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A B S T R A C T

Recent Electron Backscatter Diffraction (EBSD) experiments have revealed the emergence of
heterogeneous dislocation microstructures forming under a wedge indenter in fcc crystals, where
micro-meter dislocation patterns challenge the predictions of traditional models of plasticity. In
order to explain the formation of these features and develop a relationship between the force-
displacement curve and the dislocation substructure, we present here a model of wedge in-
dentation based on the continuum theory of dislocations. The model accounts for large de-
formation kinematics through the multiplicative split of the deformation gradient tensor, where
the incompatible plastic component of deformation results from the flux of dislocations on dif-
ferent and interacting slips systems. Constitutive equations for dislocation fluxes are determined
from a dissipative variational principle. As a result, each dislocation density satisfies an initial-
boundary value problem with convective-diffusive character, which is coupled to the macro-
scopic stress and displacement fields governing the deformation process. Solution to the self-
consistent continuum formulation is found using the finite element method. Computer simula-
tions mimic the experimental conditions of wedge micro-indentation experiments into Ni single-
crystals used by Kysar et al. (2010a). A comparison of overall dislocation density distribution and
macroscopic mechanical response shows good overall agreement with the experimental results in
terms of the detailed features of dislocation patterns and lattice rotations as well as the macro-
scopic force-displacement response.

1. Introduction

Due to its simplicity, the need for minimal sample preparation, and its non-destructive character, indentation is a mechanical test
which is routinely used for characterization and quality control of materials. Traditional indentation tests measure the ratio between
the applied load and the optically-imaged residual imprint area, a quantity known as indentation hardness. In metals, indentation
hardness is not only a measure of whether annealing or hardening treatments have been carried out correctly, but also a quantity
from which other mechanical properties can be extracted. A notable example of this practice is Tabor's law relating hardness to yield
strength (Tabor, 1951). Indentation plays an important role in the mechanical characterization of brittle ceramics, since the hy-
drostatic component of stress below the indenter tip hinders premature fracture and reveals properties of plastic deformation
otherwise inaccessible via uniaxial tests. For example, Knoop hardness anisotropy measurements were instrumental in determining
the active slip systems in transition-metal carbides as a function of temperature (Hannink et al., 1972), while the size of indentation
cracks was found to relate to the toughness of ceramics (Anstis et al., 1981).
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Over the past three decades, the interest in understanding the deformation processes of materials in small volumes, such as thin
films, multilayer materials, and heterogeneous composites, has attracted renewed attention on indentation because of its ability to
probe mechanical properties otherwise inaccessible via other methods. The difficulty of accurately measuring the imprint area at
small depths has promoted the development of depth-sensing indentation (also known as instrumented indentation, or simply na-
noindentation), a technique where the full history of load vs. depth of penetration (P vs. h) is measured during the test (Pethicai et al.,
1983). The rich amount of information contained in the P-h curves, especially when nanoindenters are equipped with the capability
of continuous stiffness measurements (CSM), have enabled new ways of probing materials to extract their mechanical properties (Li
and Bhushan, 2002; Vanlandingham, 2003; Schuh, 2006; Fischer-Cripps, 2006; Gouldstone et al., 2007). Examples include hardness
and elastic moduli (Oliver and Pharr, 1992), residual stresses (Suresh and Giannakopoulos, 1998), fracture toughness of thin films (Li
et al., 1997), fatigue strength (Schwaiger and Kraft, 1999), power-low elasto-plastic response and power-low creep response (Cheng
and Cheng, 2004).

