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Abstract

We study how to train a student deep neural network

for visual recognition by distilling knowledge from a black-

box teacher model in a data-efficient manner. Progress

on this problem can significantly reduce the dependence

on large-scale datasets for learning high-performing vi-

sual recognition models. There are two major challenges.

One is that the number of queries into the teacher model

should be minimized to save computational and/or finan-

cial costs. The other is that the number of images used

for the knowledge distillation should be small; otherwise,

it violates our expectation of reducing the dependence on

large-scale datasets. To tackle these challenges, we pro-

pose an approach that blends mixup and active learning.

The former effectively augments the few unlabeled images

by a big pool of synthetic images sampled from the convex

hull of the original images, and the latter actively chooses

from the pool hard examples for the student neural network

and query their labels from the teacher model. We validate

our approach with extensive experiments.

1. Introduction

Data curation is one of the most important steps for

learning high-performing visual recognition models. How-

ever, it is often tedious and sometimes daunting to collect

large-scale relevant data that have sufficient coverage of

the inference-time scenarios. Additionally, labeling the col-

lected data is time-consuming and costly.

Given a new task, how can we learn a high-quality ma-

chine learning model in a more data-efficient manner? We

believe the answer varies depending on specific application

scenarios. In this paper, we focus on the case that there ex-

ists a blackbox teacher model whose capability covers our

task of interest. Indeed, there are many high-performing

generic visual recognition models available as Web-based
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Figure 1. Data-efficient blackbox knowledge distillation. Given a

blackbox teacher model and a small set of unlabeled images, we

propose to employ mixup [49] and active learning [28] to train a

high-performing student neural network in a data-efficient manner

(b) so that we do not need to re-do the heavy and expensive data

curation used to train the teacher model (a).

APIs, in our smart devices, or even as an obsolete model

built by ourselves some while ago. The challenge is, how-

ever, we often have limited knowledge about their specifics,

e.g., not knowing the exact network architecture or weights.

Moreover, it could be computationally and/or financially

expensive to query the models and read out their outputs

for a large-scale dataset.

To this end, we study how to distill a blackbox teacher

model for visual recognition into a student neural network

in a data-efficient manner. Our objective is three-fold. First

of all, we would like the distilled student network to per-

form well as the teacher model as possible at the inference

time. Besides, we try to minimize the number of queries to

the blackbox teacher model to save costs. Finally, we also

shall use as a small number of examples as possible to save
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data collection efforts. It is hard to collect abundant data for

rare classes or privacy-critical applications.

We propose to blend active learning [44, 28] and image

mixup [49] to tackle the data-efficient knowledge distilla-

tion from a blackbox teacher model. The main idea is to

synthesize a big pool of images from the few training ex-

amples by mixup and then use active learning to select from

the pool the most helpful subset to query the teacher model.

After reading out the teacher model’s outputs, we simply

treat them as the “groundtruth labels” of the query images

and train the student neural network with them.

Image mixup [49, 13, 1] was originally proposed for data

augmentation to improve the generalization performance of

a neural recognition network. It synthesizes a virtual im-

age by a convex combination of two training images. While

the resultant image may become cluttered and semantically

meaningless, it resides near the manifold of the natural im-

ages — unlike white-noise images. Given 1000 images, we

can construct O(105) pairs, each of which can further gen-

erate tens to thousands of virtual images depending on the

coefficients in the convex combination. We conjecture that

the big pool of mixup images provides good coverage of the

manifold of natural images. Hence, we expect that a student

network that imitates the blackbox teacher on the mixup im-

ages can give rise to similar predictions over the test images

as the teacher model does.

Instead of querying the blackbox teacher model by all

the mixup images, we resort to active learning to improve

the querying efficiency. We first acquire the labels of the

small number of original images from the blackbox teacher

model and use them for training the student network. We

then apply the student network to all the mixup images to

identify the subset with which the current student network

is the most uncertain. Notably, if two mixup images are

synthesized from the same pair of original images, we keep

only the one with higher uncertainty. We query labels for

this subset, merge it into the previously labeled data, and

then re-train the student network. We iterate this procedure

of subset selection, querying the blackbox teacher model,

and training the student neural network multiple times until

reaching a stopping criterion.

