Noname manuscript No.
(will be inserted by the editor)

Secure and Stateful Power Transitions in Embedded

Systems

Archanaa S. Krishnan -

Received: date / Accepted: date

Abstract Power loss occurs in devices with a transient
power supply, and it leads to the loss of volatile state
information of the device. To protect the state, the de-
vice stores it as a checkpoint in non-volatile memory.
The checkpoints are used to restore the device to the
most recent stored state upon power up. There are three
facets of power transitions - cause, statefulness, and se-
curity, out of which the third facet is ignored in current
embedded systems research. In this paper, we describe
the intersection of two fields, stateful power transitions
and secure embedded systems, which has largely been
unexplored until now. We study the limitations intro-
duced by the three facets of power transitions of embed-
ded devices. We explore the vulnerabilities introduced
by stateful power transitions and propose the Secure
Intermittent Computing Protocol to overcome them.
We analyze the overhead of each technology required
to provide secure and stateful power transition and its
effects on the duty cycle of an embedded device.

Keywords Secure checkpoints - Intermittent com-
puting - Energy harvesters - Non-volatile memory -
Embedded systems

A. S. Krishnan

Bradley Department of Electrical and Computer Engineering
Virginia Tech

Blacksburg, VA, 24060 USA

E-mail: archanaa@vt.edu

C. Suslowicz

Army Cyber Institute

U.S. Military Academy

West Point, NY, 10666 USA

E-mail: charles.suslowiczQwestpoint.edu

P. Schaumont

Bradley Department of Electrical and Computer Engineering
Virginia Tech

Blacksburg, VA, 24060 USA

E-mail: schaum@vt.edu

Charles Suslowicz - Patrick Schaumont

1 Introduction

Computers including servers, personal computers (PCs),
laptops, and embedded devices, run on electric power,
which is typically supplied by the grid. Power loss, a fact
of life, is a short-term or long-term shortage of power
which causes computer shut downs. Upon power loss,
the device transitions from ON-state to OFF-sate, los-
ing its volatile computer state. Upon the next power-up,
it transitions to ON-state and re-initializes the volatile
state, thus power loss re-initializes the system on every
power-up. The transition between ON, OFF, and ON-
state is called power transition. The computer copes
with power loss by storing checkpoints of the interme-
diate volatile state in non-volatile memory, illustrated
in Figure 1. Non-volatile memory ensures that check-
points remain persistent across power transitions. Upon
power up, the computer is restored to the most recent
checkpointed state and resumes its tasks.

In this paper, we focus on the power transitions of a
secure embedded system. Energy harvesting technology
converts ambient energy to electrical energy, which is
sufficient to power resource constrained embedded de-
vices. Figure 1 illustrates a device powered by a solar
energy harvester. Since the availability of solar energy
depends on the weather and time of the day, a solar
energy harvester is a transient power source. Transient
power supplies do not provide continuous power which
causes power loss in embedded systems. To cope with
power loss, the device is equipped with non-volatile
memory. Although the device’s non-volatile memory re-
tains its data during power-off, the volatile state infor-
mation is lost. Non-volatile memory by itself is insuffi-
cient to ensure forward progress of the application [28].
Intermittent computing is a stateful power transition
technology, where the device stores a snapshot of the

Archanaa S. Krishnan et al.

1% 1%

Solar energy & @ &

Solar energy
LS s
POWER ON T POWER OFF POWER ON
COMPUTER COMPUTER COMPUTER
Loose volatile
Lvm] state M Restore | Lvm]
101010... CKP 101010...
..... 0010000100
2 Retai -
TRvM] eannon | o ravm]
volatile state
Long- Long- Long-
term term term
Storage Storage Storage
1010106 1010106 CKP' 101010
.....00100 S oowooff [| |.. 00100 CKP

v

Fig. 1 The three facets of power transition: (1) Cause - lack
of solar energy causes power loss, (2) Statefulness - the state
of volatile memory, VM, is stored as checkpoints, CKP, in
non-volatile memory, NVM, and (3) Security - checkpoints
are protected in NVM.

volatile state information in non-volatile memory, as a
checkpoint (CKP). The checkpoint is used to restore
the device to the last known state to ensure forward
progress of the application. The state-of-the-art inter-
mittent computing techniques provide efficient check-
point generation and restoration solutions to ensure for-
ward progress with minimum overhead [28, 19, 29, 43].
As the checkpoints contain intermediate state of the de-
vice, they must be secured to protect power transitions.

Figure 1 illustrates the three facets of power transi-
tions - cause, statefuleness, and security. In general pur-
pose computers, such as servers, PCs and laptops [16,
30], all three facets of power transitions are on-going re-
search problems. Whereas in embedded systems, only
the cause [1, 39, 14] and statefulness [19] are commonly
explored. Although security for embedded systems is an
on-going research problem [31], the security of power
transitions is widely ignored. In this paper, we high-
light the need for secure power transitions in embedded
systems through the following contributions:

— We study the security vulnerabilities introduced by
stateful power transitions and analyze the need for
secure power transitions.

— We propose the Secure Intermittent Computing Pro-
tocol (SICP) to overcome these vulnerabilities. We
describe a real-life application that requires check-
point security, which can benefit from SICP.

— We quantify power transitions in embedded systems
by computing their duty cycle based on the amount
of energy available from the harvester, the overhead
of checkpoint generation and restoration process,
and the overhead incurred to secure stateful power
transitions. We demonstrate that secure and state-

ful power transitions are expensive but achievable
in embedded systems.

The security vulnerabilities form checkpoints were
first introduced in 2018 at the 8th International Confer-
ence on Security, Privacy, and Applied Cryptographic
Engineering [36]. SICP was first proposed in 2019 at the
Design Automation and Test in Europe [24]. In this pa-
per, we extend and improve on the background of power
transitions in embedded systems. We evaluate the need
for SICP using a real-life application, and quantify its
effects on the duty cycle of the application.

Organization The rest of the paper is organized as fol-
lows. Section 2 provides a brief background on the dif-
ferent facets of power transition and their effects on em-
bedded systems. Section 3 discusses our attacker model,
locates checkpoint vulnerabilities, and provides a set of
security requirements for checkpoints. Section 4 pro-
poses SICP to satisfy these security requirements fol-
lowed by our implementation of SICP in Section 5. Sec-
tion 6 evaluates SICP by introducing the need for check-
point security to a real-life application and by studying
the overhead of statefulness and security in power tran-
sition and its effect on the duty cycle of the application,
followed by our conclusions in Section 7.

2 Background in Power Transitions

In this section, we define the different facets of power
transitions and analyze their effects on embedded sys-
tems. The three facets of power transition are defined
as follows:

1. Cause: The root cause of power loss helps identify
the frequency, period of power loss, and other char-
acteristics which help design coping mechanisms for
the computer system.

2. Statefulness: A stateful power transition is aware
of the intermediate state of the computer system.
Through statefulness, the computer maintains its
state during power loss which is used in future com-
putations. It ensures the forward progress of the ap-
plication.

3. Security: The security of a power transition is the
guarantee that the state of the computer system is
protected from data corruption and unauthorized
access even during power loss. It preserves the se-
curity features of both the device and application
across power loss.

We analyze the problems introduced by transient
power supplies, describe the use of statefulness to cope
with these problems and demonstrate the need for se-
curity in stateful power transitions.

Secure and Stateful Power Transitions in Embedded Systems

Ener Power
Sour?e, »| Transducer [—| Management » Load
Circuit J-
A 4 =

Energy
Store

Fig. 2 Three components of an energy harvester: (1) a trans-
ducer to convert ambient energy to electrical energy, (2) a
power management circuit to adjust the harvested energy
based on the needs of the load, and (3) an energy storage
buffer to deliver high power to the load

2.1 Cause

Energy harvesters extract energy from ambient energy
sources, such as heat [39], vibration [14], and radia-
tion [27], and convert it to electrical energy to power
embedded devices. The ambient energy is processed in
three steps before it is consumed by the load, illustrated
in Figure 2. First, a transducer converts ambient energy
to electrical energy. Second, a power management cir-
cuit efficiently manages the harvested energy based on
the requirements of the load. Since the harvester typ-
ically supplies low power, third, a supercapacitor or a
battery is used as an energy storage buffer to accumu-
late the harvested electrical energy to supply bursts of
high power to the load.

