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Abstract Power loss occurs in devices with a transient

power supply, and it leads to the loss of volatile state

information of the device. To protect the state, the de-

vice stores it as a checkpoint in non-volatile memory.
The checkpoints are used to restore the device to the

most recent stored state upon power up. There are three

facets of power transitions - cause, statefulness, and se-
curity, out of which the third facet is ignored in current

embedded systems research. In this paper, we describe

the intersection of two fields, stateful power transitions
and secure embedded systems, which has largely been

unexplored until now. We study the limitations intro-

duced by the three facets of power transitions of embed-

ded devices. We explore the vulnerabilities introduced
by stateful power transitions and propose the Secure

Intermittent Computing Protocol to overcome them.

We analyze the overhead of each technology required
to provide secure and stateful power transition and its

effects on the duty cycle of an embedded device.
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1 Introduction

Computers including servers, personal computers (PCs),
laptops, and embedded devices, run on electric power,

which is typically supplied by the grid. Power loss, a fact

of life, is a short-term or long-term shortage of power
which causes computer shut downs. Upon power loss,

the device transitions from ON-state to OFF-sate, los-

ing its volatile computer state. Upon the next power-up,

it transitions to ON-state and re-initializes the volatile
state, thus power loss re-initializes the system on every

power-up. The transition between ON, OFF, and ON-

state is called power transition. The computer copes
with power loss by storing checkpoints of the interme-

diate volatile state in non-volatile memory, illustrated

in Figure 1. Non-volatile memory ensures that check-
points remain persistent across power transitions. Upon

power up, the computer is restored to the most recent

checkpointed state and resumes its tasks.

In this paper, we focus on the power transitions of a

secure embedded system. Energy harvesting technology

converts ambient energy to electrical energy, which is

sufficient to power resource constrained embedded de-
vices. Figure 1 illustrates a device powered by a solar

energy harvester. Since the availability of solar energy

depends on the weather and time of the day, a solar
energy harvester is a transient power source. Transient

power supplies do not provide continuous power which

causes power loss in embedded systems. To cope with
power loss, the device is equipped with non-volatile

memory. Although the device’s non-volatile memory re-

tains its data during power-off, the volatile state infor-

mation is lost. Non-volatile memory by itself is insuffi-
cient to ensure forward progress of the application [28].

Intermittent computing is a stateful power transition

technology, where the device stores a snapshot of the
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Fig. 1 The three facets of power transition: (1) Cause - lack
of solar energy causes power loss, (2) Statefulness - the state
of volatile memory, VM, is stored as checkpoints, CKP, in
non-volatile memory, NVM, and (3) Security - checkpoints
are protected in NVM.

volatile state information in non-volatile memory, as a

checkpoint (CKP). The checkpoint is used to restore

the device to the last known state to ensure forward
progress of the application. The state-of-the-art inter-

mittent computing techniques provide efficient check-

point generation and restoration solutions to ensure for-
ward progress with minimum overhead [28, 19, 29, 43].

As the checkpoints contain intermediate state of the de-

vice, they must be secured to protect power transitions.

Figure 1 illustrates the three facets of power transi-
tions - cause, statefuleness, and security. In general pur-

pose computers, such as servers, PCs and laptops [16,

30], all three facets of power transitions are on-going re-
search problems. Whereas in embedded systems, only

the cause [1, 39, 14] and statefulness [19] are commonly

explored. Although security for embedded systems is an

on-going research problem [31], the security of power
transitions is widely ignored. In this paper, we high-

light the need for secure power transitions in embedded

systems through the following contributions:

– We study the security vulnerabilities introduced by

stateful power transitions and analyze the need for

secure power transitions.
– We propose the Secure Intermittent Computing Pro-

tocol (SICP) to overcome these vulnerabilities. We

describe a real-life application that requires check-
point security, which can benefit from SICP.

– We quantify power transitions in embedded systems

by computing their duty cycle based on the amount

of energy available from the harvester, the overhead
of checkpoint generation and restoration process,

and the overhead incurred to secure stateful power

transitions. We demonstrate that secure and state-

ful power transitions are expensive but achievable

in embedded systems.

The security vulnerabilities form checkpoints were

first introduced in 2018 at the 8th International Confer-

ence on Security, Privacy, and Applied Cryptographic
Engineering [36]. SICP was first proposed in 2019 at the

Design Automation and Test in Europe [24]. In this pa-

per, we extend and improve on the background of power
transitions in embedded systems. We evaluate the need

for SICP using a real-life application, and quantify its

effects on the duty cycle of the application.

Organization The rest of the paper is organized as fol-

lows. Section 2 provides a brief background on the dif-

ferent facets of power transition and their effects on em-
bedded systems. Section 3 discusses our attacker model,

locates checkpoint vulnerabilities, and provides a set of

security requirements for checkpoints. Section 4 pro-
poses SICP to satisfy these security requirements fol-

lowed by our implementation of SICP in Section 5. Sec-

tion 6 evaluates SICP by introducing the need for check-
point security to a real-life application and by studying

the overhead of statefulness and security in power tran-

sition and its effect on the duty cycle of the application,

followed by our conclusions in Section 7.

2 Background in Power Transitions

In this section, we define the different facets of power
transitions and analyze their effects on embedded sys-

tems. The three facets of power transition are defined

as follows:

1. Cause: The root cause of power loss helps identify

the frequency, period of power loss, and other char-

acteristics which help design coping mechanisms for

the computer system.
2. Statefulness: A stateful power transition is aware

of the intermediate state of the computer system.

Through statefulness, the computer maintains its
state during power loss which is used in future com-

putations. It ensures the forward progress of the ap-

plication.
3. Security: The security of a power transition is the

guarantee that the state of the computer system is

protected from data corruption and unauthorized

access even during power loss. It preserves the se-
curity features of both the device and application

across power loss.