To the best of our knowledge, we are the first to distill

knowledge from a blackbox teacher model while underscor-

ing the need for data-efficiency and query-efficiency. We

empirically validate our approach by contrasting it to both

vanilla and few/zero-shot knowledge distillation methods.

Experiments show that, despite the blackbox teacher in our

work, our approach performs on par or better than the com-

peting methods that learn from whitebox teachers.

Note that the mixup images are often semantically mean-

ingless, making them almost impossible for human raters to

label. However, the blackbox teacher model returns predic-

tions for them regardless, and the student network still gains

from such fake image-label pairs. In this sense, we say that

the blackbox teacher model is more productive than human

raters in teaching the student network.

2. Related Work

Knowledge Distillation. Knowledge distillation is pro-

posed in [16] to solve model compression problems, thus

relieving the burden of ensemble learning. This work sug-

gests that class probabilities, as “dark knowledge”, are very

useful to retain the performance of original network, and

thus, light-weight substitute model could be trained to distill

this knowledge. This approach is very useful and has been

justified to solve a variety of complex application problems,

such as pose estimation [37, 46, 33], lane detection [17],

real-time streaming [31], object detection [6], video rep-

resentation [41, 10, 11], and so forth. Furthermore, this

approach is able to boost the performance of deep neural

network with improvement on efficiency [35] and accu-

racy [25]. Accordingly, lots of research is conducted to en-

hance its performance from the perspective of training strat-

egy [45, 20], distillation scheme [15, 4], or network proper-

ties [34] , etc.

However, there is an important issue. Traditional knowl-

edge distillation requires lots of original training data which

are very difficult to be obtained. To alleviate this data de-

mand, few-shot knowledge distillation is proposed to retain

teacher model performance with pseudo samplers which are

generated in adversarial manner [21]. Another approach

called data free knowledge distillation leverages extra ac-

tivation records from teacher model to reconstruct original

datasets, thus recovering teacher model [30]. Recently, a

zero-knowledge distillation method is developed by synthe-

sizing data with gradient information of teacher network

[32]. Nevertheless, these approaches require the gradient

information of teacher network, which enables them in-

tractable in the real world.

Blackbox Optimization. Blackbox optimization is devel-

oped based on zero knowledge in the gradient information

of queried models and widely used to solve practical prob-

lems. Recently, this work is widely used in deep learning,

especially model attack. A rich line of blackbox attacking

approaches [3, 18, 36, 2, 29] are explored by accessing the

input-output pairs of classifiers, most of which are focusing

on attacks resulting from accessing the data. [8] instead in-

vestigates that the adversaries are capable of recovering sen-

sitive data by model inversion. However, there is no work

for blackbox knowledge distillation.

Active Learning. Active learning is a learning process by

interaction between oracle and learner agents. This strat-

egy is widely used to solve learning problems which exhibit
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costly data labelling since it could exploit existing data in-

formation to efficiently improve obtained model, thus re-

ducing the number of queries. Lots of effective approaches

are proposed to optimize this process, such as uncertainty-

based [28, 48, 9] and margin-based methods [7, 38]. Form

the review by [12], uncertainty-based methods, despite sim-

ple, are able to obtain good performance.

Mixup. Zhang et al. first proposed mixup to improve the

generalization of deep neural network [49]. Between-Class

learning [42] (BC learning) was proposed for deep sound

recognition, and then, they extended this approach to image

classification [43]. Following them, Pairing Samples [19]

was proposed as a data augmentation approach by taking

an average of two images for each pixel. More recently,

an approach called AutoAugment [5], explores improving

data augmentation policies by automatically searching.

