
Chapter 10
Recent Progress on Inverse and Data
Assimilation Procedure for
High-Latitude Ionospheric
Electrodynamics

Tomoko Matsuo

Abstract Polar ionospheric electrodynamics plays an important role in the Sun–
Earth connection chain, acting as one of the major driving forces of the upper
atmosphere and providing us with a means to probe physical processes in the dis-
tant magnetosphere. Accurate specification of the constantly changing conditions of
high-latitude ionospheric electrodynamics has long been of paramount interest to
the geospace science community. The AssimilativeMapping of Ionospheric Electro-
dynamics procedure, developed with an emphasis on inverting ground-based mag-
netometer observations for historical reasons, has long been used in the geospace
science community as a way to obtain complete maps of high-latitude ionospheric
electrodynamics by overcoming the limitations of a given geospace monitoring sys-
tem. This Chapter presents recent technical progress on inverse and data assimilation
procedures motivated primarily by availability of regular monitoring of high-latitude
electrodynamics by space-borne instruments. The method overview describes how
electrodynamic state variables are represented with polar-cap spherical harmonics
and how coefficients are estimated from the point of view of the Bayesian inferential
framework. Some examples of the recent applications to analysis of SuperDARN
plasma drift, Iridium, and DMSP magnetic fields, as well as DMSP auroral particle
precipitation data are included to demonstrate the method.

10.1 Introduction

The most dynamic electromagnetic energy and momentum exchange processes
between the upper atmosphere and the magnetosphere take place in the polar iono-
sphere. Physical processes producing aurora involve ionization and excitation of
atmospheric constituents due to energetic charged particles precipitating into the
upper atmosphere from the magnetosphere along the geomagnetic field lines, which

T. Matsuo (B)
Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado,
Boulder, CO 80303-0429, USA
e-mail: tomoko.matsuo@colorado.edu

© The Author(s) 2020
M. W. Dunlop and H. Lühr (eds.), Ionospheric Multi-Spacecraft
Analysis Tools, ISSI Scientific Report Series 17,
https://doi.org/10.1007/978-3-030-26732-2_10

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26732-2_10&domain=pdf
mailto:tomoko.matsuo@colorado.edu
https://doi.org/10.1007/978-3-030-26732-2_10


220 T. Matsuo

in turn modulates the ionosphere’s ability to conduct electric currents. Polar iono-
spheric electrodynamics plays an important role in the Sun–Earth connection chain,
acting as one of the major driving forces of the upper atmosphere and providing
us with a means to probe physical processes in the distant magnetosphere. Accurate
specification of the constantly changing conditions of high-latitude ionospheric elec-
trodynamics has long been of paramount interest to the geospace science community.

Global monitoring of high-latitude geospace has dramatically improved thanks to
a recent expansion of ground-based and space-based observing capability. Interna-
tional consortiums of ground-based instrumentation such as the Super Dual Auroral
Radar Network (SuperDARN) (e.g., Greenwald et al. 1995), International Real-Time
Magnetic Observatory Network (e.g., Love 2013) and SuperMAG (e.g., Gjerloev
2009) have made a large volume of quality-controlled, standardized data accessible
to the public. Acquisition, processing, and distribution of engineering-grade mag-
netometer data from the Iridium satellite constellation for scientific purposes by the
ActiveMagnetosphere andPolarElectrodynamicsResponseExperiment (AMPERE)
program (Anderson et al. 2000) have been instrumental in making continuous, global
monitoring of geomagnetic-field-aligned currents (FAC) possible. Defense Meteo-
rological Satellite Program (DMSP) space environment instruments have long been
providing valuable measurements of precipitating electron and ion particles, mag-
netic fields, and ultraviolet spectrographic images (e.g., Rich 1984; Hardy et al. 1984;
Paxton et al. 2002). And the Swarm multi-satellite mission (Friis-Christensen et al.
2006) provides high precision measurements of magnetic fields that complement
theses existing geospace observing systems.

Data assimilation techniques such as the Assimilative Mapping of Ionospheric
Electrodynamics (AMIE) procedure of Richmond and Kamide (1988) have long
been used in the geospace science community as a way to obtain complete maps
of high-latitude ionospheric electrodynamics by overcoming the limitations of a
given geospace monitoring system. The procedure combines a number of different
types of space-based and ground-based observations with an empirical model of
ionospheric electrodynamics to infer distributions of ionospheric electric fields and
currents, FAC, associated geomagnetic perturbation fields at both ground and low-
Earth-orbit altitudes, Hall and Pedersen conductance, and Joule heating. AMIEmaps
have yielded a number of important insights into the coupling of the magnetosphere,
ionosphere, and thermosphere that takes place at high latitudes. Lu (2017) provides
a comprehensive overview of AMIE applications.

