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Fig. 1. Solving an interpolation problem on an airplane. Using the Laplacian energy with zero Neumann boundary conditions (left) distorts the result near the
windows and the cockpit of the plane: the isolines bend so they can be perpendicular to the boundary. The planar Hessian energy of Stein et al. [2018] (center)
is unaffected by the holes, but does not account for curvature correctly, leading to unnatural spacing of isolines at the front and back of the fuselage. Our
Hessian energy (right) produces a natural-looking result with more regularly spread isolines, unaffected by the boundary.

Current quadratic smoothness energies for curved surfaces either exhibit

distortions near the boundary due to zero Neumann boundary conditions,

or they do not correctly account for intrinsic curvature, which leads to

unnatural-looking behavior away from the boundary. This leads to an un-

fortunate trade-off: one can either have natural behavior in the interior,

or a distortion-free result at the boundary, but not both. We introduce a

generalized Hessian energy for curved surfaces, expressed in terms of the co-

variant one-form Dirichlet energy, the Gaussian curvature, and the exterior

derivative. Energy minimizers solve the Laplace-Beltrami biharmonic equa-

tion, correctly accounting for intrinsic curvature, leading to natural-looking

isolines. On the boundary, minimizers are as-linear-as-possible, which re-

duces the distortion of isolines at the boundary. We discretize the covariant

one-form Dirichlet energy using Crouzeix-Raviart finite elements, arriving

at a discrete formulation of the Hessian energy for applications on curved

surfaces. We observe convergence of the discretization in our experiments.

CCS Concepts: •Mathematics of computing→ Discretization; Partial
differential equations; Numerical differentiation; • Computing method-
ologies → Mesh geometry models;

Additional KeyWords and Phrases: geometry, biharmonic, laplacian, hessian,

curvature, interpolation, smoothing

1 INTRODUCTION
Smoothness energies are used as objective functions for optimiza-

tion in geometry processing. A wide variety of applications exists:

smoothness energies can be used to smooth data on surfaces, to

denoise data, for scattered data interpolation, character animation,

and much more. We are interested in quadratic smoothness energies

formulated on triangle meshes.

It is desirable for a smoothing energy to have minimizers with

isolines whose spacing does not vary much across the surface—the

gradient of the function is sufficiently constant. When the gradient

of the function is sufficiently constant, the function only changes

very gradually, resulting in a smooth function. In the same vein,

a good smoothing energy should have minimizers whose isolines

are not distorted anywhere: their spacing is not influenced (on the

interior) by the surface’s curvature, and they are not biased by the

boundary of the surface—they behave locally as if the boundary

were absent. Such behavior is relevant for applications where the

boundary is not directly related to the actual problem that is be-

ing solved, e.g., when the boundary is an artificial result of faulty

surface reconstruction resulting in a shape with many extraneous

holes. One class of energies with the desired behavior in the interior

are energies whose minimizers solve the biharmonic equation, the

prototypical elliptic equation of order four. [Gazzola et al. 2010, viii].

Such energies are pertinent as smoothness energies in computer

graphics applications [Jacobson et al. 2010].

One such energy is the squared Laplacian energy—the squared
Laplacian of a function integrated over the surface. We henceforth
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1:2 • Stein et al.

refer to the energy as simply the Laplacian energy. Its minimizers

solve the biharmonic equation; as a result, they are very smooth,

and their isolines behave well on curved surfaces, if the surfaces are

closed. The energy’s most popular discretization, however, comes

with zero Neumann boundary conditions. Thus, if a surface has

boundaries, the minimizers are distorted near the boundary (see

Figure 1), since at the boundary they are as-constant-as-possible.
The issue of boundary distortion is addressed by the Hessian

energy of Stein et al. [2018]. For planar domains, they provide an

energy whose minimizers solve the biharmonic equation and are as-
linear-as-possible at the boundary. These boundary conditions lead

to decreased distortion. The Hessian energy of Stein et al. [2018],

however, is only defined for subsets of the plane R2. Stein et al.

[2018] offer a way to compute an energy for curved surfaces, but,

as they point out, their approach does not account for the curvature

of the surface correctly. The approach of Stein et al. [2018] does

not solve the biharmonic equation on curved surfaces; this leads to

global distortions in the isolines of the solution (see Figure 1).

Contributions
(1) Generalized Hessian energy. We generalize the Hessian energy

to accommodate curved surfaces. Our new Hessian energy is

E(u) B 1

2

∫
Ω
(∇du) : (∇du) + κ |du |2 dx , (1)

where ∇ is the covariant derivative of differential forms, d is the ex-

terior derivative, κ is the Gaussian curvature, and : denotes the

contraction of two operators in all indices that corresponds to

A : B = tr(A⊺B) (where the transpose
⊺
takes the metric into

account). This energy

• corresponds to the Laplacian energy in the case of a domain

without boundaries;

• corresponds to the Hessian energy of Stein et al. [2018]

for surfaces in R2, 1

2

∫
Ω
∥Hu ∥

2

F dx , where Hu is the 2 × 2

Hessian matrix of u, and ∥A∥F is the Frobenius norm of A;
• has the as-linear-as-possible natural boundary conditions of

the Hessian energy of Stein et al. [2018] for flat domains in

R2. These boundary conditions lead to decreased distortion
at the boundary.

Figure 1 shows how our Hessian energy manages to achieve the

best of both worlds.

(2) Discretization. We also introduce a discretization of this curved

Hessian energy that uses Crouzeix-Raviart finite elements “under

the hood”, but, after the energy matrix has been assembled, relies

solely on piecewise linear hat functions. We observe convergence of

the discretization for a wide variety of numerical experiments, given

certain regularity conditions, and apply it to various smoothing and

interpolation problems.

2 RELATED WORK
This work extends Stein et al. [2018]. They introduce a smoothness

energy with higher-order boundary conditions whose minimizers

are biased less by the shape of the boundary than energies using

low-order boundary conditions such as zero Neumann. Our goal is

to extend their approach to curved surfaces. Section 5.3.1 mentions

that their work does not correctly account for curved surfaces, and

this shortcoming is addressed in this work.

2.1 Smoothing energies
Smoothing energies are used for many applications in computer

graphics, image processing, machine learning, and more. Quadratic

smoothing energies are particularly interesting, since they are easy

to work with and fast to optimize [Nocedal and Wright 2006]. The

Laplacian energy is used for surface fairing and surface editing

[Botsch and Kobbelt 2004; Crane et al. 2013a; Desbrun et al. 1999;

Sorkine et al. 2004], for geodesic distance computation [Lipman et al.

2010], for creating weight functions used as coordinates in character

animation [Jacobson et al. 2011; Weber et al. 2012], data smoothing

[Weinkauf et al. 2010], image processing [Georgiev 2004], and other

applications [Jacobson et al. 2010; Sýkora et al. 2014].

Geometric energies that share some of the properties of our Hes-

sian energy have been studied in the past: in image processing,

Hessian-like energies are popular for their boundary behavior, but

their formulations in general do not extend to curved surfaces [Di-

das et al. 2009; Lefkimmiatis et al. 2011; Lysaker et al. 2003]. Similar

energies are also used for data processing and machine learning,

but are not discretized for polyhedral meshes there [Donoho and

Grimes 2003; Kim et al. 2009]. Wang et al. [2015, 2017] explicitly

enforce boundary conditions on a discrete quadratic fourth-order
energy in order to make minimizers of the energy less dependent

on the boundary shape, but do not discuss any continuous model

corresponding to their method or which equations their minimizers

satisfy.

Stein et al. [2018] present a Hessian energy for triangle meshes,

however, minimizers of their discretization extended to R3 do not

fulfill the biharmonic equation, leading to artifacts that are discussed

in detail in Section 7. Liu et al. [2015] explicitly enforce higher-order

boundary conditions on a smoothness energy based on a fourth-

order PDE. Their energy, however, is in general not quadratic, and

the boundary conditions are different than the ones presented in

this article, as they are missing the as-linear-as-possible property.