We analyze the problems introduced by transient
power supplies, describe the use of statefulness to cope

with these problems and demonstrate the need for se-

curity in stateful power transitions.
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Fig. 2 Three components of an energy harvester: (1) a trans-
ducer to convert ambient energy to electrical energy, (2) a
power management circuit to adjust the harvested energy
based on the needs of the load, and (3) an energy storage
buffer to deliver high power to the load

2.1 Cause

Energy harvesters extract energy from ambient energy

sources, such as heat [39], vibration [14], and radia-

tion [27], and convert it to electrical energy to power
embedded devices. The ambient energy is processed in

three steps before it is consumed by the load, illustrated

in Figure 2. First, a transducer converts ambient energy
to electrical energy. Second, a power management cir-

cuit efficiently manages the harvested energy based on

the requirements of the load. Since the harvester typ-
ically supplies low power, third, a supercapacitor or a

battery is used as an energy storage buffer to accumu-

late the harvested electrical energy to supply bursts of

high power to the load.
The ambient energy sources depend on external fac-

tors, including, but not limited to, weather, time of day,

human activity, and location of the harvester. For ex-
ample, sunlight is only available during daytime and is

dependent on the weather conditions; wind energy is

similarly dependent on the weather; kinetic energy is
dependent on machine or human motion. This depen-

dency limits the available ambient energy and causes a

harvester to supply intermittent power to its load.

DLoad =
PEH

PLoad

× 100 (1)

Equation 1 states the relation between the load duty

cycle, Dload, the average power available from the har-

vester, PEH , and the net power required by the load
Pload. If the load was supplied by a constant power

supply, the supply and demand will match, i.e., PEH

would equal Pload, in which case the device would op-
erate at 100% duty cycle. The harvested power typi-

cally does not match the power required by the load.

For example, consider a load which performs a cryp-
tographic signature [32] powered by a kinetic energy

harvester [9]. Each signature requires 7.3 mW (Pload),

whereas the harvester only supplies an average of 2 mW

(PEH). The load can only operate at a 27% duty cycle
to compute signatures. Thus, the duty cycle is deter-

mined by the power budget available from the energy

harvester.

Since the load may require more power than the

harvester’s output, it is bound to lose power during its
computation unless the energy storage buffer is large

enough to satisfy its requirements. The storage buffer,

which is usually a battery or supercapacitor, accumu-
lates the energy until it can deliver sufficient power

to the load. Supercapacitors are well suited for en-

ergy harvesting applications, as they provide infinite
charge/discharge life cycles, fast recharge rate and high

power density compared to batteries. In the above ex-

ample, the load requires 7.3mW in 12.5s to compute a

cryptographic signature, which requires 91mJ of energy.
When the load is supplied by a 3V input voltage, it re-

quires a minimum of 0.02F supercapacitor to supply the

power required to compute one signature. The number
of signatures that can be computed before a power loss

occurs depends on the size of the energy buffer which is

typically small to reduce the size of the energy harvest-
ing circuit and capacitor charge time. The load experi-

ences a power loss after it exhausts its energy buffer.

Conventionally, after each power cycle the device

is reinitialized and loses the progress made during the
previous power on state, restarting the application ev-

ery time. Stateful power transitions are needed to avoid

re-initialization after every power loss.

2.2 Statefulness

The intermittent computing model, a stateful power

transition technique, was introduced to guarantee for-
ward progress of long-running applications when pow-

ered by an intermittent power supply. All the state in-

formation necessary to restore the device is stored as a
checkpoint in non-volatile memory. A checkpoint con-

sists of the system state, such as processor registers, pe-

ripheral registers, and application state, such as stack,
heap, and developer defined variables that are required

to resume program execution. After a power cycle, the

device is restored to the last known checkpointed state.

Several intermittent computing techniques have
been proposed, among which a majority optimize two

criteria, energy efficiency and rollback minimization.

The latter also ensures that the former is achieved
by preventing re-execution of completed tasks. The

state-of-the-art techniques use various techniques, such

as architectural support [19], energy aware checkpoint
calls [21], kernel-oriented design [5], task based pro-

gramming and execution model [28], non-volatile pro-

cessors [23], and, probabilistic algorithms [15] to obtain

energy efficient checkpoints.
Irrespective of the checkpointing technique in use,

the device transitions through two states, ON-state and

OFF-state. During the ON-state, the device performs
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Fig. 3 The architectural assumptions and memory model for
SICP illustrating the assumed attacker model with two ca-
pabilities - (1) control power supply to the device and (2)
view and modify tamper sensitive non-volatile memory dur-
ing power-off periods.

its regular tasks. It may employ protection features
such as control flow integrity [11], attestation and isola-

tion [31], and protection against cold-boot attacks [17].

The variables required to implement these security fea-
tures must also be checkpointed to ensure the continu-

ation of these security properties in future ON-states.

During the OFF-state, the checkpoint remains in non-

volatile memory. The checkpoint contains the interme-
diate state of the application, which may be a crypto-

graphic algorithm, and the critical settings of the secu-

rity features employed during ON-state, such as ker-
nel privileges and memory access rights. A majority

of the intermittent computing techniques store their

checkpoints as plaintext in non-volatile memory. A few
techniques explore security in power transitions [15, 42]

but they do not provide a comprehensive security so-

lution. The existing secure power transition solutions

from general purpose computers [7, 8, 16] cannot be
used in embedded systems because they were not de-

signed for resource constrained devices.

3 Problem Description

Checkpoints, which are generated to provide stateful

power transitions, introduce vulnerabilities to an em-

bedded device which may otherwise be secure when it

is powered on. In this section, we define our attacker
model, describe the risks introduced by unprotected

checkpoints, and list a set of minimum security require-

ments to protect power transitions against the assumed
attacker model.