A remarkable discovery enabled by nanoindentation is that the indentation size effect (ISE) is an intrinsic property of plastic
deformation, as opposed to an experimental artifact (Pharr et al., 2010). The intriguing aspect of the ISE is that it belies the tradi-
tional understanding of hardness as a constant material property when measured with self-similar indenters (Tabor, 1951; Xue et al.,
2002). A widely accepted explanation of the ISE was proposed by Nix and Gao (1998), who interpreted the ISE as a manifestation of
geometrically necessary dislocations (GNDs) accumulated under the indenter tip. The prospect of using indentation as a tool to
develop a more fundamental understanding of plasticity in terms of structures and mechanics of dislocations has promoted new
experimental and computational research. In this line of inquiry, recent high-resolution EBSD studies have revealed the complex
morphology of the GND structures forming beneath indenters (Zaafarani et al., 2006; Kysar et al., 2007, 2010a; Rester et al., 2008;
Demir et al., 2009; Dahlberg et al., 2014; Ruggles et al., 2016). By offering a direct view of how materials defects collectively respond
to inhomogeneous loads, these experiments constitute an important reference for microstructure-based models of plasticity. Theory
(Zhang et al., 2007; Xiong et al., 2012; Öztop et al., 2013), Molecular Dynamics (MD) simulations (de la Fuente et al., 2002; Li et al.,
2002; Lilleodden et al., 2003; Fang et al., 2003; Nair et al., 2008), and discrete Dislocation Dynamics simulations (Fivel et al., 1997,
1998; Balint et al., 2006; Zhang et al., 2014; Po et al., 2014) have examined the properties of dislocation structures generated by
indenters. However, because of limitations in space and time scales, only continuum plasticity simulations have allowed a com-
parison between modeling results and microstructures revealed by EBSD measurements. In the last decade, a number of continuum
models have been proposed to explain the sub-surface fields generated by indenters. These include continuum plasticity (Gan et al.,
2008; Saito et al., 2012), crystal plasticity (Lee and Chen, 2010; Sabnis et al., 2013; Zhang et al., 2014), and Kocks-Mecking type
models (Zaafarani et al., 2008; Engels et al., 2012). The drawback of these plasticity models, however, is that they rely on phe-
nomenological equations to determine the amount of plastic slip at any given point, and therefore they are not well-suited to
understand dislocation structures formation in terms of elementary dislocation mechanics. By contrast, a variety of plasticity fra-
meworks broadly classified here as Continuum Dislocation-based Plasticity methods (CDP), use dislocation density-type state vari-
ables, and plastic deformation is self-consistently governed by their transport (Acharya, 2001; Arsenlis et al., 2004; Yefimov et al.,
2004; Hochrainer et al., 2014; Xia and El-Azab, 2015). Application of such models to the investigation of dislocation patterns formed
under indenters has been limited. Po and Ghoniem (2012) have developed a kinematically-linear CDD model which mimics the
wedge-indentation experiment of Kysar et al. (2010a), where the plane-strain deformation process was modeled by six families of
effective edge dislocations. Reuber et al. (2014) have considered the same problem within finite deformation settings, but with
linearized dislocation density transport equations, a dislocation population comprising both edge and screw dislocations, and without
an energetic contribution of the dislocation densities. Baitsch et al. (2015) a single-slip system simulation of the wedge indentation
problem in a linearized and non-dissipative framework, where the geometrically-necessary dislocation content results from the
minimization on an energy functional first proposed by Berdichevsky (2006).

The objective of this paper is to develop a formulation of continuum dislocation-based plasticity at finite deformation, for ap-
plications to the study of dislocation structures which develop under indenters. Our reference experimental condition is the wedge
indentation experiment of Kysar et al. (2010a), because it provides a simple pseudo two-dimensional settings. The paper is organized
as follows. In section 2 we introduce the finite-strain kinematics of both deformation and dislocation transport within the materials,
and seek a thermodynamic closure equation for the dislocation velocity field as a function of internal stress and densities. In section 3,
we derive the weak formulation of the three boundary value problems of the model, and solve them for the case of wedge-indentation
of a Nickel single crystal as in Kysar et al. (2010a) The aim here is to validate the physically-based model with experiments Kysar
et al. (2010a) at the same length scale, and to determine the relationship between the macroscopic force-displacement measurements
and the underlying dislocation microstructure. Results and comparison with experiments are provided in terms of load vs dis-
placement curves, lattice rotation, GND density, and dislocation densities on individual slip systems. Discussion and conclusions are
finally presented in section 4.

2. Model formulation

The proposed model mimics the experimental conditions of the wedge-indentation experiment of Kysar et al. (2010a). These are
illustrated in Fig. 1a, where a face-centered cubic (fcc) single crystal is indented on a (001) plane by a wedge parallel to the [110]
direction. As pointed out by Kysar et al. (2005), the line loading induces plane strain deformation in the (110) plane by equally
activating pairs of slip systems with identical in-plane components of the Burgers vector, and opposite out-of-plane component.
Therefore, the deformation is equivalent to that produced by six effective slip systems of edge dislocations with slip direction and glide
plane normal fully contained in the (110) plane. Slip direction and plane normal of each dislocation family are listed in Table 1c. In
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the current model, each family is described by a density of dislocations per unit referential area X t( , )r ( = …r 1 6), which is a function
of the material coordinate =X X X( , )1 2 in the (110) plane, and time (Fig. 1b). The objective of this section is to formulate a finite-
deformation model of the plane-strain indentation process, where the plastic deformation of the crystal is induced by the transport of
these dislocations. Because of the significant geometric changes under the indenter, a finite-deformation model is critical to the
description of lattice rotations and the corresponding dislocation microstructure.

In all subsequent development we use indicial notation for tensor fields, with lowercase latin indices referring to coordinates in
the spatial configuration, latin uppercase indices to the reference configuration, and greek indices to the intermediate configuration.
Differential operators and integral theorems are applied following their “right” definition, as opposed to “left” (Malvern, 1969).

