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a b s t r a c t 

A novel, concurrent multiscale approach to meso/macroscale plasticity is demonstrated. It 

utilizes a carefully designed coupling of a partial differential equation (pde) based theory 

of dislocation mediated crystal plasticity with time-averaged inputs from microscopic Dis- 

location Dynamics (DD), adapting a state-of-the-art mathematical coarse-graining scheme. 

The stress-strain response of mesoscopic samples at realistic , slow, loading rates up to ap- 

preciable values of strain is obtained, with significant speed-up in compute time compared 

to conventional DD. Effects of crystal orientation, loading rate, and the ratio of the initial 

mobile to sessile dislocation density on the macroscopic response, for both load and dis- 

placement controlled simulations are demonstrated. These results are obtained without us- 

ing any phenomenological constitutive assumption , except for thermal activation which is not 

a part of microscopic DD. The results also demonstrate the effect of the internal stresses 

on the collective behavior of dislocations, manifesting, in a set of examples, as a Stage I to 

Stage II hardening transition. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

1. Introduction 

We develop and demonstrate a predictive computational tool for microstructure-sensitive mechanical analysis of metallic

components subjected to stress and deformation. This is achieved by coupling a realization of Discrete Dislocation Dynam-

ics ( Po et al., 2014 ) with a pde based model of meso-macroscopic dislocation mediated crystal plasticity ( Acharya, 2011;

Acharya and Roy, 2006 ) through a coarse-graining scheme for nonlinear ordinary differential equations (ode) called Practical

Time Averaging (PTA), the latter described in detail in Chatterjee et al. (2018) . The challenge is the computation of the plas-

tic strength and associated microstructure at the meso and macroscale at realistic time scales , directly from the underlying
� A clarification: “the first step” is not meant by us as a statement about the field but as an assessment of our contribution towards the goal of a theory 

of plasticity without phenomenology at the most commonly used strain rates. 
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motion of crystal defects, without using constitutive assumptions. The pde based theory - Mesoscale Field Dislocation Me-

chanics (MFDM) - contains well-defined place-holders for microscopic dislocation dynamics based input. These inputs are

prescribed by a carefully designed coupling of meso-macro response, on the ‘slow’ time-scale, with time-averaged response

of ‘fast’, local (on the macroscopic scale) discrete DD simulations. 

The rationale behind using a coupled approach instead of a completely DD based approach is the vast separation in

time-scales between plasticity applications that operate at quasi-static loading rates and DD. We apply a modern theory for

singularly perturbed ode systems to generate inputs for MFDM from DD. Within this approach, we have been able to obtain

the stress-strain response of macroscopic samples at realistic loading rates up to appreciable values of strain, without using

any phenomenological assumptions beyond those implicit in DD methodology itself (except for thermal activation which

is not part of the adopted microscopic model, i.e., DD), and with significant speedup in compute time. This would not be

possible using conventional DD alone. Furthermore, our work is fully three-dimensional. 

The primary question in coupling dislocation-dynamics with a continuum theory of plasticity is the determination of

the minimum set of space-time averaged variables to be used in the continuum theory that allows capturing the evolution

of these average variables purely in terms of themselves . Towards achieving this ideal goal, given a large volume V , we de-

compose it into sub-volumes V i (which are called ‘blocks’ as will be explained in Section 4.1 ) and in each sub-volume, a

DD box is considered. Space-time averages need to be computed of the fast DD response in the DD box, to couple it with

continuum theory. A simpler case to consider is when we assume that the large domain is composed of only one sub-

volume/block and we ignore the spatial-averaging. These steps of computing the relevant space-time-averages are further

explained in the body of this paper. A primary issue to understand is that we will generally be interested in time-averages

of nonlinear state functions and this is not the same thing as evaluating the state functions on time-averages of the state

itself. 

The paper is organized as follows. In Section 1.1 , a literature review of previous work on continuum theory of discrete

dislocations is presented. In Section 2 , we briefly describe DD and the constitutive assumption of thermal activation of

dislocations past obstacles that we utilize in this work. This is followed with the definition of coarse variables and their

evolution equations. In Section 3 , we discuss the setup and outline of the algorithm for coarse-graining DD simulations

in time using PTA and present results for two loading cases. The pde based model of MFDM is described in Section 4 . In

Section 4.1 , we discuss the algorithm for coupling MFDM with DD. This is followed with results obtained using the coupled

DD-MFDM strategy. The paper ends with some concluding remarks in Section 5 . 

