannot be identified and we therefore normalize the variance of ¢, to be cr% = 1.
Secondly, the only effect of A is to re-scale all the parameters in V,,. We therefore normalize
A = 1. The model is thus in effect unitary.

Our parameterization is inspired by the ordered probit model. Consider the husbands. If
~v = 0 (such that there is no utility externality) and Jy, is increasing, then the utility maximation
will lead to planned retirement the first time x} 5;, + 0,(t) + €5, > 0. In other words, the chosen

planned retirement age satisfies
—0n(Rp) < 238y, +en < —0n(Rp — 1),

which is exactly the ordered probit model. In that sense, the proposed model is a generalization

of the ordered probit model to a bivariate case with simultaneity between the two outcomes.
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4.3 Indirect Inference Estimation

We estimate the model’s parameter vector 8 = (7, , B, Bu» Ons Ow, 02, Thw) through indirect

inference!?,

0 = argmin g(0)' Wg(0).
USC]

The weighting matrix, W, is diagonal with the inverse of the variances of the moments in the
diagonal. g¢(f) is a K x 1 vector of differences between statistics/moments in the data and
identical moments based on simulated data.

For each couple ¢, we simulate synthetic retirement plans by drawing Sy, vectors of taste
shocks €; = {55‘2,852}?2{" from the joint normal distribution and calculate the value of all
combinations of retirement ages

‘/Z(S) (Thv rw) - Vh(Th, Tw‘xi') ng}za 5£2> + )\Vw(rwa Th’xia 87&9}37 85;912))7

where the individual values are calculated as in (?7) and (?7). We then find the simulated
retirement ages that maximize utility,

(R°)(8), RY)(8)) = arg max V) (ry,, )

w
k)
Th,Tw

for a given value of 6.
To estimate the model parameters, we use four sets of auxiliary models/moments with a
total of K = 52 elements in g(f). We describe in detail the construction of these moments in

the supplemental material and only list them here:

1. OLS coefficients from individual regressions of the planned retirement age on own and
spousal covariates x; j, and x; ., together with indicators for the wife’s birth cohort 1{1950 <

cohorty,; <1954} and 1{1955 < cohorty,;}.

2. The share of individuals planning to retire at ages 50-54, 55, 56-59, 60, 61-64, and 65, split

by gender.

19Gee, for example, Smith (1993), and Gouriéroux, Monfort and Renault (1993). While we use the Wald
criterion function, indirect inference can also be performed using other metrics (for example, the likelihood ratio
or Lagrange multiplier). See Smith (2008).

16



3. The covariance matrix of residuals from the regression in bullet 1 above for each household

member.

4. The share of couples with retirement plans such that i) the wife plans to retire 1-2 years
before her husband, 4i) the husband plans to retire 1-2 years before his wife, or i) the

couple plan to retire in the same year.

The first set of moments are primarily included to help estimate 3;,, 8,,, and « in the utility
function. The second set of moments are included primarily to help estimate the linear age trend
and age dummies in §p and Jd,,. The third set of moments are primarily included to estimate the
covariance of the preference shocks for husband and wife, 2. Recall that we normalize O'}QL =1
and the remaining parameters in €2 are thus afu and op,,. The final set of moments are included
to estimate the value of joint leisure, v. We will use our proposed sensitivity measures below to

investigate these claims in a more systematic way.

4.4 Empirical Results

We use the BHPS data discussed above to estimate the model of joint retirement planning of
couples. We use the same moments as above and simulate Sy, = 2000 draws when approxi-
mating the expected moments. Table 6 reports the estimation results. We find a positive value
of coordination of around v = 0.026, around two to four times as large as the marginal utility
from additional labor income of £1,000 and significant at the 5% level (p-value of 0.02).
Overall, the remaining statistically significant parameter estimates have the expected signs.
High skilled individuals value retirement less. Less healthy people value retirement more, and
having some form of pension savings increase the value of retirement. Having an employer
provided pension (EPS) especially increases the utility from retirement compared to working for
husbands. Perhaps surprisingly, we find that higher earning women value retirement more but
this could proxy for higher wealth, which could lead to a higher propensity to retire. All spousal
variables seem to matter less and are not statistically significant at most common significance
levels. Interestingly, we estimate a small positive and insignificant increase in the expected
retirement age of women in response to an increased SPA. This goes in line with other studies

finding a relatively low degree of awareness of the reform (Crawford and Tetlow (2010)).
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Figure 2 shows the histogram of planned retirement ages for women and men. We see that
the model does a quite good job fitting the empirical distribution. Likewise, Figure 3 shows
the empirical and predicted distribution of retirement year differences between couples. The
predicted distribution matches the empirical one well, although there are small deviations.