3.1 Attacker model

The attackers aims to gain useful information from the

intermittent execution model. We define an attacker
model with the following capabilities, illustrated in Fig-

ure 3, to study the security vulnerabilities introduced

by checkpoints.

1. The attacker has complete control over the power

supplied to the device. The attacker can arbitrar-
ily stop the application on the target device, for

example, the attacker can tamper with the energy

harvester input to control the input to the target
device. The aim of the attacker is not to completely

stop the application on the target device, but to

stop the target device at strategic points in the ap-
plication to gain information from the checkpoints.

Thus, denial of service by cutting off power supply

is out of scope of this attacker model.

2. The attacker has access to the majority of the device
memory when it is powered off. The attacker can

read from and write to the unprotected non-volatile

memory, which we call tamper-sensitive non-volatile
memory. In this scenario, even though the device

must be powered on to access the contents of mem-

ory, the CPU is still not powered-on, i.e, the pro-
cessor is in idle state. For example, the attacker can

access the memory by providing read/write com-

mands to Direct Memory Accessc(DMA) via debug

probes. Since DMA is independent of the proces-
sor, the attacker need not power-on the processor

to access memory [33].

We assume that the device is equipped with a tamper-

free non-volatile memory, which is secure from the as-

sumed attacker model. This requirement can be satis-

fied by using an off-the-shelf microcontroller with se-
cure non-volatile memory, such as Maxim’s ZA9L1 [2].

For example, the secure memory may only be accessible

from authorized code and unauthorized access may lead
to zeroization of secure memory. We assume that the

device is physically protected from the attacker. The

attacker cannot access the device memory during ON-
state, the volatile and non-volatile system states are

inaccessible to the attacker when the device is powered

on. We assume that the device’s execution integrity and

memory protection during power-on states are guaran-
teed by a protected embedded software execution envi-

ronment [31]. The mitigation of side channel and fault

injection attacks on the checkpointing system are be-
yond the scope of this work.

3.2 Checkpoint vulnerabilities

Non-volatility of persistent memory compromises the

privacy of unsecured persistent data. The state-of-the-

art non-volatile memory protections are not designed

for resource constrained devices [22, 40]. The state-
of-the-art intermittent computing techniques also fail

to secure their checkpoints. Checkpoints consist of the

volatile and non-volatile state of a device, which may
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contain sensitive data. When left unsecured, they in-

troduce the following vulnerabilities to an intermittent
system.

– Checkpoint snooping : The attacker can read the non-
volatile memory, and in turn read the checkpoints to

extract sensitive information stored in them as the

checkpoints are stored as plaintexts. Non-volatile

data, which is otherwise private during power-on, is
now open to attackers in checkpoints. The attacker

can study the checkpoints to identify the location of

sensitive information [36]. While checkpoint encryp-
tion may provide protection against snooping [15],

it does not protect against the other vulnerabilities.

– Checkpoint spoofing : The state-of-the-art intermit-
tent computing techniques simply restore a check-

point, if one exists, without checking its integrity.

With the knowledge of the location of sensitive vari-

ables, the attacker can spoof checkpoints by mod-
ifying them in non-volatile memory. Unknowingly,

the device restores itself with a modified checkpoint

from where it resumes execution in an attacker con-
trolled sequence. Encrypted checkpoints [15] are also

vulnerable to spoofing as they do not guarantee in-

tegrity. The attacker can modify an encrypted check-
point, which may not correspond to a valid check-

pointed state upon decryption. When the device is

powered up, it is restored with the decrypted modi-

fied encrypted checkpoint, which may lead to a sys-
tem crash.

– Checkpoint replay : The attacker can combine snoop-

ing and spoofing to replay checkpoints. The attacker
can store a copy of all the checkpoints of an inter-

mittent system, where each checkpoint corresponds

to a state of the application, to create a pool of
checkpoints. The state-of-the-art intermittent com-

puting techniques do not check if the checkpoint to

be restored is indeed the latest checkpoint, which

enables checkpoint replay. The attacker can over-
write the current checkpoint with any checkpoint

from their pool; upon power-up, the device is re-

stored to a stale state. A checkpoint security solu-
tion which only protects checkpoint confidentiality

and integrity, such as SECCS [42], will not detect

checkpoint replay.

3.3 Exploiting unsecured checkpoints

The attacker can exploit these vulnerabilities to gain

access to sensitive information about the application
on the device. If a device is programmed with a crypto-

graphic algorithm, such as Advanced Encryption Stan-

dard(AES) [10], the application variables must be in-

cluded in its checkpoint to ensure forward progress of

the algorithm in the event of power loss. The attacker
can identify the sensitive variables in a checkpoint [36],

such as the intermediate state and round counter of

AES. The ability to spoof checkpoints enables the at-
tacker to replace sensitive variables of AES with at-

tacker controlled variables and extract the secret key

using cryptanalysis.

Checkpoint security is essential to ensure that the

security properties of ON-states are maintained across

power transitions, without any compromise. The con-

tinuous execution paradigm is shifting to an intermit-
tent execution paradigm, which makes checkpoints an

integral part of the execution environment. The exist-

ing secure software execution environments are only de-
signed for ON-states based on the assumption that the

power supply is continuous [31, 13, 11]. They propose to

restart their system, including the security modules and
features, when they encounter a power failure. These

assumptions do not apply to a system powered by a

transient power supply. Secure software execution must

consider the security of both its ON-state and OFF-
state, which includes checkpoint security.

3.4 Checkpoint Security Requirements

Although the security requirements may vary depend-

ing on the application and device, we must consider the

following as a set of minimum requirements to overcome
the vulnerabilities discussed above.

– Information security : The checkpoint’s confidential-

ity, integrity, authenticity, and freshness must be en-

sured to protect against checkpoint snooping, spoof-

ing, and replay.
– Atomicity : The checkpoint generation and restora-

tion process must be atomic. This guarantees that

the checkpoints will not be corrupted even if a power
loss occurs during the checkpointing process.