2.1. Kinematics

We adopt the kinematics framework originally proposed by Bilby et al. (1957), Kröner (1960), and Lee (1969), where the total
deformation gradient F is multiplicatively split into a lattice-preserving and dislocation-mediated plastic part FP, and an elastic part
FE associated with lattice stretching, that is

= =F x
X

F F: .iJ
i

J
i
E

J
P

(1)

It is further assumed that both FE and FP are orientation preserving, i.e. = >FJ det( ) 0E E and = >FJ det( ) 0P P , so that both the
inverse elastic distortion tensor =G F( )E E 1 and the inverse plastic distortion tensor =G F( )P P 1 exist. A fundamental aspect of the
multiplicative decomposition (1) is that FE and FP may be individually incompatible, although their product is the total deformation
gradient F , which is a compatible field by definition. As a consequence, a closed oriented material curve 0C maps into a closed
material curve tC in the spatial configuration, while it transforms into an open curve ˜C in the intermediate configuration. In the
FS RH/ convention (de Wit, 1960, 1965), the vector measuring the closure failure of ˜C is:

=B dX˜ : ˜ ,˜C (2)

where Xd ˜ is an infinitesimal material vector in the intermediate configuration. This vector can be mapped to either the reference or
the current configuration, therefore allowing the following two sets of identities (Steinmann, 1996):

Fig. 1. (a) A face-centered cubic crystal loaded on the (001) plane by a wedge parallel to the [110] direction. Plane strain deformation in obtained on
the shaded (110) plane. (b) View of the (110) plane showing the six effective slip systems with edge dislocations densities …X Xt t( , ), ( , )1 6 ,
respectively. (c) Orientation of the effective slip systems in the global reference frame of (b).
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In (3), 0S and tS are surfaces bounded by the curves 0C and tC , respectively, while S̃ is the corresponding collection of area
elements in the intermediate configuration. Eq. (3) shows that an elementary area element suffers a closure failure

= = =B A S a S Sd d d d˜ ˜t0 , which is measured by different tensors depending on whether the area element is taken in the reference
( Sd 0), current ( Sd t), or intermediate configuration ( Sd ˜). From Eq. (3) it can be seen that these tensors have components1

=A F:J JKM K M
P

, (4a)

=a G:j jkm k m
E

, (4b)

= =
J

F F J G G: 1 .P JKM K M
P

J
P E

jkm k m
E

j
E

, , (4c)

The mechanical significance of these tensors consists in their role as sources of internal stress in the crystal, as better appreciated
in the linearized theory of plastic eigendistortions (Mura, 1982). Adopting a material viewpoint, we henceforth choose to work with
the tensor A.

The property that the tensor A measures the local closure failure of an area element inspired Nye (1953) to establish the link
between its kinematic definition (4a) and the dislocation content in the crystal, therefore enabling the interpretation of A as a
dislocation density tensor. In fact, letting the superscript r identify families of dislocations sharing a common Burgers vector b̃r and line
direction r and having density r per unit reference area normal to their line direction, the dislocation density tensor can be
expressed as:

=A A ,J
r

J
r

(5)

where the dislocation density tensor of the r-th family is defined as

=A b̃ .J
r r r

J
r (6)

In the wedge indentation problem at hand, the summation in (5) runs over the six families of edge dislocations with properties
listed in Fig. 1c.

The balance law governing the evolution of each A J
r is derived in Eq. (A.3), and its local form reads

= +A L F pb( ) ˜ ,J
r

JKM
r

K
P

M
r

J, (7)

where =L b w˜ ˜ ˜ ˜r r r r r
is the Burgers vector flux of the r-th family, with ˜r , w̃r , ˜r being the density, the velocity and line direction

in the intermediate configuration, respectively. On the other hand, the rates of the dislocation density tensors (4) can be obtained by
differentiating its kinematic definition (Acharya, 2001; Cermelli and Gurtin, 2001; Svendsen, 2002; Arsenlis et al., 2004). In par-
ticular, the rate of the tensor A is

=A F( ) ,J JKM K
P

M, (8)

where L P is the standard plastic velocity gradient defined by the relation

=F L F .K
P P

K
P (9)

Two important results are obtained by summing Eq. (7) over all families, comparing to Eq. (8), and invoking the arbitrariness of
the plastic deformation process. First, that LP can be expressed as the sum of the individual dislocation flux tensors

= =L L b w˜ ˜ ˜ ˜ .P

r

r

r

r
µ

r
µ
r

(10)

Second, that the sum of the production terms must vanish in tensorial sense, that is

=b p˜ 0 .
r

r r
J
r

(11)

We further assume that only dislocation glide motion is allowed. Therefore the dislocation velocity of family r can be written as
=w sw˜ ˜ ˜r r , where w̃r is a scalar dislocation velocity field, and s̃r is the fixed slip direction appearing in Fig. 1c. In turn, the product
=n s˜ ˜ ˜r

µ
r

µ
r defines the component of the glide plane normal for each slip system, and the plastic velocity gradient reduces to the

familiar form encountered in CP theories (Roters et al., 2010)

1 Note that the first equality in Eq. (4c) is the definition of the tensor , while the second equality represents the condition that the in-
compatibilities of FE and FP must cancel each other in order to guarantee the compatibility of total deformation.
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=L s n˜ ˜ ,P

r

r r r

(12)

where the slip rates are given by Orowan's equation = bw˜ ˜ ˜r r r . Moreover, the trace L P vanishes identically and therefore J P remains
constant at all times.2 Under these conditions, the balance law Eq. (7) admits the scalar counterpart derived in (A.6), which reads

= +w s G p(˜ ˜ ˜ ) .r r r r
K
P

K
r

, (13)

We remark here that the plastic deformation of the indented crystal is governed by Eqs. (9), (12) and (13), which ultimately
depend on the velocities wr and source terms pr . Closure equations for these quantities are obtained in the following sections.

