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Fig. 1. Solving an interpolation problem on an airplane. Using the Laplacian energy with zero Neumann boundary conditions (left) distorts the result near the
windows and the cockpit of the plane: the isolines bend so they can be perpendicular to the boundary. The planar Hessian energy of Stein et al. [2018] (center)
is unaffected by the holes, but does not account for curvature correctly, leading to unnatural spacing of isolines at the front and back of the fuselage. Our
Hessian energy (right) produces a natural-looking result with more regularly spread isolines, unaffected by the boundary.

Current quadratic smoothness energies for curved surfaces either exhibit
distortions near the boundary due to zero Neumann boundary conditions,
or they do not correctly account for intrinsic curvature, which leads to
unnatural-looking behavior away from the boundary. This leads to an un-
fortunate trade-off: one can either have natural behavior in the interior,
or a distortion-free result at the boundary, but not both. We introduce a
generalized Hessian energy for curved surfaces, expressed in terms of the co-
variant one-form Dirichlet energy, the Gaussian curvature, and the exterior
derivative. Energy minimizers solve the Laplace-Beltrami biharmonic equa-
tion, correctly accounting for intrinsic curvature, leading to natural-looking
isolines. On the boundary, minimizers are as-linear-as-possible, which re-
duces the distortion of isolines at the boundary. We discretize the covariant
one-form Dirichlet energy using Crouzeix-Raviart finite elements, arriving
at a discrete formulation of the Hessian energy for applications on curved
surfaces. We observe convergence of the discretization in our experiments.

CCS Concepts: « Mathematics of computing — Discretization; Partial
differential equations; Numerical differentiation; - Computing method-
ologies — Mesh geometry models;

Additional Key Words and Phrases: geometry, biharmonic, laplacian, hessian,
curvature, interpolation, smoothing

1 INTRODUCTION

Smoothness energies are used as objective functions for optimiza-
tion in geometry processing. A wide variety of applications exists:

smoothness energies can be used to smooth data on surfaces, to
denoise data, for scattered data interpolation, character animation,
and much more. We are interested in quadratic smoothness energies
formulated on triangle meshes.

It is desirable for a smoothing energy to have minimizers with
isolines whose spacing does not vary much across the surface—the
gradient of the function is sufficiently constant. When the gradient
of the function is sufficiently constant, the function only changes
very gradually, resulting in a smooth function. In the same vein,
a good smoothing energy should have minimizers whose isolines
are not distorted anywhere: their spacing is not influenced (on the
interior) by the surface’s curvature, and they are not biased by the
boundary of the surface—they behave locally as if the boundary
were absent. Such behavior is relevant for applications where the
boundary is not directly related to the actual problem that is be-
ing solved, e.g., when the boundary is an artificial result of faulty
surface reconstruction resulting in a shape with many extraneous
holes. One class of energies with the desired behavior in the interior
are energies whose minimizers solve the biharmonic equation, the
prototypical elliptic equation of order four. [Gazzola et al. 2010, viii].
Such energies are pertinent as smoothness energies in computer
graphics applications [Jacobson et al. 2010].

One such energy is the squared Laplacian energy—the squared
Laplacian of a function integrated over the surface. We henceforth
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refer to the energy as simply the Laplacian energy. Its minimizers
solve the biharmonic equation; as a result, they are very smooth,
and their isolines behave well on curved surfaces, if the surfaces are
closed. The energy’s most popular discretization, however, comes
with zero Neumann boundary conditions. Thus, if a surface has
boundaries, the minimizers are distorted near the boundary (see
Figure 1), since at the boundary they are as-constant-as-possible.
The issue of boundary distortion is addressed by the Hessian
energy of Stein et al. [2018]. For planar domains, they provide an
energy whose minimizers solve the biharmonic equation and are as-
linear-as-possible at the boundary. These boundary conditions lead
to decreased distortion. The Hessian energy of Stein et al. [2018],
however, is only defined for subsets of the plane R?. Stein et al.
[2018] offer a way to compute an energy for curved surfaces, but,
as they point out, their approach does not account for the curvature
of the surface correctly. The approach of Stein et al. [2018] does
not solve the biharmonic equation on curved surfaces; this leads to
global distortions in the isolines of the solution (see Figure 1).

Contributions

(1) Generalized Hessian energy. We generalize the Hessian energy
to accommodate curved surfaces. Our new Hessian energy is

E(u) = % /Q (Vdu) : (Vdu) + x |duf? dx , (1)

where V is the covariant derivative of differential forms, d is the ex-
terior derivative, k is the Gaussian curvature, and : denotes the
contraction of two operators in all indices that corresponds to
A : B = tr(ATB) (where the transpose T takes the metric into
account). This energy

e corresponds to the Laplacian energy in the case of a domain
without boundaries;
e corresponds to the Hessian energy of Stein et al. [2018]

for surfaces in R?, % /Q||ﬁu||% dx, where Hy, is the 2 x 2
Hessian matrix of u, and ||A|| g is the Frobenius norm of A;

o has the as-linear-as-possible natural boundary conditions of
the Hessian energy of Stein et al. [2018] for flat domains in
R2. These boundary conditions lead to decreased distortion
at the boundary.

Figure 1 shows how our Hessian energy manages to achieve the
best of both worlds.

(2) Discretization. We also introduce a discretization of this curved
Hessian energy that uses Crouzeix-Raviart finite elements “under
the hood”, but, after the energy matrix has been assembled, relies
solely on piecewise linear hat functions. We observe convergence of
the discretization for a wide variety of numerical experiments, given
certain regularity conditions, and apply it to various smoothing and
interpolation problems.

2 RELATED WORK

This work extends Stein et al. [2018]. They introduce a smoothness
energy with higher-order boundary conditions whose minimizers
are biased less by the shape of the boundary than energies using

low-order boundary conditions such as zero Neumann. Our goal is
to extend their approach to curved surfaces. Section 5.3.1 mentions
that their work does not correctly account for curved surfaces, and
this shortcoming is addressed in this work.

2.1 Smoothing energies

Smoothing energies are used for many applications in computer
graphics, image processing, machine learning, and more. Quadratic
smoothing energies are particularly interesting, since they are easy
to work with and fast to optimize [Nocedal and Wright 2006]. The
Laplacian energy is used for surface fairing and surface editing
[Botsch and Kobbelt 2004; Crane et al. 2013a; Desbrun et al. 1999;
Sorkine et al. 2004], for geodesic distance computation [Lipman et al.
2010], for creating weight functions used as coordinates in character
animation [Jacobson et al. 2011; Weber et al. 2012], data smoothing
[Weinkauf et al. 2010], image processing [Georgiev 2004], and other
applications [Jacobson et al. 2010; Sykora et al. 2014].

Geometric energies that share some of the properties of our Hes-
sian energy have been studied in the past: in image processing,
Hessian-like energies are popular for their boundary behavior, but
their formulations in general do not extend to curved surfaces [Di-
das et al. 2009; Lefkimmiatis et al. 2011; Lysaker et al. 2003]. Similar
energies are also used for data processing and machine learning,
but are not discretized for polyhedral meshes there [Donoho and
Grimes 2003; Kim et al. 2009]. Wang et al. [2015, 2017] explicitly
enforce boundary conditions on a discrete quadratic fourth-order
energy in order to make minimizers of the energy less dependent
on the boundary shape, but do not discuss any continuous model
corresponding to their method or which equations their minimizers
satisfy.