1.1. Literature review 

Plastic deformation of metals depends primarily on the motion and interaction of dislocations. A main goal of crystal

plasticity is to develop continuum constitutive relations from the underlying dynamics of a system of discrete dislocations.

A statistical approach for the kinetic evolution of idealized dislocation systems on a single slip system in 2-d has been de-

veloped. Groma and collaborators ( Groma, 1997; Groma and Balogh, 1999 ) derived a continuum description for a system

of straight parallel dislocations from the equations of motion of individual dislocations, work that has also received math-

ematically rigorous attention, see, e.g., Briani and Monneau (2009) ; Garroni et al. (2020) . A primary result of Garroni et al.

(2020) is that the core radius has to go to 0 at a slower rate than the rate at which the number of dislocations go to ∞ for

the Groma-Balogh equations to result as the limiting set of continuum evolution equations from microscopic 2-D dislocation

dynamics. ‘Short range’ dislocation interactions, interpreted as the effect of dislocation dipoles with small separation, are ne-

glected in all of the above results. El-Azab ( El-Azab, 20 0 0; 20 06 ) developed a continuum description of the dynamics of a

system of curved dislocation in 3D using a different statistical mechanics framework. This work suffers from an inadequate

accounting, at the mesoscale, of the connectedness of dislocation lines, a shortcoming that has been remedied in later work

( Xia and El-Azab, 2015 ) that does not have a statistical mechanical underpinning. Groma, Zaiser and Csikor ( Groma et al.,

2003 ) demonstrated the influence of short range dislocation-dislocation correlations by a local flow stress which scales like

the square root of dislocation density and a plastic strain gradient term, introduced on an ad-hoc basis, motivated by spatial

correlations of 2-d straight discrete dislocation distributions at equilibrium. 

Hochrainer et al. (2014) developed Continuum Dislocation Dynamics (CDD) which consists of a complicated set of evolu-

tion equations of internal variables for each slip system. This system is derived, by averaging over the line direction variable,

from a kinetic theory like description for line direction and curvature probability density functions ( Hochrainer et al., 2014 ).

The evolution equations for these density functions, i.e. the microscopic dynamics, are postulated , much like in the kinetic

theory of gases, without being derived from discrete dislocation dynamics ; thus such a model accounts for dislocation in-

teractions in an approximate manner, much like the restrictions posed by collision operator approximations in the kinetic

theory of gases, and such approximations taking into account dislocation interactions, even in the most rudimentary ways,

have not appeared in the so-called ‘kinematically-closed’ versions of CDD. CDD also does not include physics of dislocation

interactions on different slip systems and out of plane motion of dislocations. 

Berdichevsky (2019) developed a phenomenological thermodynamic framework for plastic deformation in FCC metals at

slow strain rates and temperature. The theory involves thermodynamic parameters like dislocation polarization (Kroupa’s

dislocation loop density ( Kroupa, 1962 )), and new ideas of entropy and temperature of microstructure. Constitutive assump-

tions are required. If the total deformation and strain fields of the model are computed from its stress and the equations

of equilibrium, then the model cannot predict the history-of-dislocation motion dependent total deformation, one of the
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most important predictions of a practical theory of plasticity; this is because the polarization is history-independent. On

the other hand, if the total strain is somehow made to predict this history dependence accurately, then the elastic energy

density of the model would become history-dependent, since the ‘elastic strain’ in that case would be the difference of

(history-dependent) total strain and the (history-independent) polarization 1 The framework is motivated by the study of a

set of edge dislocations in 2D ( Soutyrine and Berdichevsky, 2018 ), where states encountered in the ‘evolution’ are explicitly

restricted to local equilibrium states. The stress strain curves show intervals of slow deformation followed by slip avalanches.

Under the assumed protocol for evolution of the discrete dislocation assembly, it is found that practically all dissipation is

generated at avalanches. 

Kooiman et al. (2015, 2016) assume the GENERIC framework of Öttinger (2005) to describe the microscopic behavior

of dislocation assemblies, which requires defining/assuming energy and entropy functionals for the microscopic system. On

that basis, and with further simplifying assumptions about dislocation dynamics, they arrive at a power-law stress expo-

nent for effective dislocation velocity of 3.7 > 1.0, the latter embodied in the microscopic Peach-Koehler force of individual

dislocations. 