Table 7 show the proposed sensitivity measures together with the one proposed by Andrews,
Gentzkow and Shapiro (2017). We only report the measures for the parameter of interest
here: The value of joint leisure, «. All reported measures are scaled as discussed in Section 2.

The measure proposed by Andrews, Gentzkow and Shapiro (2017) is scaled such that 51(3' k)

MV 5ER,

Clearly, the moments which ~ is most sensitive to are related to simultaneous retirement. In
particular, we see from &4 and & that leaving out the moment “the share planning to retire the
same year” (moment 52) when estimating the model would increase the asymptotic variance of
~ by a factor of 8. This confirms the intuition that this moment is extremely informative about
the value of joint leisure. The share retiring within 2 years difference also seems important.
In particular, the correlation between the OLS regression residuals are important. This is also
intuitive since this moment captures a combination of correlated shocks and preferences for joint

leisure.

5 Concluding Remarks

Structural econometric models are often estimated by matching moments that depend on the
parameters and on the data in a highly nonlinear way. This can make it difficult to develop
intuition for which moments of the data are informative about which parameter. In this paper,
we have proposed a number of very simple sensitivity measures that are meant to shed light on
this.

We have illustrated our measures in two artificial examples. The first is a simple probit
model and the second a mixed proportional hazard model with time-varying covariates. The
first illustrates that the proposed measures are reasonable in a setting where the answer is rather
obvious ex ante. The second is chosen because it illustrates how the measures can be used to
gain insights, which are not so obvious.

We also illustrated the measures in a simple structural econometric model of household retire-
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ment planning. This application is of independent interest because it highlights the importance
of modelling wives’ and husbands’ retirement decisions jointly.

The econometric model for retirement that we develop can be interpreted as a bivariate
ordered choice model with simultaneity. Specifically, if the “utility externality” parameter is 0,
then the model that we estimate simplifies to a bivariate ordered probit model. This may make

it tractable in other applications.
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Table 1: Sensitivity Measures, Probit Model, Optimal Weight-
ing

Moment
Ele] Elex1] Elexs) El[ex?] Elexizs] E [ex])
M,y
By 4.261 1.475 1.469 0.192 0.378 0.184

81 1.190 6.570 —1.286 0.223 0.141 —0.069
By 1.193 —1.286 6.567 —0.073 0.152 0.214

&
By 1.104 0.088 0.087 0.003 0.004 0.003
B, 0.060 1.207 0.046 0.003 0.000 0.000
B, 0.060 0.046 1.205 0.000 0.000 0.003
&3

By 1.104 0.088 0.087 0.003 0.004 0.003
81 0.060 1.207 0.046 0.003 0.000 0.000

B, 0.060 0.046 1.205 0.000 0.000 0.003
&y

By 1.206 0.292 0.291 0.005 0.003 0.005

B, 0.065 4.014 0.155 0.004 0.006 0.000

B 0.065 0.153 4.034 0.000 0.006 0.004
&s

By 1.203 0.292 0.291 0.001 0.003 0.001

B, 0.065 4.014 0.155 0.001 0.000 0.000

B, 0.065 0.153 4.034 0.000 0.000 0.001
Ee

By 0.000 0.000 0.000 0.000 0.000 0.000
81 0.000 0.000 0.000 0.000 0.000 0.000
81 0.000 0.000 0.000 0.000 0.000 0.000

Notes: Simulations based on 107 observations.
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Table 2: Sensitivity Measures, Probit Model, Diagonal Weighting