The ambient energy sources depend on external fac-
tors, including, but not limited to, weather, time of day,
human activity, and location of the harvester. For ex-
ample, sunlight is only available during daytime and is
dependent on the weather conditions; wind energy is
similarly dependent on the weather; kinetic energy is
dependent on machine or human motion. This depen-
dency limits the available ambient energy and causes a
harvester to supply intermittent power to its load.

Prg

DLoad = x 100 (1)

Load

Equation 1 states the relation between the load duty
cycle, Djyqq, the average power available from the har-
vester, Pry, and the net power required by the load
Pioaq- If the load was supplied by a constant power
supply, the supply and demand will match, i.e., Pgg
would equal P4, in which case the device would op-
erate at 100% duty cycle. The harvested power typi-
cally does not match the power required by the load.
For example, consider a load which performs a cryp-
tographic signature [32] powered by a kinetic energy
harvester [9]. Each signature requires 7.3 mW (Pjoqq),
whereas the harvester only supplies an average of 2 mW
(Pgp). The load can only operate at a 27% duty cycle
to compute signatures. Thus, the duty cycle is deter-
mined by the power budget available from the energy
harvester.

Since the load may require more power than the
harvester’s output, it is bound to lose power during its
computation unless the energy storage buffer is large
enough to satisfy its requirements. The storage buffer,
which is usually a battery or supercapacitor, accumu-
lates the energy until it can deliver sufficient power
to the load. Supercapacitors are well suited for en-
ergy harvesting applications, as they provide infinite
charge/discharge life cycles, fast recharge rate and high
power density compared to batteries. In the above ex-
ample, the load requires 7.3mW in 12.5s to compute a
cryptographic signature, which requires 91mJ of energy.
When the load is supplied by a 3V input voltage, it re-
quires a minimum of 0.02F supercapacitor to supply the
power required to compute one signature. The number
of signatures that can be computed before a power loss
occurs depends on the size of the energy buffer which is
typically small to reduce the size of the energy harvest-
ing circuit and capacitor charge time. The load experi-
ences a power loss after it exhausts its energy buffer.

Conventionally, after each power cycle the device
is reinitialized and loses the progress made during the
previous power on state, restarting the application ev-
ery time. Stateful power transitions are needed to avoid
re-initialization after every power loss.

2.2 Statefulness

The intermittent computing model, a stateful power
transition technique, was introduced to guarantee for-
ward progress of long-running applications when pow-
ered by an intermittent power supply. All the state in-
formation necessary to restore the device is stored as a
checkpoint in non-volatile memory. A checkpoint con-
sists of the system state, such as processor registers, pe-
ripheral registers, and application state, such as stack,
heap, and developer defined variables that are required
to resume program execution. After a power cycle, the
device is restored to the last known checkpointed state.

Several intermittent computing techniques have
been proposed, among which a majority optimize two
criteria, energy efficiency and rollback minimization.
The latter also ensures that the former is achieved
by preventing re-execution of completed tasks. The
state-of-the-art techniques use various techniques, such
as architectural support [19], energy aware checkpoint
calls [21], kernel-oriented design [5], task based pro-
gramming and execution model [28], non-volatile pro-
cessors [23], and, probabilistic algorithms [15] to obtain
energy efficient checkpoints.

Irrespective of the checkpointing technique in use,
the device transitions through two states, ON-state and
OFF-state. During the ON-state, the device performs

Archanaa S. Krishnan et al.

Microcontroller
Memory

Execution Integrity Adversary

Tamper Free

— /,
NVM Tamper Sensitive

NVM Regular Power
,/ Source
Volatile Memory / I

CPU & Peripherals

Residual Power
Source

Fig. 3 The architectural assumptions and memory model for
SICP illustrating the assumed attacker model with two ca-
pabilities - (1) control power supply to the device and (2)
view and modify tamper sensitive non-volatile memory dur-
ing power-off periods.

its regular tasks. It may employ protection features
such as control flow integrity [11], attestation and isola~
tion [31], and protection against cold-boot attacks [17].
The variables required to implement these security fea-
tures must also be checkpointed to ensure the continu-
ation of these security properties in future ON-states.
During the OFF-state, the checkpoint remains in non-
volatile memory. The checkpoint contains the interme-
diate state of the application, which may be a crypto-
graphic algorithm, and the critical settings of the secu-
rity features employed during ON-state, such as ker-
nel privileges and memory access rights. A majority
of the intermittent computing techniques store their
checkpoints as plaintext in non-volatile memory. A few
techniques explore security in power transitions [15, 42]
but they do not provide a comprehensive security so-
lution. The existing secure power transition solutions
from general purpose computers [7, 8, 16] cannot be
used in embedded systems because they were not de-
signed for resource constrained devices.

3 Problem Description

Checkpoints, which are generated to provide stateful
power transitions, introduce vulnerabilities to an em-
bedded device which may otherwise be secure when it
is powered on. In this section, we define our attacker
model, describe the risks introduced by unprotected
checkpoints, and list a set of minimum security require-
ments to protect power transitions against the assumed
attacker model.

3.1 Attacker model

The attackers aims to gain useful information from the
intermittent execution model. We define an attacker
model with the following capabilities, illustrated in Fig-
ure 3, to study the security vulnerabilities introduced
by checkpoints.

1. The attacker has complete control over the power
supplied to the device. The attacker can arbitrar-
ily stop the application on the target device, for
example, the attacker can tamper with the energy
harvester input to control the input to the target
device. The aim of the attacker is not to completely
stop the application on the target device, but to
stop the target device at strategic points in the ap-
plication to gain information from the checkpoints.
Thus, denial of service by cutting off power supply
is out of scope of this attacker model.

2. The attacker has access to the majority of the device
memory when it is powered off. The attacker can
read from and write to the unprotected non-volatile
memory, which we call tamper-sensitive non-volatile
memory. In this scenario, even though the device
must be powered on to access the contents of mem-
ory, the CPU is still not powered-on, i.e, the pro-
cessor is in idle state. For example, the attacker can
access the memory by providing read/write com-
mands to Direct Memory Accessc(DMA) via debug
probes. Since DMA is independent of the proces-
sor, the attacker need not power-on the processor
to access memory [33].

We assume that the device is equipped with a tamper-
free non-volatile memory, which is secure from the as-
sumed attacker model. This requirement can be satis-
fied by using an off-the-shelf microcontroller with se-
cure non-volatile memory, such as Maxim’s ZA9L1 [2].
For example, the secure memory may only be accessible
from authorized code and unauthorized access may lead
to zeroization of secure memory. We assume that the
device is physically protected from the attacker. The
attacker cannot access the device memory during ON-
state, the volatile and non-volatile system states are
inaccessible to the attacker when the device is powered
on. We assume that the device’s execution integrity and
memory protection during power-on states are guaran-
teed by a protected embedded software execution envi-
ronment [31]. The mitigation of side channel and fault
injection attacks on the checkpointing system are be-
yond the scope of this work.

3.2 Checkpoint vulnerabilities

Non-volatility of persistent memory compromises the
privacy of unsecured persistent data. The state-of-the-
art non-volatile memory protections are not designed
for resource constrained devices [22, 40]. The state-
of-the-art intermittent computing techniques also fail
to secure their checkpoints. Checkpoints consist of the
volatile and non-volatile state of a device, which may

Secure and Stateful Power Transitions in Embedded Systems

contain sensitive data. When left unsecured, they in-
troduce the following vulnerabilities to an intermittent
system.