2.2. Irreversible thermodynamics

Deriving a closure equation for the dislocation velocity wr requires a brief foray into irreversible thermodynamics. We begin with
the balance equations for the internal energy and entropy densities per unit reference volume ϕ and η, respectively. The local forms of
the integral balance laws formulated in Appendix B read

= + +P v Q h w p( ) ,iK i K K K
r

r r
K
r

K
r

r r
, , ,

(14)

= + + +Q
T

h
T

w p( ) .K

K r

r r
K
r

K
r

r r

,
,

(15)

Here PiK is the first Piola stress, vi the material velocity, QK the referential heat flux, h the heat supply, T is the absolute temperature,
and γ is the rate of entropy production per unit reference volume, which must be a positive quantity as dictated by the second law of
thermodynamics. The non-standard quantities r and r are, respectively, the energy and entropy per unit length of dislocation which
the flux wr r and the source term pr carry into the control volume.

In order to obtain a dissipation equation we follow the standard procedure of multiplying (15) by T and subtracting the result
from (14), assuming uniform temperature for simplicity. This results in

+ + =P F T µ w p w µ D[ ( ) ] 0 ,iK iK
r

r r
K
r

K
r

r

r
K
r

K
r

, , (16)

where = T is the Helmholtz free energy density, =µ Tr r r are the “chemical potentials” of the dislocation species, and
=D T is the energy rate dissipated into heat by internal processes, such as internal heat fluxes and dislocation motion within the

crystal. In order to proceed further, we assume that the free energy is a function of the elastic Green-Lagrangian strain, temperature,
and each of the dislocation densities r , that is

= E T( , , ) .E r (17)

By sake of (17), and taking into account the balance law (13), Eq. (16) is rewritten as

+ + =P F
E

F F
T

T µ P F F w µ T 0 .iK K
P

E i
E

i
E

r
r

r r
iK i

E
K

P

r

r
K
r

K
r
,

(18)

The terms in parenthesis in (18) are those that must vanish identically when the dissipation D is assumed to be independent of the
rates F E , T , and r . This assumption is widely accepted for plastically-deformed metals, and it leads to the following constitutive
relations

= = =P F
E

G
T

µ .mI m
E

E I
P r

r (19)

The surviving portion of the dissipation equation (16) is further manipulated using (9), (12), and the relation
= =w G w G w s˜ ˜ ˜K

r
K
P

K
P r r to obtain

=M bw s n G w s µ D˜ ˜ ˜ ˜ ˜ 0
r

r r r r
K
P

r

r r r
K
r
, (20)

where =M F P F J/K
P

iK i
E P is the Mandel stress. In the spirit of irreversible thermodynamics, we now regard the dislocation velocity as

a generalized irreversible flux which causes internal dissipation. Indeed, both theory and MD simulations indicate that for small
dislocation velocity compared to the shear wave speed, dislocations experience a dissipative friction force proportional to their
velocity (Lothe, 1962; Nabarro, 1967; Bitzek and Gumbsch, 2005; Olmsted et al., 2005). The simplest form of the dissipation con-
sistent with this observation is

2 As a consequence of these simplifications, there is no distinction between the dislocation densities per unit intermediate area ˜r and referential
area r , although we retain the formal difference between the two.
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=D B w
2

( ˜ ) ,
r

r r 2

(21)

where B is a coefficient with units of [Pa sec]. With this choice, the velocity of each dislocation family can be obtained from (18) via
the principle of maximum dissipation rate (PMEP) (Ziegler, 1983; Ziegler and Wehrli, 1987; Collins and Houlsby, 1997). This yields

=w b
B

M s n
b

µ G s˜ ˜ ˜ ˜ 1 ˜ .r r r
N
r

N
P r

, (22)

Note that the term = M s n˜ ˜ ˜r r r is the resolved shear stress in the intermediate configuration, while the term = µ G s˜ ˜r
b N

r
N
P r1

, plays the
role of a back stress proportional to the gradient of the chemical potential.