A special case of a quadratic smoothness energy is the Dirichlet

energy, which solves the harmonic equation −∆u = 0, a simpler

version of our biharmonic equation ∆2u = 0. The Dirichlet energy

can be used, for example, to create smooth character deformations

[Baran and Popovic 2007; Joshi et al. 2007; Weber et al. 2007], and

for image processing [Levin et al. 2004]. While the Dirichlet energy

has advantages, such as a discrete maximum principle, which is

preserved in some discretizations [Wardetzky et al. 2007], there

are disadvantages due to the energy being first-order: because of

reduced freedom around constraints, minimizers fail to be smooth,

which can lead to artifacts when applied to shape deformation

[Jacobson et al. 2011, Fig. 9], or worse results in image processing

[Peter et al. 2016]. Higher-order smoothness energies, such as the

ones derived from the biharmonic equation, are better at fitting

to existing data, and tend to distort results less [Georgiev 2004;

Jacobson et al. 2011, 2012; Weber et al. 2012]. Additionally, the

Dirichlet energy does not admit higher-order boundary conditions
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(unlike biharmonic energies), which makes it more difficult to use

as a smoothing energy without boundary bias.

2.2 Generalizing the Hessian energy to curved surfaces
A main theme in our work is the difficulty of generalizing expres-

sions formulated on flat domains to curved surfaces. The presence

of curvature will result in an additional term in the definition of our

energy, which is absent in the planar Hessian energy of Stein et al.

[2018]. This mirrors many other areas of geometry where, with the

introduction of curvature, properties of flat domains cease to apply.

One such example of curvature making calculations more elab-

orate is parallel transport. While parallel transport of vectors is

trivial on flat surfaces, this is no longer true for curved surfaces. In

the presence of curvature, the parallel transport of a vector along a

closed curve might result in a different vector than the initial one

[Petersen 2006, pp. 156-157]. The difficulties that this phenomenon

introduces to applications are discussed, for example, by Bergou et al.

[2008]; Crane et al. [2010]; Polthier and Schmies [1998]; Ray et al.

[2009]. Our discretization method simplifies the treatment of paral-

lel transport by employing linear finite element basis functions that

are only supported on two adjacent triangles. since this necessitates

discontinuous basis functions, this approach is less common.

Another instance of difficulties arising from the curved setting

occurs in the numerical analysis of finite element methods. In order

to apply standard finite element methods to curved surfaces, the

discretization has to account for the curvature of the surface. For the

case of the Poisson equation, for example, this can be either achieved

by inscribing all the vertices on the limit surface while imposing

triangle regularity conditions [Dziuk 1988], or by demanding a

certain kind of convergence of the vertices as well as the normals of

the mesh [Hildebrandt et al. 2006; Wardetzky 2006] together with

specific triangle regularity conditions. Similarly, in some of our

own numerical experiments, we require vertex inscription and the

triangle regularity condition to achieve convergence.

2.3 Discretization of the vector Dirichlet energy
An important part of the discretization of our curved Hessian energy

is the discretization of the vector Dirichlet energy 1

2

∫
Ω
∇v : ∇v dx ,

where ∇ is the covariant derivative. The problem of discretizing the

covariant derivative for surfaces in general, and the vector Dirichlet

energy on surfaces in particular, are active areas of research. Knöp-

pel et al. [2013] provide a finite element discretization of the vector

Dirichlet energy that places the degrees of freedom on mesh ver-

tices. This discretization is used to design direction fields. A different

discretization, reminiscent of finite differences, can be found in the

work of Knöppel et al. [2015], where it is used to compute stripe

patterns on surfaces. The same discretization is also used by Sharp

et al. [2018] to compute the parallel transport of vectors. The work

of Sharp et al. [2018] also features the Weitzenböck identity that

we use to derive the natural boundary conditions of our Hessian

energy: they use it to construct a Dirichlet energy on the covector

bundle. Liu et al. [2016] discretize the covariant derivative using the

notion of discrete connections. They use it to improve the quality

of the vector fields produced by Knöppel et al. [2013], and provide

some evidence of convergence. Other examples of discretizations of

the covariant derivative include Azencot et al. [2015], who compute

the directional derivatives of each of the vector field’s component

functions, and Corman and Ovsjanikov [2019], who leverage a func-

tional representation to compute covariant derivatives.

To simplify computation, we propose an alternative discretiza-

tion of the vector Dirichlet energy. We use the scalar Crouzeix-

Raviart finite element, the “simplest nonconforming element for

the discretization of second order elliptic boundary-value problems”

[Braess 2007, p. 109]. It was first introduced by Crouzeix and Raviart

[1973] and has become a very popular finite element for the noncon-

forming discontinuous Galerkin method. It is known to converge

for the scalar Poisson equation in R2. Unlike the discretizations

mentioned above, the degrees of freedom are placed on the mesh

edges. The Crouzeix-Raviart finite element has been popular in

computer graphics applications such as the works of Bergou et al.

[2006]; Brandt et al. [2018]; English and Bridson [2008]; Vaxman

et al. [2016, Section 4.2].

Crouzeix-Raviart elements are simpler than the finite elements

of Knöppel et al. [2013], but they come at a cost: the basis functions

are discontinuous, and the method cannot be used for applications

where the vectors have to live on vertices. In our application, the

vector-valued functions are only intermediates, so we have more

freedom in choosing their discretization, and to put vectors on edges.

The discretization of one-forms using the Crouzeix-Raviart finite

element presented in this work is closely related to other general-

izations of the Crouzeix-Raviart element to vector- and differential-

form-like quantities such as those present in the work of Wardetzky

[2006], and those discussed in the survey of [Brenner 2015].

3 SMOOTHNESS ENERGIES
A classical smoothness energy for a surface Ω ⊆ R3 is the Laplacian
energy with zero Neumann boundary conditions. When using this

method, one solves the optimization problem

argmin

u

1

2

∫
Ω
|∆u |2 dx

∂u

∂n
|∂Ω = 0︸                                   ︷︷                                   ︸

E∆2 (u)

,

(2)

where ∆ is the Laplace-Beltrami operator, and
∂u
∂n |∂Ω is the normal

derivative at the boundary.
∂u
∂n |∂Ω = 0 is the zero Neumann bound-

ary condition. In practice, when minimizing this energy by directly

discretizing it and then optimizing the resulting quadratic form, the

boundary conditions manifest as an implicit penalty on the gradient

of the function at the boundary during optimization. We will refer

to the whole optimization problem with zero Neumann boundary

conditions by E∆2 . Minimizers of the Laplacian energy solve the

biharmonic equation ∆2u = 0. This leads to natural-looking, smooth

results on the interior.
1
The energy is easy to discretize even for

meshes that are non-planar using methods such as the mixed finite

element method (FEM) [Jacobson et al. 2010]. Using this method,

the zero Neumann boundary condition does not need to be imposed

1
Of course, simply minimizing (2) results in the zero function. However, when combined

with additional Dirichlet boundary conditions, this gives a nontrivial result for the

biharmonic equation ∆2u = 0, and, when combined with the additional energy term∫
Ω
uf dx it gives a result for the biharmonic Poisson-type equation ∆2u = f .
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on top of the discretization, it is simply “baked in” by squaring

the classical cotan Laplacian. The cotan Laplacian is also known as

the Lagrangian linear FEM for the Poisson equation (it goes back

to Duffin [1959] and MacNeal [1949], and its convergence for the

Poisson equation was shown by Dziuk [1988]).