— Checkpoint snooping: The attacker can read the non-
volatile memory, and in turn read the checkpoints to
extract sensitive information stored in them as the
checkpoints are stored as plaintexts. Non-volatile
data, which is otherwise private during power-on, is
now open to attackers in checkpoints. The attacker
can study the checkpoints to identify the location of
sensitive information [36]. While checkpoint encryp-
tion may provide protection against snooping [15],
it does not protect against the other vulnerabilities.

— Checkpoint spoofing: The state-of-the-art intermit-
tent computing techniques simply restore a check-
point, if one exists, without checking its integrity.
With the knowledge of the location of sensitive vari-
ables, the attacker can spoof checkpoints by mod-
ifying them in non-volatile memory. Unknowingly,
the device restores itself with a modified checkpoint
from where it resumes execution in an attacker con-
trolled sequence. Encrypted checkpoints [15] are also
vulnerable to spoofing as they do not guarantee in-
tegrity. The attacker can modify an encrypted check-
point, which may not correspond to a valid check-
pointed state upon decryption. When the device is
powered up, it is restored with the decrypted modi-
fied encrypted checkpoint, which may lead to a sys-
tem crash.

— Checkpoint replay: The attacker can combine snoop-
ing and spoofing to replay checkpoints. The attacker
can store a copy of all the checkpoints of an inter-
mittent system, where each checkpoint corresponds
to a state of the application, to create a pool of
checkpoints. The state-of-the-art intermittent com-
puting techniques do not check if the checkpoint to
be restored is indeed the latest checkpoint, which
enables checkpoint replay. The attacker can over-
write the current checkpoint with any checkpoint
from their pool; upon power-up, the device is re-
stored to a stale state. A checkpoint security solu-
tion which only protects checkpoint confidentiality
and integrity, such as SECCS [42], will not detect
checkpoint replay.

3.3 Exploiting unsecured checkpoints

The attacker can exploit these vulnerabilities to gain
access to sensitive information about the application
on the device. If a device is programmed with a crypto-
graphic algorithm, such as Advanced Encryption Stan-
dard(AES) [10], the application variables must be in-

cluded in its checkpoint to ensure forward progress of
the algorithm in the event of power loss. The attacker
can identify the sensitive variables in a checkpoint [36],
such as the intermediate state and round counter of
AES. The ability to spoof checkpoints enables the at-
tacker to replace sensitive variables of AES with at-
tacker controlled variables and extract the secret key
using cryptanalysis.

Checkpoint security is essential to ensure that the
security properties of ON-states are maintained across
power transitions, without any compromise. The con-
tinuous execution paradigm is shifting to an intermit-
tent execution paradigm, which makes checkpoints an
integral part of the execution environment. The exist-
ing secure software execution environments are only de-
signed for ON-states based on the assumption that the
power supply is continuous [31, 13, 11]. They propose to
restart their system, including the security modules and
features, when they encounter a power failure. These
assumptions do not apply to a system powered by a
transient power supply. Secure software execution must
consider the security of both its ON-state and OFF-
state, which includes checkpoint security.

3.4 Checkpoint Security Requirements

Although the security requirements may vary depend-
ing on the application and device, we must consider the
following as a set of minimum requirements to overcome
the vulnerabilities discussed above.

— Information security: The checkpoint’s confidential-
ity, integrity, authenticity, and freshness must be en-
sured to protect against checkpoint snooping, spoof-
ing, and replay.

— Atomicity: The checkpoint generation and restora-
tion process must be atomic. This guarantees that
the checkpoints will not be corrupted even if a power
loss occurs during the checkpointing process.

— Continuity: Secure application continuity maintains
the order of checkpoints, to provide assurance that
the device is at the current state because it executed
the previous states without any attacker interven-
tion.

3.5 Architectural Assumptions

Secure and stateful power transitions require certain
architectural features and protection guarantees, illus-
trated in Figure 3. The device must have three types
of memory. First, volatile memory to store the runtime
program state, which is erased upon power loss. Second,

6 Archanaa S. Krishnan et al.
____________ o State Power nonce ctext tag nonce ctext tag
@ @ @ - ’transition Nonce State SICP STATE Ra Sa Ta Rs Sg Te
1.2 2. WIPE 3.2 Protocol (1)
STlAlTE REFRESH crate 31Check| |resTore | T operation FACTORYRESET ¢ 0 o 0 0 0
kP cKP STATE

State of non-volatile
memory over time

10101 00000 10101
Lotoso (28| |oooon (o8| |st20 (<]

>

Fig. 4 A protocol scenario for secure power transitions, de-
picting a sequence of ON-states, OFF-states, and the corre-
sponding state of non-volatile memory of the device. The pro-
tocol provides rules for (1) creating secure checkpoints, CKP,
during ON; and for (3) restoring an unmodified CKP. It also
ensures the protection of plaintext state by (2) overwriting it
with zeros upon power loss.

tamper sensitive non-volatile memory, which does not
possess any tamper resistance. Third, tamper-free non-
volatile memory, which is secure against the assumed
attacker model. The size of tamper free memory must
be minimized to reduce hardware cost and complex-
ity. We only place necessary variables in tamper-free
memory, including the secret key and nonce, instead of
placing the entire secure checkpoint in it. The rest of
the secure checkpoint is placed in the tamper sensitive
non-volatile memory, which is unprotected.

Apart from the different types of memory, the de-
vice must have a residual power source to provide a
small, finite source of energy. For example, an on-chip
or on-board capacitor may act as a residual source to
power the device for a small period even after the main
power supply is powered-off. Since power loss is con-
sidered a threat, sensitive variables must be wiped as
soon as the device encounters a power loss. We assume
that the residual power source is sufficient to wipe sen-
sitive variables and to finish writing a 128-bit value in
non-volatile memory. Since the device is physically pro-
tected from the attacker, the assumed physical protec-
tion also extends to the residual source.

4 Secure Intermittent Computing Protocol

Checkpoint security is essential, without which the se-
curity features from ON-state are lost during OFF-
state. Intermittent computing techniques only ensure
the forward progress of the application, the continuity
of the security properties require a set of rules to detect
and prevent tampering. This introduces a need for a
protocol or a frame of reference to describe and achieve
the security requirements discussed in Section 3.4.

We define the Secure Intermittent Computing Pro-
tocol (SICP) to protect the checkpoint vulnerabilities
introduced in Section 3.2 and to ensure forward progress
of the application and continuity of security proper-
ties. SICP defines a set of rules among the different

(2)
Ry @ iNmALzE ° Ry 0 0 Ro
(3) 0o o
@ WIPE R S T Ro
(4)
R @ RESTORE 0 Ri S5 Tt R

(5)
Rs @ REFRESH P Rs Re S T

- AEAD
H Ss T
v \—\-4—/

Fig. 5 An example SICP scenario. (1) The system is cleared
by the factory_reset() operation. (2) A fresh nonce, R; is as-
sociated with each power-on state. The first valid state save
packet, SSy, is created by INITIALIZE. On power loss, (3) WIPE
clears the volatile STATE and upon subsequent power up, (4)
RESTORE validates the latest state save packet, SS;, restores
the program state, and generates a new state save packet SSz.
(5) During program execution, REFRESH is called to create a
new checkpoint SS3, overwriting the oldest state save packet,
SSy.

states of the device, illustrated in Figure 4. The non-
volatile memory, which holds the checkpoints, is the
prover and the device verifies the validity of these check-
points. During power-on, the device creates a secure
checkpoint and stores it in non-volatile memory (Step
1). After a power cycle, the device verifies if the check-
point to be restored is indeed the latest and unmodified
checkpoint (Step 3). With SICP, the device can dif-
ferentiate between a malicious and valid checkpoint in
memory. It detects malicious checkpoints and prevents
restoring the device to an attacker controlled state.