– Continuity : Secure application continuity maintains

the order of checkpoints, to provide assurance that
the device is at the current state because it executed

the previous states without any attacker interven-

tion.

3.5 Architectural Assumptions

Secure and stateful power transitions require certain

architectural features and protection guarantees, illus-
trated in Figure 3. The device must have three types

of memory. First, volatile memory to store the runtime

program state, which is erased upon power loss. Second,
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Fig. 4 A protocol scenario for secure power transitions, de-
picting a sequence of ON-states, OFF-states, and the corre-
sponding state of non-volatile memory of the device. The pro-
tocol provides rules for (1) creating secure checkpoints, CKP,
during ON1 and for (3) restoring an unmodified CKP. It also
ensures the protection of plaintext state by (2) overwriting it
with zeros upon power loss.

tamper sensitive non-volatile memory, which does not

possess any tamper resistance. Third, tamper-free non-

volatile memory, which is secure against the assumed
attacker model. The size of tamper free memory must

be minimized to reduce hardware cost and complex-

ity. We only place necessary variables in tamper-free
memory, including the secret key and nonce, instead of

placing the entire secure checkpoint in it. The rest of

the secure checkpoint is placed in the tamper sensitive

non-volatile memory, which is unprotected.

Apart from the different types of memory, the de-
vice must have a residual power source to provide a

small, finite source of energy. For example, an on-chip

or on-board capacitor may act as a residual source to

power the device for a small period even after the main
power supply is powered-off. Since power loss is con-

sidered a threat, sensitive variables must be wiped as

soon as the device encounters a power loss. We assume
that the residual power source is sufficient to wipe sen-

sitive variables and to finish writing a 128-bit value in

non-volatile memory. Since the device is physically pro-
tected from the attacker, the assumed physical protec-

tion also extends to the residual source.

4 Secure Intermittent Computing Protocol

Checkpoint security is essential, without which the se-
curity features from ON-state are lost during OFF-

state. Intermittent computing techniques only ensure

the forward progress of the application, the continuity

of the security properties require a set of rules to detect
and prevent tampering. This introduces a need for a

protocol or a frame of reference to describe and achieve

the security requirements discussed in Section 3.4.

We define the Secure Intermittent Computing Pro-

tocol (SICP) to protect the checkpoint vulnerabilities
introduced in Section 3.2 and to ensure forward progress

of the application and continuity of security proper-

ties. SICP defines a set of rules among the different

Fig. 5 An example SICP scenario. (1) The system is cleared
by the factory reset() operation. (2) A fresh nonce, Ri is as-
sociated with each power-on state. The first valid state save
packet, SS1 , is created by INITIALIZE. On power loss, (3) WIPE
clears the volatile STATE and upon subsequent power up, (4)
RESTORE validates the latest state save packet, SS1 , restores
the program state, and generates a new state save packet SS2 .
(5) During program execution, REFRESH is called to create a
new checkpoint SS3 , overwriting the oldest state save packet,
SS1 .

states of the device, illustrated in Figure 4. The non-

volatile memory, which holds the checkpoints, is the
prover and the device verifies the validity of these check-

points. During power-on, the device creates a secure

checkpoint and stores it in non-volatile memory (Step
1). After a power cycle, the device verifies if the check-

point to be restored is indeed the latest and unmodified

checkpoint (Step 3). With SICP, the device can dif-

ferentiate between a malicious and valid checkpoint in
memory. It detects malicious checkpoints and prevents

restoring the device to an attacker controlled state.

4.1 Satisfying the security requirements

We start with a device that has gone through fac-

tory reset() which restores the device to manufacturer

settings and programs the tamper-free non-volatile
memory with a secure key, K . With the unsecured

checkpoint, STATE , which contains the application and

microcontroller data, we create a secure checkpoint in
several steps, illustrated in Figure 5.

First, the freshness requirement is satisfied by asso-

ciating each STATE with a nonce, Ri, which is stored

in tamper-free non-volatile memory. nonce() gener-
ates a unique and fresh Ri. Second, the confidential-

ity, integrity and authenticity requirements are sat-

isfied by encrypting STATE and Ri using Authenti-
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Algorithm 1 INITIALIZE

Require: K

1: Q← nonce()
2: TB ← nonce()
3: STATE ← 0
4: RA ← Q

5: SA ← AEADencr (STATE ,TB ,RA,K )
6: TA ← AEADauth(SA,TB ,RA,K )

cated Encryption with Associated Data (AEAD) [35].
AEADencr() takes the plaintest STATE, Ri, and the

non-confidential associated data as input to generate

the encrypted checkpoint, Si. AEADauth() generates
an authentication tag, Ti, over the newly encrypted

checkpoint along with the nonce and associated data1.

After a power cycle, if a valid authentication tag exists,

it decrypts Si using AEADdecr(). If the authentication
tag check fails, abort() is called to raise a violation of

the protocol. At a minimum, abort() must either halt

the device or clear the device memory and restart it. A
secure checkpoint is a tuple of Si, Ri, and Ti, which is

called a state save packet, SSi.

Third, the atomicity requirement is satisfied by stor-

ing the state save packets in a two-state buffer, SSA

and SSB . They are updated in an alternating manner

to ensure one packet is kept valid at all times. At a given

point of time, the non-volatile memory will contain the
latest packet, SSi, and the previous packet, SSi−1, il-

lustrated in Figure 5. Fourth, the continuity require-

ment is satisfied by tag-chaining, which is the process
of cryptographically chaining the authentication tags of

the checkpoints in chronological order. It is achieved by

using the authentication tag from the previous packet,

Ti−1 as associated data to generate the latest packet,
SSi. For example, in Figure 5, T1 is used to compute

SS2, from which T2 is used to compute SS3. The au-

thentication tags protect the integrity and authenticity
of checkpoints as well as its chronological order.