Stein et al. [2018] present a Hessian energy for triangle meshes,
however, minimizers of their discretization extended to R3 do not
fulfill the biharmonic equation, leading to artifacts that are discussed
in detail in Section 7. Liu et al. [2015] explicitly enforce higher-order
boundary conditions on a smoothness energy based on a fourth-
order PDE. Their energy, however, is in general not quadratic, and
the boundary conditions are different than the ones presented in
this article, as they are missing the as-linear-as-possible property.

A special case of a quadratic smoothness energy is the Dirichlet
energy, which solves the harmonic equation —Au = 0, a simpler
version of our biharmonic equation A%u = 0. The Dirichlet energy
can be used, for example, to create smooth character deformations
[Baran and Popovic 2007; Joshi et al. 2007; Weber et al. 2007], and
for image processing [Levin et al. 2004]. While the Dirichlet energy
has advantages, such as a discrete maximum principle, which is
preserved in some discretizations [Wardetzky et al. 2007], there
are disadvantages due to the energy being first-order: because of
reduced freedom around constraints, minimizers fail to be smooth,
which can lead to artifacts when applied to shape deformation
[Jacobson et al. 2011, Fig. 9], or worse results in image processing
[Peter et al. 2016]. Higher-order smoothness energies, such as the
ones derived from the biharmonic equation, are better at fitting
to existing data, and tend to distort results less [Georgiev 2004;
Jacobson et al. 2011, 2012; Weber et al. 2012]. Additionally, the
Dirichlet energy does not admit higher-order boundary conditions
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(unlike biharmonic energies), which makes it more difficult to use
as a smoothing energy without boundary bias.

2.2 Generalizing the Hessian energy to curved surfaces

A main theme in our work is the difficulty of generalizing expres-
sions formulated on flat domains to curved surfaces. The presence
of curvature will result in an additional term in the definition of our
energy, which is absent in the planar Hessian energy of Stein et al.
[2018]. This mirrors many other areas of geometry where, with the
introduction of curvature, properties of flat domains cease to apply.

One such example of curvature making calculations more elab-
orate is parallel transport. While parallel transport of vectors is
trivial on flat surfaces, this is no longer true for curved surfaces. In
the presence of curvature, the parallel transport of a vector along a
closed curve might result in a different vector than the initial one
[Petersen 2006, pp. 156-157]. The difficulties that this phenomenon
introduces to applications are discussed, for example, by Bergou et al.
[2008]; Crane et al. [2010]; Polthier and Schmies [1998]; Ray et al.
[2009]. Our discretization method simplifies the treatment of paral-
lel transport by employing linear finite element basis functions that
are only supported on two adjacent triangles. since this necessitates
discontinuous basis functions, this approach is less common.

Another instance of difficulties arising from the curved setting
occurs in the numerical analysis of finite element methods. In order
to apply standard finite element methods to curved surfaces, the
discretization has to account for the curvature of the surface. For the
case of the Poisson equation, for example, this can be either achieved
by inscribing all the vertices on the limit surface while imposing
triangle regularity conditions [Dziuk 1988], or by demanding a
certain kind of convergence of the vertices as well as the normals of
the mesh [Hildebrandt et al. 2006; Wardetzky 2006] together with
specific triangle regularity conditions. Similarly, in some of our
own numerical experiments, we require vertex inscription and the
triangle regularity condition to achieve convergence.

2.3 Discretization of the vector Dirichlet energy

An important part of the discretization of our curved Hessian energy
is the discretization of the vector Dirichlet energy % fQ Vv : Vv dx,
where V is the covariant derivative. The problem of discretizing the
covariant derivative for surfaces in general, and the vector Dirichlet
energy on surfaces in particular, are active areas of research. Knop-
pel et al. [2013] provide a finite element discretization of the vector
Dirichlet energy that places the degrees of freedom on mesh ver-
tices. This discretization is used to design direction fields. A different
discretization, reminiscent of finite differences, can be found in the
work of Knéppel et al. [2015], where it is used to compute stripe
patterns on surfaces. The same discretization is also used by Sharp
et al. [2018] to compute the parallel transport of vectors. The work
of Sharp et al. [2018] also features the Weitzenbdck identity that
we use to derive the natural boundary conditions of our Hessian
energy: they use it to construct a Dirichlet energy on the covector
bundle. Liu et al. [2016] discretize the covariant derivative using the
notion of discrete connections. They use it to improve the quality
of the vector fields produced by Knoppel et al. [2013], and provide
some evidence of convergence. Other examples of discretizations of
the covariant derivative include Azencot et al. [2015], who compute

the directional derivatives of each of the vector field’s component
functions, and Corman and Ovsjanikov [2019], who leverage a func-
tional representation to compute covariant derivatives.

To simplify computation, we propose an alternative discretiza-
tion of the vector Dirichlet energy. We use the scalar Crouzeix-
Raviart finite element, the “simplest nonconforming element for
the discretization of second order elliptic boundary-value problems”
[Braess 2007, p. 109]. It was first introduced by Crouzeix and Raviart
[1973] and has become a very popular finite element for the noncon-
forming discontinuous Galerkin method. It is known to converge
for the scalar Poisson equation in R?. Unlike the discretizations
mentioned above, the degrees of freedom are placed on the mesh
edges. The Crouzeix-Raviart finite element has been popular in
computer graphics applications such as the works of Bergou et al.
[2006]; Brandt et al. [2018]; English and Bridson [2008]; Vaxman
et al. [2016, Section 4.2].

Crouzeix-Raviart elements are simpler than the finite elements
of Knoppel et al. [2013], but they come at a cost: the basis functions
are discontinuous, and the method cannot be used for applications
where the vectors have to live on vertices. In our application, the
vector-valued functions are only intermediates, so we have more
freedom in choosing their discretization, and to put vectors on edges.

The discretization of one-forms using the Crouzeix-Raviart finite
element presented in this work is closely related to other general-
izations of the Crouzeix-Raviart element to vector- and differential-
form-like quantities such as those present in the work of Wardetzky
[2006], and those discussed in the survey of [Brenner 2015].

3 SMOOTHNESS ENERGIES

A classical smoothness energy for a surface Q C R3 is the Laplacian
energy with zero Neumann boundary conditions. When using this
method, one solves the optimization problem

1 0
argmin —/ |Aul?® dx —u|aQ =0,
u 2 Q on (2)

Ej2(u)

where A is the Laplace-Beltrami operator, and % |gq is the normal
derivative at the boundary. % loo = 0 is the zero Neumann bound-
ary condition. In practice, when minimizing this energy by directly
discretizing it and then optimizing the resulting quadratic form, the
boundary conditions manifest as an implicit penalty on the gradient
of the function at the boundary during optimization. We will refer
to the whole optimization problem with zero Neumann boundary
conditions by Exz. Minimizers of the Laplacian energy solve the
biharmonic equation A%u = 0. This leads to natural-looking, smooth
results on the interior.! The energy is easy to discretize even for
meshes that are non-planar using methods such as the mixed finite
element method (FEM) [Jacobson et al. 2010]. Using this method,
the zero Neumann boundary condition does not need to be imposed

10Of course, simply minimizing (2) results in the zero function. However, when combined
with additional Dirichlet boundary conditions, this gives a nontrivial result for the
biharmonic equation A%u = 0, and, when combined with the additional energy term
fQ uf dx it gives a result for the biharmonic Poisson-type equation A%u = f.
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on top of the discretization, it is simply “baked in” by squaring
the classical cotan Laplacian. The cotan Laplacian is also known as
the Lagrangian linear FEM for the Poisson equation (it goes back
to Duffin [1959] and MacNeal [1949], and its convergence for the
Poisson equation was shown by Dziuk [1988]).