3. Approach

We present our approach to the data-efficient knowledge

distillation from a blackbox teacher model in detail in this

section. Given a blackbox teacher model and a small num-

ber of unlabeled images, the approach iterates over the fol-

lowing three steps: 1) constructing a big candidate pool of

synthesized images from the small number of unlabeled im-

ages, 2) actively choosing a subset from the pool with which

the current student network is the most uncertain, 3) query-

ing the blackbox teacher model to acquire labels for this

subset and to re-train the student network.

3.1. Constructing a Candidate Pool

In real-world applications, data collection could con-

sume a huge amount of time due to various reasons, such

as privacy concerns, rare classes, data quality, etc. Instead

of relying on a big dataset of real images, we begin with

a small number of unlabeled images and use the recently

proposed mixup [49] to augment this initial image pool.

Given two natural images xi and xj , mixup generates

multiple synthetic images by a convex combination of the

two with different coefficients,

x̂ij(λ) = λxi + (1− λ)xj , (1)

where the coefficient λ ∈ [0, 1]. Note that this notation also

includes the original unlabeled data xi and xj when λ = 1
and λ = 0, respectively.

This technique comes handy and effective for our work.

It can exponentially expand the size of the initial image

pool. Suppose we have collected 1000 natural images, and

we generate 10 mixup images for each image pair by vary-

ing the coefficient λ. We then arrive at a pool of about 106

images in total. Besides, this pool of synthetic images also

provides good coverage of the manifold of natural images.

Indeed, this pool can be viewed as a dense sampling of the

convex hull of the natural images we have collected. The

test images likely fall into or close to this convex hull if the

collected images are diverse and representative. Hence, we

expect the student neural network to generalize well to the

inference-time data by enforcing it to imitate the blackbox

teacher model on the mixup images.

3.2. Actively Choosing a Subset to Query the
Teacher Model

Let {x̂ij(λ), λ ∈ [0, 1], i 6= j} denote the augmented

pool of images. It is straightforward to query the teacher

model to obtain the (soft) labels for these synthetic images

and then train the student network with them. However, this

brute-force strategy incurs high computational and financial

costs. Instead, we employ active learning to reduce the cost.

We define the student neural network’s confidence over

an input x as

C1(x) := max
y

PS(y|x), (2)

where PS(y|x) is the probability of the input image x be-

longing to the class y predicted by the current student net-

work. Intuitively, the less confidence the student network

has over the input x, the more the student network can gain

from the teacher model’s label for the input.

Therefore, we could rank all the synthetic images in

the candidate pool according to the student network’s con-

fidences on them, and then choose the top ones as the

query subset. However, this simple strategy results in near-

duplicated images, for example x̂ij(λ = 0.5) and x̂ij(λ =
0.55). We avoid this situation by choosing at most one im-

age from any pair of images.

In particular, instead of ranking the synthetic images, we

rank image pairs in the candidate pool. We define the con-

fidence of the student network over an image pair xi and xj

as the following,

C2(xi, xj) := min
λ

C1(x̂ij(λ)), λ ∈ [0, 1], (3)

which depends on a coefficient λ∗ for the image pair.

Hence, we obtain a confidence score and its corresponding

coefficient for any pair of the original images. The synthetic

image x̂ij(λ
∗) is selected into the query set if the confidence

score C2(xi, xj) is among the lowest k ones. We study the

size of the query set in the experiments.

3.3. Training the Student Network

With the actively selected query set of images, we query

the blackbox teacher model and read out its soft predictions

as the labels for the images. We then merge them with the

previous training set, if there is, to train the student network
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Algorithm 1 Data-efficient blackbox knowledge distillation

INPUT: Pre-trained teacher model MT

INPUT: A small set of unlabeled images X = {xi}
n
i=1

INPUT: Hyper-parameters (learning rate, subset size, etc.)

OUTPUT: Student network MS

1: Query MT and acquire labels Y0 for all images in X

2: Train an initial student network MS
0

with (X,Y0)
3: Construct a synthetic image pool P = {x̂ij(λ)} by us-

ing the unlabeled images X with eq. (1)

4: Initialize Ps
1
= X,Y1 = Y0.