Moment
Ele] Elex:] Elexs] E[ex}] Elex1zs] E [ea?]
My
Bo 3.374 1.633 1.630 1.036 —0.681 1.035
51 1.354 5.666 —1.185 —0.853 —1.360 0.882
51 1.351 —1.185 5.658 0.881 —1.360 —0.851
&

Bo 1.104 0.088 0.087 0.003 0.004 0.003
B1 0.060 1.207 0.046 0.003 0.000 0.000
B1 0.060 0.046 1.205 0.000 0.000 0.003

&3

Bo 0.651 0.101 0.101 0.080 0.013 0.080
B1 0.071 0.817 0.036 0.037 0.034 0.039
B1 0.070 0.036 0.817 0.039 0.034 0.037

&y
Bo 1.076 0.341 0.340 —0.010 —0.011 -0.011
51 0.042 3.783 0.116 —0.038 —0.031 —-0.028
51 0.042 0.114 3.802 —0.028 —0.032 —0.038
&s
Bo 1.203 0.292 0.291 0.001 0.003 0.001

B1 0.065 4.014 0.155 0.001 0.000 0.000
B1 0.065 0.153 4.034 0.000 0.000 0.001

&
By —0.101 0.002 0.002 0.040 0.017 0.041
51 0.011 —-0.142 0.002 0.044 0.048 0.037
51 0.011 0.002 —0.142 0.037 0.048 0.044

Notes: Simulations based on 10”7 observations.
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Table 3: Sensitivity Measures, Weibull Model, Optimal
Weighting

Moment
Ele] FEler1] Elexan] FElexs] FElewss]
My

By —0.503 0.001 337 —2.053 —1.934
81 —0.000 —0.500 0.018 —-0.015 —0.014
By —0.000 0.000 -0.228 —-0.251 —0.184
a —0.019 0.009 24478 —15.092 —14.181

&

Bo 0.028 0.000 1.282 0.474 0.421
B1 0.000 0.998 0.001 0.001 0.001
B 0.000 0.000 0.155 0.187 0.100
o} 0.000 0.000 1.299 0.494 0.436

&3

Bo 0.028 0.000 1.282 0.474 0.421
B1 0.000 0.998 0.001 0.001 0.001
B 0.000 0.000 0.155 0.187 0.100
o 0.000 0.000 1.299 0.494 0.436

&y

By >100"  >100* 4.841 0.196 0.274
By 0.324*  >100* 0.005 0.000 0.001
Bs  0.012*  >100* 0.584 0.077 0.065
o 3.935*  >100* 4.904 0.203 0.284

&

By >100"  >100* 4.841 0.196 0.274
By 0.324*  >100* 0.005 0.000 0.001
By 0.012°  >100* 0.584 0.077 0.065
«Q 3.935*  >100" 4.904 0.203 0.284

&

Bo 0.000 —0.000 0.000 0.000 0.000
B: —0.000 —0.000 0.000 0.000 0.000
B 0.000 0.000 —0.000 0.000 0.000
o —0.000 —0.000 0.000 0.000 0.000

Notes: Simulations based on 107 observations.

" As mentioned in the text, large values of £4 and &5 suggest that
the model is not identified after the moment has been removed
from estimation.
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Table 4: Sensitivity Measures, Weibull Model, Diagonal
Weighting

Moment
Ele] FEler1] Elexa] FElexs] Fleras]
My

By —0.503 0.001 3.066 —1.117 —2.679
81 —0.000 —0.500 0.016 —-0.010 —0.019
By —0.000 0.000 -0.234 —-0.234 —0.197
a —0.021 0.009 22219 —8.255 —19.619

&

Bo 0.028 0.000 1.282 0.474 0.421
B4 0.000 0.998 0.001 0.001 0.001
B 0.000 0.000 0.155 0.187 0.100
o 0.000 0.000 1.299 0.494 0.436

&3

Bo 0.027 0.000 1.017 0.135 0.775
B4 0.000 0.998 0.001 0.000 0.001
B 0.000 0.000 0.162 0.163 0.115
o 0.000 0.000 1.027 0.142 0.800