2.3. Energy of microstructures

We assume that the free energy density used has the form

… = + …E ET( , , , ) ( ) ( , ),E
E

E
M

1 6 1 6 (23)

where E is the elastic energy density, while M is microstructural energy. The elastic energy density is

=E E E( ) 1
2

,E
E E E

(24)

where EE is the Green-Lagrangian elastic strain. For the cubic Ni single crystal considered here, the elastic tensor contains only
the three independent constants c11, c12, and c44 listed in table 2c. In general, the microstructural free-energy contains both energetic
and entropic contributions, although there is no general consensus on its functional form (Groma et al., 2007, 2010; Kooiman et al.,
2014, 2015; 2016; Svendsen and Bargmann, 2010; Mesarovic et al., 2010). Berdichevsky (2006) proposed the simple expression3

… = … = kc( , , ) ˆ ( ( , , )) ln 1
1 /

,M M
T

T
1 2 1 2

44 * (25)

where =T r is the total dislocation density, c44 is the shear modulus, k is a dimensionless parameter and * is a saturation density.
With this choice, the chemical potential is the same for all scalar dislocation densities, and the back stress becomes proportional to
the gradient of the total density, in fact

= = =µ J kG µ J kGˆ
and

( )
.r

T

T

r

P

T N
r

P

T N
T

* , * 2 , (26)

2.4. Dislocation sources and mobility

In three-dimensional space, dislocation lines collide with each other and form junctions, screw dislocations cross slip, and curved
dislocations increase their length as they bow out. These mechanisms of length multiplication have no rigorous representation in the two-
dimensional picture of equivalent straight dislocations adopted in this paper. The source term pr which accounts for these processes must
therefore be modeled phenomenologically. We assume that on each slip system there is a constant density of Frank-Read sources FR,
which operate with frequency fr . Every time a source bows out and closes on itself, it emits a loop which in the two dimensional
framework corresponds to a pair of dislocations on opposite slip systems. Therefore, the production term for each slip system is

=p .r r
FR (27)

The frequency r is the inverse of the time Tr which is needed to grow an embryonic Frank-Read source of length L into a closed
loop of radius L. This is

= > µb Lif | | /
0 otherwise

r
b

LB
r

| |
2

r c b
L
44

1

(28)

Finally, a similar consideration about three-dimensional forest hardening suggests to consider the following effective mobility

= >B B µb Lif | | /
otherwise ,

r
0 2

(29)

so that dislocations are actually immobilized below a certain stress threshold. In the real three-dimensional condition, both lengths L1
and L2 are related to the average dislocation spacing. Since the only indication of such quantity in the two-dimensional representation
is the total dislocation density =T

r
r , for simplicity we choose = =L L 1/ T

1 2 .

3 Alternative simple formulations include models where the microstructural energy depends on the GND density = A A b/J J
GND , or the SSD

density = TSSD GND.
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3. Micro-indentation simulations

3.1. Finite element implementation and boundary conditions

The theoretical model developed in the previous sections is implemented numerically using the finite element method (FEM). We
consider a single crystal Ni sample oriented as in Fig. 1b. With reference to Fig. 2a, we consider a simulation domain of width

=W µm600 and height =H µm550 . A region of infinite elements surrounds this domain on the left, bottom, and right sides. This
allows the prescription of boundary conditions on these sides at infinity. In particular, the lateral boundaries of this domain are
traction free, while the lower boundary is constrained in the vertical direction. The top surface is indented by a rigid 90 wedge with a
tip radius of =R µm10 . The indenter is pushed into a Ni single crystal in increments of µm0.5 , for a total indentation depth of µm100 .
At time =t 0, we assume that each slip system is populate by a uniform density, that is = =X m( , 0) 10r

0
12 2 for = …r ,1 6, so that

the GND content o the crystal vanishes identically. We also assume that the crystal is initially plastically undistorted, that is
=F X I( , 0)P .

Using these initial conditions, the sequential solution scheme illustrated in Fig. 2b is implemented to find the displacement field u,
the plastic distortion field FP, and the dislocation density fields r ( = …r 1, 6). At each indentation increment we solve the following
quasi-static weak problem in order to find the displacement field u.

=P u V fJG u Ad d .iJ i J Kj j I,
top (30)

In Eq. (30), = FJ det( ), =G F 1, and xf ( ) is the pressure applied by the indenter normal to the deformed surface. By applying
penalty method, the normal contact pressure is computed as =x xf P H d( ) ( ( ))n

* , where xd ( ) is the signed distance of x from its
closest point on the indenter, H * is a smooth Heaviside step function, and Pn is the penalty factor which is set to E h0.3 / , where h is the
average mesh element size of sample top boundary and equal to 1.5 μm in the current model. Scale factor 0.3 is selected based on both
ease of convergence and solution accuracy. The lower penalty factor usually leads to faster convergence but more inter-penetration

Fig. 2. (a) The simulation domain is a ×W H rectangle surrounded on three sides by infinite elements. Zero traction is prescribed on the lateral
boundaries, while zero vertical displacement is prescribed on the bottom boundary. Zero dislocation flux is prescribed on the in-flow portion of the
boundary. (b) Staggered solution algorithm for the coupled mechanical and transport problem. (c) Parameters used in the Ni single-crystal model
taken from (Owen et al., 1937, Teodosiu, 1982, Zhang et al., 2014, Reuber et al., 2014, Berdichevsky, 2006).
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between contact surfaces. The non linear weak form (30) is solved at each indenter increment for fixed FP from the previous step.
Once the solution u is found, the initial boundary value problem (IBVP) governing the time evolution of each dislocation density is
solved. The weak problem corresponding to (13) is