5: for t = 1, 2..., T do

6: Select a subset ∆Ps
t from P with lowest confidence

scores {C2(xi, xj)} returned by student MS
t−1

7: Query MT , acquire labels ∆Yt for all images ∆Ps
t

8: Ps
t ← Ps

t ∪∆Ps
t , Yt ← Yt ∪∆Yt

9: Train a new student network MS
t with (Ps

t ,Yt)
10: Update P ← P - ∆Ps

t

11: end for

using a cross-entropy loss. The soft probabilistic labels re-

turned by the teacher model give rise to slightly better re-

sults than the hard labels, so we shall use the soft labels in

the experiments below.

3.4. Overall Algorithm

Algorithm 1 presents the overall procedure of our ap-

proach to the data-efficient blackbox knowledge distillation.

Beginning with a teacher model MT and a few unlabeled

images X = {x1, x2, ..., xn}, we firstly train an initial stu-

dent network MS
0

with (X,Y0), where Y0 contains the la-

bels for the images in X and is obtained by querying the

teacher model. We then construct a big pool of synthetic

images P with mixup [49] (eq. (1)) to facilitate the active

learning stage. We iterate the following steps until the ac-

curacy of the student network converges. 1) Actively select

a subset ∆Ps
t of the synthetic images P with the lowest

confidence scores, C2(xi, xj), as predicted by the current

student network so that the resulting subset ∆Ps
t contains

hard samples for the current student network MS
t−1

. 2) Ac-

quire labels ∆Yt of the selected subset of synthetic images

∆Ps
t by querying the teacher model. 3) Train a new student

network MS
t with all the labeled images thus far, (Ps

t ,Yt).
Note that, in Line 6 of Algorithm 1, we only keep one syn-

thetic image for any pair (xi, xj) of the original images to

reduce redundancy.

4. Experiments

We design various experiments to test our approach, in-

cluding both comparison experiments with state-of-the-art

knowledge distillation methods and ablation studies. Addi-

tionally, we also challenge our approach when the available

data is out of the distribution of the main task of interest. In

practice, across all experiments, we select λ ∈ {0.3, 0.7}
(with an interval of 0.04) to generate synthetic images to

produce more diverse mixup images.

4.1. Comparison Experiments

Since our main objective is to explore how to train a

high-performing student neural network from a blackbox

teacher model in a data-efficient manner, it is worth com-

paring our approach with existing knowledge distillation

methods although they were developed for other setups.

The comparison can help review how data-efficient our ap-

proach is given the blackbox teacher model.

4.1.1 Experiment Setting

Datasets. We run experiments on MNIST [26], Fashion-

MNIST [47], CIFAR-10 [22], and Places365-Standard [50],

which are popular benchmark datasets for image classifica-

tion. The MNIST dataset contains 60K training images and

10K testing images about ten handwritten digits. The image

resolution is 28×28. Fashion-MNIST is composed of 60K

training and 10K testing fashion product images of the size

28×28. CIFAR-10 consists of 60K (50K training images

and 10K test images) 32×32 RGB images in 10 classes,

with 6K images per class. In addition to evaluating the

proposed approach on the above described low-resolution

images, we also test our approach on Places365-Standard,

which is a challenging dataset for natural scene recogni-

tion. It has 1.8M training images and 18,250 validation im-

ages in 365 classes. We use the resolution of 256×256 for

Places365-Standard in the following experiments.

Evaluation Metric. We mainly use the classification ac-

curacy as the evaluation metric. Additionally, we also

propose a straightforward metric to measure how much

“knowledge” the student network distills from the teacher

model. This metric is computed as the ratio between the

student network’s classification accuracy and the teacher’s

accuracy, and we call it the distillation success rate.