The minimizers of E,z, however, are biased by the shape of the
boundary. Their isolines are significantly distorted near the domain
boundary: they are perpendicular to it as they have to fulfill the zero
Neumann boundary conditions (as-constant-as-possible). Simply re-
moving the zero Neumann boundary conditions, and minimizing the
Laplacian energy without any boundary conditions is not a good al-
ternative. Minimizations without explicit boundary conditions lead
to natural boundary conditions. The natural boundary conditions
of the Laplacian energy are too permissive [Stein et al. 2018, Fig. 3].
This behavior is one of the motivations for the Hessian energy of
Stein et al. [2018]. It is formulated as the following minimization
problem. For a surface U C R?,

1 - —
argmin —/ H, :H, dx
u 2Ju 3)
— —————
E2(u)

where Hy, is the 2 X 2 Hessian matrix of u, and A : B = tr (ATB).
Minimizers of this energy solve the biharmonic equation in R?. Its
natural boundary conditions lead to as-linear-as-possible behavior
on the boundary. This makes minimizers less biased than the zero
Neumann boundary condition.

Stein et al. [2018] demonstrate the benefits of the natural bound-
ary conditions of the Hessian energy with applications for curved
surfaces in R® as well. Their discretization of the planar Hessian
energy for curved surfaces is achieved by extending every operator
involved in the R? discretization to three dimensions. This approach
(the discretization, as well as the smooth formulation) does not ac-
count for the curvature of surfaces correctly, and its minimizers
do not solve the biharmonic equation on curved surfaces [Stein
et al. 2018, Section 5.3.1]. We refer to this generalization as the
planar Hessian energy Eﬁ2 when talking about it in the context of
curved surfaces. This planar Hessian energy is suitable for some
applications, but leads to global deviations from the natural-looking
isolines produced by Ex2(u) (see Figure 1) or an implementation of
the Hessian energy which does account for curvature (see Figure 2)
in others.

4  WARM-UP: THE DIRICHLET ENERGY ON CURVED
SURFACES

As a warm-up, we consider the simple and well-known Dirichlet
energy: it is easy to generalize to curved surfaces. We will perform
the calculation for this generalization here. The calculation is well-
known, and this didactic exercise will inform our generalization of
the planar Hessian energy to curved surfaces later.

4.1  From the energy to the PDE

Let HX denote the Sobolev space of real-valued functions with k
weak derivatives in L. The Dirichlet energy for domains U C R? is

our Hessian
[2018] energy

Stein et al.

Fig. 2. Smoothing a step function (left) on a surface using the method of
Stein et al. [2018] (middle) does not correctly account for the curvature of
the surface, leading to crooked isolines. Our curved Hessian energy E (right)
correctly accounts for curvature and does not suffer from such problems.

defined, for u € Hz(U), as?
1 -
E—2(u) == —/Vu«Vudx, 4)
v 2 Jo

where V is the vector of partial derivatives of u, Vu = (ﬁxu ay u) T,
the normal two-dimensional gradient in R?.

Minimizers of the Dirichlet energy solve the Laplace equation
[Evans 2010]. Indeed, consider the variation

u — u+ho u,v € HX(U) (5)

for some h > 0. Since our functions are in the Sobolev function
space H?, we can differentiate them at least twice. Plugging the
variation into EVZ (u), differentiating with respect to h, and then
setting h = 0, we can see that a minimizer u must fulfill the equation

/ (Biu) (Biv) dx =0 Yo e HXU),
U

where 0 is a partial derivative, and summation over repeated indices
is implied. This is a standard technique of variational calculus. Using
integration by parts (where n is the boundary normal)

Oz‘/U(ﬁiu) (0iv) dx

:/ (diu)v n; dx—/(ai(?iu)vdx.
ou U

Here a boundary term appeared as a result of integration by parts.
The second term of the second line corresponds to the standard
two-dimensional planar Laplacian A = V - V, and so we conclude

(6)

2 We choose to formulate this energy for u € H*(U), although it is well-defined for
u € H(U), since we will continue our calculations with the same u right away, and
we will need additional smoothness.
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that minimizers of the energy EVZ (u) fulfill the two-dimensional pla-

nar Laplace equation —Au = 0. The additional boundary term, the
first term of the second line in (6), determines the natural boundary
conditions of the Dirichlet energy. They are called natural boundary
conditions because they naturally emerge from solving the vari-
ational problem over the set of all functions, without explicitly
enforcing additional boundary conditions. In this case we can see
that the natural boundary conditions are zero-Neumann boundary
conditions:

diun; =Vu-n=0 on U . 7)

4.2 From the PDE to a new energy

We now generalize the Dirichlet energy to curved surfaces. This
means we are looking for an energy whose minimizers solve a
curved version of the Laplace equation, and fulfill a curved version
of the natural boundary conditions (7). While we were able to write
the calculations in terms of coordinates in the flat setting, this is
much harder to do in the curved setting. This is why we perform
calculations in the curved setting in a coordinate-free fashion.
The curved analog of the planar Laplace equation is Au = 0,
where A is the Laplace-Beltrami operator [Jost 2011, Chapter 3].
It holds for a function u € H?(Q) (where Q is a compact surface
immersed in R3.) that
Au = 6du , (8)

where d is the exterior derivative and ¢ is the codifferential, the
(formal) dual of the exterior derivative under integration by parts.
For planar surfaces, the Laplace-Beltrami operator A corresponds
to —A.

We start with an integral formulation of the Laplace equation,
and then use integration by parts. For all v € H%(Q) it must hold

that
OZ/Q(Au)vdx:/Q((Sdu)vdx

=—/ (du,n)vdx+/(du)-(dv) dx,
oQ Q

where the natural (metric-independent) pairing of one-forms and
vectors is indicated using the angle bracket, and - is the dot product
of one-forms.

Using the definition of the gradient V on curved surfaces, Vu-w :=
(du, w) for a vector w (where - is the dot product of vectors and the
angle bracket (-, -) denotes the pairing of a one-form with a vector)
[Jost 2011, (3.1.16)], we can write

0=—/ Vu-nvdx+/Vu-Vvdx. 9)
oQ Q

Walking back through the variation from (5), this now motivates
the definition of a curved Dirichlet energy

1
Ev2(u) = 5 /Q Vu-Vudx. (10)

We have shown that minimizers of this energy solve the curved
Laplace equation, and by the boundary term in (9) it is also clear
that minimizers fulfill a curved zero Neumann boundary condition:

Vu-n=0 on dU . (11)

Thus we have successfully generalized the Dirichlet energy to
curved surfaces. Even though we went through the work of using
differential geometric operators, we ended up with something quite
similar to what we started with, but with V replaced by V. For more
complicated energies this will no longer be the case.

5 THE HESSIAN ENERGY ON CURVED SURFACES

We now seek to derive a smooth Hessian energy on surfaces that
generalizes the Hessian energy in R?, while ensuring that minimiz-
ers of the energy solve the biharmonic equation. This will follow
the approach we used in Section 4 to generalize the planar Dirichlet
energy to curved surfaces.