4.2 Protocol

We define SICP as a collection of four algorithms de-

scribed below.

INITIALIZE : The device is initialized with the first

packet, SS1, with Algorithm 1. Upon power-up, INI-

TIALIZE is called if the device has gone through a fac-

tory reset(), which is identified by a unique reset mem-
ory pattern. INITIALIZE is called only once to create

SS1, which is stored in buffer SSA. Since the first packet

1 The encryption and tag calculation in AEAD operations
are separated here to provide clarity in protocol operations

Algorithm 2 REFRESH and RESTORE

Require: K ,STATE ,Si ,Ri ,Ti , where i ∈ {A,B}

operation ∈ {REFRESH, RESTORE}
1: Q← nonce()
2: if TA = AEADauth(SA,TA,RA,K ) then
3: if operation = RESTORE then

4: STATE ← AEADdecr (SA,TA,TB ,RA,K )
5: end if
6: RB ← Q

7: SB ← AEADencr (STATE ,TA,RB ,K )
8: TB ← AEADauth(SB ,TA,RB ,K )
9: else
10: if TB = AEADauth(SB ,TA,RB ,K ) then

11: if operation = RESTORE then
12: STATE ← AEADdecr (SB ,TB ,TA,RB ,K )
13: end if
14: RA ← Q

15: SA ← AEADencr (STATE ,TB ,RA,K )
16: TA ← AEADauth(SA,TB ,RA,K )
17: end if

18: else
19: abort()
20: end if

Fig. 6 An example REFRESH of state save packet, SSB ,
based on Algorithm 2. (1) Update RB with the latest nonce,
Q (line 6), (2) encrypt the checkpoint with the nonce and au-
thentication tag from previous packet, TA, and update SB

(line 7), and (3) last, update the authentication tag, TB ,
which invalidates SSA and validates SSB as the most recent
valid packet (line 8).

has no previous authentication tag to be used as associ-
ated data, a nonce is used as associated data, TB . This

ensures a unique chain of tags are generated after ev-

ery factory reset(). Next, STATE, where the plaintext
checkpoint is collected, is zeroized to overwrite the reset

memory pattern to prevent future calls to INITIALIZE.

A valid state save packet, SSA, is created by encrypting

and authenticating STATE, RA, and TB using AEAD
to generate SA and TA. A state save packet, SSi, is

valid if it satisfies two conditions. First, its nonce, Ri,

must match the nonce used in AEAD operations. Sec-
ond, its associated data in the AEAD operations must

match the authentication tag of the previous state save

packet. It ensures only one packet is valid between the
two buffers, SSA and SSB .

REFRESH : Algorithm 2 defines both the secure check-

point generation and restoration process, as they in-
volve similar cryptographic operations with the differ-

ence listed on line 4 and 12. During power-on, RE-

FRESH is called to generate the latest state save packet.
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It determines which is the valid buffer, between SSA

and SSB to update the alternate buffer. For example,
when REFRESH is called, if SSA is valid, line 2 in Algo-

rithm 2 is true. Correspondingly, SSB is updated with

the latest checkpointed state by first updating RB and
then SB , as illustrated in Figure 6. SSA remains valid

until TB is updated. As soon as TB is updated with the

latest authentication tag, in line 8, SSA is invalidated
and SSB is the latest valid packet. This update to the

authentication tag, TB in line 8 and TA in line 16, makes

REFRESH atomic. SICP makes an explicit assumption

that this tag update is an atomic operation. This as-
sumption is satisfied using the residual power source,

explained further in Section 5.4.

RESTORE : RESTORE is called upon every power-

up, except immediately after a factory reset(), to de-

crypt and restore the most recent valid STATE of the
device. The authentication tags of both the buffers are

checked to identify the valid packet. If both authentica-

tion tag checks fail, abort() is called to indicate check-

point tampering, which prevents restoring the device
with a malicious state.

If the authentication tag check is passed on either

line 2 or 10 in Algorithm 2, a valid state save packet
exists which is decrypted and used to restore the device

STATE. RESTORE documents each power-on event in

the sequence of checkpoints by generating a new state
save packet upon every power-up. For example, if SSA

is valid, SA is decrypted and restored in STATE. SSB is

updated with this STATE, new nonce, Q and TA. Now,

SSB is made valid, invalidating SSA. SICP ensures that
every power cycle is documented in the series of check-

points.

WIPE Power loss is an adversarial event, based on our

attacker model. WIPE must be called as soon as the

device detects a power loss to clear sensitive informa-

tion. It wipes all transient information, such as program
variables, stored as plaintext using the residual power

source in two steps. First, STATE is overwritten with

zeros to clear persistent plaintext information. Second,
volatile memory is also wiped to prevent cold boot style

attacks [18]. The residual power source must have suf-

ficient power to completely wipe transient information
and maintain the confidentiality of checkpointed data.

5 Implementation

In this section, we describe our choice of target device,
stateful power transition technique, and several design

choices and device specific features used in implement-

ing SICP.

5.1 Target device

The embedded device used with energy harvesters plays

an important role in utilizing the harvested energy and

is selected based on several criteria. First, on-chip non-
volatile memory is required to store checkpoints. The

use of off-chip non-volatile storage in the absence of

on-chip non-volatile storage is not a secure solution, as
the communication to off-chip memory and the memory

itself is vulnerable to attackers as it can be easily mon-

itored/removed. Second, the device must consume low
power to judiciously use the available resources. The

choice of device determines the overhead incurred by

secure and stateful power transition.