Yasin et al. (2001) developed a numerical model coupling 3D discrete dislocation dynamics with a continuum finite

element model in which the plastic strain rate is obtained from DD. However they do not develop the theoretical and

computational infrastructure for averaging in time, so their coupled theory in effect operates at the time scale of DD. Using

the superposition principle, dislocation-surface interactions are computed numerically which are shown to have effects on

the results. Zbib et al. (2002) used a similar hybrid continuum-discrete framework to investigate a wide range of small scale

plasticity phenomena such as formation of deformation bands and surface distortions under dynamic loading conditions.

Groh and Zbib (2009) reviewed the use of dislocation dynamics to replace the constitutive equations in continuum plasticity

models. They also addressed issues related to image stresses when dislocations exist in finite volumes. 

Lemarchand et al. (2001) proposed the Discrete-Continuum Model (DCM) which is similar to the approach followed

by Yasin et al. (2001) and Zbib et al. (2002) in the sense that it uses a coupled DD-finite element approach in which

DD is used as a substitute for the constitutive form used in usual finite element frameworks, while the finite element

code is used to test the conditions of mechanical equilibrium. However, the difference in this approach from Yasin et al.

(2001) and Zbib et al. (2002) is that the stress at the Gauss points of the finite element mesh are interpolated to the

midpoint of the dislocation segments to solve for the motion of dislocation segments; in Yasin et al. (2001) and Zbib et al.

(2002) , the dislocation-dislocation interaction is computed for all dislocations present in the same element to obtain a

homogenized internal stress, while the stress induced by dislocation segments not present in the same element is obtained

using a multipole expansion. 

Acharya and Roy (2006) proposed Phenomenological Mesoscale Field Dislocation Mechanics to study initial-boundary

value problems of small-scale plasticity. It is obtained by space-time averaging of the equations of Field Dislocation Mechan-

ics (FDM) ( Acharya, 20 01; 20 03; Bertin, 2019; Roy and Acharya, 2005 ) to obtain MFDM, and phenomenologically specifying

some of its ‘non-closed’ inputs. These inputs are a model of (local) space-time averaged plastic strain rate due to dislocations

which are averaged out (statistically stored dislocations or SSDs) and similar averages of the microscopic, vectorial disloca-

tion velocity. The resulting coarse model has only one extra material parameter over and above macroscopic continuum

plasticity. Finite-element based computational predictions of this theory are presented in Acharya and Roy (2006) ; Arora

and Acharya (2019) ; Puri et al. (2011) , where size effects, strong inhomogeneity in simple shear of plastically constrained

grains and non-locality in elastic straining leading to Bauschinger effect are demonstrated. 

2. PTA For DD simulation 

The framework and implementation of a scheme called Practical Time Averaging (PTA) which is used to coarse-grain

nonlinear ordinary differential equations in time is discussed in detail in Chatterjee et al. (2018) . Here, we discuss why this

scheme is relevant for coarse graining DD simulations in time and then describe some specifics of its application to DD. To

proceed, we briefly describe DD following Po et al. (2014) . 

2.1. Discrete dislocation dynamics 

Discrete Dislocation Dynamics (DD) refers to the collective dynamics of dislocation ensembles which is used to predict

plastic properties of materials. The goal of DD is to evolve a dislocation configuration based on the local stress. This includes

self-stress of the loop, the stress due to other loops and other sources of stress, including externally applied stress. The

Cauchy stress tensor due to a dislocation loop ( Eshelby, 1957 ) is given by 

σi j = C i jkl 
(
u k,l − βP 

kl 

)
= S i jkl R ∗ αkl , 

where C is the fourth order, possibly anisotropic tensor of spatially constant linear elastic moduli, u is the displacement

field due to the dislocation loop, βP is the plastic distortion tensor, S is a linear differential operator acting on the Euclidean

distance R (given by R = x − x ′ , where x is the point where the stress field is being calculated and x ′ is a point on the
1 We note that there are many examples of dislocation distributions, without involving boundary segments, which can arise from two different histories 

of plastic deformation due to dislocation motion and, consequently, total strain histories. 
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Fig. 1. Dislocation segment modeled as cylindrical tube . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dislocation loop), α is the dislocation density tensor and the symbol ∗ indicates convolution in three dimensional space. The

force acting on a dislocation segment of infinitesimal length d � due to the stress field is given by df k = εk jm 

σ ji b i d� m 

and is

called the Peach-Köhler force ( Peach and Koehler, 1950 ). 