5.1 From the energy to the PDE

For the planar Hessian energy E— it is a straightforward calculation
to prove that minimizers fulfill the biharmonic equation. This cal-
culation is mentioned, for example, in Stein et al. [2018, Section 4],
and we will repeat it here for convenience. Our setting is a compact
planar domain U C R?. The linear equation fulfilled by minimizers
of (3) derived with standard variational calculus is: find u € H4(U)
such that

/(aiaju)(aiajv) dx=0 VYoeHYU), (12)
U

where, as before, 0. is a partial derivative, and summation over
repeated indices is implied. Using integration by parts (where n is
the boundary normal) we know that

0= '/U(aiaju)(aiajv) dx

:/ (0;0ju)(0jv)n; dx—/(c')iai(')ju)(ajv) dx
ou U (13)

= / (8iaju)(8jv)n,- - (8l-(9i8ju)vnj dx
ou

+/(6j8i6iaju)v dx .
U

Since all partial derivatives commute in the plane, in the very
last term we can write 0;0;0;0ju = 0;0;0;0ju = Zzu. As a result,
we can conclude that minimizers of the Hessian energy satisfy the
biharmonic equation with some additional boundary terms. This
commutation will not be that easy for curved surfaces.

After some rearranging, these boundary terms can be seen to
imply the natural boundary conditions

n"Hyn =0 on AU

(14)

ﬂu-n+€(ﬂﬁun)-t:0 on dU ,

where n is the normal vector at the boundary, and t is the tangential
vector of the (oriented) boundary. A derivation of (14) can be found
in the work of Stein et al. [2018, Section 4.3].

A naive approach to a Hessian energy for curved surfaces.
Since our goal is to generalize the Hessian energy for surfaces, it
seems natural to simply replace the planar Hessian H,, with an
analog for curved surfaces, and minimize this generalization of
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solution with
curvature term

solution without
curvature term

reference solution

Fig. 3. We solve the Poisson-like problem A?u = f using the Hessian energy
with (right, E) and without (center, Ey2) curvature term. The solution for
E,: is provided as a reference solution (left). We see that the solution for
E corresponds to the reference solution, since its minimizers solve the
biharmonic equation, while the solution for Ejy2 does not.

the Hessian energy. Unfortunately, this will not work: the resulting

minimizers of such an energy will not solve the biharmonic equation.
Consider a compact surface © immersed in R®. We define the

Hessian of a function on a curved surface [Lee 1997, p. 54]

H, := Vdu, (15)

where V applied to one-forms is the covariant derivative of differen-
tial forms and d is the exterior derivative. It might seem reasonable
to define a generalized Hessian energy as

1
EHZ(U) = ELHu IHu dx s (16)

where : now denotes the contraction of all indices. The associated
variational equation at a stationary point is

/ (Vdu): (Vdo) dx =0 VYo € H{Q).
Q

We can already see that we will not be able to repeat our approach
from (13): there is no way to easily commute V and d, as it was
possible in the flat setting with coordinate-wise calculation, and
thus we can’t perform the same simple calculation to show that
minimizers of Epp solve the biharmonic equation.

5.2 From the PDE to a new energy

Instead, echoing Section 4.2, we derive an energy whose minimizers
fulfill the boundary conditions (14) and also solve the biharmonic
equation. We start with the integrated biharmonic equation using
the Hodge Laplacian operator A = d§ + §d for forms on surfaces,
which degenerates to the Laplace-Beltrami operator dd for zero-
forms (scalar functions), and which corresponds to the standard
Laplacian for functions in the plane. It holds that

0= / (AAu)v dx = / (8dddu) v dx
Q Q (17)

= —/ (dédu,n) v dx + / (dédu) - (dv) dx,
0Q Q

where n is the boundary normal vector, and we used the fact that
the exterior derivative d is dual to the codifferential §.

Now we utilize the Weitzenbock identity. It relates the Hodge-
Laplacian A = dé + 8d and the Bochner Laplacian Ag = V*V,
where V* is the (formal) dual covariant derivative. The formal dual
is defined via integration by parts on a closed manifold M, f X

Vo dx = /M V*X - o dx. It holds that
A =V*V +Ric , (18)

where Ric is the Ricci curvature tensor [Petersen 2006, Chapter
7]. This formula dates back to Bochner [1946] and Weitzenbock
[1885]. It is used, together with the fact that d? = 0, to continue our
calculation from (17).

/ (dSdu) - (dv) dx = / (48 + d)du) - (dv) dx
Q Q

= / (V*Vdu) - (dv) + Ric(du, dv) dx

Q (19)

= —/ n' (Vdu);; - (dv); dx
0Q

+ / (Vdu) : (Vdo) + Ric(du, dv) dx ,
Q

where indices have been added to make clear which contraction
happens in which index.

The term involving the Ricci curvature tensor Ric can be further
simplified. For the case of two-dimensional manifolds we know that
we can write the Ricci curvature tensor as simply

Ric = kg, (20)

where k is the Gaussian curvature, i.e., half the scalar curvature
[Petersen 2006, pp. 38-41].
Putting (17), (19), and (20) together then gives

0=- [ (dddu,n)v+n'(Vdu); - (dv); dx
o0 (21)
+/ (Vdu) : (Vdo) + kdu - dv dx .
Q

This is, in the case of a planar surface (for which it holds x =
0), exactly the term from our earlier calculation with the planar
Hessian energy from (13). Here we also see why minimizers of the
naive Hessian energy Epz do not solve the biharmonic equation on
curved surfaces: the energy Ep2 lacks the curvature correction term
involving « (see Figure 3).

The result from (21) motivates the definition of the following
curved Hessian energy:

Bu) = % /Q (Vdu): (Vdu) + ¢ |dul? dx |, (22)

Minimizers of the energy E solve the biharmonic equation on a
surface in R%, unlike minimizers of Eyz.

It remains to check what the natural boundary conditions of E
are. We can find them by checking which biharmonic functions u
fulfill the boundary terms

0= / (dddu,n) v + n' (Vdu);; - (dv); dx Vo € HY(Q).
aQ
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Laplacian
energy
(zero
Neumann)

our
Hessian
energy

Fig. 4. Using the Laplacian energy E . (top) for scattered data interpolation
gives a result that is influenced by the boundary: adding holes makes the
isolines near them bend towards the holes. Our Hessian energy E (bottom)
is less distorted at the holes and produces a very similar result without and
with holes.

We use the same strategy as Stein et al. [2018, Section 4.3]: testing
with specific subsets of all valid test functions. These subsets are
purpose-built to expose the natural boundary conditions of the en-
ergy. First, we test with all functions v that vanish on the boundary,
and thus only have nonzero differential in the normal direction
(v =0, (dv,w) = gn - w for some smooth g). It follows that

n’ (Vdu);; =0 ondQ, (23)

i.e., the (curved) Hessian of the solution is linear across the boundary;
the second derivative of the function across the boundary is zero.
This mirrors the “as-linear-as-possible” condition of Stein et al. [2018,
anl.