&y

By >100"  >100* 4.612 0.149 0.224
By 0.323°  >100* 0.005 0.000 0.000
By 0.011*  >100* 0.583 0.077 0.065
o 3.737  >100* 4.667 0.155 0.232

&

By >100"  >100* 4.841 0.196 0.274
By 0.324*  >100* 0.005 0.000 0.001
By 0.012%  >100* 0.584 0.077 0.065
oY 3.935*  >100" 4.904 0.203 0.284

&

Bo 0.000 —0.000 —0.049 —0.054 0.102
B4 0.000 0.000 —0.000 —0.000 0.000
B 0.000 —0.000 0.002  —0.006 0.004
o 0.000 —0.000 —0.049 —0.056 0.105

Notes: Simulations based on 107 observations.

" As mentioned in the text, large values of £ and &5 suggest
that the model is not identified after the moment has been
removed from estimation.

26



Table 5: Descriptive Statistics

Mean Std. Min Max Obs.

Age, husband 49.613 5.53 40 59 1730
Age, wife 48.128 5.34 40 59 1730
Planned retirement age, husband 62.606 3.87 50 70 1730
Planned retirement age, wife 60.301  3.72 50 70 1730
Diff. in planned retirement year (husband-wife) 0.823 571 -20 27 1730
High skilled, husband 0.157  0.36 0 1 1730
High skilled, wife 0.139 0.35 0 1 1730
10+ GP visits, husband 0.039 0.19 0 1 1729
104 GP visits, wife 0.080 0.27 0 1 1729
Expect worse health, husband 0.182  0.39 0 1 1641
Expect worse health, wife 0.115 0.32 0 1 1645
Labor income (£1,000), husband 25.248 1712 0 244 1600
Labor income (£1,000), wife 13.815 10.78 0 109 1442
Private pension, husband 0.280 0.45 0 1 1730
Private pension, wife 0.134 0.34 0 1 1730
Employer pension, husband 0.514  0.50 0 1 1730
Employer pension, wife 0.466  0.50 0 1 1730
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Table 6: Estimation Results, Indirect Inference

Husband Wife

~v  Joint leisure 0.026 (0.011) 0.026 (0.011)

a  SPA age - - 0.105 (0.122)
Explanatory variables (3)
High skilled —0.129  (0.100) —0.148 (0.110)
10+ GP visits 0.315 (0.291)  0.152 (0.157)
Expect worse health 0.091 (0.112) 0.001  (0.109)
Labor income (1,000£) 0.006 (0.003)  0.011 (0.005)
Has private pension (PPP) 0.194 (0.092) —0.005 (0.084)
Has employer provided pension (EPS) 0.610 (0.089) —0.044 (0.060)
Birth year (minus 1955) 0.005 (0.005) —0.005 (0.007)
Labor income (1,000£), spouse 0.005 (0.004)  0.003 (0.003)
Has private pension (PPP), spouse 0.074 (0.093) —0.005 (0.077)
Has employer provided pension (EPS), spouse  0.171 (0.076) 0.013  (0.080)
Age variables ()
Constant —2413  (0.128) —1.667 (0.474)
Time trend (minus 25) 0.036 (0.004)  0.020 (0.007)
Retirement age 55 dummy 0.632 (0.068) 0.729 (0.177)
Retirement age 60 dummy 0.867 (0.038) 1.323  (0.362)
Retirement age 65 dummy 1.978 (0.078) 1.452  (0.418)

o variance 1.000 0.917
Opw COvariance 0.359 0.359

Notes: The table reports the estimated simultaneous retirement planning model using the BHPS
data using indirect inference. Asymptotic standard errors reported in brackets.
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Table 7: Sensitivity of v

Moment

Regression, husband

00 N O Ui W N+

Ne)

10
11
12
13
14
15
16
17

Constant

High skilled, husband

10+ GP visits, husband

Expect worse health, husband
Labor income, husband

Has private pension, husband

Has employer provided pension, husband
Birth year (minus 1955), husband
High skilled, wife