The minimizers of E∆2 , however, are biased by the shape of the

boundary. Their isolines are significantly distorted near the domain

boundary: they are perpendicular to it as they have to fulfill the zero

Neumann boundary conditions (as-constant-as-possible). Simply re-

moving the zero Neumann boundary conditions, andminimizing the

Laplacian energy without any boundary conditions is not a good al-

ternative. Minimizations without explicit boundary conditions lead

to natural boundary conditions. The natural boundary conditions

of the Laplacian energy are too permissive [Stein et al. 2018, Fig. 3].

This behavior is one of the motivations for the Hessian energy of

Stein et al. [2018]. It is formulated as the following minimization

problem. For a surface U ⊆ R2,

argmin

u

1

2

∫
U
Hu : Hu dx︸                ︷︷                ︸
E
H2

(u)

(3)

where Hu is the 2 × 2 Hessian matrix of u, and A : B = tr (A⊺B).
Minimizers of this energy solve the biharmonic equation in R2. Its
natural boundary conditions lead to as-linear-as-possible behavior
on the boundary. This makes minimizers less biased than the zero

Neumann boundary condition.

Stein et al. [2018] demonstrate the benefits of the natural bound-

ary conditions of the Hessian energy with applications for curved

surfaces in R3 as well. Their discretization of the planar Hessian

energy for curved surfaces is achieved by extending every operator

involved in the R2 discretization to three dimensions. This approach

(the discretization, as well as the smooth formulation) does not ac-

count for the curvature of surfaces correctly, and its minimizers

do not solve the biharmonic equation on curved surfaces [Stein

et al. 2018, Section 5.3.1]. We refer to this generalization as the

planar Hessian energy E
H
2 when talking about it in the context of

curved surfaces. This planar Hessian energy is suitable for some

applications, but leads to global deviations from the natural-looking

isolines produced by E∆2 (u) (see Figure 1) or an implementation of

the Hessian energy which does account for curvature (see Figure 2)

in others.

4 WARM-UP: THE DIRICHLET ENERGY ON CURVED
SURFACES

As a warm-up, we consider the simple and well-known Dirichlet

energy: it is easy to generalize to curved surfaces. We will perform

the calculation for this generalization here. The calculation is well-

known, and this didactic exercise will inform our generalization of

the planar Hessian energy to curved surfaces later.

4.1 From the energy to the PDE

Let Hk
denote the Sobolev space of real-valued functions with k

weak derivatives in L2. The Dirichlet energy for domainsU ⊆ R2 is

Stein et al.
[2018]

our Hessian
energy

input

step function

step function

Fig. 2. Smoothing a step function (left) on a surface using the method of
Stein et al. [2018] (middle) does not correctly account for the curvature of
the surface, leading to crooked isolines. Our curved Hessian energy E (right)
correctly accounts for curvature and does not suffer from such problems.

defined, for u ∈ H2(U ), as2

E∇2 (u) := 1

2

∫
Ω
∇u · ∇u dx , (4)

where ∇ is the vector of partial derivatives of u, ∇u =
(
∂xu ∂yu

)⊺
,

the normal two-dimensional gradient in R2.
Minimizers of the Dirichlet energy solve the Laplace equation

[Evans 2010]. Indeed, consider the variation

u → u + hv u,v ∈ H2(U ) (5)

for some h > 0. Since our functions are in the Sobolev function

space H2
, we can differentiate them at least twice. Plugging the

variation into E∇2 (u), differentiating with respect to h, and then

setting h = 0, we can see that a minimizeru must fulfill the equation∫
U
(∂iu) (∂iv) dx = 0 ∀v ∈ H2(U ) ,

where ∂∗ is a partial derivative, and summation over repeated indices

is implied. This is a standard technique of variational calculus. Using

integration by parts (where n is the boundary normal)

0 =

∫
U
(∂iu) (∂iv) dx

=

∫
∂U

(∂iu)v ni dx −
∫
U
(∂i∂iu)v dx .

(6)

Here a boundary term appeared as a result of integration by parts.

The second term of the second line corresponds to the standard

two-dimensional planar Laplacian ∆ = ∇ · ∇, and so we conclude

2
We choose to formulate this energy for u ∈ H 2(U ), although it is well-defined for

u ∈ H 1(U ), since we will continue our calculations with the same u right away, and

we will need additional smoothness.
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that minimizers of the energy E∇2 (u) fulfill the two-dimensional pla-

nar Laplace equation −∆u = 0. The additional boundary term, the

first term of the second line in (6), determines the natural boundary
conditions of the Dirichlet energy. They are called natural boundary

conditions because they naturally emerge from solving the vari-

ational problem over the set of all functions, without explicitly

enforcing additional boundary conditions. In this case we can see

that the natural boundary conditions are zero-Neumann boundary

conditions:

∂iu ni = ∇u · n = 0 on ∂U . (7)

4.2 From the PDE to a new energy
We now generalize the Dirichlet energy to curved surfaces. This

means we are looking for an energy whose minimizers solve a

curved version of the Laplace equation, and fulfill a curved version

of the natural boundary conditions (7). While we were able to write

the calculations in terms of coordinates in the flat setting, this is

much harder to do in the curved setting. This is why we perform

calculations in the curved setting in a coordinate-free fashion.

The curved analog of the planar Laplace equation is ∆u = 0,

where ∆ is the Laplace-Beltrami operator [Jost 2011, Chapter 3].

It holds for a function u ∈ H2(Ω) (where Ω is a compact surface

immersed in R3.) that

∆u = δdu , (8)

where d is the exterior derivative and δ is the codifferential, the

(formal) dual of the exterior derivative under integration by parts.

For planar surfaces, the Laplace-Beltrami operator ∆ corresponds

to −∆.
We start with an integral formulation of the Laplace equation,

and then use integration by parts. For all v ∈ H2(Ω) it must hold

that

0 =

∫
Ω
(∆u)v dx =

∫
Ω
(δdu)v dx

= −
∫
∂Ω

⟨du,n⟩ v dx +

∫
Ω
(du) · (dv) dx ,

where the natural (metric-independent) pairing of one-forms and

vectors is indicated using the angle bracket, and · is the dot product
of one-forms.

Using the definition of the gradient∇ on curved surfaces,∇u ·w B
⟨du,w⟩ for a vector w (where · is the dot product of vectors and the
angle bracket ⟨·, ·⟩ denotes the pairing of a one-form with a vector)

[Jost 2011, (3.1.16)], we can write

0 = −
∫
∂Ω

∇u · n v dx +

∫
Ω
∇u · ∇v dx . (9)

Walking back through the variation from (5), this now motivates

the definition of a curved Dirichlet energy

E∇2 (u) B 1

2

∫
Ω
∇u · ∇u dx . (10)

We have shown that minimizers of this energy solve the curved

Laplace equation, and by the boundary term in (9) it is also clear

that minimizers fulfill a curved zero Neumann boundary condition:

∇u · n = 0 on ∂U . (11)

Thus we have successfully generalized the Dirichlet energy to

curved surfaces. Even though we went through the work of using

differential geometric operators, we ended up with something quite

similar to what we started with, but with ∇ replaced by ∇. For more

complicated energies this will no longer be the case.

5 THE HESSIAN ENERGY ON CURVED SURFACES
We now seek to derive a smooth Hessian energy on surfaces that

generalizes the Hessian energy in R2, while ensuring that minimiz-

ers of the energy solve the biharmonic equation. This will follow

the approach we used in Section 4 to generalize the planar Dirichlet

energy to curved surfaces.