We implement SICP on Texas Instruments’(TI)
MSP430FR5994 Launch Pad Development Kit to

demonstrate the feasibility of and to evaluate se-

cure and stateful power transitions. We chose TI’s
MSP430FR5994 for several reasons. First, it is a low

power device, only consuming 120µA/MHz of active

current [38]. Second, it is equipped with 256kB of
ferroelectric random access memory(FRAM), which is

known for its ultra-low power consumption, high en-

durance, and fast read/write speeds. Third, it operates

in a unified memory model, where SRAM, FRAM, and
all the peripherals are mapped in a single global mem-

ory, which provides a common interface for all the data

that must be secured and checkpointed. Fourth, it con-
tains an on-chip AES accelerator, which can be used to

speed-up the cryptographic primitives in SICP.

5.2 Three facets

5.2.1 Cause

In our proof-of-concept implementation, the microcon-
troller is powered by a constant DC power supply. We

use a switch to power cycle the microcontroller at arbi-

trary time intervals to cause power loss.

5.2.2 Statefulness

During the ON-state, the microcontroller stores its gen-
eral purpose registers, such as program counters (PC),

in SRAM and application variables in FRAM. The ap-

plication variables, found in .data and .bss sections,
are placed in FRAM using the linker description file.

After power loss, only FRAM data remains persistent,

whereas the SRAM data is lost, leading to memory in-

consistency between the volatile and non-volatile pro-
gram state. We implement a modified version of TI’s

Computer Through Power Loss(CTPL) utility [41] to

maintain a consistent checkpoint across all types of
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Fig. 7 The control and data flow for the creation of a checkpoint and subsequent state save packet. REFRESH() is only called
when a checkpoint is created.

memory. The CTPL utility is designed for TI’s cl430
compiler. It was ported to compile on msp430-elf-gcc

with changes to preprocessing references and to com-

pile specific assembly code. It was further modified to

support user declarable checkpoint functions, to invoke
SICP functions within checkpoint calls and to incorpo-

rate SICP functions at system startup.

Checkpoint Location and Contents: The memory section

containing STATE is separately declared as .checkpoint

section in the device linker file, enabling easy identifi-

cation of the data to be checkpointed and forcing its
location within tamper sensitive memory. It provides

a single known location for the WIPE() operation to

target, discussed in detail later in this section. A guar-
anteed memory location also allows a straightforward

check on the existence of a factory reset() operation.

It provides the application developer a simpler decla-
ration interface, enabling the use of GCC’s variable at-

tributes, marked with the attribute keyword, in-

stead of a complex variable registration interface and

tracking data structure. We define secureCheckpoint()
to generate a checkpoint in this dedicated location and

create a state save packet using the SICP algorithms.

Figure 7 illustrates the control flow involved in creating
a checkpoint and subsequent state save packet. First,

the volatile peripherals in use are saved on the stack,

such as a timer and a comparator. Second, the gen-
eral purpose registers are pushed on the stack. Since

the first two steps mangle the stack and peripheral

states, they must be restored to their original state af-

ter checkpoint generation. Third, the stack is saved in
the .checkpoint section. Fourth, the non-volatile data

which is to be secured is also stored in the checkpoint

along with the volatile state. The checkpoint is ready

to be secured by SICP. To create a state save packet,
REFRESH() is called to wrap the segment up in a valid

state save packet.

5.2.3 Security

The four algorithms of the protocol are defined as func-

tions to create and restore the state save packet. We de-

fine REFRESH() to generate the latest state save packet,
RESTORE() to restore the latest unmodified state save

packet, INITIALIZE() to create the first state save

packet, and WIPE() to wipe sensitive data using the

residual power source. INITIALIZE() and RESTORE()

are called automatically during system startup, as

shown in Figure 8. WIPE() is also automatically trig-

gered upon power loss.

5.3 System Integration

The modified checkpointing system is wrapped with the

SICP function calls to enable secure and stateful power

transitions. The device specific implementation of sys-

tem start-up, cryptographic primitives, and WIPE() are
as follows:

Startup: Figure 8 illustrates the startup sequence for a

system employing SICP. A portion of the non-volatile
memory region containing STATE is first checked for

the factory reset bit pattern. This is used to determine if

a factory reset() has occurred and INITIALIZE() must

be invoked, or a normal boot sequence with RESTORE()

must occur. In either case, the appropriate SICP func-

tion is executed overwriting STATE with either zeros,

for INITIALIZE(), or the authenticated and decrypted
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Fig. 8 Startup sequence for MSP430FR5994 with SICP. (1) Checks for factory reset() and calls (2) INITIALIZE() or (3)
RESTORE() to populate STATE in non-volatile memory. (4) the device inspects STATE for a valid checkpoint, restoring the
checkpoint (6) if one is found or invoking main() (5) if one does not exist. Program execution will then continue normally until
power is lost or another checkpoint is created.

system state, for RESTORE(). If the checkpointing sys-

tem determines that no valid checkpoint exists, such

as on the first boot after a factory reset(), it will in-

voke main() as would be expected in a standard system
startup.

nonce(): A majority of the nonces used in this protocol

are provided via a 128-bit counter that is initialized to

zero during INITIALIZE() and incremented each time
a new nonce is requested. The exception is for the nonce

for TB used in INITIALIZE(), which is generated ran-

domly. This nonce is generated randomly to ensure that
no two different uses of a device create the same pat-

tern of tags, even if the exact same code is executed

following a factory reset() [20, 34].

AEAD Integration: he development of the SICP API
is agnostic of the underlying AEAD scheme used to

enforce the protocol’s security guarantees. We use a

hybrid implementation of EAX [4], provided by the
Cifra [6] cryptographic library. EAX is a well estab-

lished two-pass AEAD scheme which avoids unneces-

sary decryption operations when a tag fails authentica-

tion in REFRESH() or RESTORE(). Tag failure occurs on
half of the calls to these two functions since the state

save packet authentication is used to determine which

packet is valid and which is to be overwritten/restored.
The block-cipher based nature of EAX enabled hard-

ware acceleration by modifying the code to employ the

MSP430FR5994’s AES accelerator.