Using the same strategy of testing the expression with a specific
subset of functions to expose boundary behavior, if we plug in all
functions that have zero differential in the normal direction at the
boundary ((dv,n) = 0), we get

(dddu, n) + 850, j190 (ni (Vdu)ij) -0 ondQ,  (24)

where 150 is the natural projection of one-forms on the surface to
one forms on the boundary, and the subscript on the codifferential
implies that this is the codifferential of the boundary manifold in
the index j. This mirrors the condition from Stein et al. [2018, (18)].
In fact, the two natural boundary conditions (23) and (24) of the
Hessian energy are exactly the ones of the planar Hessian energy if
the domain is a planar surface.

The Hessian energy natural boundary conditions. Like the natural
boundary conditions of Eﬁz from Stein et al. [2018, Section 4.3], the
natural boundary conditions (23) and (24) of the Hessian energy E
guarantee that its minimizers

e continue linearly across the boundary in the normal direc-
tion (n’ (Vdu);; n/ = 0), and

CR function only
continuous at
edge midpoints

Fig. 5. A scalar Crouzeix-Raviart basis function for the edge e (top left).
The parallel and perpendicular one-forms for the edge e, represented by
their dual vectors (top right).

Crouzeix-Raviart functions and their sums are, in general, discontinuous.
Continuity is only guaranteed at edge midpoints (bottom).

o have limited variation along the boundary
(d8du,m) + 80 150 (n' (Vdu)) = 0),

as discussed by Stein et al. [2018, Section 4.3]. Both boundary con-
ditions are fulfilled by minimizers of E in the absence of explicitly
enforced boundary conditions.

On planar surfaces, these boundary conditions mean that the
null space of the energy contains all linear functions, in contrast to
the Laplacian energy with zero Neumann boundary conditions Exz,
whose null space only contains constant functions. On closed sur-
faces, the null space of E and E 52 is the same: all constant functions.

The natural boundary conditions of the Hessian energy have a
physical interpretation. Consider a deforming flat thin plate where
displacement is modeled by the function u. The plate is not clamped
or supported at the boundary in any way: it is a free plate. Then the
conditions (24) are the boundary conditions fulfilled by u [Courant
and Hilbert 1924, pp. 206-207]. These boundary conditions go back
at least as far as Rayleigh [1894, p. 355].

Its natural boundary conditions make the Hessian energy a good
choice for ignoring the boundary as much as possible, while main-
taining biharmonic behavior everywhere away from the boundary
(see Figure 4 where they are contrasted with zero Neumann bound-
ary conditions).

6 DISCRETIZATION

We offer a discretization for the curved Hessian energy E derived in
Section 5. The approach presented here is a simple method using
only linear finite elements, intended to make the Hessian energy
easily accessible. There are, however, other conceivable ways to
discretize this energy, such as, for example, higher-order conforming
finite elements [Braess 2007, IL.5].
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we extend the surface here —a [
to try to assign curvature

positive no
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curvature curvature curvature

Fig. 6. For the boundary of a continuous, piecewise linear surface (top) there
is no way to uniquely assign curvature at the boundary. The surface can
be extended in many different ways that yield different curvatures at the
boundary, examples leading to positive (bottom left), no (bottom center), and
negative (bottom right) curvature are shown.

6.1 Computing the Hessian energy

Discretizing the Hessian energy E (22) as written would require
us to discretize functions that can be differentiated twice. To avoid
this complication we use the mixed finite element method [Boffi
et al. 2013] by introducing an intermediate variable w = du and
formulate the problem of minimizing E as

1
argmin 5/ (Vw): (Vw) +x|w|® dx, w=du. (25
u Q

Using Lagrange multipliers to enforce the constraint w = du, we
can write the optimization problem as the saddle problem (where
our goal is finding a stationary point)

saddle 1/ (Vw) : (Vw) + k |w|? dx
Q

u,w,A 2
—/A-(w—du) dx .
Q

We discretize the space of scalar functions (containing u) using
standard continuous, piecewise linear functions which are a very
commonly used finite element. Definitions are found, for example,
in Braess [2007, IL.5]. The basis of this discrete space consists of
the ¢;, i = 1,...n, sometimes called “hat functions” (see inset).
We write u = }; u;;, and we have the U
vector u = (ug,...,un)" heightfield

The space of one-forms (containing
w) is discretized using Crouzeix-Raviart
one-forms (CROFs), which are described
in Section 6.2. The basis of this discrete
space are the functions n;, i = 1,...m.

We write w = Y}; w;n;, and we have the vector w = (w1, ..., wn)

(26)

T

Using these discretizations we can construct the one-form Dirich-
let matrix

L= /Q (Vi) (V) dx,

the differential matrix

Dij:/Ui'lejdx>
Q

the mass matrix

Mij=/f7i'i7jdx,
Q

and the curvature matrix

Kl‘j=/l<l7i-r7jdx,
Q

The matrix entries are provided in Appendix A.
Using these matrices, we write the discrete version of (26) as
seeking a critical point of the expression

1
EWT (L+K)w—AT (Mw — Du) ,

for u € R", w,A € R™. Differentiating with respect to A gives
Mw = Du. As M is invertible, we get the system

argmin uTDTM™ YL+ K)M™'Du |. (27)
u

This optimization problem can now be solved with a variety of
constraints, or mixed with other energy terms, depending on the
application.

6.2 Crouzeix-Raviart One-Forms

While there are multiple approaches to discretizing tangent one-
forms for triangle meshes, we choose to base our approach on
Crouzeix-Raviart finite elements (see Section 2 for a discussion).
The advantage of this approach is its simplicity. Crouzeix-Raviart
basis functions are only ever nonzero on two adjacent triangles,
so every basis function lives on an intrinsically flat domain: the
two triangles can be unfolded without distortion. This means that
our discretization will account for curvature correctly in the end,
without having to explicitly address issues like parallel transport
during construction.

6.2.1 Introduction to Crouzeix-Raviart. The scalar Crouzeix-
Raviart basis function for the edge e;; is defined to be 1 on the
edge itself, —1 on the two vertices k, [ opposite the edge, and linear
on the two triangles T;jx, Tj;; [Braess 2007, p. 109]. For boundary
edges, only one triangle needs to be considered. As a result, it is
0 on the midpoints of the edges eji., ex;, €;1, e (see Figure 5, left).
The scalar Crouzeix-Raviart element is not continuous, except at
the midpoints of edges. This makes it a non-conforming element,
and if it is used in a Galerkin method, one speaks of the discontinu-
ous Galerkin method. Despite being nonconforming, it is known to
converge for certain problems, most notably the Poisson equation
in R?. [Braess 2007, III, Theorem 1.5].

6.2.2 One-Forms. The scalar Crouzeix-Raviart element can be
used to define a finite element space for one-forms. At the midpoint
of every edge e of a flat triangle pair, the space of one-forms is

spanned by the two forms wy, wZ, such that
(@htey =1, (wlne)=0 (28)
<wé_,te> =0, <wé-sne> =1,

where n, is the (oriented) perpendicular vector of the edge e in
each triangle, t. is the (oriented) tangent of the edge e, and the
angle bracket (-, -) denotes the pairing of a form with a vector. See
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Figure 5 (right) for an illustration. The definition of @} depends on
which triangle one is in, but only in an extrinsic way: in the intrinsic
geometry of the triangle pair, the edge is completely flat, thus the
two covectors @} defined in each triangle are the same covector

intrinsically. Because of this, both wg and wF can be easily extended
to the triangles adjacent to e: since the triangle pair (or the one
triangle) is intrinsically flat, parallel transport along the triangles is

trivial, and we can easily extend the definition of w} and wll to the
interior of the triangles adjacent to e.