5.1 From the energy to the PDE
For the planar Hessian energy E

H
2 it is a straightforward calculation

to prove that minimizers fulfill the biharmonic equation. This cal-

culation is mentioned, for example, in Stein et al. [2018, Section 4],

and we will repeat it here for convenience. Our setting is a compact

planar domain U ⊆ R2. The linear equation fulfilled by minimizers

of (3) derived with standard variational calculus is: find u ∈ H4(U )
such that ∫

U
(∂i∂ju)(∂i∂jv) dx = 0 ∀v ∈ H4(U ) , (12)

where, as before, ∂∗ is a partial derivative, and summation over

repeated indices is implied. Using integration by parts (where n is

the boundary normal) we know that

0 =

∫
U
(∂i∂ju)(∂i∂jv) dx

=

∫
∂U

(∂i∂ju)(∂jv)ni dx −
∫
U
(∂i∂i∂ju)(∂jv) dx

=

∫
∂U

(∂i∂ju)(∂jv)ni − (∂i∂i∂ju)vnj dx

+

∫
U
(∂j∂i∂i∂ju)v dx .

(13)

Since all partial derivatives commute in the plane, in the very

last term we can write ∂j∂i∂i∂ju = ∂i∂i∂j∂ju = ∆
2

u. As a result,
we can conclude that minimizers of the Hessian energy satisfy the

biharmonic equation with some additional boundary terms. This

commutation will not be that easy for curved surfaces.

After some rearranging, these boundary terms can be seen to

imply the natural boundary conditions

n⊺Hun = 0 on ∂U

∇∆u · n + ∇
(
t⊺Hun

)
· t = 0 on ∂U ,

(14)

where n is the normal vector at the boundary, and t is the tangential
vector of the (oriented) boundary. A derivation of (14) can be found

in the work of Stein et al. [2018, Section 4.3].

A naive approach to a Hessian energy for curved surfaces.
Since our goal is to generalize the Hessian energy for surfaces, it

seems natural to simply replace the planar Hessian Hu with an

analog for curved surfaces, and minimize this generalization of
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reference solution solution with
curvature term

solution without
curvature term

Fig. 3. We solve the Poisson-like problem ∆2u = f using the Hessian energy
with (right, E) and without (center, EH2 ) curvature term. The solution for
E∆2 is provided as a reference solution (left). We see that the solution for
E corresponds to the reference solution, since its minimizers solve the
biharmonic equation, while the solution for EH2 does not.

the Hessian energy. Unfortunately, this will not work: the resulting

minimizers of such an energy will not solve the biharmonic equation.

Consider a compact surface Ω immersed in R3. We define the

Hessian of a function on a curved surface [Lee 1997, p. 54]

Hu := ∇du , (15)

where ∇ applied to one-forms is the covariant derivative of differen-

tial forms and d is the exterior derivative. It might seem reasonable

to define a generalized Hessian energy as

EH2 (u) := 1

2

∫
Ω
Hu : Hu dx , (16)

where : now denotes the contraction of all indices. The associated

variational equation at a stationary point is∫
Ω
(∇du) : (∇dv) dx = 0 ∀v ∈ H4(Ω).

We can already see that we will not be able to repeat our approach

from (13): there is no way to easily commute ∇ and d, as it was

possible in the flat setting with coordinate-wise calculation, and

thus we can’t perform the same simple calculation to show that

minimizers of EH2 solve the biharmonic equation.

5.2 From the PDE to a new energy
Instead, echoing Section 4.2, we derive an energy whose minimizers

fulfill the boundary conditions (14) and also solve the biharmonic

equation. We start with the integrated biharmonic equation using

the Hodge Laplacian operator ∆ = dδ + δd for forms on surfaces,

which degenerates to the Laplace-Beltrami operator δd for zero-

forms (scalar functions), and which corresponds to the standard

Laplacian for functions in the plane. It holds that

0 =

∫
Ω
(∆∆u)v dx =

∫
Ω
(δdδdu)v dx

= −
∫
∂Ω

⟨dδdu,n⟩ v dx +

∫
Ω
(dδdu) · (dv) dx ,

(17)

where n is the boundary normal vector, and we used the fact that

the exterior derivative d is dual to the codifferential δ .

Now we utilize the Weitzenböck identity. It relates the Hodge-

Laplacian ∆ = dδ + δd and the Bochner Laplacian ∆B = ∇∗∇,
where ∇∗

is the (formal) dual covariant derivative. The formal dual

is defined via integration by parts on a closed manifold M ,

∫
M X :

∇ω dx =
∫
M ∇∗X · ω dx . It holds that

∆ = ∇∗∇ + Ric , (18)

where Ric is the Ricci curvature tensor [Petersen 2006, Chapter

7]. This formula dates back to Bochner [1946] and Weitzenböck

[1885]. It is used, together with the fact that d
2 = 0, to continue our

calculation from (17).∫
Ω
(dδdu) · (dv) dx =

∫
Ω
((dδ + δd)du) · (dv) dx

=

∫
Ω

(
∇∗∇du

)
· (dv) + Ric(du, dv) dx

= −
∫
∂Ω

ni (∇du)i j · (dv)j dx

+

∫
Ω
(∇du) : (∇dv) + Ric(du, dv) dx ,

(19)

where indices have been added to make clear which contraction

happens in which index.

The term involving the Ricci curvature tensor Ric can be further

simplified. For the case of two-dimensional manifolds we know that

we can write the Ricci curvature tensor as simply

Ric = κд , (20)

where κ is the Gaussian curvature, i.e., half the scalar curvature

[Petersen 2006, pp. 38-41].

Putting (17), (19), and (20) together then gives

0 = −
∫
∂Ω

⟨dδdu,n⟩ v + ni (∇du)i j · (dv)j dx

+

∫
Ω
(∇du) : (∇dv) + κ du · dv dx .

(21)

This is, in the case of a planar surface (for which it holds κ =
0), exactly the term from our earlier calculation with the planar

Hessian energy from (13). Here we also see why minimizers of the

naive Hessian energy EH2 do not solve the biharmonic equation on

curved surfaces: the energy EH2 lacks the curvature correction term

involving κ (see Figure 3).

The result from (21) motivates the definition of the following

curved Hessian energy:

E(u) := 1

2

∫
Ω
(∇du) : (∇du) + κ |du |2 dx . (22)

Minimizers of the energy E solve the biharmonic equation on a

surface in R3, unlike minimizers of EH2 .

It remains to check what the natural boundary conditions of E
are. We can find them by checking which biharmonic functions u
fulfill the boundary terms

0 =

∫
∂Ω

⟨dδdu,n⟩ v + ni (∇du)i j · (dv)j dx ∀v ∈ H4(Ω) .
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Laplacian
energy
(zero
Neumann)

our
Hessian
energy

Fig. 4. Using the Laplacian energy E∆2 (top) for scattered data interpolation
gives a result that is influenced by the boundary: adding holes makes the
isolines near them bend towards the holes. Our Hessian energy E (bottom)
is less distorted at the holes and produces a very similar result without and
with holes.

We use the same strategy as Stein et al. [2018, Section 4.3]: testing

with specific subsets of all valid test functions. These subsets are

purpose-built to expose the natural boundary conditions of the en-

ergy. First, we test with all functions v that vanish on the boundary,

and thus only have nonzero differential in the normal direction

(v = 0, ⟨dv,w⟩ = дn ·w for some smooth д). It follows that

ni (∇du)i j nj = 0 on ∂Ω , (23)

i.e., the (curved) Hessian of the solution is linear across the boundary;

the second derivative of the function across the boundary is zero.

Thismirrors the “as-linear-as-possible” condition of Stein et al. [2018,

(17)].

Using the same strategy of testing the expression with a specific

subset of functions to expose boundary behavior, if we plug in all

functions that have zero differential in the normal direction at the

boundary (⟨dv,n⟩ = 0), we get

⟨dδdu,n⟩ + δ∂Ω, jı∂Ω
(
ni (∇du)i j

)
= 0 on ∂Ω , (24)

where ı∂Ω is the natural projection of one-forms on the surface to

one forms on the boundary, and the subscript on the codifferential

implies that this is the codifferential of the boundary manifold in

the index j. This mirrors the condition from Stein et al. [2018, (18)].