The velocity field w is defined on the dislocation curves, and discretely on the nodes that discretize the curves. It is

obtained by the solution of the following: ∮ 
L 

[ 
˜ w i B i j w j + 

˜ λ2 εi jk w i b j ˆ ξk 

] 
d� = 

∮ 
L 

[ 
˜ w i 

(
1 

θ
εi jk σ jm 

b m ̂

 ξk − λ2 εi jk b j ˆ ξk 

)] 
d�, (2.1) 

which must be satisfied for arbitrary variations ˜ w i and ˜ λ2 . Here, σ is the Cauchy stress tensor, b is the Burgers vector of the

dislocation loop, ξ is the unit tangent to the dislocation line, B is a positive definite tensor subject to Onsager’s symmetry

relations, ε is the third order alternating tensor, λ2 is the chemical force preventing climb, L is the closed line bounding any

surface spanned by the dislocation loop during its motion, θ is the absolute temperature and d � is the length of infinitesimal

segment of L . 

The position of each node p is updated as 

x p (t + 
t) = x p (t) + w p (t )
t , 

where t is the current time and 
t is the DD time step. 

2.2. Thermal activation 

Discrete Dislocation Dynamics is described in Section 2.1 . However, when we use DD, we face a problem which

is described next. The local plastic distortion rate L 
p 
seg produced by the motion of a dislocation segment is given by

L 
p 
seg = 

b 
A 

� ( ̂ l ×V ) , where b is the Burgers vector, A is the core cross-section area, ˆ l is the line direction and V is the ve-

locity of the segment (denoted as w in (2.1) ). If a single straight dislocation running from one boundary to another of the

DD simulation box is considered and its motion is unimpeded by any obstacles and driven only by the applied stress, then

this stress determines the magnitude of V in the expression for L 
p 
seg (accounting for phonon drag). The value of | L p seg | due to

such a segment, at an applied stress of 10 MPa, is around 10 11 s −1 , which is extremely high. 

In order to approach realistic magnitudes of strain rates under slow loading, let the DD box be populated with many

straight mobile and sessile dislocation segments running from boundary to boundary of the box. The setup and its justifi-

cation are provided later in Section 3.2 . The mobile segments move and intersect with the sessile segments and such an

intersection is called a junction (to be precise, it should be called a sessile junction because this type of junction does not

move). The volume averaged plastic distortion rate is given by L 
p 
a v g = 

1 
| B x | 

∑ 

L 
p,i 
seg l i A i , where l i and A i are the length of the

segment and area of core cross section (see Fig. 1 ) of dislocation segment i respectively, L 
p,i 
seg is the local plastic strain rate

(defined as L 
p 
seg above) produced by dislocation segment i , and | B x | is the volume of the DD simulation box. When the dis-

locations are moving freely, the volume averaging reduces the magnitude of the volume averaged plastic distortion rate to

around 10 3 s −1 . However, even at very realistic, practical values of applied stress, the configuration gets stuck, i.e. there is

no dislocation motion and | L p a v g | is found to vanish. This is due to the high sessile density and low mean spacing between

obstacles, so that the applied stress necessary for the mobile segments to break past barriers (the junctions formed at the

intersection of mobile and sessile segments) is much higher than the applied stress. So, | L p a v g | is 0 or 10 3 s −1 , and nothing in

between. 

Therefore, we implement thermal activation of dislocations moving past obstacles by breaking junctions (intersection 

of mobile and sessile dislocation segments) randomly in time, a physically realistic feature of plasticity at relatively low

stresses which has the effect of reducing the time-averaged value of | L p a v g | . This is not a part of conventional DD explained

in Section 2.1 but is an important constitutive assumption in our approach, based in the modeling of reality. A dislocation

is an arrangement of an atomic configuration that is constantly jiggling and when there is enough temperature - i.e. kinetic

energy of atomic motion - coordinated motions can happen for a dislocation to break past barriers. This can be addressed

somewhat fundamentally using Transition State theory and Molecular Dynamics, ideas that have been used in developing the
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phenomenology of kinetics of plasticity ( Kocks and Mecking, 2003; Kocks et al., 1975 ). We defer the fundamental modeling

of thermal activation for later work, adopting in its place the simplest possible constitutive assumption to qualitatively

represent it, as described below. 