This paper presents an overview of the recent technical developments of the
inverse and data assimilation procedure for high-latitude electrodynamics. Some
of these developments are a consequence of a reformulation of the best linear unbi-
ased estimation problem presented in Richmond and Kamide (1988) as a Bayesian
estimation problem (Matsuo et al. 2005). Under the assumption that electrodynamic
variables are Gaussian distributed, these two estimation problems are equivalent. A
Bayesian perspective has helped to clarify the role of the prior model (background)
error covariance as a key component in the modeling of Gaussian processes, and
thus guided modeling and estimation of prior covariance functions from a large vol-
ume of SuperDARN data (Cousins et al. 2013a), DMSP particle precipitation data
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(McGranaghan et al. 2015, 2016), and Iridium magnetic perturbation data (Cousins
et al. 2015b; Shi et al. 2019). Even though ionospheric conductivity serves as a critical
linkage in electromagnetic energy and momentum exchange processes, direct mon-
itoring of this conductivity is almost nonexistent. Another notable development led
by McGranaghan et al. (2016) is an assimilative mapping of the conductance using
the auroral ionization derived from DMSP electron energy flux spectra with help of
the GLobal airglOW (GLOW) model (Solomon et al. 1988) without the assumption
ofMaxwellian distribution. Since the AMIE has been developedwith an emphasis on
inverting ground-based magnetometer observations for historical reasons (Kamide
et al. 1981; Richmond and Kamide 1988), it is not tailored to analyses of space-based
magnetometer data from DMSP, Iridium, and Swarm. In order to solve the optimiza-
tion problem in terms of electrostatic potential, the space-based magnetometer data
first need to be converted to electrostatic potential through the application of Ohm’s
law and current continuity. To minimize the impact of conductance on the inversion
of space-based magnetometer data for FAC, the optimization problem is now being
solved in terms of both magnetic potential and electrostatic potential (Matsuo et al.
2015; Cousins et al. 2015a).

10.2 Method Overview

10.2.1 Representation of Electrodynamic State Variables
Using Scalar and Vector Polar-Cap Spherical
Harmonic Basis Functions

The ionosphere is treated as a thin conductive slab centered at a reference height
hr = 110km, and the current above the ionosphere is assumed to be strictly radial.
The effect of the neutral wind dynamo is not considered. Electrodynamic variables
analyzed here include the electrostatic potential �, electric fields E, Pedersen and
Hall conductance (height-integrated conductivity) �p, �h , height-integrated hori-
zontal ionospheric current density J⊥, toroidal magnetic potential � associated with
field-aligned current density J‖, and equivalent current potential � associated with
ground-based magnetic fields. These variables are presumed to be related to each
other as follows.

E = −∇� (10.1)

J⊥ = � · E (10.2)

J‖ = −∇ · J⊥ (10.3)

∇ × J⊥ = −∇2
hor� (10.4)

J‖ = 1

μo
∇2

hor� (10.5)
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where � =
(

�p −�h

�h �p

)
is the conductance tensor, ∇2

hor is the horizontal Laplacian,

and μo is permeability of free space. Equation (10.4) results from the assumption
of strictly vertical J‖ that allows equating the curls of J⊥ and the equivalent current
(i.e., Fukushima Theorem). If the Pedersen and Hall conductances are given, the
relationship among all electrodynamic variables (10.1)–(10.5) becomes linear.

In the procedure, electrodynamic variables are expressed in terms of the polar-
cap spherical harmonic basis functions developed by Richmond and Kamide (1988).
Suppose that � represents a matrix of the polar-cap spherical harmonic basis func-
tions evaluated at discrete grid locations specified by the Modified Magnetic Apex
longitude φm and latitude λm at the altitude of hr (Richmond 1995) and that x denotes
a vector of the coefficients.� is furthermore given by a set of 244 polar-cap spherical
harmonic basis functions up to order m� = 12, with non-integer degrees n� up to a
maximum of n� = 72.6 for m� = 0, with a polar-cap co-latitude for the functions
of 40◦. Therefore, x is a column vector of 244 elements and � is an n × 244 matrix,
where n is the number of grid points. Using the Nyquist sampling rate, the effec-
tive resolution is 15◦ longitude and 2.5◦ latitude. Let’s suppose that the electrostatic
potential � at φm and λm is given by