+ =w V w A p V( ˆ ˆ ) d ˆ d ˆ dr r r
K
r

K
r r

K
r r

K
r r

, out (31)

here =w G w s˜ ˜K
r

K
P r r is the dislocation velocity in the reference configuration, and ˆr is the test function. Note that (31) subsumes the

condition of zero dislocation flux on the inflow portion of the boundary, hence the boundary term extends only on the outflow
boundary out, defined by the condition >w N 0K N . The convective term wˆ ˆK

r
K
r r

, is stabilized by means of the Taylor-Galerkin
method (Kuzmin, 2010), where the test function ˆr is replaced by = + t wˆ ˆ ( /2) ˆTG

r r
K
r

K
r
, , where t is the time step. Zero dislocation

flux is prescribed on the in-flow portion of the boundary. Together with each r , we also evolve the plastic deformation by solving the
spatially-dependent initial value problem (IVP) (9) together with (12). The corresponding weak form is

=F F V b w s n F F Vˆ d ˜˜ ˜ ˜ ˜ ˆ dJ
P

J
P

r

r r r r
J

P
J
P

(32)

Eqs. (31) and (32) are used to update the fields r and FP. Since the displacement u is kept fixed during the evolution of FP , the
resolved Mandel stress decreases and dislocation motion eventually stops. When the average absolute value of resolved shear stress
over the simulation domain | |r

ave goes down to a stress threshold = µb L1.1 /c 2 indicating most of the dislocations are immobilized, a
new indentation step is taken and the overall process repeats until a total indentation depth of µm100 is reached. At that point, the
motion of the indenter is reversed to unload the sample, and reverse steps are taken until the total load on the indenter vanishes. All
material properties are listed in Fig. 2c. The weak forms (30), (31), and (32) have been implemented using the basic PDE module of
the commercial FEM software COMSOL multiphysics 5.2.

3.2. Simulation results

As a first comparison between the experimental results of Kysar et al. (2010b) and our model can be made by considering the plot
force vs indentation depth shown in Fig. 3. In the range of indentation depth considered here, up to µm100 , there is good agreement
between simulations and experiments. Both curves show an initial non-linear relationship between force and depth, which extends to
a depth of about µm20 . This initial portion of the loading curve is most likely due to the round tip of the indenter, which has a radius

=R µm10 in our simulations. Once the lateral sides of the wedge make contact with the material, the load vs depth curve approaches
a linear dependence, which is evident in the experimental curve above =d µm70 . Upon unloading, the elastic recovery of the
material is about 10% of the maximum depth in both simulations and experiments.

The total material rotation θ is computed using the polar decomposition of the deformation tensor as =F RU , where R is the
orthogonal matrix of rotation. For the two dimensional case considered here, the total material rotation angle θ about the out-of-
plane axis can be obtained from the relation = R2 cos tr( ). The simulate material rotation θ is shown in Fig. 4a. Note that the range
of the rotation angle θ is determined by the wedge indenter angle. The material in contact with the flanks of the indenter is forced to
rotate by an angle equal to half of the wedge angle, that is 45 , while the material under the indenter tip are constrained not to rotate
by symmetry considerations. This imposed rotation field is accommodated partially by elastic lattice rotation, and partially by plastic
rotation. The angle of rotation of the lattice about the out-of-plane direction, 3, is computed using the polar decomposition of the
elastic deformation tensor as =F R UE E E , where RE is the orthogonal matrix of lattice rotation. For the two dimensional case con-
sidered here, the lattice rotation angle θ about can be obtained from the relation = R2 cos tr( )E

3 . Fig. 4b shows the lattice rotation
angle in the unloaded state, while Fig. 4c is the corresponding result obtained experimentally by Kysar et al. (2010b). It can be

Fig. 3. Indentation load vs. depth.
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observed that the lattice rotation underneath the indenter exhibits four sectors of alternating sign, as predicted by the theory of Hill
et al. (1947). The most evident discrepancy between simulation and experimental results can be observed along the vertical line
below the indenter tip, where simulations show a diffuse transition between positive and negative rotation sector, whereas ex-
perimental results show a sharper transition. The quantitative and qualitative agreement between theory and experiments is re-
markable, given the few assumptions made in constructing the current model.