In fact, the two natural boundary conditions (23) and (24) of the

Hessian energy are exactly the ones of the planar Hessian energy if

the domain is a planar surface.

The Hessian energy natural boundary conditions. Like the natural
boundary conditions of E

H
2 from Stein et al. [2018, Section 4.3], the

natural boundary conditions (23) and (24) of the Hessian energy E
guarantee that its minimizers

• continue linearly across the boundary in the normal direc-

tion (ni (∇du)i j nj = 0), and

ωe

ω⊥
e

edge e
be(x) = 1

be(x) = -1

be(x) = -1
edge e

CR function only
continuous at
edge midpoints

Fig. 5. A scalar Crouzeix-Raviart basis function for the edge e (top left).
The parallel and perpendicular one-forms for the edge e , represented by
their dual vectors (top right).
Crouzeix-Raviart functions and their sums are, in general, discontinuous.
Continuity is only guaranteed at edge midpoints (bottom).

• have limited variation along the boundary

(⟨dδdu,n⟩ + δ∂Ω, jı∂Ω
(
ni (∇du)i j

)
= 0),

as discussed by Stein et al. [2018, Section 4.3]. Both boundary con-

ditions are fulfilled by minimizers of E in the absence of explicitly

enforced boundary conditions.

On planar surfaces, these boundary conditions mean that the

null space of the energy contains all linear functions, in contrast to

the Laplacian energy with zero Neumann boundary conditions E∆2 ,

whose null space only contains constant functions. On closed sur-

faces, the null space of E and E∆2 is the same: all constant functions.

The natural boundary conditions of the Hessian energy have a

physical interpretation. Consider a deforming flat thin plate where

displacement is modeled by the function u. The plate is not clamped

or supported at the boundary in any way: it is a free plate. Then the

conditions (24) are the boundary conditions fulfilled by u [Courant

and Hilbert 1924, pp. 206-207]. These boundary conditions go back

at least as far as Rayleigh [1894, p. 355].

Its natural boundary conditions make the Hessian energy a good

choice for ignoring the boundary as much as possible, while main-

taining biharmonic behavior everywhere away from the boundary

(see Figure 4 where they are contrasted with zero Neumann bound-

ary conditions).

6 DISCRETIZATION
We offer a discretization for the curved Hessian energy E derived in

Section 5. The approach presented here is a simple method using

only linear finite elements, intended to make the Hessian energy

easily accessible. There are, however, other conceivable ways to

discretize this energy, such as, for example, higher-order conforming

finite elements [Braess 2007, II.5].
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no
curvature

positive
curvature

negative
curvature

we extend the surface here
to try to assign curvature

Fig. 6. For the boundary of a continuous, piecewise linear surface (top) there
is no way to uniquely assign curvature at the boundary. The surface can
be extended in many different ways that yield different curvatures at the
boundary, examples leading to positive (bottom left), no (bottom center), and
negative (bottom right) curvature are shown.

6.1 Computing the Hessian energy
Discretizing the Hessian energy E (22) as written would require

us to discretize functions that can be differentiated twice. To avoid

this complication we use the mixed finite element method [Boffi

et al. 2013] by introducing an intermediate variable w = du and

formulate the problem of minimizing E as

argmin

u

1

2

∫
Ω
(∇w) : (∇w) + κ |w |2 dx , w = du . (25)

Using Lagrange multipliers to enforce the constraint w = du, we
can write the optimization problem as the saddle problem (where

our goal is finding a stationary point)

saddle

u,w,λ

1

2

∫
Ω
(∇w) : (∇w) + κ |w |2 dx

−
∫
Ω
λ · (w − du) dx .

(26)

We discretize the space of scalar functions (containing u) using
standard continuous, piecewise linear functions which are a very

commonly used finite element. Definitions are found, for example,

in Braess [2007, II.5]. The basis of this discrete space consists of

the φi , i = 1, . . .n, sometimes called “hat functions” (see inset).

v

height�eld

We write u =
∑
i uiφi , and we have the

vector u =
(
u1, . . . ,un

)⊺
.

The space of one-forms (containing

w) is discretized using Crouzeix-Raviart

one-forms (CROFs), which are described

in Section 6.2. The basis of this discrete

space are the functions ηi , i = 1, . . .m.

Wewritew =
∑
i wiηi , and we have the vectorw =

(
w1, . . . ,wm

)⊺
.

Using these discretizations we can construct the one-form Dirich-

let matrix

Li j =

∫
Ω
(∇ηi ) :

(
∇ηj

)
dx ,

the differential matrix

Di j =

∫
Ω
ηi · dφ j dx ,

the mass matrix

Mi j =

∫
Ω
ηi · ηj dx ,

and the curvature matrix

Ki j =

∫
Ω
κηi · ηj dx .

The matrix entries are provided in Appendix A.

Using these matrices, we write the discrete version of (26) as

seeking a critical point of the expression

1

2

w⊺ (L + K)w − λ⊺ (Mw − Du) ,

for u ∈ Rn , w,λ ∈ Rm . Differentiating with respect to λ gives

Mw = Du. AsM is invertible, we get the system

argmin

u
u⊺D⊺M−1(L + K)M−1Du . (27)

This optimization problem can now be solved with a variety of

constraints, or mixed with other energy terms, depending on the

application.

6.2 Crouzeix-Raviart One-Forms
While there are multiple approaches to discretizing tangent one-

forms for triangle meshes, we choose to base our approach on

Crouzeix-Raviart finite elements (see Section 2 for a discussion).

The advantage of this approach is its simplicity. Crouzeix-Raviart

basis functions are only ever nonzero on two adjacent triangles,

so every basis function lives on an intrinsically flat domain: the

two triangles can be unfolded without distortion. This means that

our discretization will account for curvature correctly in the end,

without having to explicitly address issues like parallel transport

during construction.

6.2.1 Introduction to Crouzeix-Raviart. The scalar Crouzeix-

Raviart basis function for the edge ei j is defined to be 1 on the

edge itself, −1 on the two vertices k, l opposite the edge, and linear

on the two triangles Ti jk ,Tjil [Braess 2007, p. 109]. For boundary
edges, only one triangle needs to be considered. As a result, it is

0 on the midpoints of the edges ejk , eki , eil , el j (see Figure 5, left).
The scalar Crouzeix-Raviart element is not continuous, except at

the midpoints of edges. This makes it a non-conforming element,

and if it is used in a Galerkin method, one speaks of the discontinu-

ous Galerkin method. Despite being nonconforming, it is known to

converge for certain problems, most notably the Poisson equation

in R2. [Braess 2007, III, Theorem 1.5].

6.2.2 One-Forms. The scalar Crouzeix-Raviart element can be

used to define a finite element space for one-forms. At the midpoint

of every edge e of a flat triangle pair, the space of one-forms is

spanned by the two forms ω
∥
e ,ω

⊥
e , such that

⟨ω ∥
e , te ⟩ = 1, ⟨ω ∥

e ,ne ⟩ = 0

⟨ω⊥
e , te ⟩ = 0, ⟨ω⊥

e ,ne ⟩ = 1 ,

(28)

where ne is the (oriented) perpendicular vector of the edge e in

each triangle, te is the (oriented) tangent of the edge e , and the

angle bracket ⟨·, ·⟩ denotes the pairing of a form with a vector. See
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Figure 5 (right) for an illustration. The definition of ω⊥
e depends on

which triangle one is in, but only in an extrinsic way: in the intrinsic

geometry of the triangle pair, the edge is completely flat, thus the

two covectors ω⊥
e defined in each triangle are the same covector

intrinsically. Because of this, bothω
∥
e andω⊥

e can be easily extended

to the triangles adjacent to e: since the triangle pair (or the one

triangle) is intrinsically flat, parallel transport along the triangles is

trivial, and we can easily extend the definition of ω⊥
e and ω

∥
e to the

interior of the triangles adjacent to e .
If be is the Crouzeix-Raviart basis function for the edge e , then

we define its two CROF basis function as

b
∥
e B ω

∥
ebe

b⊥e B ω⊥
e be .