If b, is the Crouzeix-Raviart basis function for the edge e, then
we define its two CROF basis function as

bl = wlb,

(29)
by = wrbe .

Defined this way, CROFs have the correct notion of parallel trans-
port, without having to explicitly account for it. Consider a path
y through all edge midpoints of edges emanating from a vertex
v in a counterclockwise direction (see inset). We start with a sin-
gle tangent vector on the midpoint of one edge, corresponding
to a combination of two basis functions, and see what angle we
pick up when going around the vertex v using our basis functions.
We now go along the path y, moving from
edge to edge by choosing successive ba-
sis functions so that the sum of the basis
functions from two adjacent edges is con-
stant on the shared triangle. Doing that 4
corresponds exactly to parallel transport
on a cone manifold: the tangential part of
the vector at each edge does not change extrinsically at all when
crossing the edge along y. The perpendicular basis function jumps
extrinsically: the angle between normal vectors on each side of the
edge is 7 minus the dihedral angle of the edge. At the end of our
journey along y, when we are back at our original edge, our starting
vector picked up angle defect corresponding to the discrete curva-
ture of the mesh. The CROF basis functions have accounted for the

A

it :

Stein et al.

our Hessian
[2018] energy

Laplacian energy

Fig. 7. The first nonzero eigenvector of the Laplacian energy E,2 (left), the
Hessian of Stein et al. [2018] (center), and the curved Hessian energy E
(right). The eigenvectors of E,2 and E look similar, since they both discretize
the biharmonic energy. The method of Stein et al. [2018] visibly disagrees.

discrete curvature of the mesh in the sense of curvature on cone
manifolds [Wardetzky 2006] without having to explicitly account
for parallel transport during the construction of the basis functions.

Since every basis function is only supported on at most two trian-
gles, the matrices L, M, D, K will be sparse. The matrix M is diagonal,
which makes it easy to invert. The matrix entries can be found in
Appendix A.

6.2.3  The curvature term. Special care needs to be applied when
computing the matrix K. The Gaussian curvature k of an intrinsically
flat pair of triangles would appear, at first, to be 0. But actually, the
Gaussian curvature of a polyhedron is entirely concentrated on
its vertices (and is zero anywhere else). The integrated Gaussian
curvature at a vertex is also known as the angle defect

Ko = 27 — Z o (30)
feN(v)
where the sum is over all faces f in the set of faces containing the
vertex v, and 05 is the angle at vertex v in face f [Grinspun et al.
2006]. The idea of angle defects is very old: it goes back all the way
to at least Descartes c. 1630, who showed that the sum of all angle
defects of a polyhedron with spherical topology is 47 [Federico
1982].
We thus interpret the Gaussian curvature of the polyhedron as a
collection of delta functions at every vertex, i.e.

K = Z KoSu (31)
v

where &y, is the Dirac delta. This means that the integral of kg, where
K is the Gaussian curvature and g is any continuous function over

error in eigenvalue

10* =0 & ® ®

10° o)

107

107

10° 107 107
average edge length

__________________ \ _e— meshgen every |
"' subdivision step (w. regularity)
N e mesh gen. every |
" step (no regularity) |

L g

Fig. 8. Computing the fourth eigenvalue of the Hessian energy E on an
ellipse that was distorted in the third dimension (bottom left). Both refine-
ment through Loop subdivision and projection to a given smooth surface,
as well as generating a planar mesh of the desired resolution with regular
triangles at every step and then projecting to a given smooth surface show
convergence to the highest resolution. For simple mesh generation without
triangle regularity no convergence is observed.
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the triangle T; ;. with vertices i, j, k, can be written as:

/ng dx = Z Kug(v) . (32)

If the function g itself is only continuous in each triangle, then we
need to distribute the contribution of each triangle accordingly. Let
So,f > 0 for each vertex v and each face f in the neighborhood of v
be coefficients that average the contribution of each face at a vertex,
ie., the sum of the s, ¢ over all faces f in the neighborhood of v is

one. Then
/QK!Z de=>"ko D sorgr@),

v feN()

where gy is the function g in the triangle f and N(v) is the set of
all faces in the neighborhood of v. We choose to average by tip
angle, which corresponds to an integral along a small circle around
the vertex. We did not explore other reasonable choices, such as
averaging by face area. This formula is used to compute the entries
of K, they are given in Appendix A.

One remaining issue with the angle defect as Gaussian curvature
is that the angle defect is not defined at boundary vertices. The prob-
lem stems from the fact that the notion of curvature at the boundary
of meshes (continuous, piecewise linear surfaces) is not in and of it-
self meaningful: by choosing to extend the surface in different ways
at the boundary we can achieve any arbitrary Gaussian curvature,
as can be seen in Figure 6. We choose to set the angle defect to 0
for all boundary vertices, thereby choosing the most developable
(intrinsically linear) extension of all possible extensions. This fits in
with our as-linear-as-possible boundary conditions, but differs from
some conventions of angle defect at the boundary, which define it
as the sum of tip angles subtracted from 7 (which is a discretization

error in boundary

of geodesic curvature).

6.3 Observed Numerical Convergence

Using our CROF discretization of the Hessian energy to solve a
variety of problems, we observe convergence on the order of the
average edge length h (Figure 9). As can be seen in Figure 8, a suc-
cessful strategy for obtaining convergence is making sure that the
vertices are contained in a smooth surface, and then either refining
the mesh through Loop subdivision [Loop 1987] with a fixed smooth
boundary, or generating meshes that fulfill the triangle regularity
condition: the ratio of circumcircle to incircle of each triangle (the
triangle regularity) is bounded from above and below independent
of refinement level. This condition is standard for finite elements
[Braess 2007, Definition 5.1 (uniform triangulation)]. The order of
convergence and the triangle regularity condition correspond to the
discretization of the Laplacian energy with zero Neumann boundary
conditions, E,:, with mixed FEM in the flat setting [Jacobson et al.
2010; Scholz 1978]. However, we do not have a proof of convergence
for our method to confirm this convergence rate.

Our method correctly reproduces the first eigenvector of the
Laplacian energy on closed surfaces in the experiment proposed
by Stein et al. [2018, Section 5.3.1] on a refined mesh (Figure 7).
As mentioned in Stein et al. [2018, Section 4.5], discretizations can
sometimes exhibit spurious modes in the kernel of the energy, which
lead to wrong solutions. We have not proved that this does not
happen for our CROF discretization of the Hessian energy, but
we have not observed it in our experiments (see Figure 10 for the
cheeseman example domain mentioned in Stein et al. [2018, p. 7]).