�(φm, λm) = �xE + εt , (10.6)

where εt is the truncation error, and the electric fields E by

E(φm, λm) = −� ′xE + εt , (10.7)

where a (n × 244) matrix � ′ contains the gradients of the polar-cap spherical har-
monic basis functions, which discretizes (10.1). The toroidal potential � at φm and
λm is then given by

�(φm, λm) = �xM + εt , (10.8)

where εt is the truncation error, and the FAC magnitude J by

J (φm, λm) = � ′′xM + εt , (10.9)

where a (n × 244) matrix � ′′ contains a simplified evaluation of (10.5) using the
analytical expression of the horizontal Laplacian of polar-cap spherical harmonic
basis functions applicable to spherical coordinates, rather than the full expression
applicable to M(110) coordinates. As explained in (Matsuo et al. 2015), this com-
putational simplification introduces errors on the order of 10%. For a given �p and
�h , xE and xM are related linearly through the current continuity and Ohm’s law
(10.2)–(10.3).
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10.2.2 Bayesian State Estimation for Gaussian Processes

Suppose that y represents a vector of j observations that may consist of electric
field, ground-based magnetic field, and/or space-based magnetic field measurements
at discrete observation locations. By evaluating the polar-cap spherical harmonics
and their derivatives at observation locations, y can be expressed as

y = Hx + εr , (10.10)

where H is a ( j × 244) matrix that contains the polar-cap spherical harmonic basis
functions and their spatial derivatives with corresponding vector calculus operations
as specified in (10.1)–(10.5), x denotes a vector of the 244 coefficients, and εr is the
sum of observational and truncation errors. The objective of the Bayesian state esti-
mation is to infer the polar-cap spherical harmonics coefficients x given observations
y according to Bayes rule: [x|y] ∝ [y|x][x] The vectors x and y are herein assumed
to be distributed according to the multivariate normal distribution denoted by MN
as

x ∼ MN[xb,Cb] , (10.11)

y ∼ MN[Hx,Cr ] , (10.12)

where xb is the prior mean, Cb is the prior (background) model error covariance
< (xb − x)(xb − x)T >, and Cr is the observational error covariance < εrε

T
r >. xb

is specified by using an empirical model. Cb is described in the following section.
The errors εr are assumed to be uncorrelated, so Cr is given by a diagonal matrix
of the variance of observational error. The posterior distribution or the conditional
distribution of x given observations y is given by the multivariate normal distribution
as

[x|y] ∼ MN[xa,Ca] , (10.13)

where xa is the posterior mean or the data assimilation analysis andCa is the analysis
error covariance < (xa − x)(xa − x)T >. In the case of normally distributed x and y
and linear H, there are closed formulae for xa and Ca (e.g., Jazwinski 1970; Lorenc
1986):

xa = xb + CbHT (HCbHT + Cr )
−1(y − Hxb) , (10.14)

Ca = [I − CbHT (HCbHT + Cr )
−1H]Cb . (10.15)

By specifying Cb, Cr , H, and xb, the analysis xa and error covariance Ca can be
computed for given observations y. The prior model error covariance Cb plays an
important role here, not only balancing the weighting between observations and
the prior model but also spreading the observation-model discrepancy information
spatially according to the correlation represented in the covariance.
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10.2.3 Nonstationary Covariance Modeling

Following the approach adopted in Matsuo et al. (2005) as a way to incorporate
anisotropic and inhomogeneous characteristics of the prior (background) model
errors into the analysis (10.14) in a computationally tractable manner, Cb is mod-
eled using the empirical orthogonal functions (EOFs, i.e., principal components).
EOFs and their coefficients are estimated in advance of the data assimilation, for
instance, from 50 million total SuperDARN plasma drift data points over January
2011 through August 2012 for electrostatic potential (Cousins et al. 2013a), from
over 60 million DMSP electron energy flux spectra during the solar cycles 22 and
24 for conductance (McGranaghan et al. 2015), and from over 300 days of Iridium
magnetic perturbation data from 2010 to 2015 for field-aligned currents (Shi et al.
2019).

Since observation sampling is often irregular and incomplete, a straightforward
eigenvalue decomposition of sample covariance cannot be applied to the dataset.
Instead, the nonlinear regression analysis of Matsuo et al. (2002) is used, wherein p
principal components are expressed by a linear combination of the polar-cap spherical
harmonic basis functions of Richmond and Kamide (1988), and each component is
estimated sequentially by a back-fitting technique along with orthonormalization of
the regression coefficients for each component. Each EOF can be expressed as �β,
where β is a 244 × p matrix. Then Cb is given as

Cb ≈ βCγ βT , (10.16)

where Cγ is the covariance < γ γ T > of the EOF coefficients γ , where γ is a p × 1
column vector. EOFs estimated by the method of Matsuo et al. (2002) are equivalent
to the eigenfunctions of a covariance matrix computed from observational data.