(29)

Defined this way, CROFs have the correct notion of parallel trans-

port, without having to explicitly account for it. Consider a path

γ through all edge midpoints of edges emanating from a vertex

v in a counterclockwise direction (see inset). We start with a sin-

gle tangent vector on the midpoint of one edge, corresponding

to a combination of two basis functions, and see what angle we

pick up when going around the vertex v using our basis functions.

γ

v

We now go along the path γ , moving from

edge to edge by choosing successive ba-

sis functions so that the sum of the basis

functions from two adjacent edges is con-

stant on the shared triangle. Doing that

corresponds exactly to parallel transport

on a cone manifold: the tangential part of

the vector at each edge does not change extrinsically at all when

crossing the edge along γ . The perpendicular basis function jumps

extrinsically: the angle between normal vectors on each side of the

edge is π minus the dihedral angle of the edge. At the end of our

journey along γ , when we are back at our original edge, our starting

vector picked up angle defect corresponding to the discrete curva-

ture of the mesh. The CROF basis functions have accounted for the

Laplacian energy Stein et al.
[2018]

our Hessian
energy

Fig. 7. The first nonzero eigenvector of the Laplacian energy E∆2 (left), the
Hessian of Stein et al. [2018] (center), and the curved Hessian energy E
(right). The eigenvectors of E∆2 and E look similar, since they both discretize
the biharmonic energy. The method of Stein et al. [2018] visibly disagrees.

discrete curvature of the mesh in the sense of curvature on cone

manifolds [Wardetzky 2006] without having to explicitly account

for parallel transport during the construction of the basis functions.

Since every basis function is only supported on at most two trian-

gles, the matrices L,M,D,K will be sparse. The matrixM is diagonal,

which makes it easy to invert. The matrix entries can be found in

Appendix A.

6.2.3 The curvature term. Special care needs to be applied when

computing thematrixK . The Gaussian curvatureκ of an intrinsically

flat pair of triangles would appear, at first, to be 0. But actually, the

Gaussian curvature of a polyhedron is entirely concentrated on

its vertices (and is zero anywhere else). The integrated Gaussian

curvature at a vertex is also known as the angle defect

κv B 2π −
∑

f ∈N (v)
θ
f
v , (30)

where the sum is over all faces f in the set of faces containing the

vertex v , and θ
f
v is the angle at vertex v in face f [Grinspun et al.

2006]. The idea of angle defects is very old: it goes back all the way

to at least Descartes c. 1630, who showed that the sum of all angle

defects of a polyhedron with spherical topology is 4π [Federico

1982].

We thus interpret the Gaussian curvature of the polyhedron as a

collection of delta functions at every vertex, i.e.

κ B
∑
v

κvδv , (31)

where δv is the Dirac delta. This means that the integral ofκд, where
κ is the Gaussian curvature and д is any continuous function over

10−2

10−1

100

101

100 10−1 10−2
average edge length

error in eigenvalue

O(h)

mesh gen. every
step (no regularity)

subdivision
mesh gen. every

step (w. regularity)

Fig. 8. Computing the fourth eigenvalue of the Hessian energy E on an
ellipse that was distorted in the third dimension (bottom left). Both refine-
ment through Loop subdivision and projection to a given smooth surface,
as well as generating a planar mesh of the desired resolution with regular
triangles at every step and then projecting to a given smooth surface show
convergence to the highest resolution. For simple mesh generation without
triangle regularity no convergence is observed.
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the triangle Ti jk with vertices i, j,k , can be written as:∫
Ω
κд dx =

∑
v

κvд(v) . (32)

If the function д itself is only continuous in each triangle, then we

need to distribute the contribution of each triangle accordingly. Let

sv,f > 0 for each vertex v and each face f in the neighborhood of v
be coefficients that average the contribution of each face at a vertex,

i.e., the sum of the sv,f over all faces f in the neighborhood of v is

one. Then ∫
Ω
κд dx =

∑
v

κv
∑

f ∈N (v)
sv,f дf (v) ,

where дf is the function д in the triangle f and N (v) is the set of
all faces in the neighborhood of v . We choose to average by tip

angle, which corresponds to an integral along a small circle around

the vertex. We did not explore other reasonable choices, such as

averaging by face area. This formula is used to compute the entries

of K , they are given in Appendix A.

One remaining issue with the angle defect as Gaussian curvature

is that the angle defect is not defined at boundary vertices. The prob-

lem stems from the fact that the notion of curvature at the boundary

of meshes (continuous, piecewise linear surfaces) is not in and of it-

self meaningful: by choosing to extend the surface in different ways

at the boundary we can achieve any arbitrary Gaussian curvature,

as can be seen in Figure 6. We choose to set the angle defect to 0

for all boundary vertices, thereby choosing the most developable
(intrinsically linear) extension of all possible extensions. This fits in

with our as-linear-as-possible boundary conditions, but differs from

some conventions of angle defect at the boundary, which define it

as the sum of tip angles subtracted from π (which is a discretization

of geodesic curvature).

6.3 Observed Numerical Convergence
Using our CROF discretization of the Hessian energy to solve a

variety of problems, we observe convergence on the order of the

average edge length h (Figure 9). As can be seen in Figure 8, a suc-

cessful strategy for obtaining convergence is making sure that the

vertices are contained in a smooth surface, and then either refining

the mesh through Loop subdivision [Loop 1987] with a fixed smooth

boundary, or generating meshes that fulfill the triangle regularity

condition: the ratio of circumcircle to incircle of each triangle (the

triangle regularity) is bounded from above and below independent

of refinement level. This condition is standard for finite elements

[Braess 2007, Definition 5.1 (uniform triangulation)]. The order of

convergence and the triangle regularity condition correspond to the

discretization of the Laplacian energy with zero Neumann boundary

conditions, E∆2 , with mixed FEM in the flat setting [Jacobson et al.

2010; Scholz 1978]. However, we do not have a proof of convergence

for our method to confirm this convergence rate.

Our method correctly reproduces the first eigenvector of the

Laplacian energy on closed surfaces in the experiment proposed

by Stein et al. [2018, Section 5.3.1] on a refined mesh (Figure 7).

As mentioned in Stein et al. [2018, Section 4.5], discretizations can

sometimes exhibit spurious modes in the kernel of the energy, which

lead to wrong solutions. We have not proved that this does not

happen for our CROF discretization of the Hessian energy, but

we have not observed it in our experiments (see Figure 10 for the

cheeseman example domain mentioned in Stein et al. [2018, p. 7]).

Further experiments can be found in Appendix B: Figures 15 and

16 feature additional convergence experiments confirming the order

of convergence, Figure 17 examines the dependence of the result on

error in boundary
value problem

average edge length h

data interpolation
error

E

O(h)
O(h)

E

height�eld

10-3

10-5

10-1

10-1 10-2

EH2

average edge length h

100

10−3

10−1

10−2

100 10−1 10−2
average edge length h

error in nth eigenvalue

O(h)

2nd, 3rd, 4th

5th

1st (rounded up to 10−6)

102

10−2

10−6
100 10−1 10−2

Fig. 9. Convergence plots for three different problems, all errors are L2 errors. Boundary value problem with known exact solution on a flat annulus mesh
refined by loop subdivision with fixed smooth boundary; both our Hessian E and the planar Hessian E

H2 of [Stein et al. 2018] are shown (even though, for
planar domains, the smooth curved and planar Hessian energies coincide, the different discretizations result in a different error) (left). Error in calculating the
lowest eigenvalues of the operator associated with E on the sphere with icosahedral meshing, with vertices of the mesh inscribed in the smooth limit sphere
(center). Solving an interpolation problem and computing the error with respect to the highest-resolution solution, refined by loop subdivision with fixed
z-coordinate at the boundary (right).
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eigenvalue1st 3rd 5th

300

150

0

the 6 smallest eigenvalues

the 3 zero
eigenvectors

Fig. 10. The six lowest eigenvalues of the Hessian energy discretized with
CROF on the cheeseman (top). As expected, there are only three zero eigen-
values. The three lowest eigenvectors (bottom) are the linear functions,
which corresponds to the smooth Hessian energy.

the mesh further, and Figure 18 compares our implementation of

the Hessian energy with other Hessian energies in the flat case.