Fig. 5a and c shows the components A13 and A23 computed from Eq. (6), respectively. The black lines superimposed to these
figures represent deformed lattice planes, and they are constructed as being locally tangent to the vector fields F ẽe

1 and F ẽe
2, where ẽ1

and ẽ2 are the horizontal and vertical unit vectors in the intermediate configuration. Fig. 5a shows a concentration of positive Burgers
vector density in the ẽ1 direction on the vertical line under the indenter, and on two lateral lines that originate approximately at the
points of contact of the wedge indenter with the top surface of the crystal. Note that 13 represents a density of dislocations with
Burgers vector along x1. There are five regions of alternating high and low 13 intensity, separating the four sectors of lattice rotation.
The high Burgers vector density in these regions act as a sort of sub-grain boundary which accommodates the high lattice rotation
imposed by the wedge in these regions. Similarly, 13 represents a density of dislocations with Burgers vector along x2. Their anti-
symmetric distribution about the mid-plane is best understood by the vertical distorted lattice planes in 5c, which rotate in opposite
direction to accommodate the deformation of the indenter.

Fig. 5b and d shows the corresponding components of 13 and 23 obtained by Kysar et al. (2010b) by post-processing the lattice
rotation via Nye's equation

=ij jkm ik m
e

, (33)

Note that (33) uses linearized kinematics and it neglects the contribution of elastic strain. Despite the fact that the experimental
results show sharper regions of high density, it can be observed that the general pattern is well reproduced for both fields 13 and 23.

Next, we consider the distribution of scalar densities on each slip system. In experiments, the problem of reconstructing the
densities r given amounts to solving the equation

Fig. 4. (a) Total rotation θ computed from our model. (a) Lattice rotation 3 computed from our model. (b) Corresponding lattice rotation measured
by Kysar et al. (2010b).
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which is underdetermined for more than two families of dislocations. Kysar et al. (2010b) have eliminated this under-determinacy by
requiring that the net dislocation density on each slip system minimizes the L1 -norm defined as =L b| |1

gnd . Results of these
calculations were interpreted by Kysar as a “lower bound” estimate of the actual dislocation population, and they are reported in the
first column of Fig. 6. The second column of Fig. 6 shows the result of the same calculation using the results of our simulations. It can
be observed that for all densities there is very good agreement between corresponding results.

4. Discussion and conclusions

Instrumented indentation has become an ubiquitous tool to investigate the fundamental properties of plasticity at the micro- and
nano-scale. In recent years, high-resolution EBSD characterization of these structures has been instrumental in revealing the way
materials respond to loads by developing dislocation structures which to accommodate the large deformation induced by indenters.
The objective of this paper was to develop a finite-deformation model of indentation that can reproduce the dislocation micro-
structure measured in the wedge micro-indentation experiment of Kysar et al. (2010b).

The model presented here has a minimal number of assumptions regarding dislocation generation, multiplication, cross-slip, and
junction formation. Nevertheless, it remarkably reproduces essential features of the indentation experiments of Kysar et al. (2010b).
The main reason for such agreement may lie in the geometric nature of the experiments and the way they were designed to reveal the
GND content of dislocations rather than all dislocation features. First, the experimentally-observed force-displacement curve is
quantitatively reproduced with the current model. At very small loads, the response is non-linear, and is found to be determined by
the radius of curvature of the indenter's tip. At greater loads, the response is more or less linear over the entire range of loads. Second,
it is found that as the hard indenter is pushed into the surface, the material closest to the tip rotates to accommodate adjacent surface
rotation, and such immediate material rotation is reversed on a length scale determined by the contact line between the indenter and
the surface. Immediate surface rotations become diffuse as a result of dislocation motion a distance of about three times the

Fig. 5. Comparison between simulated and experimentally-determined sompoen (a) Component of the tensor A13 obtained from the simulations. (b)
Component of the tensor 13 measured experimentally. (a) Component of the tensor A23 obtained from the simulations. (d) Component of the tensor

23 measured experimentally.
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Fig. 6. Comparison between experimental lower-bound dislocation density (first column), simulation lower-bound dislocation density (second
column), and actual simulated density (third column), for each slip system. (a)–(b) (1). (c)–(d) (2). (e)–(f) (3). (g)–(h) (4). Densities (5) and (6) are
not reported for symmetry reasons.
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indentation depth. These two aspects of the experiment are very well-reproduced by the model. Some deviation between the model
and experiment is observed adjacent to the symmetry line, where the experiment shows more localized and abrupt rotations near that
line, while the simulations show gradual changes.

While the experiment can directly measure lattice rotations and hence the components of the dislocation density tensor, our
simulations in fact start from the distributions of dislocation densities on the three equivalent slip systems. From there, the dislocation
density tensor and lattice rotations are recovered. Therefore, there is no direct way for the experiment to resolve the individual
dislocation densities without recourse to an assumption of total GND density minimization. This can assist in converting measured
values of the α-tensor to individual dislocation densities, although the procedure is non-unique. Nevertheless, the simulations re-
produce dislocation density distributions in agreement with this assumption and compare well with experiments.