The breaking time, t b , of a junction is the elapsed time between its formation and its breaking. In the absence of a

fundamental characterization of thermal activation from MD, we adopt a very simple functional form for t b : 

t b = f a, (2.2)

where a is the maximum breaking time (in the results presented in Section 3.3 and Section 4.3 , a was set as 10 −3 s. ) and

f is a fraction generated using a uniformly distributed floating point random number generator. The corresponding attempt

frequency of junction breaking may be defined as 1 a . 

With thermal activation enabled (with an attempt frequency of 10 3 s −1 . ), the time-averaged value of | L p a v g | comes out as

10 −2 s −1 . It is important to note that the timescale set by the time-averaged value of | L p a v g | (i.e. 10 2 s .) is not directly related
to (and orders of magnitude larger) than the timescale set by t b , and the achieved overall strain rates in the simulations are

a truly emergent feature of our work that allows us to simulate realistic slow loading-rate regimes of behavior. 

2.3. Application of PTA for coarse-graining DD simulation 

The PTA framework is described in Chatterjee et al. (2018) , applicable to understanding the behavior of equations of

the form given by (2.3) which have a separation of fast and slow dynamics governed by the small parameter ε (which is

defined as the ratio of the time period of the fast and the slow dynamics). The problem of studying the slow behavior

of DD also has a separation into fast and slow dynamics. The fast dynamics is the evolution of the dislocation segments,

whose characteristic time period T f is set by the drag, which is on the order of nanoseconds . The time period of slow

dynamics is governed by the applied loading, which often ranges between 1 to 10 0 0 s , corresponding to applied strain rates

of 1 s −1 to 10 −3 s −1 and slower. Hence there is a vast separation in time scale of the fast and slow evolution (the parameter

ε = 

T f 
T s 

≈ 10 −9 

10 3 
= 10 −12 ), which justifies the application of PTA to this problem in order to study the slow time scale behavior

of the fast dynamics (i.e.DD). The slow time-scale t , which corresponds to the time-scale of applied loading, is defined as

 = 

t ∗
T s 

, where t ∗ is the dimensional time. The dimensional DD equations (in time-scale t ∗) can be posed on the slow time-

scale t as 

ε
d X 

dt 
(t) = H( X ; l) 
dl 

dt 
= L (l) , (2.3)

where X is a n -dimensional vector of position of the nodes. Here, n is assumed to be fixed for now although, as we will discuss

in Section 2.5 , the number of degrees of freedom (dofs) in DD is not fixed. H is a function of the state, L is the loading program

employed and l ( t ) represents the load (corresponding to the magnitude of the applied stress) on the DD box. The evolution

of a single dislocation loop is given by (2.1) . The evolution of a system of dislocation loops can be posed in the form of

(2.3) , where the function H is composed of the forces experienced by the segments and is composed of the contributions

from the rhs of (2.1) corresponding to the segments comprising each dislocation loop in the system. The slow time-scale, t ,

is related to the fast time-scale σ through 

t = ε σ, 0 < ε = 

T f 

T s 
� 1 . 

The fast time equation, obtained by changing the time scale in (2.3) to σ = 

t 
ε , is 

d X 

dσ
(σ ) = H( X ; l) 
dl 

dσ
= ε L (l) (2.4)

We define the running time average R �t , of the state function �, as 

R �t := 

1 ∑ N t 
i =1 


σ i 

N t ∑ 

i =1 

�( X (σi ) , l t ) 
σ i , (2.5)

where 
σ i are the DD time steps on the fast time scale and N t is the number of increments required for the value of R �t 
to converge up to a specified value of tolerance. The successive values of �( X ( σ i ), l t ) are obtained by solving the fast Eq.

(2.4) with initial condition X 0 t and fixed load l t at time t on the slow time-scale. 

The coarse variable/observable � is defined as the average of R �t over the interval [ t − 
, t]: 

�(t) = 

∫ t 
t−


R �t ′ dt 
′ , (2.6)
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where � is a general state function of X and the nondimensional time interval 
 is an interval in the slow time-scale t ,

and is defined as 
 := 


∗
T s 

, where 
∗ is a fraction of the slow characteristic time, T s . The coarse variable � depends on the

“history” of R �t , namely its value over an interval prior to t . Hence, it is called an H-observable , where H stands for “history”2 

The evolution of �, obtained by differentiating (2.6) in time, is given by 

d �

dt 
= 

1 




(
R �t − R �t−


)
. (2.8) 

2.4. Examples of � functions 

Here we discuss a few choices of state functions � specific to DD and their evolution. 