7 APPLICATIONS
We implement the optimization of (27) by constructing a sparse

matrix in C++ using Eigen [Guennebaud et al. 2010], and then ma-

nipulating and optimizing it in MATLAB [MATLAB 2019] with mex.
For linear equality constraints, we use the optimizer of Jacobson

et al. [2019a, min_quad_with_fixed] via the library of Jacobson

[2019]. Using this approach, complicated constraints are also pos-

sible, such as linear and quadratic inequality constraints for more

complicated applications. Since the Hessian energy is a quadratic

energy, optimizers using the interior point method (such as the

solver of Andersen and Andersen [2000]) are appropriate.

7.1 Scattered data interpolation
Like any smoothness energy, the Hessian energy can be used for

scattered data interpolation. One solves the following minimization

problem, for some given interpolation data u(xi ) = fi , i = 1, ...,n

argmin

u
E(u) u(xi ) = fi , i = 1, ...,n . (33)

As long as at least three interpolation points are provided, this

problem has a solution. This is because the null space of the Hes-

sian energy can have at most all linear functions in it, which is a

three-dimensional space, and the null space of the Laplacian energy

with zero Neumann boundary conditions contains only constant

functions, which is a one-dimensional space [Stein et al. 2018].

The choice of smoothness energywill greatly influence the quality

of the result. The Laplacian energy with zero Neumann boundary

conditions, E∆2 , is a popular method, since it produces smooth,

evenly spaced isolines, which results in natural-looking interpola-

tion and extrapolation. This is because the gradient of the solution

is relatively uniform across the surface. As can be seen in Figure

11, our curved Hessian energy E reproduces the desirable behavior

Laplacian energy Stein et al.
[2018]

our Hessian
energy

Fig. 11. Scattered data interpolation problem solved on a closed surface
(bottom row) and the gradient of the solution (top row). E∆2 (left) provides a
satisfying result—isolines are relatively evenly spaced, and the gradient is
uniform. Stein et al. [2018] (center) has large variation in isoline distance (see
arrows), and the gradient of the solution is less uniform. E (right) replicates
the behavior of E∆2 .

of the Laplacian energy for surfaces without boundary. The imple-

mentation of the planar Hessian energy E
H
2 for curved surfaces by

Stein et al. [2018] fails to do so: the distance between the isolines

varies greatly, for example on the legs. The isolines also experience

significant bunching at the rump and back of the horse.

On the other hand, the Laplacian energy is known to produce

bias near domain boundaries due to its low-order boundary con-

ditions: isolines of solutions bend so they can be perpendicular to

the boundary. This was one of the motivations of Stein et al. [2018],

and thus their planar Hessian energy minimizes the influence of

the boundary by employing natural boundary conditions that make

the function as-linear-as-possible. Figure 4 shows that our Hessian

energy E does not show the bias at the boundary that the Laplacian

energy does: this is because it also has as-linear-as-possible natural

boundary conditions.

For this application, our Hessian energy E combines the two

worlds of Laplacian energy and planar Hessian energy to produce

a smoothness energy that is suited for scattered data interpolation

on curved surfaces while unbiased by the presence of boundaries

(Figure 1, Figure 12). This is helpful if the boundaries of the surface

don’t have any physical meaning: perhaps they are the result of

a faulty laser scan, or perhaps surface information is simply not

available there. The Hessian energy’s natural boundary conditions

make a best guess everywhere the data is missing by extrapolating

the function linearly across the boundary.

7.2 Data smoothing
Another popular application for smoothness energies is the epony-

mous data smoothing. This can be used to simply smooth arbitrary

data, to denoise noisy data, or to smooth the surface itself via sur-

face fairing. One solves the following Helmholtz-like optimization
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data to interpolate Laplacian energy
(zero Neumann boundary conditions)

Stein et al. [2018] our Hessian energy

Fig. 12. Solving an interpolation problem on a viking helmet. Our goal here is to preserve the dashed line (which is almost a geodesic) connecting three data
points of the same value (far left). Using E∆2 distorts the line near the boundary, since the zero Neumann boundary conditions make the isolines perpendicular
to the boundary (center left). Using the planar Hessian of Stein et al. [2018] still leads to some distortion due to not accounting for the surface’s curvature
(center right). Our Hessian energy E correctly accounts for the curvature of the surface and does not suffer from bias at the boundary, interpolating the dashed
line as desired (far right).

problem: given an input function f to be smoothed,

u = argmin

u
E(u) + α

∫
Ω
(f − u)2 dx , (34)

where the parameter α > 0 is a trade-off between the input data

and the smoothness of the output data.

Figure 2 shows our Hessian energy E applied to such a smoothing

problem. Correctly accounting for curvature by modeling a curved

biharmonic equation using the Laplace-Beltrami operator is impor-

tant here: the figure shows that the approach of Stein et al. [2018]

causes distortion in high-curvature regions when smoothing a step

function. In this figure the smoothing parameters are chosen to

give visually similar amounts of smoothing, which means a slightly

larger parameter α for the method of Stein et al. [2018].

It is natural to ask why the fact that minimizers of E
H
2 do not

solve the biharmonic equation leads to worse results when smooth-

ing the step function of Figure 2, but not for the smoothing problems

solved by Stein et al. [2018, Fig. 1, Fig. 11, Fig. 13]. These examples all

smooth very noisy functions with a lot of variation everywhere on

the surface. The step function is the opposite of that: the variation

is much more sparse. This allows the error of not accounting for

curvature correctly to manifest. In Figure 13 such a denoising prob-

lem is solved using the energies E∆2 (with zero Neumann boundary

conditions), E
H
2 (with the implementation of Stein et al. [2018]),

and E. It can be clearly seen that E∆2 , the Laplacian energy with

zero Neumann boundary conditions, is biased by the boundary, and

the isolines near the boundary are distorted so they can be normal

to it. The denoised solution using the Hessian energy E does not

suffer from this, and the isolines ignore the boundary. In regions far

away from the boundary it can be observed that the result of denois-

ing with the Hessian energy E matches the Laplacian energy with

zero Neumann boundary conditions E∆2 , while the planar Hessian

energy E
H
2 differs.

The smoothing problem can also be used to smooth the geometry

of the surface itself if the input data f from (34) is the vertex posi-

tions in each coordinate, and the output data u is the new vertex

positions. If such a smoothing operation is applied repeatedly, one

has a smoothing flow. Figure 14 shows our Hessian energy E applied

to such a problem. While the method of Stein et al. [2018] can lead

to some artifacts due to not accounting for curvature, this does not

happen with our curved Hessian energy E.

8 CONCLUSION
In this work we have introduced a smoothing energy for curved

surfaces, the Hessian energy. Its minimizers solve the biharmonic

equation, and it exhibits the as-linear-as-possible natural boundary

conditions in the curved setting that the planar Hessian energy of

Stein et al. [2018] exhibits in the flat setting. This Hessian energy

can be used in many applications where smoothness energies are

required, these smoothness energies should be unbiased by the

boundary, and it is crucial that the minimizers of the energy solve

the biharmonic equation.