Fig. 10.1 Two-dimensional
correlation functions of
electrostatic potential with
respect to the 4 points
indicated by crosses. The
contour lines represent the
correlation level of 0.9, 0.8,
0.7, and 0.6 (Fig. 7 of
Cousins et al. 2013a)
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As with other principal component analysis methods, a certain replication of data
samples is required to estimate Cγ and β from the observations.

Figure10.1 shows 2-dimensional correlationmaps for electrostatic potential com-
puted from the EOF-based covariance derived from SuperDARN data (Cousins et al.
2013a) where p is set to 30. It is evident that the correlation structures are highly
anisotropic with a larger correlation length scales in the zonal direction in compari-
son to the meridional direction, and correlations vary depending on reference point
locations. These are features of strong nonstationary correlation, which will enable
the data assimilation procedure to spatially distribute the impact of observations
with consideration of realistic location-specific correlation structures of SuperDARN
plasma drifts or electric fields.

10.3 Analysis of Electrostatic Potential and Electric Fields

Cousins et al. (2013b) presents an inverse and data assimilation procedure designed
to specifically estimate xE as defined in (10.6) and (10.7) from SuperDARN data. A
comprehensive cross-validation study (Cousins et al. 2013b) wherein observations
are systematically set aside for validation and compared to predictions by data assim-
ilation outperforms the standard SuperDARN mapping procedure (Ruohoniemi and
Baker 1998; Shepherd and Ruohoniemi 2000). The inverse and data assimilation
procedure is found to reduce median prediction errors by up to 43% as compared
to the standard SuperDARN mapping procedure. The procedure is built using the
prior covariance modeled with EOFs obtained by Cousins et al. (2013a) and the prior
mean specified by the empirical plasma convection model of Cousins and Shepherd
(2010). Figure10.2 compares the maps of electrostatic potentials obtained by the
standard SuperDARN mapping procedure (Ruohoniemi and Baker 1998; Shepherd
and Ruohoniemi 2000 to the ones by Cousins et al. (2013b) along with maps of the
uncertainty associatedwith assimilativemapping as givenby the diagonal elements of
Ca (10.15). The uncertainty reflects the observation distributions with higher uncer-
tainty found in the area of the SuperDARN data gap. The comparison also highlights
the role of the nonstationary covariance in the inverse and data assimilation procedure
that help regularize assimilative mapping analysis.

10.4 Analysis of Toroidal Magnetic Potential
and Field-Aligned Currents

Matsuo et al. (2015) presents an inverse and data assimilation analysis of space-
based magnetometer data that directly solves for xM as defined in (10.8) and (10.9)
to circumvent the need to use conductance in analysis of space-based magnetome-
ter data for FAC as has been originally done in Richmond and Kamide (1988).
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Fig. 10.2 Potential distributions for three selected times. a, d, and g Results from the standard
SuperDARN mapping procedure. b, c, e, f, h, and i Results from the inverse and data assimilation
procedure, with associated uncertainty shown as background coloring on the right side (Fig. 5 of
Cousins et al. 2013b)

Figure10.3 displays maps of the toroidal magnetic potential and FAC estimated
from both AMPERE and DMSP data under four distinctive interplanetary magnetic
field conditions during a magnetic cloud event on May 29, 2010, and demonstrates
the Interplanetary Magnetic Field (IMF) control of high-latitude electrodynamics.
Note that the uncertainty associated with the magnetic potential analysis is shown
in the black-and-white contour in the background, with darker shades indicating
greater errors. For comparison, the bottom row shows maps of the FAC provided
by the AMPERE program. The AMPERE data product obtained from the spherical
harmonic fit has an effective resolution of 3◦ latitude and 36◦ longitude (Anderson
et al. 2014). As discussed in Matsuo et al. (2015), the overall distribution of FAC
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Fig. 10.3 The plots in the top and middle rows are maps of toroidal magnetic potential and FAC
onMay 29, 2010, estimated from the AMPERE and DMSP data over a 4min interval: a-1, a-2 IMF
Bz positive, b-1, b-2 IMF By positive, c-1, c-2 IMF Bz negative, and d-1, d-2 IMF By negative.
The plots in the bottom row are maps of the FAC provided by the AMPERE program, estimated
from the AMPERE data over a 10min interval using Altitude Adjusted Corrected Geomagnetic
Coordinates (Fig. 5 of Matsuo et al. 2015)

is similar to the one obtained by the current procedure, except for a few notable
differences in the detail, such as the absence of high-frequency features and more
longitudinally continuous FAC spatial structures are seen in the present analysis.
Thanks to the regularization through the use of the prior model error covariance in
solving the inverse problem, there is no need to fill the data gap with synthetic data
to make a regression analysis stable, as is required in the AMPERE inversion.