The experiments show finer α-tensor (and hence GND density) patterns that merit further investigations. Those patterns, if
confirmed by direct TEM observations under the indenter, may be a result of dislocation self-organization due to a competition
between reactions (cross-slip, and junction formation) and transport. The patterns appear to have a wavelength of 50–100 μm, but
need to be confirmed by TEM observations or higher resolution X-ray diffraction methods. Future modeling that incorporates strong
dislocation reactions would then shed direct light on the mechanistic origin of such patterns. The present effort was focused on the
global aspects of micro-indentation: force-displacement, rotations, and the α-tensor, and hence an answer to this question awaits
further investigation. However, it should be emphasized that the experiment of Kysar et al. (2010b) is only two-dimensional in the
sense that the external load induces a state of plane-strain deformation, while the internal dislocation configuration is completely
three-dimensional (3D). This means that important dislocation mechanisms such as junction formation and cross-slip exceed the
scope of the present approach.
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Appendix A. Dislocation balance equation in the reference configuration

We consider a family of dislocations having density ϱ per unit referential area normal to their common line direction defined by
the unit vector . The corresponding vector density = has the property that Ad is the number of dislocations piercing an
elementary oriented area element Ad in the reference configuration. Let each dislocation in this bundle possess a generic quantity f.
We consider the balance equation governing this quantity for an arbitrary material control surface 0S bounded by a closed curve 0C .
The number of dislocations piercing 0S changes as a result of dislocations crossing the curve 0C , and as new dislocations of the same
type are produced. If dislocations move with velocity w, the number of dislocations crossing an elementary portion of the boundary

0C per unit time are those contained in an area element ×w Lt dd . Therefore the equation expressing the balance of the quantity f is:

= +d
dt

f dA f w dL fp dA ,K K BCK B C K K K
0 0 0S C S (A.1)

where p is the production rate of dislocations. Note that if =f 1, then the left hand side of (A.1) is the rate of change in the total
number of dislocations crossing 0S , while if = bf ˜ s( ) is the Burgers vector of each dislocation, then the integral represents the total
closure failure of the curve 0C mapped to the intermediate configuration.

Application of Stokes's theorem to (A.1) and subsequent localization yields

= +d
dt

f f w fp( ) ( ) .K KLM BCM B C L K, (A.2)

If = bf ˜ s( ) the following balance equation for the tensorial density =A br r r is obtained:

= + =A A w p( ) 0.K
r

KLM BCM B
r

C L K
r

, (A.3)

On the other hand, if =f 1, we obtain the balance equation for the dislocations, which reads

= +w p( ) .K KLM BCM B C L K, (A.4)

In the planar case considered in this paper this reduces to:

= +w p( ) .K K L L K, (A.5)

The referential dislocation velocity w is the pull-backs of the velocity w̃ in the intermediate configuration, = =w G w G ws˜ ˜ ˜C C
P

C
P .

Using this observation and dropping the (constant) unit line direction, we finally obtain the scalar density balance law:

= +w G p( ˜ ) .K
P

K, (A.6)
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Appendix B. Balance Laws for energy and entropy

Let us consider a closed material curve 0C in the (110) plane of Fig. 1b bounding an area 0A , and the prismatic volume
= × dz0 0V A obtained by “extruding” the area 0A along [110] by a length dz . Balance of energy for this material volume reads

+ = + +

+
( )v v dV P v Q dA b v h dV

dz w dL dz p dA

( ) ( )

.

d
dt i i iK i K K k k

r
r

BCK B
r

C
r

K r
r r

1
2 00 0 0

0 0

V V V

C A (B.1)

Here vi is the material velocity, ϕ the internal energy density per unit referential volume, PiK the first Piola stress,QK the heat flux, bk
the body force per uni referential volume, and h the heat supply per unit referential volume. The third therm on the right hand side of
Eq. (B.1) represents the energy carried into the control volume by the infinite straight edge dislocations of family r crossing its lateral
boundary. Here r is an energy per unit length of dislocation. Likewise, the last term represents the energy supply due to the
production of dislocations of family r within the same volume.

Since all fields are uniform in the out-of-plane direction, then =dV dz dA( ) ( )
0 0V A

. Therefore, applying the divergence the-
orem to the first term on the rhs, and Stokes theorem to the third term, the factor dz can be dropped from all terms. Accounting for
balance of linear momentum, the following integral over 0A is obtained

+ + =P v Q h w p dA( ) 0.iK i K K K
r

K KLM
r

BCM B
r

C
r

L
r

r r
, , ,0A (B.2)

In the planar case, this equation can be further simplified to

+ + =P v Q h w p dA( ) 0.iK i K K K
r

r r
K
r

K
r

r r
, , ,0A (B.3)

A similar balance equation holds for entropy balance

= + +d
dt

dV Q
T

dA h
T

dV dz w dL dz p dA.K
K

r

r
BCK B

r
C
r

K
r

r r
0 0 0

0
0V V V

C
A

(B.4)

In Eq. (B.4) η is the entropy density of the material per unit mass, γ is the internal entropy production rate due to irreversible
processes, and r is the specific entropy per unit length of dislocation. In the planar case considered here, the entropy balance
equation becomes

+ + =Q
T

h
T

w p dA( ) 0 .K

K r

r r
K
r

K
r

r r

,
,0A (B.5)
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