Blackbox Teacher Models. For each task except

Places365-Standard, we prepare a teacher model by

following the training setting provided in [32]. For

Places365-Standard, there is no training setting reference

for the knowledge distillation research yet, so we use a

pre-trained model from the dataset repository [50] as our

teacher model. On MNIST and Fashion-MNIST, we use

the LeNet-5 architecture [27] as the teacher model and

optimize it to achieve 99.29% and 90.80% top-1 accuracies,

respectively. On CIFAR-10, we have an AlexNet [24] as

the teacher model and train it to obtain 83.07% top-

1 accuracy. As shown in Table 1, the above teacher
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Figure 2. Mixup images whose confidence scores (cf. eq. (3)) are the lowest among all candidates in the third iteration. For each mixup

image, we show the top three labels and probabilities returned by the blackbox teacher model.

Figure 3. Different mixup images from the same pair of the original images by varying the mixup coefficient λ. We show the top three

labels and probabilities predicted by the teacher model for each of them. It is interesting to see how the top-1 label changes from Hockey

Arena, to Baseball Field, and to Golf Course.

models are comparable to the teacher models in [32]:

83.03% vs. 83.07% on CIFAR-10, 99.34% vs. 99.29% on

MNIST, and 90.84% vs. 90.87% on Fashion-MNIST. For

Places365-Standard, the teacher model is a ResNet-18 [14]

and yields 53.68% top-1 accuracy.

Competing Methods. We identify three existing relevant

methods for comparison.

• One is zero-shot knowledge distillation (ZSKD) [32],

which distills a student neural network with zero train-

ing example from a whitebox teacher model. It synthe-

sizes data by backpropagating gradients to the input

through the whitebox teacher network.

• The second method is few-shot knowledge distillation

(FSKD) [21], which augments the training images by

generating adversarial examples. It is the most relevant

work to ours, but it depends on the computationally

expensive adversarial examples [40] and has no active

learning scheme to reduce the query cost at all. The

original work assumes a whitebox teacher neural net-

work so that it is straightforward to produce the adver-

sarial examples, whereas there exist blackbox attack

methods [29, 3].

• The third is the vanilla knowledge distillation [16],

which accesses the whole training set of the teacher

model and is somehow an upper bound of our method.

4.1.2 Quantitative Results

Table 1 shows the comparison results. For simplicity, we

run the active learning stage for only one step (i.e., T = 1
in Algorithm 1). Section 4.2 presents the results of running

it for multiple steps.

Accuracy. Our approach significantly outperforms FSKD

over all the datasets. On CIFAR-10, MNIST, and Fashion-

MNIST, ours yields 41%, 18%, and 14% success rate

improvements over FSKD, respectively. On Places365-

Standard, whose images are high-resolution about natural

scenes, we also outperform FSKD by 14% success rate.

Compared to ZSKD, which relies on a whitebox teacher

network, our approach also shows higher accuracies and

success rates except on MNIST. We were not able to re-
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Table 1. Comparison results on Places365-Standard, CIFAR-10, MNIST, and Fashion-MNIST. The “Teacher” column reports the teacher

model’s accuracy on the test sets, “KD Accuracy” is the student network’s test accuracy, “Success” stands for the distillation success rates,

“Black/White” indicates whether or not the teacher model is blackbox, “Queries” lists the numbers of queries into the teacher models, and

“Unlabeled Data” shows the numbers of original training images used in the experiments. (* results reported in the original paper)