4.1 Satisfying the security requirements

We start with a device that has gone through fac-
tory_reset() which restores the device to manufacturer
settings and programs the tamper-free non-volatile
memory with a secure key, K. With the unsecured
checkpoint, STATE, which contains the application and
microcontroller data, we create a secure checkpoint in
several steps, illustrated in Figure 5.

First, the freshness requirement is satisfied by asso-
ciating each STATFE with a nonce, R;, which is stored
in tamper-free non-volatile memory. nonce() gener-
ates a unique and fresh R;. Second, the confidential-
ity, integrity and authenticity requirements are sat-
isfied by encrypting STATE and R; using Authenti-

Secure and Stateful Power Transitions in Embedded Systems

Algorithm 1 INITIALIZE

Algorithm 2 REFRESH and RESTORE

Require: K

1 Q <« nonce()

Tg < nonce()

STATE + 0

Ry« Q

. Sp < AEADener(STATE, T, Ra, K)
Ty AEADauth(SA, Tg, RA, K)

cated Encryption with Associated Data (AEAD) [35].
AFEAD.p.-() takes the plaintest STATE, R;, and the
non-confidential associated data as input to generate
the encrypted checkpoint, S;. AEAD () generates
an authentication tag, T;, over the newly encrypted
checkpoint along with the nonce and associated datal.
After a power cycle, if a valid authentication tag exists,
it decrypts S; using AEAD geerr(). If the authentication
tag check fails, abort() is called to raise a violation of
the protocol. At a minimum, abort() must either halt
the device or clear the device memory and restart it. A
secure checkpoint is a tuple of S;, R;, and T;, which is
called a state save packet, S5;.

Third, the atomicity requirement is satisfied by stor-
ing the state save packets in a two-state buffer, S5 4
and SSp. They are updated in an alternating manner
to ensure one packet is kept valid at all times. At a given
point of time, the non-volatile memory will contain the
latest packet, S.S;, and the previous packet, SS;_1, il-
lustrated in Figure 5. Fourth, the continuity require-
ment is satisfied by tag-chaining, which is the process
of cryptographically chaining the authentication tags of
the checkpoints in chronological order. It is achieved by
using the authentication tag from the previous packet,
T;_1 as associated data to generate the latest packet,
SS;. For example, in Figure 5, T3 is used to compute
SS5, from which 75 is used to compute SS3. The au-
thentication tags protect the integrity and authenticity
of checkpoints as well as its chronological order.

4.2 Protocol

We define SICP as a collection of four algorithms de-
scribed below.

INITIALIZE : The device is initialized with the first
packet, S5y, with Algorithm 1. Upon power-up, INI-
TTALIZE is called if the device has gone through a fac-
tory_reset(), which is identified by a unique reset mem-
ory pattern. INITIALIZE is called only once to create
SS71, which is stored in buffer S.S 4. Since the first packet

I The encryption and tag calculation in AEAD operations
are separated here to provide clarity in protocol operations

Require: K,STATE, S;, R;, T;, where i € {A, B}
operation € {REFRESH, RESTORE}

1: Q + nonce()
2:if Ty = AE’AD,,th(SA7 Ta,Ra, K) then
3: if operation = RESTORE then
4: STATE « AEADqge;(Sa, Ta, T, Ra, K)
5: end if
6: Rp + @
7 Sp < AEADcnc(STATE, Ta, Rp, K)
8: Tp < AEADa,uth,(SBa TA, RB, K)
9: else
10: if TB = AEADaum(SB, TA7 RB, K) then
11: if operation = RESTORE then
12: STATE «+ AEADdEcT(SBv TB7 Ty, RB, K)
13: end if
14: Rp+ Q
15: Sa < AEADener(STATE, Tp, Ra, K)
16: Ta < AEADgun(Sa, T, Ra, K)
17: end if
18: else
19: abort()
20: end if
SSg SSa
&a Rg Ra
L A% 7:AEADe() 5 5
STATE——> & | iAEADu()
l—b D ;—’ Ts TIA

Fig. 6 An example REFRESH of state save packet, SSg,
based on Algorithm 2. (1) Update Rp with the latest nonce,
Q (line 6), (2) encrypt the checkpoint with the nonce and au-
thentication tag from previous packet, T4, and update Sp
(line 7), and (3) last, update the authentication tag, T,
which invalidates SS 4 and validates SSg as the most recent
valid packet (line 8).

has no previous authentication tag to be used as associ-
ated data, a nonce is used as associated data, Tg. This
ensures a unique chain of tags are generated after ev-
ery factory-reset(). Next, STATE, where the plaintext
checkpoint is collected, is zeroized to overwrite the reset
memory pattern to prevent future calls to INITTALIZE.
A valid state save packet, SS4, is created by encrypting
and authenticating STATE, R4, and Tp using AEAD
to generate S4 and T4. A state save packet, S.5;, is
valid if it satisfies two conditions. First, its nonce, R;,
must match the nonce used in AEAD operations. Sec-
ond, its associated data in the AEAD operations must
match the authentication tag of the previous state save
packet. It ensures only one packet is valid between the
two buffers, SS4 and SSp.

REFRESH : Algorithm 2 defines both the secure check-
point generation and restoration process, as they in-
volve similar cryptographic operations with the differ-
ence listed on line 4 and 12. During power-on, RE-
FRESH is called to generate the latest state save packet.

Archanaa S. Krishnan et al.

It determines which is the valid buffer, between 5S4
and SSp to update the alternate buffer. For example,
when REFRESH is called, if 5SS 4 is valid, line 2 in Algo-
rithm 2 is true. Correspondingly, SSp is updated with
the latest checkpointed state by first updating Rp and
then Sp, as illustrated in Figure 6. 5S4 remains valid
until Tz is updated. As soon as Tz is updated with the
latest authentication tag, in line 8, SS4 is invalidated
and SSp is the latest valid packet. This update to the
authentication tag, Tz in line 8 and T4 in line 16, makes
REFRESH atomic. SICP makes an explicit assumption
that this tag update is an atomic operation. This as-
sumption is satisfied using the residual power source,
explained further in Section 5.4.

RESTORE : RESTORE is called upon every power-
up, except immediately after a factory_reset(), to de-
crypt and restore the most recent valid STATE of the
device. The authentication tags of both the buffers are
checked to identify the valid packet. If both authentica-
tion tag checks fail, abort() is called to indicate check-
point tampering, which prevents restoring the device
with a malicious state.

If the authentication tag check is passed on either
line 2 or 10 in Algorithm 2, a valid state save packet
exists which is decrypted and used to restore the device
STATE. RESTORE documents each power-on event in
the sequence of checkpoints by generating a new state
save packet upon every power-up. For example, if 554
is valid, S 4 is decrypted and restored in STATE. SSp is
updated with this STATE, new nonce, and T4. Now,
SSp is made valid, invalidating S5 4. SICP ensures that
every power cycle is documented in the series of check-
points.

WIPE Power loss is an adversarial event, based on our
attacker model. WIPE must be called as soon as the
device detects a power loss to clear sensitive informa-
tion. It wipes all transient information, such as program
variables, stored as plaintext using the residual power
source in two steps. First, STATE is overwritten with
zeros to clear persistent plaintext information. Second,
volatile memory is also wiped to prevent cold boot style
attacks [18]. The residual power source must have suf-
ficient power to completely wipe transient information
and maintain the confidentiality of checkpointed data.

5 Implementation

In this section, we describe our choice of target device,
stateful power transition technique, and several design
choices and device specific features used in implement-
ing SICP.

5.1 Target device

The embedded device used with energy harvesters plays
an important role in utilizing the harvested energy and
is selected based on several criteria. First, on-chip non-
volatile memory is required to store checkpoints. The
use of off-chip non-volatile storage in the absence of
on-chip non-volatile storage is not a secure solution, as
the communication to off-chip memory and the memory
itself is vulnerable to attackers as it can be easily mon-
itored/removed. Second, the device must consume low
power to judiciously use the available resources. The
choice of device determines the overhead incurred by
secure and stateful power transition.