1. Let �( X ; l) = X n , where n counts segments or nodes in the representation of dislocations and X without an index means

the whole array of positions of nodes. Then: 

˙ X n (t) = 

1 




(
R X n t − R X n 

t−


)
, 

2. Let �( X ; l) = l x ( X (σ ) , l(σ )) be the total line length per unit volume of the dislocations present in the DD box at point

x and at time σ , then: 

˙ l x (t) = 

1 




(
R l 

x 

t − R l 
x 

t−


)
. 

Here: 

l x = 

1 

| B x | 
∫ 
B x 

α : α dB x = 

1 

| B x | 
∑ 

i 

αi : αi l i A i , 

where dislocation segments are modeled as cylindrical tubes as shown in Fig. 1 . Here, αi is the dislocation density tensor,

B x is the cube centered around spatial point x , and A i is the core area of the segment i (which is assumed to be | b i | 
2 

up to a constant), m i is the unit Burgers vector direction, t i is the unit line direction, and αi is the contribution to the

dislocation density tensor due to segment i . Using the fact that αi = 

| b i | 
A i 

m 

i 
� t i , the expression 

1 
| B x | 

∑ 

i αi : αi l i A i = 

1 
| B x | 

∑ 

i 
| b i | 2 
A 2 
i 

l i A i = 

1 
| B x | 

∑ 

i 
| b i | 2 
| b i | 4 l i | b i | 

2 = 

1 
| B x | 

∑ 

i l i , which shows that l x is the total dislocation line length

per unit volume, i.e. the total dislocation density. 

3. The plastic strain rate of a microscopic dislocation segment is given by α × V (a detailed explanation is provided in

Acharya (2011) ). The average plastic strain rate, denoted by L p , gives the rate of the plastic slip distortion tensor U 

p : 

˙ U 

p, x 
(t) = L p, x (t) + αx (t) ×V x (t) , 

for a spatial point x . If τ i is the resolved shear stress on segment i , 

( α ×V ) x (X (σ ) , l(σ )) = 

1 

| B x | 
∑ 

i 

τ i | b i | 
B 

m 

i 
� n 

i | b i | 
A i 

l i A i = 

1 

| B x | 
∑ 

i 

τ i | b i | 2 l i 
B 

m 

i 
� n 

i (2.9) 

(
L p, x 

)·(t) = 

d L p, x 

dt 
(t) := 

˙ ( α ×V ) x (t) − d 

dt 

(
αx ×V x 

)
(t) ≈ ˙ ( α ×V ) x (t) 

= 

1 




(
R ( α×V ) x 

t − R ( α×V ) x 

t−


)
, (2.10) 

where the approximation is good when V x and its rate of change are ≈ 0 , which is realistic without reinsertion of

segments (see Section 3.2.2 ). 

In the rest of the paper, we write R ( α×V ) x 
· =: R L 

p, x 

· , with some abuse of notation. 

4. Let V 

x ( X ( σ ), l ( σ )) be the volume-averaged dislocation velocity around x , defined as 

V x = 

1 

| B x | 
∑ 

i 

τi 
B 

{ ( T m i ) × t i } // l i A i , (2.11) 
2 The general form of H -observables is defined in Chatterjee et al. (2018) . Following that definition, the H-observable , is defined as 

�(t) = 

∫ t 
t−


∫ 
R N 

�(γ ) μt ,l(t ) , X 0 (dγ ) . (2.7) 

The Young measure μ(.) corresponding to a sequence of solutions of (2.3) , parametrized by ε → 0, is a probability measure-valued map of the time, t , 

whose values are invariant measures of the fast time Eq. (2.4) . In (2.7) , μt ,l(t ) , X 0 denotes the value of the Young measure at time t , with applied load l ( t ), 

starting from initial state X 0 .The term 

∫ 
R N 

�(γ ) μt ,l(t ) , X 0 ( dγ ) is the average of the state function � with respect to the Young measure at time t . 
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where T , henceforth, represents the Cauchy stress (denoted by σ in (2.1) ) and // represents projection to slip plane and

one needs to adjust for cross-slipping segments. Then: 

˙ 
V x (t) = 

1 




(
R V 

x 

t − R V 
x 

t−


)
. (2.12)

2.5. Adaptation of PTA in application to DD 

Everything explained in the previous sections ( Section 2.3 and 2.4 ) are for fixed number of dofs. However, the number of

dofs in DD is not fixed. PTA is applicable to ode systems while DD is not an ode system (because of the non-fixed number

of dofs) and does not have a fixed phase space in time. Thus, the notion of Young measure, as discussed in footnote 2, does

not apply directly in the case of DD. However, the notion of the running time average R �t , defined in (2.5) survives and can

be determined. 