Task (Model) Teacher KD Accuracy Success Black/White Queries Unlabeled Data

Places365-Standard (ZSKD) [32] – – – – – 0

Places365-Standard (FSKD [21]) 53.69 38.18 71.11 White 480,000 80,000

Places365-Standard (KD) 53.69 49.01 90.35 Black 1,800,000 1,800,000

Places365-Standard (Ours) 53.69 45.71 85.14 Black 480,000 80,000

CIFAR-10 (ZSKD) [32] 83.03∗ 69.56∗ 83.78 White >2,000,000 0

CIFAR-10 (FSKD [21]) 83.07 40.58 48.85 White 40,000 2,000

CIFAR-10 (KD) 83.07 80.01 96.31 Black 50,000 50,000

CIFAR-10 (Ours) 83.07 74.60 89.87 Black 40,000 2,000

MNIST (ZSKD) [32] 99.34∗ 98.77∗ 99.42 White >1,200,000 0

MNIST (FSKD [21]) 99.29 80.43 81.01 White 24,000 2,000

MNIST (KD) 99.29 99.05 99.76 Black 60,000 60,000

MNIST (Ours) 99.29 98.74 99.45 Black 24,000 2,000

Fashion-MNIST(ZSKD) [32] 90.84∗ 79.62∗ 87.65 White >2,400,000 0

Fashion-MNIST (FSKD [21]) 90.80 68.64 75.60 White 48,000 2,000

Fashion-MNIST (KD) 90.80 87.79 96.69 Black 60,000 60,000

Fashion-MNIST(Ours) 90.80 80.90 89.10 Black 48,000 2,000

produce ZSKD on Places365-Standard because its images

are all high-resolution, making it computationally infeasible

to generate a large number of gradient-based inputs. Simi-

larly, the advantage of ours over ZSKD is larger on CIFAR-

10 than other MNIST or Fashion-MNIST, probably because

the CIFAR-10 images have a higher resolution. In contrast,

the computation cost of our active mixup approach does not

depend on the input resolution. Overall, the results indicate

that active mixup has a higher potential to solve the larger-

scale knowledge distillation in a data-efficient manner.

Queries. Our approach saves orders of queries into the

teacher model compared to ZSKD. For example, we only

query the blackbox teacher model up to 40K times for

CIFAR-10. In contrast, ZSKD requires more than 2M

queries and yet yields lower accuracy than ours. The big

difference is not surprising because the gradient-based in-

puts in ZSKD are less natural than or representative of the

test images than our mixup images. Besides, ZSKD incurs

additional queries into the whitebox teacher model every

time it produces an input.

4.1.3 Qualitative Intermediate Results

We show some mixup images in Figures 2 and 3. These

images are selected from the candidate pool constructed us-

ing the natural images in the Places365-Standard training

set. Figure 2 shows some mixup images with low con-

fidence scores. They can potentially benefit the student

network more than the other candidate images if we use

them to query the teacher model. Figure 3 demonstrates

some mixup images synthesized from the same pair of nat-

ural images by varying the mixup coefficient λ. It is in-

teresting to see that the mix of “Hockey Arena” and “Golf

Course” leads to a “Baseball Field” at λ = 0.46 predicted

by the blackbox teacher model. This indicates that our ac-

tive mixup approach can effectively augment the originally

small training set by not only bringing in new synthetic im-

ages but also comprehensive coverage of classes.

4.2. Ablation Study

We select CIFAR-10 and Places365-Standard to study

our approach in detail since they represent the small-scale

and large-scale settings, respectively. For CIFAR-10, we

switch to VGG-16 [39] as the blackbox teacher model,

which gives rise to 93.31% top-1 accuracy.

4.2.1 Data-Efficiency and Query-Efficiency

We investigate how the results of our active mixup approach

change as we vary the total number of unlabeled real im-

ages (data-efficiency) and the number of synthetic images

selected by the active learning scheme (query-efficiency).

Here we run only one step of the active learning stage

(T = 1 in Algorithm 1) to save computation cost. Ta-

bles 2 and 3 show the results on CIFAR-10 and Places365-

Standard, respectively. Each entry in the tables is a clas-

sification accuracy on the test set, and it is obtained by a
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student network which we distill by using the correspond-

ing number of unlabeled real images (Real images) and the

number of selected synthetic images (Selected Syn.).

Table 2. Classification accuracy on CIFAR-10 with different num-

bers of real images and selected synthetic images.

Selected Syn.