10+ GP visits, wife

Expect worse health, wife

Labor income, wife

Has private pension, wife

Has employer provided pension, wife
Birth year, wife

Birth year, wife in 1951-1955

Birth year, wife later than 1955

Regression, wife

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Constant

High skilled, husband

10+ GP visits, husband

Expect worse health, husband
Labor income, husband

Has private pension, husband

Has employer provided pension, husband
Birth year (minus 1955), husband
High skilled, wife

10+ GP visits, wife

Expect worse health, wife

Labor income, wife

Has private pension, wife

Has employer provided pension, wife
Birth year, wife

Birth year, wife in 1951-1955

Birth year, wife later than 1955

51 52 53 54 <5‘5 56
—0.006 0.259 0.000 —-0.001 0.009 0.001
0.075 0.041 0.024 0.270 0.216 —0.010
0.018 0.008 0.001 0.065 0.049 —0.002
—0.003 0.001 0.000 —0.008 0.009 0.000
0.007 0.000 0.000 -—0.005 0.000 0.001
—0.066 0.023 0.019 0.256 0.097 —0.004
—0.032 0.005 0.004 0.040 0.003 —0.005
—0.036 0.001 0.006 —0.006 0.001 0.004
0.015 0.001 0.001 —0.004 0.001 0.003
—0.007 0.001 0.000 —-0.002 0.001 0.002
—0.005 0.005 0.000 0.001 0.004 —0.001
—0.017 0.005 0.001 0.010 0.009 —-0.001
0.105 0.039 0.048 0.904 1.033 0.014
0.009 0.005 0.000 0.022 0.011 -0.001
0.003 0.003 0.000 0.001 0.000 —0.001
—0.003 0.072 0.000 —-0.002 0.030 0.002
—0.005 0.130 0.000 —0.001 0.006 0.001
—0.024 0.075 0.002 —0.006 0.005 0.005
0.025 0.013 0.003 0.002 0.007 —0.000
0.011 0.005 0.001 —0.002 0.004 0.002
—0.005 0.007 0.000 0.000 0.004 —-0.000
—0.012 0.007 0.001 0.008 0.015 —0.001
0.106 0.044 0.050 0.899 0.733 0.012
—0.062 0.012 0.017 0.003 0.048 0.009
0.023 0.090 0.002 0.009 0.032 —-0.005
0.064 0.015 0.018 0.053 0.054 0.003
0.009 0.001 0.000 0.033 0.010 —0.001
0.057 0.016 0.014 0.276 0.155 0.001
—0.017 0.007 0.001 0.028 0.025 —0.001
—0.060 0.014 0.016 0.755 0.337 0.003
0.009 0.011 0.000 0.034 0.045 —-0.001
—0.028 0.062 0.003 0.011 0.009 —0.005
—0.013 0.039 0.001 0.003 0.013 —0.002
—0.024 0.021 0.003 —-0.003 0.001 0.002

Notes: The table reports the sensitivity measures of v for the estimated joint retirement planning model.
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Table 7: Sensitivity of « (continued)

Moment 51 52 63 64 65 56

Retirement age, husband

35 Share at ages 50-54 0.005 0.000 0.000 0.003 0.000 —0.001

36 Share at age 55 0.030 0.000 0.004 0.036 0.000 —0.009
37 Share at ages 56-59 —0.040 0.081 0.007 0.050 0.042 —0.009
38 Share at age 60 —0.003 0.043 0.000 —0.001 0.005 0.000
39 Share at ages 61-64 0.015 0.000 0.001 0.032 0.000 —0.003
40 Share at age 65 0.005 0.027 0.000 0.002 0.004 —0.000

Retirement age, wife
41 Share at ages 50-54 0.024 0.011 0.002 0.007 0.007 —0.001

42 Share at age 55 0.010 0.067 0.000 0.007 0.019 —-0.002
43 Share at ages 56-59 —0.024 0.014 0.003 —-0.009 0.007 0.002
44 Share at age 60 —0.001 0.250 0.000 —0.001 0.020 0.000
45 Share at ages 61-64 0.024 0.040 0.003 0.058 0.037 —0.002
46 Share at age 65 0.006 0.082 0.000 0.004 0.018 —0.001
Simultaneous retirement