We implement SICP on Texas Instruments’(TT)
MSP430FR5994 Launch Pad Development Kit to
demonstrate the feasibility of and to evaluate se-
cure and stateful power transitions. We chose TI’s
MSP430FR5994 for several reasons. First, it is a low
power device, only consuming 120uA/MHz of active
current [38]. Second, it is equipped with 256kB of
ferroelectric random access memory(FRAM), which is
known for its ultra-low power consumption, high en-
durance, and fast read/write speeds. Third, it operates
in a unified memory model, where SRAM, FRAM, and
all the peripherals are mapped in a single global mem-
ory, which provides a common interface for all the data
that must be secured and checkpointed. Fourth, it con-
tains an on-chip AES accelerator, which can be used to
speed-up the cryptographic primitives in SICP.

5.2 Three facets
5.2.1 Cause

In our proof-of-concept implementation, the microcon-
troller is powered by a constant DC power supply. We
use a switch to power cycle the microcontroller at arbi-
trary time intervals to cause power loss.

5.2.2 Statefulness

During the ON-state, the microcontroller stores its gen-
eral purpose registers, such as program counters (PC),
in SRAM and application variables in FRAM. The ap-
plication variables, found in .data and .bss sections,
are placed in FRAM using the linker description file.
After power loss, only FRAM data remains persistent,
whereas the SRAM data is lost, leading to memory in-
consistency between the volatile and non-volatile pro-
gram state. We implement a modified version of TI’s
Computer Through Power Loss(CTPL) utility [41] to
maintain a consistent checkpoint across all types of

Secure and Stateful Power Transitions in Embedded Systems

| secureCheckpoint ()

Because the PC is restored to before the

PC will return here on RESTORE ()

Any changes to the stack or system
state after this point are not
reflected in the checkpoint

Checkpoint Created

Application Code 1

-

secureCheckpoint () 7

\| return;

; disable_interrupts() ;
save_peripheral states();
push_registers_to_stack() ; L/

opy_stack to_save() ;

\ State Save Packet Created

N
\/ AN
\ pop_registers_from stack ()™

\ |restore_peripheral states();
\ |enable_interrupts() ;

security function, we must only execute it
if a new checkpoint is being created, not
if we are restoring the system state

/TREFRESH ()
4 if (valid(ss_Aa))
create SS_B;
else if (valid(Ss_B)
create SS_A;
else
abort() ;

\\\ return;
AY

The data is now safely
stored in NVM

Fig. 7 The control and data flow for the creation of a checkpoint and subsequent state save packet. REFRESH() is only called

when a checkpoint is created.

memory. The CTPL utility is designed for TI's c1430
compiler. It was ported to compile on msp430-elf-gcc
with changes to preprocessing references and to com-
pile specific assembly code. It was further modified to
support user declarable checkpoint functions, to invoke
SICP functions within checkpoint calls and to incorpo-
rate SICP functions at system startup.

Checkpoint Location and Contents: The memory section
containing STATE is separately declared as . checkpoint
section in the device linker file, enabling easy identifi-
cation of the data to be checkpointed and forcing its
location within tamper sensitive memory. It provides
a single known location for the WIPE() operation to
target, discussed in detail later in this section. A guar-
anteed memory location also allows a straightforward
check on the existence of a factory_reset() operation.
It provides the application developer a simpler decla-
ration interface, enabling the use of GCC’s variable at-
tributes, marked with the __attribute__ keyword, in-
stead of a complex variable registration interface and
tracking data structure. We define secureCheckpoint ()
to generate a checkpoint in this dedicated location and
create a state save packet using the SICP algorithms.
Figure 7 illustrates the control flow involved in creating
a checkpoint and subsequent state save packet. First,
the volatile peripherals in use are saved on the stack,
such as a timer and a comparator. Second, the gen-
eral purpose registers are pushed on the stack. Since
the first two steps mangle the stack and peripheral
states, they must be restored to their original state af-
ter checkpoint generation. Third, the stack is saved in
the .checkpoint section. Fourth, the non-volatile data
which is to be secured is also stored in the checkpoint
along with the volatile state. The checkpoint is ready

to be secured by SICP. To create a state save packet,
REFRESH() is called to wrap the segment up in a valid
state save packet.

5.2.8 Security

The four algorithms of the protocol are defined as func-
tions to create and restore the state save packet. We de-
fine REFRESH() to generate the latest state save packet,
RESTORE() to restore the latest unmodified state save
packet, INITIALIZE() to create the first state save
packet, and WIPE() to wipe sensitive data using the
residual power source. INITIALIZE() and RESTOREQ)
are called automatically during system startup, as
shown in Figure 8. WIPE() is also automatically trig-
gered upon power loss.

5.3 System Integration

The modified checkpointing system is wrapped with the
SICP function calls to enable secure and stateful power
transitions. The device specific implementation of sys-
tem start-up, cryptographic primitives, and WIPE() are
as follows:

Startup: Figure 8 illustrates the startup sequence for a
system employing SICP. A portion of the non-volatile
memory region containing STATE is first checked for
the factory reset bit pattern. This is used to determine if
a factory_reset() has occurred and INITIALIZE() must
be invoked, or a normal boot sequence with RESTORE ()
must occur. In either case, the appropriate SICP func-
tion is executed overwriting STATE with either zeros,
for INITIALIZEQ), or the authenticated and decrypted

10

Archanaa S. Krishnan et al.

WIPE ()

7 INITIALIZE ()
Yes
factory_reset
?
! No

No

4 Yes
chkpnt_valid
?
RESTORE ()

main
'(5) > Callto
Program
Execution | Secure
Checkpoint ()

REFRESH ()

setPc (chkpnt_pc)

Fig. 8 Startup sequence for MSP430FR5994 with SICP. (1) Checks for factory-reset() and calls (2) INITIALIZE() or (3)
RESTORE() to populate STATE in non-volatile memory. (4) the device inspects STATE for a valid checkpoint, restoring the
checkpoint (6) if one is found or invoking main() (5) if one does not exist. Program execution will then continue normally until

power is lost or another checkpoint is created.

system state, for RESTORE(). If the checkpointing sys-
tem determines that no valid checkpoint exists, such
as on the first boot after a factory_reset(), it will in-
voke main () as would be expected in a standard system
startup.

nonce(): A majority of the nonces used in this protocol
are provided via a 128-bit counter that is initialized to
zero during INITIALIZE() and incremented each time
a new nonce is requested. The exception is for the nonce
for Tp used in INITIALIZE(), which is generated ran-
domly. This nonce is generated randomly to ensure that
no two different uses of a device create the same pat-
tern of tags, even if the exact same code is executed
following a factory-reset() [20, 34].

AEAD Integration: he development of the SICP API
is agnostic of the underlying AEAD scheme used to
enforce the protocol’s security guarantees. We use a
hybrid implementation of EAX [4], provided by the
Cifra [6] cryptographic library. EAX is a well estab-
lished two-pass AEAD scheme which avoids unneces-
sary decryption operations when a tag fails authentica-
tion in REFRESH() or RESTORE(). Tag failure occurs on
half of the calls to these two functions since the state
save packet authentication is used to determine which
packet is valid and which is to be overwritten/restored.
The block-cipher based nature of EAX enabled hard-
ware acceleration by modifying the code to employ the
MSP430FR5994’s AES accelerator.