Real images
0.5K 1K 2K 4K 8K 16K

0 44.72 56.87 68.09 76.59 83.61 86.89

5K 66.97 71.67 77.76 81.76 85.76 87.05

10K 73.60 77.27 81.27 83.27 86.56 88.79

20K 77.44 81.18 84.19 86.29 88.07 89.01

40K 82.28 84.25 86.06 87.71 89.00 90.49

80K 85.18 86.53 87.89 88.71 89.61 90.96

160K 86.56 88.94 89.42 90.26 90.87 91.51

Table 3. Classification accuracy on Places365-Standard with dif-

ferent numbers of real images and selected synthetic images.

Selected Syn.

Real images
20K 40K 80K

100K 40.72 41.95 43.52

200K 41.15 42.86 44.77

400K 41.94 43.42 45.71

We can see that the more synthetic images we select by

their confidence scores (cf. eq. (3)), the higher-quality the

distilled student network is. It indicates that the mixup im-

ages can effectively boost the performance of our method.

Meanwhile, the higher the number of unlabeled real im-

ages we have, the higher the distillation success rate we can

achieve. What’s more interesting is that, when the number

of synthetic images is high (e.g., 160K), the gain is dimin-

ishing as we increase the number of real images. Hence,

depending on the application scenarios, we have the flexi-

bility to trade-off the real images and synthetic images for

achieving a certain distillation success rate.

We can take a closer look at Tables 2 and 3 to obtain

an understanding about the “market values” of the selected

synthetic images. In Table 2, 10K selected synthetic im-

ages and 8K unlabeled real images yield 86.56% accuracy;

20K synthetic images and 4K real images lead to 86.29%
accuracy; and 40K synthetic images with 2K real examples

give rise to 86.06% accuracy. The accuracies are about the

same. There is a similar trend along the off-diagonal entries

in Table 3, implying that if we reduce the number of real

images by half, we can complement it by doubling the size

of synthetic images to maintain about the same distillation

success rate.

4.2.2 Active Mixup vs. Random Search

We design another experiment to compare active mixup

with the random search to understand the effectiveness of

our active learning scheme. We keep 500 real images for

CIFAR-10 and 20K for Places365-Standard. We then use

them to construct 100K and 300K synthetic images, respec-

tively. For a fair comparison, we let random search and ac-

tive mixup share the same sets of natural images. Since our

active learning scheme avoids selecting redundant images

by using the improved confidence score in eq. (3), we also

equip the random search such capability by using a single

mixup coefficient of λ = 0.5 to construct the synthetic im-

ages. This guarantees that, like our approach, no two syn-

thetic images selected by the random search are from the

same pair of real images.

Figure 4. Test accuracy of student networks vs. number of

queries into the blackbox teacher model on CIFAR-10 (left) and

Places365-Standard (right). We use 500 and 20K natural images

for the two datasets, respectively. The plot for CIFAR-10 starts

from first active learning stage (t = 1 in Algorithm 1) and the one

for Places365 starts from the initial student network training by

natural images. The initial student network for CIFAR-10 trained

by using natural images only yields 43.67% accuracy.

Figure 4 shows the comparison results of our active

mixup and the random search. On CIFAR-10, we select

10K synthetic images every time and run the active learning

stage for 10 steps (T = 10 in Algorithm 1). On Places365-

Standard, we run it for six steps and choose 50K synthetic

images per step. We can see that active mixup signifi-

cantly outperforms random search over the whole course

of knowledge distillation, verifying its effectiveness on im-

proving the query-efficiency. More concretely, 80K actively

selected synthetic images yield 86.76% accuracy, which is

about the same as what 160K randomly selected synthetic

images can achieve on CIFAR-10. Similarly, 40K synthetic

images by active mixup lead to 84.2% accuracy, on par with

the 85.18% accuracy by 80K randomly chosen synthetic

images.

4.2.3 Active Mixup vs. Vanilla Active Learning

Our active learning scheme (eq. (3)) improves upon the

vanilla score-based active learning (eq. (2)) by selecting

only one synthetic image at most from any pair of real im-

ages. This change is necessary because two nearly dupli-
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cated synthetic images could both have very low scores ac-

cording to eq. (2).