47  var(ep) —0.008 0.002 0.000 —0.004 0.000 0.001
48  var(ey) —0.005 0.076 0.000 —0.005 0.021 0.001
49  cov(ep, ey) —0.145 0.204 0.092 0.757 0.557 —0.040
50  diff [-2,-1] 0.018 0.035 0.001 0.018 0.037 —0.007
51 diff [1,2] —0.113 0.000 0.056 —0.067 0.000 0.077
52 Joint retirement 0.343 0.684 0.516 8.019 5.541 —-0.030

Notes: The table reports the sensitivity measures of « for the estimated joint retirement
planning model.
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Figure 1: Joint Retirement Planning
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Notes: Figure 1 illustrates the difference in the year of retirement between husband and wife. The peak around
zero indicates joint retirement planning. Because the SPA of women is lower from that of men for most cohorts,
it is expected that the distribution is right-tailed. The left panel illustrates the unconditional distribution and the
right panel illustrates the distribution conditional on the husband being at least 2 years older than his spouse.

Figure 2: Model Fit, Individual Retirement

Men

Women
w 0.6

0.6 ‘
I Data
05" I Model

50 55 60 65 70

50 55 60 65 7C
Planned retirement age

Planned retirement age

31



Figure 3: Model Fit, Joint Retirement
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Online supplemental material

Definition of Moments used for Estimation

Individual OLS Moment Conditions. Let R;; denote the planned retirement age of mem-
ber j in household i and X; = (1,27 ,, 2%, 1{1950 < cohort,,; < 1954}, 1{1955 < cohort, ;})

»Yih Yiawo

denote the set of control variables. We include as the first set of moments

where, for j = {h, w},

s s ~OLS
e (0) = R)(0) — XI55

~OLS
where 3, = (X'X )"LX'R; are the OLS regression coefficients using the data.

Covariance Matrix of Regression Residuals. The second set of moments are related to the
regression above. Particularly, we include as the second set of moments the simulated difference

in the moments of the error terms

(5
1 1
MoO) =5 52| chu(en(0)

é.
i—1 " s=1 ’
T\ eineiw — e (0)e)(0)

)

S 612,h - (ei,sh(e))Q
(€.
(

~OLS
where e, ; = R; ; — X[j3 ;  is the residuals from the regression using the data.

Planned Retirement Age Groups. Next, we include the share of individuals retiring in 6
particular age-groups, k = {50—>54, 55, 56—59, 60,61 —64, 65}. Denote as S; j = (dij1,---,dij6)
the 6-element column vector of dummies where d; ; is one if member j in household ¢ is in
group k and zero otherwise. Likewise, denote Si(j)(Q) as the simulated counter-part of this set

of dummies. We then include as the third set of moments,



Simultaneous retirement. The final moments included relate to the retirement timing of
couples. Defining the retirement calendar year as C; ,, and the simulated counterpart as CZ-(STZL(H),

the final moments are

1{Cip — Ciaw € {~2,~1}} — 1{C () — C2)(0) € {~2,-1}}

S W
1 1
MiO) =53 5D | UG —Ciw € {125 = H{C0) — C0) € {1,2}}
= UCin = Cou} — 1{CE)(0) = ) (0))

Stacking all moments together gives
9(0) = (M1(0), M2(8), M3(0), Ma(9))’

and the estimator of 6 is

0 = arg min g(0)'Wg(0)
e

where we use as weighting a matrix, W, the inverse of the bootstrapped variances of the moments
on the diagonal and zero everywhere else.

We solve the minimization problem by successively applying different minimization routines
in Matlab. We perform the sequence of estimators four times and report the estimates yielding
the lowest criteria function. For each of the four estimation runs, we start with MATLABs
particleswarm which is a “global” optimization routine using randomization to search through
the parameter space. We use 80 particles and switch to Nelder-Mead (fminsearch in MATLAB)
using the best candidates from the converged particleswarm. We use Sg;, = 100 simulation
draws for this estimation. After the four sequences of these two algorithms, we increase the
number of simulation draws to Sg;,m = 2,000 and do one final Nelder-Mead minimization starting
at the parameters yielding the lowest objective function over the four sequences of estimators.

We then report the parameter values that solves this final minimization.
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