The application of PTA to DD does not include every step in the PTA algorithm described in (Chatterjee et al., 2018,

Sec. 9) . In particular, there are two main exclusions: 

• The closest point projection of a fixed point in state space on the measure at different instants of slow time (Chatterjee

et al., 2018, Step 3, Sec. 9) , in order to obtain appropriate guesses for fine initial conditions, is not determined. This is be-

cause the microstructure involved in the DD simulations has non-fixed number of dofs. Instead, the final microstructure

of the previous run (at time t − h ′ + 
) is used as the initial condition for the current run (at time t ). 

• The criteria of accepting the measure at discrete times (Chatterjee et al., 2018, Step 4, Sec. 9) is relaxed as this constraint

is too hard, especially for the coarse variable L p . Instead, the value of the coarse variable obtained from the extrapolation

rule is accepted, unless there is a jump (as per Step 4 of Section 3.1 below). 

These exclusions significantly weaken the power of the coarse graining scheme we employ in comparison to PTA, but,

unfortunately, this is the price that has to be paid for the application to DD. 

3. Coarse graining DD simulations in time 

In this section, we consider a single DD box and apply the algorithm to coarse-grain DD simulations in time, in order to

obtain the stress-strain response of the box at slow loading rates. We describe the algorithm of applying PTA in this case,

describe the setup, and then present results. 

3.1. Algorithm 

Given at time t − h ′ : predicted density ρpred (t − h ′ ) , rate of change of density ˙ ρ(t − h ′ ) , predicted plastic distortion rate
L 
p 

pred 
(t − h ′ ) , rate of change of plastic distortion rate ˙ L p (t − h ′ ) . 

Remark. The evolution equation in the model is for L p (as given by (2.10) ). Usually, the evolution equation is for plastic

strain U 

p . 

We know the step size: h ′ and the loading rate: L (t) = c 1 , where c 1 is a constant. The initial loading is l(−
) = 0 , where


 is a fraction of the time period of the slow time-scale, T s (which can be obtained as 1 
c 1 
). 

Also given is the predicted density at time t : 

ρpred (t) = ρpred (t − h ′ ) + ˙ ρ(t − h ′ ) h ′ , 
and the predicted plastic distortion rate at time t : 

L p 
pred 

(t) = L p 
pred 

(t − h ′ ) + 

˙ L p (t − h ′ ) h ′ . 

The tolerance for convergence of R 
ρ
t and R 

ρ
t−


is denoted as tol ρ while the tolerance for convergence of R L 
p 

t and R L 
p 

t−

is

denoted as tol L p . The maximum allowed value of | ˙ L p | is given by the threshold | ̇ L p max | , and if | ˙ L p | > | ̇ L p max | , a ‘jump’, on the

slow-time scale, in the state of the system is said to have occurred at time t . The value of | ̇ L p max | is chosen such that it is
not so large such that no jump is ever detected, and it is neither so small that almost all L p obtained by the algorithm using

DD and the library MoDELib result in a jump in state. The value of | ̇ L p max | listed in Table 1 satisfies these requirements for

the simulations presented in this paper. 

We need to obtain: ˙ ρ(t) , ˙ L 
p 
(t) . 

The steps are: 

1. We use the microstructure obtained at the end of t − h ′ + 
 and apply stress l(t − 
) to obtain R 
ρ
t−


and R L 
p 

t−

(up to

tolerance of tol ρ and tol L p respectively). 

2. With the same microstructure as at the end of Step 1 and with stress l ( t ) a obtain R 
ρ
t and R L 

p 

t . 

3. We obtain ˙ L p (t) from R L 
p 

t−

and R L 

p 

t as ˙ L p (t) = 

1 

 (R L 

p 

t − R L 
p 

t−

) . 

4. If | ˙ L p (t) | > | ̇ L p max | , as mentioned above, a jump in state is said to have occurred at time t . We take final state (of the

dislocation system) at time t as the initial state and go back to Step 1 and repeat all the steps. 
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Table 1 

Simulation parameters for the problem of coarse graining DD simu- 

lations in time. 