Further experiments can be found in Appendix B: Figures 15 and
16 feature additional convergence experiments confirming the order
of convergence, Figure 17 examines the dependence of the result on

data interpolation

value problem = error in nth eigenvalue error
S, 100 10°
%
10!
107"
SKh
1072
10‘3 an, 3rd, 4th
Ew: 1072 O(h)
O(h) O(h)
E 1** (rounded up to 107°) E
5 10°¢ -3
10 o 102 10° 107 107 1075 o o

average edge length h

average edge length h

average edge length h

Fig. 9. Convergence plots for three different problems, all errors are L? errors. Boundary value problem with known exact solution on a flat annulus mesh
refined by loop subdivision with fixed smooth boundary; both our Hessian E and the planar Hessian E_> of [Stein et al. 2018] are shown (even though, for
planar domains, the smooth curved and planar Hessian energies coincide, the different discretizations result in a different error) (left). Error in calculating the
lowest eigenvalues of the operator associated with E on the sphere with icosahedral meshing, with vertices of the mesh inscribed in the smooth limit sphere
(center). Solving an interpolation problem and computing the error with respect to the highest-resolution solution, refined by loop subdivision with fixed
z-coordinate at the boundary (right).
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Fig. 10. The six lowest eigenvalues of the Hessian energy discretized with
CROF on the cheeseman (top). As expected, there are only three zero eigen-
values. The three lowest eigenvectors (bottom) are the linear functions,
which corresponds to the smooth Hessian energy.

the mesh further, and Figure 18 compares our implementation of
the Hessian energy with other Hessian energies in the flat case.

7 APPLICATIONS

We implement the optimization of (27) by constructing a sparse
matrix in C++ using Eigen [Guennebaud et al. 2010], and then ma-
nipulating and optimizing it in MATLAB [MATLAB 2019] with mex.
For linear equality constraints, we use the optimizer of Jacobson
et al. [2019a, min_quad_with_fixed] via the library of Jacobson
[2019]. Using this approach, complicated constraints are also pos-
sible, such as linear and quadratic inequality constraints for more
complicated applications. Since the Hessian energy is a quadratic
energy, optimizers using the interior point method (such as the
solver of Andersen and Andersen [2000]) are appropriate.

7.1 Scattered data interpolation

Like any smoothness energy, the Hessian energy can be used for
scattered data interpolation. One solves the following minimization
problem, for some given interpolation data u(x;) = fi, i = 1,...,n

argmin E(u) u(xi)=fi,i=1,..,n. (33)
u
As long as at least three interpolation points are provided, this
problem has a solution. This is because the null space of the Hes-
sian energy can have at most all linear functions in it, which is a
three-dimensional space, and the null space of the Laplacian energy
with zero Neumann boundary conditions contains only constant
functions, which is a one-dimensional space [Stein et al. 2018].
The choice of smoothness energy will greatly influence the quality
of the result. The Laplacian energy with zero Neumann boundary
conditions, Epz, is a popular method, since it produces smooth,
evenly spaced isolines, which results in natural-looking interpola-
tion and extrapolation. This is because the gradient of the solution
is relatively uniform across the surface. As can be seen in Figure
11, our curved Hessian energy E reproduces the desirable behavior

our Hessian
[2018] energy

. Stein et al.
Laplacian energy

Fig. 11. Scattered data interpolation problem solved on a closed surface
(bottom row) and the gradient of the solution (top row). E 2 (left) provides a
satisfying result—isolines are relatively evenly spaced, and the gradient is
uniform. Stein et al. [2018] (center) has large variation in isoline distance (see
arrows), and the gradient of the solution is less uniform. E (right) replicates
the behavior of E,z.

of the Laplacian energy for surfaces without boundary. The imple-
mentation of the planar Hessian energy Eﬁz for curved surfaces by
Stein et al. [2018] fails to do so: the distance between the isolines
varies greatly, for example on the legs. The isolines also experience
significant bunching at the rump and back of the horse.

On the other hand, the Laplacian energy is known to produce
bias near domain boundaries due to its low-order boundary con-
ditions: isolines of solutions bend so they can be perpendicular to
the boundary. This was one of the motivations of Stein et al. [2018],
and thus their planar Hessian energy minimizes the influence of
the boundary by employing natural boundary conditions that make
the function as-linear-as-possible. Figure 4 shows that our Hessian
energy E does not show the bias at the boundary that the Laplacian
energy does: this is because it also has as-linear-as-possible natural
boundary conditions.

For this application, our Hessian energy E combines the two
worlds of Laplacian energy and planar Hessian energy to produce
a smoothness energy that is suited for scattered data interpolation
on curved surfaces while unbiased by the presence of boundaries
(Figure 1, Figure 12). This is helpful if the boundaries of the surface
don’t have any physical meaning: perhaps they are the result of
a faulty laser scan, or perhaps surface information is simply not
available there. The Hessian energy’s natural boundary conditions
make a best guess everywhere the data is missing by extrapolating
the function linearly across the boundary.

7.2 Data smoothing

Another popular application for smoothness energies is the epony-
mous data smoothing. This can be used to simply smooth arbitrary
data, to denoise noisy data, or to smooth the surface itself via sur-
face fairing. One solves the following Helmholtz-like optimization
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Fig. 12. Solving an interpolation problem on a viking helmet. Our goal here is to preserve the dashed line (which is almost a geodesic) connecting three data
points of the same value (far left). Using E,. distorts the line near the boundary, since the zero Neumann boundary conditions make the isolines perpendicular
to the boundary (center left). Using the planar Hessian of Stein et al. [2018] still leads to some distortion due to not accounting for the surface’s curvature
(center right). Our Hessian energy E correctly accounts for the curvature of the surface and does not suffer from bias at the boundary, interpolating the dashed

line as desired (far right).

problem: given an input function f to be smoothed,
u = argmin E(u) + / (f - u)? dx , (34)
u Q

where the parameter @ > 0 is a trade-off between the input data
and the smoothness of the output data.

Figure 2 shows our Hessian energy E applied to such a smoothing
problem. Correctly accounting for curvature by modeling a curved
biharmonic equation using the Laplace-Beltrami operator is impor-
tant here: the figure shows that the approach of Stein et al. [2018]
causes distortion in high-curvature regions when smoothing a step
function. In this figure the smoothing parameters are chosen to
give visually similar amounts of smoothing, which means a slightly
larger parameter « for the method of Stein et al. [2018].

It is natural to ask why the fact that minimizers of E—> do not
solve the biharmonic equation leads to worse results when smooth-
ing the step function of Figure 2, but not for the smoothing problems
solved by Stein et al. [2018, Fig. 1, Fig. 11, Fig. 13]. These examples all
smooth very noisy functions with a lot of variation everywhere on
the surface. The step function is the opposite of that: the variation
is much more sparse. This allows the error of not accounting for
curvature correctly to manifest. In Figure 13 such a denoising prob-
lem is solved using the energies E5z (with zero Neumann boundary
conditions), Eﬁz (with the implementation of Stein et al. [2018]),
and E. It can be clearly seen that E,z, the Laplacian energy with
zero Neumann boundary conditions, is biased by the boundary, and
the isolines near the boundary are distorted so they can be normal
to it. The denoised solution using the Hessian energy E does not
suffer from this, and the isolines ignore the boundary. In regions far
away from the boundary it can be observed that the result of denois-
ing with the Hessian energy E matches the Laplacian energy with
zero Neumann boundary conditions E,z, while the planar Hessian
energy Eﬁz differs.

The smoothing problem can also be used to smooth the geometry
of the surface itself if the input data f from (34) is the vertex posi-
tions in each coordinate, and the output data u is the new vertex
positions. If such a smoothing operation is applied repeatedly, one
has a smoothing flow. Figure 14 shows our Hessian energy E applied

to such a problem. While the method of Stein et al. [2018] can lead
to some artifacts due to not accounting for curvature, this does not
happen with our curved Hessian energy E.