10.5 Dual Optimization Approach

The framework for the inverse and data assimilation procedure described in Sect. 10.2
has thus far been applied to assimilative analysis of individual electromagnetic vari-
ables. In this section, the same framework is applied to the analysis of multiple
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Fig. 10.4 Distributions of a, d electrostatic potential, b, e field-aligned current density, and c, f
Poynting flux for 07400750 UT, November 29, 2011. Background color indicates estimated uncer-
tainty. a, b, c Results using the SuperDARN and AMPERE data, independently. d, e, f Results
using the SuperDARN and AMPERE data together. While SuperDARN observation locations are
indicated by black dots, Iridium satellite tracks (where there are AMPERE data) are indicated by
black lines (Fig. 5 of Cousins et al. 2015a)

variables. The relationship among electrodynamic variables given in (10.1)–(10.5)
is nonlinear, requiring a nonlinear optimization approach. As an intermediate step
toward implementing a fully nonlinear solver, Cousins et al. (2015a) presents a dual
optimization approach by combining the two linear optimization approaches pre-
sented in Sects. 10.3 and 10.4 but using both SuperDARN and Iridium magnetic
perturbation data. For a given conductance �p and �h , optimal values for xE and xM
are estimated independently. Specifically, the optimal interpolation (or Kalman filter
update) Eqs. (10.14) and (10.15) are applied to xE with the prior error covariance for
electrostatic potential estimated from the SuperDARN data (Cousins et al. 2013a)
and with y being composed of SuperDARN plasma drifts and Iridium magnetic per-
turbation fields. For estimation of xM, (10.14) and (10.15) are applied with the prior
error covariance for toroidal magnetic potential estimated from the Iridiummagnetic
perturbation data (Cousins et al. 2015b).

Figure10.4 demonstrates the benefit of incorporating both SuperDARN and Irid-
ium magnetic perturbation observations into the estimation of both electrostatic and
magnetic potential (Cousins et al. 2015a). For example, as shown in the orange-
shaded background contour in Fig. 10.4a and d, the uncertainty for electrostatic
potential distributions estimated fromSuperDARNdata alone is higher in comparison
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Fig. 10.5 Median Absolute Differences (MADs) between the prediction by data assimilation and
the validation observation over the November 26–December 2, 2011 analysis time period. MADs
are computed over the polar region. a, d Borovsky coupling function (black trace, left y-axis), b,
e SuperDARN plasma drifts are used to predict Iridium magnetic fields, and c, f Iridium magnetic
fields are used to predict SuperDARN plasma drifts (Fig. 8 of McGranaghan et al. 2016)

to the uncertainty when both data are assimilated. This is particularly evident in the
dawn cell where there is no SuperDARNdata but there is Iridium data.McGranaghan
et al. (2016) have examined the effects of using different conductances in this dual
optimization approach to assimilative mapping. When �p and �h are estimated by
assimilation of the DMSP electron precipitation data (blue in Fig. 10.5) rather than
specified by a climatological model (red in Fig. 10.5), the prediction of SuperDARN
plasma drifts by assimilative analysis of Iridiummagnetic perturbation data becomes
more consistent with SuperDARN plasma drifts observations, as shown in Fig. 10.5c
and f. Note that SuperDARNdata are not used here for prediction of Iridiummagnetic
perturbation data, and vice versa.
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10.6 Summary

This paper demonstrates that simultaneous analysis of multiple types of space-based
and ground-based global geospace observations enabled by the inverse and data
assimilation procedure provides a global perspective of high-latitude ionospheric
electrodynamics. The paper summarizes important technical developments that have
beenmade in response to the expansion of high-latitude geospace observing systems.
The primary areas of the methodological extension to the AMIE (Richmond and
Kamide 1988) are (a) the optimization in terms of both magnetic and electrostatic
potential to minimize the impact of conductance on the inversion of space-based
IridiumandDMSPmagnetometer data for FACmapping (Matsuo et al. 2015;Cousins
et al. 2015a); (b) the use of realistic prior error covariance estimated from a large
data set of SuperDARN (Cousins et al. 2013a), DMSP (McGranaghan et al. 2015)
and Iridium magnetic perturbation data (Shi et al. 2019); (c) improved assimilative
conductance/conductivity mapping (McGranaghan et al. 2016).
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