Tamper free memory: The secure memory is emulated
using the Intellectual Property Encapsulation segment
(IPE) available in MSP430FR5994 [12]. IPE is used
to program a section of FRAM as secure memory,
.secure, by setting the memory boundaries in the
IPE registers. .secure section of the memory is pro-
grammed with read, write, and execute access. It is
used to store the nonce used in SICP and the func-
tions used to read and update the nonce. The variables
stored in .secure section, and in turn the nonce, can
only be read and updated by executing code stored in

ALICE(MSP430FR5994) BOB ECDH PSEUDO CODE:
receive (q_B) ;
ec_curve_gen_(G) ;
ec_curve_get ord(n) ;
bn_rand mod(d A,n);
secureCheckpoint () ;
ec_mul(q_A,G,d A);
secureCheckpoint () ;
send(q_A) ;

ec_mul (s_AB,q B,d A);
secureCheckpoint() ;
kdf (k_AB, s_AB);

G, n Curve G,n
parameters

da=rand(N,) dg=rand(Ns)

ga=Na.G 4{,'0 Np 0s=N;p.G

sas= Na.Ng.G sas = Ng.Na.G

KEY KEY

Fig. 9 ECDH key-exchange between Alice(MSP430FR5994)
and Bob: a flow chart and pseudo-code.

.secure of the memory. The code in .secure section
can be executed by branching into the IPE segment or
by calling a function stored in IPE segment. A read ac-
cess to .secure section from outside the IPE segment
will at least return 0x3FFF.

5.4 Residual energy use

A residual energy source, which was an architectural
requirement, is required to ensure atomicity and to wipe
unprotected data after a power loss is detected.

Atomicity Support: The atomicity of
secureCheckpoint () is ensured by using two state
save packet buffers. All changes in non-volatile mem-
ory are made to the alternate buffer, such that the
most recent packet remains unmodified. Once the
new tag computation is complete and stored in a
temporary buffer, the sic_copyTag() function is
called to overwrite the previous tag and set the newly
created checkpoint as the only valid checkpoint in an
atomic operation. This copy function is made atomic
by disabling all interrupts for the copy duration of
48 cycles and relying on the residual energy of the
device and the FRAM’s atomic byte write capability
to ensure that even if power is lost, the copy operation
will complete before the system stops operating.
secureCheckpoint () either has no effect on the

Secure and Stateful Power Transitions in Embedded Systems

11

Table 1 Breakdown of the contents of the checkpoints of our
ECDH implementation

Size

Variable (B) Comments
System data 763 Device specific data
Generator(G) 96 Memory required to
Shared secret(sap) 96 store an elliptic
Bob’s public key (¢p) 96 curve point as a

Alice’s public key (ga) 96

Alice’ private key (da) 32
Order of generator (n) 32

1211

Jacobian coordinate

256-bit integer

Total

system, if power is lost before the tag update, or
completes the checkpoint creation without incident.

WIPE(): The implementation of the WIPE operation
requires detection of power loss by monitoring the
device’s V... MSP430FR5994’s ADC12_B analog-to-
digital converter is used to measure V.. against the sys-
tem’s V;.. s as described in TI's FRAM Utilities [41]. The
MSP430FR5994 development board’s unmodified im-
plementation, including one 10uF capacitor and three
100nF capacitors, has sufficient residual energy to con-
sistently overwrite up to 16kB of memory using direct-
memory-access (DMA) following the trigger for power
loss. When V... falls below V,..; ADC12_B triggers over-
write of STATE and SRAM via DMA using the residual
energy.

6 EVALUATION OF SICP

In this section we evaluate SICP based on a real-life
application. We introduce our target application, our
implementation of the application, its checkpoints and
the need for checkpoint security, and the effect of each
facet on the application.

6.1 Target application

We chose Elliptic Curve Diffie Hellman key exchange
(ECDH) as a representative of an application which
needs secure checkpoints. ECDH can be used to ex-
change keys between two entities, Alice and Bob, via an
unsecured channel to secure the communication chan-
nel in several steps, illustrated in Figure 9. First, they
agree upon an elliptic curve, F; a base point, GG, in F
whose order is n. The order n is the smallest integer
such that n.G = 0. Second, they each chose an integer,
N;, less than n as their corresponding private key, d;.
Third, they compute the product N;.G as their public

key, g;. Last, each entity generates the shared secret by
multiplying its secret with the other entity’s public key,
which is then used to derive the secret key, KEFY. We
implement ECDH on MSP430FR5994 using the NIST
curve P-256, which provides 128-bits of security, with
the help of the RELIC cryptographic library [3]. We
consider Alice to be the target microcontroller. ECDH
involves long running arithmetic operations on the ellip-
tic curve, such as generating an integer and point mul-
tiplications. When the microcontroller is powered by
an energy harvester, ECDH may operate at a reduced
duty cycle to finish its computations, as explained in
Section 2.1. We place secureCheckpoint () calls after
long running arithmetic operations to ensure the avail-
ability of the intermediate results in the event of power
loss, as illustrated in Figure 9.

Checkpoint Location and Contents:

The application specific variables that are required
to ensure forward progress of ECDH are listed in Ta-
ble 1. All the variables listed in Table 1 are placed
in the .checkpoint section of tamper-sensitive non-
volatile memory using the __attribute__ keyword, as
described in Section 5.2. The generator, G, of the curve
is a point on the 256-bit elliptic curve, consisting of
three Jacobian coordinates, X,Y, and Z, where each
coordinate is 256-bit long. Thus, each point on the el-
liptic curve, such as the shared secret, s4p, and public
keys, g4 and gp are 96 B. The shared secret, s4p, and
Alice’s private, da, are also checkpointed to maintain
secure sessions across power loses. Since d4 and n are
256-bit integers, they only occupy 32 B each. Of the
1211 B of checkpointed data, only G, n, and the public
keys, ga, and gp, are global public elements, the rest
of the variables must be protected from the attacker
to maintain the security of the communication channel.
Thus, checkpoints of ECDH require SICP to maintain
the security properties of its application across stateful
power transitions.

6.2 Effect of facets on duty cycle

We study the overhead introduced by each facet and
in turn study its effects on the duty cycle of ECDH.
The device under test was operated at 1 MHz and was
powered by an external power supply. The energy and
time measurements reported in this section were mea-
sured across a 1 k{2 shunt resistor using a Tektronix
DPO03034 oscilloscope operating at 50 kS/s. Table 2
lists the energy and time overhead of ECDH, CTPL
and SICP. It computes the net load power after intro-
ducing each facet based on the assumption that the
initialize operations occur only once and are ignored

12

Archanaa S. Krishnan et al.

Table 2 Energy and time overhead of different technology and corresponding duty cycle, D;,qq, when input power is 2 mW

. Time Energy Pioad Dioad
Technolo Operation
Bvr (ms) (W) (mW) (%)
Application ECDH 7800 48300 6.2 33
Initialize 0.02 0.03
CTPL Refresh 13.8 12.1 8.0 25
Restore 13.5 12.3
INITIALIZE() 0.06 0.04
SICP REFRESH() 216.2 160.2 9.5 21
RESTORE () 277.1 202.3

and only one checkpoint generation operation is per-
formed during each ON-state. We analyze the effects
of this overhead on the duty cycle of the device, using
equation 1.

Energy harvesters: In the continuous execution paradigm,

the microcontroller consumes 48.3 mJ of energy in 7.8
s to arrive at the shared secret of an ECDH operation,
which requires 6.2 mW of power. Energy harvesters do
not always provide the peak power required by the mi-
crocontroller, they typically provide a few uW to mW
of power [25]. We assume that the microcontroller is
powered by a kinetic energy harvester [9], which pro-
vides an average power of 2 mW. In the intermittent
execution paradigm, the microcontroller still requires
6.2 mW of power to arrive at the shared secret but
it operates at only 32% duty cycle as Poqq is greater
than Pgp. The microcontroller repeatedly experiences
power loss for every 2 mW of power it consumes.