Tamper free memory: The secure memory is emulated
using the Intellectual Property Encapsulation segment

(IPE) available in MSP430FR5994 [12]. IPE is used

to program a section of FRAM as secure memory,
.secure, by setting the memory boundaries in the

IPE registers. .secure section of the memory is pro-

grammed with read, write, and execute access. It is

used to store the nonce used in SICP and the func-
tions used to read and update the nonce. The variables

stored in .secure section, and in turn the nonce, can

only be read and updated by executing code stored in

Fig. 9 ECDH key-exchange between Alice(MSP430FR5994)
and Bob: a flow chart and pseudo-code.

.secure of the memory. The code in .secure section

can be executed by branching into the IPE segment or

by calling a function stored in IPE segment. A read ac-
cess to .secure section from outside the IPE segment

will at least return 0x3FFF.

5.4 Residual energy use

A residual energy source, which was an architectural

requirement, is required to ensure atomicity and to wipe

unprotected data after a power loss is detected.

Atomicity Support: The atomicity of

secureCheckpoint() is ensured by using two state

save packet buffers. All changes in non-volatile mem-
ory are made to the alternate buffer, such that the

most recent packet remains unmodified. Once the

new tag computation is complete and stored in a
temporary buffer, the sic copyTag() function is

called to overwrite the previous tag and set the newly

created checkpoint as the only valid checkpoint in an
atomic operation. This copy function is made atomic

by disabling all interrupts for the copy duration of

48 cycles and relying on the residual energy of the

device and the FRAM’s atomic byte write capability
to ensure that even if power is lost, the copy operation

will complete before the system stops operating.

secureCheckpoint() either has no effect on the
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Table 1 Breakdown of the contents of the checkpoints of our
ECDH implementation

Variable
Size
(B)

Comments

System data 763 Device specific data

Generator(G) 96 Memory required to
store an elliptic
curve point as a
Jacobian coordinate

Shared secret(sAB) 96
Bob’s public key (qB) 96
Alice’s public key (qA) 96

Alice’ private key (dA) 32
256-bit integer

Order of generator (n) 32

Total 1211

system, if power is lost before the tag update, or

completes the checkpoint creation without incident.

WIPE(): The implementation of the WIPE operation
requires detection of power loss by monitoring the

device’s Vcc. MSP430FR5994’s ADC12 B analog-to-

digital converter is used to measure Vcc against the sys-
tem’s Vref as described in TI’s FRAMUtilities [41]. The

MSP430FR5994 development board’s unmodified im-

plementation, including one 10µF capacitor and three
100nF capacitors, has sufficient residual energy to con-

sistently overwrite up to 16kB of memory using direct-

memory-access (DMA) following the trigger for power

loss. When Vcc falls below Vref ADC12 B triggers over-
write of STATE and SRAM via DMA using the residual

energy.

6 EVALUATION OF SICP

In this section we evaluate SICP based on a real-life

application. We introduce our target application, our

implementation of the application, its checkpoints and
the need for checkpoint security, and the effect of each

facet on the application.

6.1 Target application

We chose Elliptic Curve Diffie Hellman key exchange
(ECDH) as a representative of an application which

needs secure checkpoints. ECDH can be used to ex-

change keys between two entities, Alice and Bob, via an
unsecured channel to secure the communication chan-

nel in several steps, illustrated in Figure 9. First, they

agree upon an elliptic curve, E; a base point, G, in E

whose order is n. The order n is the smallest integer
such that n.G = 0. Second, they each chose an integer,

Ni, less than n as their corresponding private key, di.

Third, they compute the product Ni.G as their public

key, qi. Last, each entity generates the shared secret by

multiplying its secret with the other entity’s public key,
which is then used to derive the secret key, KEY. We

implement ECDH on MSP430FR5994 using the NIST

curve P-256, which provides 128-bits of security, with
the help of the RELIC cryptographic library [3]. We

consider Alice to be the target microcontroller. ECDH

involves long running arithmetic operations on the ellip-
tic curve, such as generating an integer and point mul-

tiplications. When the microcontroller is powered by

an energy harvester, ECDH may operate at a reduced

duty cycle to finish its computations, as explained in
Section 2.1. We place secureCheckpoint() calls after

long running arithmetic operations to ensure the avail-

ability of the intermediate results in the event of power
loss, as illustrated in Figure 9.

Checkpoint Location and Contents:

The application specific variables that are required

to ensure forward progress of ECDH are listed in Ta-
ble 1. All the variables listed in Table 1 are placed

in the .checkpoint section of tamper-sensitive non-

volatile memory using the attribute keyword, as
described in Section 5.2. The generator, G, of the curve

is a point on the 256-bit elliptic curve, consisting of

three Jacobian coordinates, X,Y , and Z, where each

coordinate is 256-bit long. Thus, each point on the el-
liptic curve, such as the shared secret, sAB , and public

keys, qA and qB are 96 B. The shared secret, sAB , and

Alice’s private, dA, are also checkpointed to maintain
secure sessions across power loses. Since dA and n are

256-bit integers, they only occupy 32 B each. Of the

1211 B of checkpointed data, only G, n, and the public
keys, qA, and qB , are global public elements, the rest

of the variables must be protected from the attacker

to maintain the security of the communication channel.

Thus, checkpoints of ECDH require SICP to maintain
the security properties of its application across stateful

power transitions.

6.2 Effect of facets on duty cycle

We study the overhead introduced by each facet and
in turn study its effects on the duty cycle of ECDH.