8.1 Limitations
We have no numerical analysis proof for the convergence of our

discretization method. We also do not provide any theoretical anal-

ysis of the spectrum of our discrete operator. Both are needed to

make this discretization reliable, and to improve understanding of

the method, where it works, and where it does not.

8.2 Future work
One interesting avenue for future work is to explore alternate dis-

cretizations. Higher-order versions of Crouzeix-Raviart basis func-

tions, such as cubic or quintic basis functions, would be an interest-

ing potential improvement. Alternatively, instead of choosing the

intermediate variablew = dv for the mixed formulation as in (25),

a discretization wherew = ∇dv sounds very promising. This would

more closely mirror the mixed formulation of Stein et al. [2018]. The

CROF approach can be used to define a basis for tensors in the same

way as is done for vectors in Section 6.2, based on the parallel and

the perpendicular vector at each edge. Using other finite elements to

discretize the space of one-forms could also produce new methods.

Moreover, future work could explore discretizations of the smooth

energy on other surface representations beyond triangle meshes.
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noisy function Laplacian energy
zero Neumann

our Hessian
energy

Stein et al.
[2018]

Fig. 13. Denoising a function (far left) via smoothing. The Hessian energy E
(far right) does not show the bias at the boundary that the Laplacian energy
with zero Neumann boundary conditions E∆2 (center right) does, indicated
by the orange circle. Away from the boundary, the results for E and E∆2
agree, while the method of Stein et al. [2018] (center left) differs, indicated
by the orange arrows.

A rich source of future work is the numerical analysis of our

method. We do not have any proof of convergence, or a solid math-

ematical analysis of the spectrum of our operator, and while the

experiments in Section 6.3 provide some evidence for problems that

can be solved with our discretization of E, a thorough numerical

analysis treatment of our discretization would be valuable to exactly

identify the strengths and weaknesses of our method. Our Crouzeix-

Raviart discretization is a potential candidate for spurious modes,

since the finite element is non-conforming, even though we have

not observed them in practice. The method of English and Bridson

[2008] is an example of a Crouzeix-Raviart discretization that works

for many cases, but where specific triangle configurations exist that

lead to spurious modes [Quaglino 2012, Section 4.4.2]. The prop-

erties of minimizers of the discrete energies also warrant further

investigation: it is unclear which properties of smooth minimizers

they actually inherit, and which properties only hold in the limit.

Another interesting direction for future work is to consider ad-

ditional applications. Smoothness energies have many uses, and if

such an application has to be unbiased by the boundary even on

heavily curved surfaces, our Hessian energy E is a powerful tool.

Applications could include animation [Jacobson et al. 2011], distance

computation [Crane et al. 2013b], and more.

Moreover, our simple Crouzeix-Raviart discretization of the one-

form Dirichlet energy containing covariant derivatives from Section

6.2 offers an interesting approach to discretize the vector Dirichlet

energy in a wide variety of applications. Potential applications in-

clude vector field design [Knöppel et al. 2013], parallel transport

of vectors [Sharp et al. 2018], and many more [Azencot et al. 2015;

Corman and Ovsjanikov 2019; Liu et al. 2016].
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APPENDIX

A IMPLEMENTATION
The entries for each of the matrices defined in Section 6.1 needed to

construct the system matrices used in (27) are as follows. Let e be
an oriented edge from the vertex i to j. The two triangles adjacent

to e are Ti jk and Tjil , and f is an oriented edge from the vertex k
to i . The entries of the symmetric CROF vector Dirichlet matrix L
on the triangle Ti jk are

L
i jk
e ∥,e ∥

= L
i jk
e⊥,e⊥ =

2

Ai jk

L
i jk
e ∥,e⊥

= 0

L
i jk
e ∥,f ∥ = L

i jk
e⊥,f ⊥ =

2

Ai jk
cos

2 θ
i jk
i

L
i jk
e⊥,f ∥ = −Li jk

e ∥,f ⊥
=

2

li j lki
cosθ

i jk
i ,

(35)

where Ai jk is the double area of the triangle Ti jk , θ
i jk
i is the angle

in the triangle Ti jk at the vertex i , and li j is the length of the edge

from vertex i to j . If one of the edges has reversed orientation in the

triangle Ti jk with respect to its global orientation, its off-diagonal

entries get multiplied by−1. These are only the terms for the triangle

Ti jk . One must add the terms for all triangles and all pairs of edges

in that triangle to compute the full matrix L. We suggest looping

through all triangles, and adding the terms for each triangle to the

respective entries of the matrix corresponding to the edges. This

can easily be parallelized with a parallel_for loop.

The entries of the diagonal CROF mass matrixM on the triangle

Ti jk are

M
i jk
e ∥,e ∥

= Me⊥,e⊥ =
Ai jk

6l2i j
. (36)

CROFDECBergou et al. [2006] exact solution

L2 error in boundary value problem

CROF

Bergou

DEC

height�eld

height�eld

height�eld

height�eld

average edge length

10−1
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10−7
10−1 10−2

Fig. 18. A comparison of the CROF Hessian, the DEC Hessian (as of Stein
et al. [2018, (20)], described by Fisher et al. [2007] and implemented by
Wang et al. [2015]), and the Bergou Hessian (as of Stein et al. [2018, (21)],
described by Bergou et al. [2006] and implemented by Wang et al. [2017])
in green. The two non-CROF Hessians fail to match the exact solution on
the annulus, even though the method of Bergou et al. [2006] looks visually
similar.

The entries of the differential matrix D on the triangle Ti jk for

each edge e are

−Di jk
i,e ∥
= D

i jk
j,e ∥
=

Ai jk

6l2i j

D
i jk
k,e ∥
= 0

D
i jk
i,e⊥ = −

ljk

6li j
cosθ

i jk
j

D
i jk
j,e⊥ = − lki

6li j
cosθ

i jk
i

D
i jk
k,e⊥ =

1

6

,

(37)

where i is the vertex at the tail of the edge e , and j is at its tip. If
one of the edges has reversed orientation in the triangle Ti jk with

respect to its global orientation, its entries get multiplied by −1.

http://mathworld.wolfram.com/MongePatch.html
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The entries of the curvature correction matrix K on the triangle

Ti jk are

K
i jk
e ∥,e ∥

= K
i jk
e⊥,e⊥ =

1

l2i j

©­«
θ
i jk
i
si

κi +
θ
i jk
j

sj
κj +

θ
i jk
k
sk

κk
ª®¬

K
i jk
e ∥,e⊥

= 0

K
i jk
e ∥,f ∥ = K

i jk
e⊥,f ⊥ =

cosθ
i jk
i

li j lki

©­«
θ
i jk
j

sj
κj +

θ
i jk
k
sk

κk −
θ
i jk
i
si
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ª®¬

−Ke ∥,f ⊥ = Ke⊥,f ∥ =
sinθ

i jk
i
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©­«
θ
i jk
j

sj
κj +

θ
i jk
k
sk

κk −
θ
i jk
i
si

κi
ª®¬ ,

(38)

where κv is the angle defect at the vertex v and sv is the angle sum

at the vertex v . If one of the edges has reversed orientation in the

triangle Ti jk with respect to its global orientation, its off-diagonal

entries get multiplied by −1.

B ADDITIONAL EXPERIMENTS
Figure 15 features a series of convergence experiments that shows

the convergence of a boundary value problem on a variety of meshes

to the highest-resolution solutions. In Figure 16, a series of forward

problems is solved, where the Hessian energy of a function is mea-

sured on a curved surface, and because both the function and the

surface embedding are known, the exact solution is also known. This

is used to measure the error. In both these examples, convergence

of the order of the average edge length is observed.

Figure 17 shows that for different meshings of the same surface,

very similar results are achieved, and the method is thus robust to

remeshing. In Figure 18 our CROF implementation of the Hessian

energy is comparedwith various Hessian energies discussed by Stein

et al. [2018] in the flat annulus setting, where the exact solution is

known.
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