8 CONCLUSION

In this work we have introduced a smoothing energy for curved
surfaces, the Hessian energy. Its minimizers solve the biharmonic
equation, and it exhibits the as-linear-as-possible natural boundary
conditions in the curved setting that the planar Hessian energy of
Stein et al. [2018] exhibits in the flat setting. This Hessian energy
can be used in many applications where smoothness energies are
required, these smoothness energies should be unbiased by the
boundary, and it is crucial that the minimizers of the energy solve
the biharmonic equation.

8.1 Limitations

We have no numerical analysis proof for the convergence of our
discretization method. We also do not provide any theoretical anal-
ysis of the spectrum of our discrete operator. Both are needed to
make this discretization reliable, and to improve understanding of
the method, where it works, and where it does not.

8.2 Future work

One interesting avenue for future work is to explore alternate dis-
cretizations. Higher-order versions of Crouzeix-Raviart basis func-
tions, such as cubic or quintic basis functions, would be an interest-
ing potential improvement. Alternatively, instead of choosing the
intermediate variable w = dv for the mixed formulation as in (25),
a discretization where w = Vdv sounds very promising. This would
more closely mirror the mixed formulation of Stein et al. [2018]. The
CROF approach can be used to define a basis for tensors in the same
way as is done for vectors in Section 6.2, based on the parallel and
the perpendicular vector at each edge. Using other finite elements to
discretize the space of one-forms could also produce new methods.
Moreover, future work could explore discretizations of the smooth
energy on other surface representations beyond triangle meshes.
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Fig. 13. Denoising a function (far left) via smoothing. The Hessian energy E
(far right) does not show the bias at the boundary that the Laplacian energy
with zero Neumann boundary conditions E,2 (center right) does, indicated
by the orange circle. Away from the boundary, the results for E and E,2
agree, while the method of Stein et al. [2018] (center left) differs, indicated
by the orange arrows.

A rich source of future work is the numerical analysis of our
method. We do not have any proof of convergence, or a solid math-
ematical analysis of the spectrum of our operator, and while the
experiments in Section 6.3 provide some evidence for problems that
can be solved with our discretization of E, a thorough numerical
analysis treatment of our discretization would be valuable to exactly
identify the strengths and weaknesses of our method. Our Crouzeix-
Raviart discretization is a potential candidate for spurious modes,
since the finite element is non-conforming, even though we have
not observed them in practice. The method of English and Bridson
[2008] is an example of a Crouzeix-Raviart discretization that works
for many cases, but where specific triangle configurations exist that
lead to spurious modes [Quaglino 2012, Section 4.4.2]. The prop-
erties of minimizers of the discrete energies also warrant further
investigation: it is unclear which properties of smooth minimizers
they actually inherit, and which properties only hold in the limit.

Another interesting direction for future work is to consider ad-
ditional applications. Smoothness energies have many uses, and if
such an application has to be unbiased by the boundary even on
heavily curved surfaces, our Hessian energy E is a powerful tool.
Applications could include animation [Jacobson et al. 2011], distance
computation [Crane et al. 2013b], and more.

Moreover, our simple Crouzeix-Raviart discretization of the one-
form Dirichlet energy containing covariant derivatives from Section
6.2 offers an interesting approach to discretize the vector Dirichlet
energy in a wide variety of applications. Potential applications in-
clude vector field design [Knoppel et al. 2013], parallel transport
of vectors [Sharp et al. 2018], and many more [Azencot et al. 2015;
Corman and Ovsjanikov 2019; Liu et al. 2016].
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Fig. 17. The same scattered data interpolation problem solved on different
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APPENDIX
A IMPLEMENTATION

The entries for each of the matrices defined in Section 6.1 needed to
construct the system matrices used in (27) are as follows. Let e be
an oriented edge from the vertex i to j. The two triangles adjacent
to e are Tjjx and Tj;;, and f is an oriented edge from the vertex k
to i. The entries of the symmetric CROF vector Dirichlet matrix L
on the triangle T; ;. are

[k _ ik _ 2
elell ™ Tetiet T AL
> ijk
ijk  _
elllet — 0
.. i, . 35)
ijk  _ ;ijk _ 2 2 pijk (
Le\l,f“ = Lei,fi = A cos” 0;
Lijk _ _Lijk _ cos eijk

e fl T el T Ly

where A; i is the double area of the triangle T, 9;] k is the angle
in the triangle T;j at the vertex i, and l;; is the length of the edge
from vertex i to j. If one of the edges has reversed orientation in the
triangle T with respect to its global orientation, its off-diagonal
entries get multiplied by —1. These are only the terms for the triangle
T;jk- One must add the terms for all triangles and all pairs of edges
in that triangle to compute the full matrix L. We suggest looping
through all triangles, and adding the terms for each triangle to the
respective entries of the matrix corresponding to the edges. This
can easily be parallelized with a parallel_for loop.

The entries of the diagonal CROF mass matrix M on the triangle
T;j are
k= Mes o1 = Al_jzk : (36)

6l
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Fig. 18. A comparison of the CROF Hessian, the DEC Hessian (as of Stein
et al. [2018, (20)], described by Fisher et al. [2007] and implemented by
Wang et al. [2015]), and the Bergou Hessian (as of Stein et al. [2018, (21)],
described by Bergou et al. [2006] and implemented by Wang et al. [2017])
in green. The two non-CROF Hessians fail to match the exact solution on
the annulus, even though the method of Bergou et al. [2006] looks visually
similar.

The entries of the differential matrix D on the triangle T;;;. for
each edge e are

itk _ nijk _Aijk
el = el T 6lizj
ijk
Dk,e” =0
pik - —lj—k cos 0% (37)
iet 6lij J
DUk = L cos 07K
J.et 6lij !
ijk _ 1
Dk,eL T 6

where i is the vertex at the tail of the edge e, and j is at its tip. If
one of the edges has reversed orientation in the triangle T;;; with
respect to its global orientation, its entries get multiplied by —1.
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The entries of the curvature correction matrix K on the triangle
T;j are

gk gk ik

ijk gk _ Y (% % Tk
Koot =Kot e = 3 |~ i ¥ =K+ = Kk
ij J
ijk  _
eler ™ 0
iik { oijk ijk ij
ijk ijk cos efjk 91'] o, Hi’k (38)
Ko =Kei o= 7 — | =K+ ——Ke = ——Ki
el.f etf lijlki Sj Sk Si
sin 9;1 k(o7 9;(] 6;] k
-K =K = —| —«kj+ —K — —Ki |,
TR T Tl sy T s Y s

where K, is the angle defect at the vertex v and s;, is the angle sum
at the vertex v. If one of the edges has reversed orientation in the
triangle T with respect to its global orientation, its off-diagonal
entries get multiplied by —1.

B ADDITIONAL EXPERIMENTS

Figure 15 features a series of convergence experiments that shows
the convergence of a boundary value problem on a variety of meshes
to the highest-resolution solutions. In Figure 16, a series of forward
problems is solved, where the Hessian energy of a function is mea-
sured on a curved surface, and because both the function and the
surface embedding are known, the exact solution is also known. This
is used to measure the error. In both these examples, convergence
of the order of the average edge length is observed.

Figure 17 shows that for different meshings of the same surface,
very similar results are achieved, and the method is thus robust to
remeshing. In Figure 18 our CROF implementation of the Hessian
energy is compared with various Hessian energies discussed by Stein
et al. [2018] in the flat annulus setting, where the exact solution is
known.
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