The device under test was operated at 1 MHz and was

powered by an external power supply. The energy and
time measurements reported in this section were mea-

sured across a 1 kΩ shunt resistor using a Tektronix

DPO3034 oscilloscope operating at 50 kS/s. Table 2

lists the energy and time overhead of ECDH, CTPL
and SICP. It computes the net load power after intro-

ducing each facet based on the assumption that the

initialize operations occur only once and are ignored
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Table 2 Energy and time overhead of different technology and corresponding duty cycle, Dload, when input power is 2 mW

Technology Operation
Time
(ms)

Energy
(µJ)

Pload

(mW)
Dload

(%)

Application ECDH 7800 48300 6.2 33

CTPL
Initialize 0.02 0.03

8.0 25Refresh 13.8 12.1
Restore 13.5 12.3

SICP
INITIALIZE() 0.06 0.04

9.5 21REFRESH() 216.2 160.2
RESTORE() 277.1 202.3

and only one checkpoint generation operation is per-

formed during each ON-state. We analyze the effects

of this overhead on the duty cycle of the device, using

equation 1.

Energy harvesters: In the continuous execution paradigm,

the microcontroller consumes 48.3 mJ of energy in 7.8
s to arrive at the shared secret of an ECDH operation,

which requires 6.2 mW of power. Energy harvesters do

not always provide the peak power required by the mi-
crocontroller, they typically provide a few µW to mW

of power [25]. We assume that the microcontroller is

powered by a kinetic energy harvester [9], which pro-

vides an average power of 2 mW. In the intermittent
execution paradigm, the microcontroller still requires

6.2 mW of power to arrive at the shared secret but

it operates at only 32% duty cycle as Pload is greater
than PEH . The microcontroller repeatedly experiences

power loss for every 2 mW of power it consumes.

Statefulness: CTPL stores the volatile state informa-
tion in non-volatile memory as a checkpoint and re-

trieves it to restore the microcontroller after a power cy-

cle, which introduces overhead. Table 1 lists the check-
point size of our target application as 1211 B, which is

calculated by studying the memory section containing

STATE [36]. The checkpoint generation and restora-
tion operations combined introduce an overhead of 1.8

mW, listed in Table 2. In addition to the power require-

ments of ECDH operations, the checkpointing overhead

increases the net load power, Pload, to 8 mW. The mi-
crocontroller duty cycle is reduced to 25% to arrive at

the shared secret, sAB , assuming that the device is still

powered by the same kinetic energy harvester.

Security: Table 2 lists the additional overhead SICP in-

troduces to stateful power transitions. It presents the

amount of energy and time required to secure the gen-
eration and restoration of 1211 B of checkpointed data.

The overhead measurements correspond to INITIALIZE,

REFRESH, and RESTORE operations of the protocol. The

‘

Fig. 10 Facets of power transition and corresponding effect
on duty cycle, Dload

microcontroller requires an additional 1.4 mW to se-

cure 1211 B of checkpoint. This increases the net load
power, Pload, to 9.5 mW. The microcontroller must op-

erate at 21% duty cycle to finish its ECDH operations

while ensuring that its security properties and that of

ECDH are maintained across power transitions.

6.3 Analysis

In our implementation of secure and stateful power

transition, we observe that each facet, including the ki-

netic energy harvester, CTPL, and SICP, introduces a
limiting factor which progressively reduces the duty cy-

cle of the device, illustrated in Figure 10. We studied

the effects of energy influx, type of non-volatile mem-

ory, and checkpoint size on the duty cycle of the load.
Figure 11 illustrates the change in duty cycle based on

the energy influx for different checkpoint sizes and non-

volatile memories. The data points on each line graph
correspond to the duty cycle of the device based on the

energy influx from three types of sources, including ki-

netic, vibration, and thermal harvesters, which provide
2 mW, 4.5mW, and 5.2 mW, respectively [9, 26]. The

energy influx varies, between a few µW to a few mW,

depending on the choice of the harvester [25]. We chose

two types of non-volatile memory commonly available
in off-the-shelf devices. First, we studied the flash mem-

ory available in TI’s MSP432P401R [37]. Second, we

studied FRAM available in MSP430FR5994 [38]. Since
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Fig. 11 Changes to the duty cycle of load, Dload, based on
the energy influx [9, 26], size of checkpoint, and type of non-
volatile memory. The duty cycle measurements were calcu-
lated based on the ratings of flash memory and FRAM avail-
able in the device datasheet [37, 38]

FRAM consumes low power when compared to flash,
the duty cycle of FRAM devices is higher than that of

flash devices. We also considered two checkpoint sizes,

1kB and 4kB, to account for applications whose check-
points maybe larger than ECDH’s 1.2kB checkpoint.

Figure 11 illustrates that larger checkpoints reduce the

duty cycle of the load, irrespective of the energy influx
and type of non-volatile memory in use. The duty cycle

reported in Figure 11 will reduce further when secure

checkpoints are employed. Thus, we must consider the

various technologies involved in an energy harvested
node, including, but not limited to the energy influx,

type of non-volatile memory, application, frequency of

checkpoints, and type of device, to achieve the required
duty cycle of the target device.

7 Conclusion

We presented the Secure Intermittent Computing Pro-

tocol to bridge the gap between stateful power transi-

tions and secure embedded systems. It is the first se-

cure intermittent solution to provide comprehensive se-
curity to the power transitions of an embedded system.

It is a fail-safe and generic protocol that can be used

with existing stateful power transition solutions to en-
hance their security. We provide a proof-of-concept im-

plementation of secure and stateful power transitions

on an MSP430FR5994 to demonstrate the feasibility
of secure checkpoints. The introduction of each facet

and its corresponding technology affects the duty cycle

of the target application. Our evaluation demonstrates

the need for careful design choices, including but not
limited to non-volatile memory, low power device, cryp-

tographic hardware, and secure memory, to improve the

duty cycle of the application. Several low power micro-

controllers are equipped with cryptographic hardware,

mostly for encryption. In the future, we must consider
including hardware accelerated authenticated encryp-

tion engine, low power non-volatile memory, and secure

storage capabilities to microcontrollers to improve the
duty cycle of the application to facilitate secure and

stateful power transitions.
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