Statefulness: CTPL stores the volatile state informa-
tion in non-volatile memory as a checkpoint and re-
trieves it to restore the microcontroller after a power cy-
cle, which introduces overhead. Table 1 lists the check-
point size of our target application as 1211 B, which is
calculated by studying the memory section containing
STATE [36]. The checkpoint generation and restora-
tion operations combined introduce an overhead of 1.8
mW, listed in Table 2. In addition to the power require-
ments of ECDH operations, the checkpointing overhead
increases the net load power, Pjyqq, to 8 mW. The mi-
crocontroller duty cycle is reduced to 25% to arrive at
the shared secret, s4p, assuming that the device is still
powered by the same kinetic energy harvester.

Security: Table 2 lists the additional overhead SICP in-
troduces to stateful power transitions. It presents the
amount of energy and time required to secure the gen-
eration and restoration of 1211 B of checkpointed data.
The overhead measurements correspond to INITTALIZE,
REFRESH, and RESTORE operations of the protocol. The

CONTINUOUS POWER

v

ENERGY HARVESTERS

N

INTERMITTENT
COMPUTING

Fig. 10 Facets of power transition and corresponding effect
on duty cycle, Djyqq

microcontroller requires an additional 1.4 mW to se-
cure 1211 B of checkpoint. This increases the net load
power, Pjyqq, t0 9.5 mW. The microcontroller must op-
erate at 21% duty cycle to finish its ECDH operations
while ensuring that its security properties and that of
ECDH are maintained across power transitions.

6.3 Analysis

In our implementation of secure and stateful power
transition, we observe that each facet, including the ki-
netic energy harvester, CTPL, and SICP, introduces a
limiting factor which progressively reduces the duty cy-
cle of the device, illustrated in Figure 10. We studied
the effects of energy influx, type of non-volatile mem-
ory, and checkpoint size on the duty cycle of the load.
Figure 11 illustrates the change in duty cycle based on
the energy influx for different checkpoint sizes and non-
volatile memories. The data points on each line graph
correspond to the duty cycle of the device based on the
energy influx from three types of sources, including ki-
netic, vibration, and thermal harvesters, which provide
2 mW, 4.5mW, and 5.2 mW, respectively [9, 26]. The
energy influx varies, between a few pW to a few mW,
depending on the choice of the harvester [25]. We chose
two types of non-volatile memory commonly available
in off-the-shelf devices. First, we studied the flash mem-
ory available in TT’s MSP432P401R [37]. Second, we
studied FRAM available in MSP430FR5994 [38]. Since

Secure and Stateful Power Transitions in Embedded Systems

13

~

o

4]

w

44 FRAM device with 1kB checkpoint
A4 FRAM device with 4kB checkpoint
¢4 Flash device with 1kB checkpoint
A4 Flash device with 4kB checkpoint

Energy Influx from harvester (mW)
N »
>,
<+
>,
*

=

o

20 40 60 80 100
Duty cycle of load (%)

Fig. 11 Changes to the duty cycle of load, Dj,.q, based on
the energy influx [9, 26], size of checkpoint, and type of non-
volatile memory. The duty cycle measurements were calcu-
lated based on the ratings of flash memory and FRAM avail-
able in the device datasheet [37, 38]

FRAM consumes low power when compared to flash,
the duty cycle of FRAM devices is higher than that of
flash devices. We also considered two checkpoint sizes,
1kB and 4kB, to account for applications whose check-
points maybe larger than ECDH’s 1.2kB checkpoint.
Figure 11 illustrates that larger checkpoints reduce the
duty cycle of the load, irrespective of the energy influx
and type of non-volatile memory in use. The duty cycle
reported in Figure 11 will reduce further when secure
checkpoints are employed. Thus, we must consider the
various technologies involved in an energy harvested
node, including, but not limited to the energy influx,
type of non-volatile memory, application, frequency of
checkpoints, and type of device, to achieve the required
duty cycle of the target device.

7 Conclusion

We presented the Secure Intermittent Computing Pro-
tocol to bridge the gap between stateful power transi-
tions and secure embedded systems. It is the first se-
cure intermittent solution to provide comprehensive se-
curity to the power transitions of an embedded system.
It is a fail-safe and generic protocol that can be used
with existing stateful power transition solutions to en-
hance their security. We provide a proof-of-concept im-
plementation of secure and stateful power transitions
on an MSP430FR5994 to demonstrate the feasibility
of secure checkpoints. The introduction of each facet
and its corresponding technology affects the duty cycle
of the target application. Our evaluation demonstrates
the need for careful design choices, including but not
limited to non-volatile memory, low power device, cryp-
tographic hardware, and secure memory, to improve the
duty cycle of the application. Several low power micro-

controllers are equipped with cryptographic hardware,
mostly for encryption. In the future, we must consider
including hardware accelerated authenticated encryp-
tion engine, low power non-volatile memory, and secure
storage capabilities to microcontrollers to improve the
duty cycle of the application to facilitate secure and
stateful power transitions.

Acknowledgements This work was supported in part by
NSF grant 1704176 and SRC GRC Task 2712.019.

References

2. Zatara High-Performance, Secure, 32-Bit ARM Micro-
controller. Tech. rep., Maxim (2009)

3. Aranha, D.F., Gouva, C.P.L.: RELIC is an Efficient LI-
brary for Cryptography (2010)

4. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode
of Operation, pp. 389-407. Springer Berlin Heidelberg,
Berlin, Heidelberg (2004). DOI 10.1007/978-3-540-25937-
425

5. Berthou, G., Delizy, T., Marquet, K., Risset, T\,
Salagnac, G.: Sytare: A lightweight kernel for NVRAM-
based transiently-powered systems. IEEE Trans. Com-
puters 68(9), 1390-1403 (2019)

6. Birr-Pixton, J.: Cifra: Cryptographic Primitive Collec-
tion. https://github.com/ctz/cifra (2017)

7. Biswas, S., Neogy, S.: Secure checkpointing using pub-
lic key cryptography in mobile computing. In: 2011 Fifth
IEEE International Conference on Advanced Telecommu-
nication Systems and Networks (ANTS), pp. 1-3 (2011).
DOI 10.1109/ANTS.2011.6163669

8. Bromevetsky, G., Marques, D., Pingali, K., McKee, S.,
Rugina, R.: Compiler-enhanced incremental checkpoint-
ing for openmp applications. In: 2009 IEEE International
Symposium on Parallel Distributed Processing, pp. 1-12
(2009). DOI 10.1109/IPDPS.2009.5160999

9. Da, Y., Khaligh, A.: Hybrid offshore wind and tidal tur-
bine energy harvesting system with independently con-
trolled rectifiers. In: 2009 35th Annual Conference of
IEEE Industrial Electronics, pp. 4577-4582 (2009). DOI
10.1109/IECON.2009.5414866

10. Daemen, J., Rijmen, V.: Rijndael for AES. In: AES Can-
didate Conference, pp. 343-348 (2000)

11. Davi, L., Hanreich, M., Paul, D., Sadeghi, A., Koeberl,
P., Sullivan, D., Arias, O., Jin, Y.: HAFIX: hardware-
assisted flow integrity extension. In: Proceedings of the
52nd Annual Design Automation Conference, San Fran-
cisco, CA, USA, June 7-11, 2015, pp. 74:1-74:6 (2015)

12. Dinu, D., Krishnan, A.S., Schaumont, P.: SIA: se-
cure intermittent architecture for off-the-shelf resource-
constrained microcontrollers. In: IEEE International
Symposium on Hardware Oriented Security and Trust,
HOST 2019, McLean, VA, USA, May 5-10, 2019, pp. 208—
217 (2019)

13. Eldefrawy, K., Francillon, A., Perito, D., Tsudik, G.:
SMART: Secure and Minimal Architecture for (Estab-
lishing a Dynamic) Root of Trust. In: NDSS 2012, 19th
Annual Network and Distributed System Security Sym-
posium, February 5-8, San Diego, USA (2012)