To quantitatively compare the two active learning meth-

ods, we run another experiment by replacing our active

learning scheme with the vanilla version. The candidate

pool is the same as ours, i.e., mixup images generated by

varying λ ∈ {0.3, 0.7} with an interval of 0.04. Fig-

ure 4 shows the results on both CIFAR-10 and Place365-

Standard.

Generally, the vanilla active learning yields lower accu-

racy than our active mixup and the random search. This

shows that the vanilla score-based active learning even fails

to improve upon random search because it selects nearly

duplicated synthetic images to query the teacher model. In

contrast, our active mixup consistently performs the better

than the vanilla active learning and random search. The

prominent gap justifies that the constraint by C2 in eq. (3)

is crucial in our approach.

4.3. Active Mixup with Out­of­Domain Data for
Blackbox Knowledge Distillation

In real-world applications, it may be hard to collect real

training images for some tasks, e.g., due to privacy con-

cerns. Under such scenarios, we have to use out-of-domain

data to distill the student neural network. Hence, we further

challenge our approach by revealing some images that are

out of the domain of the training images of the blackbox

teacher model.

We conduct this experiment on CIFAR-10 by providing

our approach some training images in CIFAR-100 [23]. To

reduce information leak, we exclude the images that belong

to the CIFAR-10 classes and keep 2K images to construct

the candidate pool. Equipped with these synthetic images,

we run active mixup to distill student neural networks from

a blackbox teacher model for CIFAR-10. The teacher model

is VGG-16, which yields 93.31% accuracy on the CIFAR-

10 test set.

Table 4. CIFAR-10 classification accuracy by the student neural

networks which are distilled by using out-of-domain data.

Selected Syn. 10K 20K 40K 80K

Accuracy (%) 64.10 71.39 77.89 83.03

Table 4 shows the results of different numbers of selected

synthetic images. We still run only one iteration of the ac-

tive learning to save computation costs. The best distilla-

tion performance is 83% top-1 accuracy and success rate

is 88.9%. Comparing the result to Table 2, especially the

entry (87.89%) of 80K selected synthetic images and 2K

real images, we can see that our approach leads to about the

same performance by using the out-of-domain data as the

in-domain data.

Table 5. CIFAR-10 classification accuracy by the student neural

networks which are distilled by using out-of-domain data. We set

the number of selected synthetic images to 40K and vary the num-

bers of real images.

Real images 500 1000 1500 2000

Accuracy (%) 70.21 74.60 75.54 77.89

To better understand how different factors influence the

distillation performance, we also decouple the number of

available real images from the number of selected synthetic

images in Table 5. We fix the number of selected synthetic

images to 40K and vary the numbers of real images. Not

surprisingly, the more real images there are, the higher dis-

tillation accuracy the active mixup achieves. Furthermore,

the number of synthetic images still plays a prominent role

in distillation accuracy, according to Table 4. Without

the original training data, mixup augmentation is probably

more critical to enhancing the distillation performance than

otherwise.

5. Discussion and Conclusion

In this paper, we formalize a novel problem, knowl-

edge distillation from a blackbox teacher model in a data-

efficient manner, which we think is more realistic than pre-

vious knowledge distillation setups. There are two key chal-

lenges to this problem. One is that the available examples

are insufficient to represent the vast variation in the origi-

nal training set of the teacher model. The other is that the

blackbox teacher model often implies that it is financially

and computationally expensive to query.

To deal with the two challenges, we propose an approach

combining mixup and active learning. Although neither

of them is new by itself, combining them is probably the

most organic solution to our problem setup for the follow-

ing reasons. First of all, we would like to augment the few

available examples. Unlike conventional data augmenta-

tions (e.g., cropping, adding noise), which only probe the

regions around the available examples, mixup provides a

continuous interpolation between any pairwise examples.

As a result, mixup allows the student model to probe diverse

regions of the input space. We then employ active learning

to reduce the query transactions to the teacher model. Ex-

tensive experiments verify the effectiveness of our approach

to the data-efficient blackbox knowledge distillation.
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