14 Archanaa S. Krishnan et al.

14. Gaglione, A., Rodenas-Herraiz, D., Jia, Y., Mascolo Sar- 28. Lucia, B., Ransford, B.: A simpler, safer programming
fraz Nawaz, E.A.C., Soga, K., Seshia, A.A.: Energy and execution model for intermittent systems. In: Pro-
Neutral Operation of Vibration Energy-harvesting Sen- ceedings of the 36th ACM SIGPLAN Conference on Pro-
sor Networks for Bridge Applications. In: Proceed- gramming Language Design and Implementation, Port-
ings of the 2018 International Conference on Embed- land, OR, USA, June 15-17, 2015, pp. 575-585 (2015)
ded Wireless Systems and Networks, EWSN 8217;18, 29. Maeng, K., Colin, A., Lucia, B.: Alpaca: Intermittent
pp. 1-12. Junction Publishing, USA (2018). URL Execution Without Checkpoints. Proc. ACM Program.
http://dl.acm.org/citation.cfm?id=3234847.3234849 Lang. 1(OOPSLA), 96:1-96:30 (2017)

15. Ghodsi, Z., Garg, S., Karri, R.: Optimal checkpointing for 30. Nam, H., Kim, J., Hong, S.J., Lee, S.: A secure check-
secure intermittently-powered IoT devices. pp. 376-383 pointing system. In: 8th Pacific Rim International Sym-
(2017). DOI 10.1109/ICCAD.2017.8203802 posium on Dependable Computing (PRDC 2001), 17-19

16. Gofman, M.I., Luo, R., Yang, P., Gopalan, K.: SPARC: A December 2001, Seoul, Korea, pp. 49-56 (2001)

Security and Privacy Aware Virtual Machinecheckpoint- 31. Noorman, J., Bulck, J.V., Miihlberg, J.T., Piessens, F.,
ing Mechanism. In: Proceedings of the 10th Annual ACM Maene, P., Preneel, B., Verbauwhede, 1., Gotzfried, J.,
Workshop on Privacy in the Electronic Society, WPES Miiller, T., Freiling, F.: Sancus 2.0: A Low-Cost Security
’11, pp. 115-124 (2011) Architecture for IoT Devices. ACM Trans. Priv. Secur.

17. Guan, L., Lin, J., Ma, Z., Luo, B., Xia, L., Jing, J.: Cop- 20(3), 7:1-7:33 (2017)
ker: A Cryptographic Engine Against Cold-Boot Attacks. 32. Pabbuleti, K., Mane, D., Schaumont, P.: Energy Budget
IEEE Trans. Dependable Sec. Comput. 15(5), 742-754 Analysis for Signature Protocols on a Self-powered Wire-
(2018) less Sensor Node. In: N. Saxena, A.R. Sadeghi (eds.) Ra-

18. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, dio Frequency Identification: Security and Privacy Issues,
W., Paul, W., Calandrino, J.A., Feldman, A.J., Appel- pp. 123-136. Springer International Publishing, Cham
baum, J., Felten, E.W.: Lest we remember: cold-boot at- (2014)
tacks on encryption keys. Commun. ACM 52(5), 91-98 33. Piegdon, D.R.: Hacking in physically addressable mem-
(2009) ory. In: Seminar of Advanced Exploitation Techniques,

19. Hicks, M.: Clank: Architectural Support for Intermittent WS 2006/2007 (2006)

Computation. In: Proceedings of the 44th Annual Inter- 34. Rahmati, A., Salajegheh, M., Holcomb, D.E., Sorber, J.,
national Symposium on Computer Architecture, ISCA Burleson, W.P., Fu, K.: TARDIS: Time and Remanence
2017, Toronto, ON, Canada, June 24-28, 2017, pp. 228- Decay in SRAM to Implement Secure Protocols on Em-
240 (2017) bedded Devices without Clocks. In: Proceedings of the

20. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM 21th USENIX Security Symposium, Bellevue, WA, USA,
state as an identifying fingerprint and source of true ran- August 8-10, 2012, pp. 221-236 (2012)
dom numbers. IEEE Trans. Computers 58(9), 1198-1210 35. Rogaway, P.: Authenticated-encryption with associated-
(2009) data. pp. 98-107 (2002). DOI 10.1145/586110.586125

21. Jayakumar, H., Raha, A., Lee, W.S., Raghunathan, V.: 36. Santhana Krishnan, A., Schaumont, P.: Exploiting secu-
Quickrecall: A HW/SW approach for computing across rity vulnerabilities in intermittent computing: 8th inter-
power cycles in transiently powered computers. JETC national conference, space 2018, kanpur, india, decem-
12(1), 8:1-8:19 (2015) ber 15-19, 2018, proceedings. pp. 104-124 (2018). DOI

22. Kannan, S., Karimi, N., Sinanoglu, O., Karri, R.: Secu- 10.1007/978-3-030-05072-6_7
rity Vulnerabilities of Emerging Nonvolatile Main Mem- 37. MSP432P401R,MSP432P401 MSimpleLink Mixed-
ories and Countermeasures 34(1), 2-15 (2015). DOI SignalMicrocontrollers. Tech. rep., Texas Instruments
10.1109/TCAD.2014.2369741 (2015)

23. Khanna, S., Bartling, S., Clinton, M., Summerfelt, S.R., 38. MSP430FR599x, MSP430FR596x Mixed-Signal
Rodriguez, J.A., McAdams, H.P.: An FRAM-Based Non- Microcontrollers. Tech. rep., Texas Instruments
volatile Logic MCU SoC Exhibiting 100% Digital State (2016). Revised August 2018. Available at
Retention at VDD = 0 V Achieving Zero Leakage With http://www.ti.com/lit/ds/slase54c /slase5dc.pdf
< 400-ns Wakeup Time for ULP Applications. J. Solid- 39. Stark, I.: Integrating Thermoelectric Technology into
Stgte Circuits 49(1), 9?’106 (201.4) Clothing for Generating Usable Energy to Power Wireless

24. Krishnan, A.S., Suslowicz, C., Dinu, D., Schaumont, P.: Devices. In: Proceedings of the Conference on Wireless
Secure intermittent computing protocol: Protecting state Health, WH ’12, pp. 17:1-17:2 (2012)
across power loss. In: Design, Automation & Test in 40. Swami, S., Mohanram, K.: ACME: Advanced Counter
Europe Conference & Exhibition, DATE 2019, Florence, Mode Encryption for Secure Non-volatile Memories. In:
Italy, March 25-29, 2019, pp. 734-739 (20‘19) Proceedings of the 55th Annual Design Automation Con-

25. Ku, M.., Li, W., Chen, .Y., Ray Ll.u, .K.J.: Ad- ference, DAC 18, pp. 86:1-86:6 (2018)
vances in Energy Harvesting Communications: Past, 41 Pexas Instruments: MSP MCU FRAM Utilities (2017)
Present, and Future Challenges. IEEE Communica- 42. Valea, E., Silva, M.D., Natale, G.D., Flottes, M., Dupuis,
tions Surveys Tutorials 18(2), 1384-1412 (2016). DOI S., Rouzeyre, B.: SECCS: secure context saving for iot
1Q.1109/COMST.2015.2497324) devices. CoRR abs/1903.04314 (2019)

26. Li, J, HoonHyun, J., SamHa,.D.: A multi-source energy 43. Van Der Woude, J., Hicks, M.: Intermittent Computation
harvesting system to power microcontrollers for cryptog- Without Hardware Support or Programmer Intervention.
raphy. In: IEC.ON 2018 - {14th An.nual Confe.rence of the In: Proceedings of the 12th USENIX Conference on Op-
IEEE Industrial Electronics Society, Washington, DC, erating Systems Design and Implementation, OSDI’16,
USA, October 21-23, 2018, pp. 901-906 (2018) pp. 17-32 (2016)

27. Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless

Networks With RF Energy Harvesting: A Contemporary
Survey. IEEE Communications Surveys Tutorials 17(2),
757—789 (2015). DOI 10.1109/COMST.2014.2368999