Name Physical definition Values 

E Young’s modulus 110 GPa 

μ shear modulus 48 GPa 

b Burgers vector 2 . 55 × 10 −10 m 

B Drag 6 . 30 × 10 −5 Pa.s 

A Box size 4000 b 


∗ time interval in t ∗ 0.1 s 

| e 1 | tolerance for convergence for ρx 10 −2 

| e 2 | tolerance for convergence for L p x 3 × 10 −2 

| ̇ L p max | Threshold for | ̇ L p | to detect a jump 0 . 05 s −2 

L loading rate 1 MPa / s 

ρm Mobile density 5 × 10 12 m 

−2 

ρs Sessile density 2 × 10 14 m 

−2 

L

L

L LL

Fig. 2. Overview of coarse graining DD simulations in time. 

 

 

 

5. If | R L p 
t−


| ≷ | R L p t | for the applied stress tensor magnitude comparision | l(t) | ≷ | l(t − 
) | , we do not readily accept R L 
p 

t−

as the converged value of the running time average of L p at time t − 
. In this case, we keep running the time-average

R L 
p 

t−

to check | R L p 

t−

| ≶ | R L p t | , in which case we accept the value of R L 

p 

t−

. If | R L p 

t−

| ≷ | R L p t | after running the time-average

R L 
p 

t−

for a very long period of time ( N 

t−
 in (2.5) is large enough so that there is essentially negligible change in the 

value of R L 
p 

t−

with (substantially) increasing N 

t−
, so that | R L p 
t−


| ≶ | R L p t | is unlikely to be true in this case), we accept

the value of R L 
p 

t−

as the converged value of the running time average of L p at time t − 
. 

6. The current time step h is subjected to the following time step control: 

| L p (t) | ≤ 0 . 002 

h 

7. We store ˙ ρ(t) and ˙ L 
p 
(t) . We repeat steps 1 to 4 but now at time t + h . 

A flowchart comprising the above steps is shown in Fig. 2 . 
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3.2. DD Simulation setup 

We use the library MoDELib (Mechanics of Defect Evolution Library) ( Po et al., 2014 ) to run the DD simulations. We

generate a microstructure with a specified value of mobile and sessile density of dislocation segments. The mobile and

sessile segments run from boundary to boundary of the DD simulation box. The mobile segments form junctions with the

sessile segments, which act as pinning points, around which they expand. The sessile segment density is much larger than

the mobile segment density and the sessile segments essentially act as obstacles to the motion of the mobile segments. 

The sessile segments are constructed as Lomer Cottrell (LC) locks, therefore their Burgers vector do not lie in their glide

plane. However, majority of sessile segments in FCC crystals do not have this property (i.e. their Burgers vector lie in their

slip plane). Therefore, a more physically appropriate case is when the Burgers vector of the sessile segments lie in the slip

plane. We have presented results for that case as well, to show that such simulations can be performed. 

The preference for using LC locks in this paper is not fundamental but is related to the limitation of the version of

MoDELib that was used when this work was started. 

3.2.1. Construction of initial microstructure 

We populate the domain with mobile and sessile segments as follows: we assume a certain target density of mobile and

sessile segments denoted by ρm 

and ρs respectively (with ρs 	 ρm 

). We insert the mobile density ρm 

in the ratio of the

Schmid factor of the slip system i (denoted as f s,i ), i.e. the target mobile density of slip system i is ρm,i = ρm 

| f s,i | 
�N 

k =1 
| f s,k | , where

N is the total number of slip systems in the crystal. The Schmid factor of slip system i is calculated as 

f s,i = 

b i · ( σe n i ) 

| σe | , (3.1)

where σe is the externally applied stress and | σe | is its norm and b i and n i are the Burgers vector and slip plane normal

of slip system i . The reason behind this kind of insertion is that segments in slip systems with small Schmid factor are

expected to move less compared to those belonging to slip systems with higher Schmid factor, and hence their contribution

to the coarse variables L p and V are less. 

To insert segment n (which lies in slip system i ), we construct a candidate segment as follows. We choose a random

point P 0, n in the domain and then construct a ray from this point along a direction d n , which lies in the slip plane and is

rotated at an angle θn from the Burgers vector b i of its slip system, till it intersects the boundary at point P 1, n . We also

construct a ray from P 0, n in the opposite direction −d n till it intersects the boundary at point P 2, n . In this way, a candidate

segment with end points on the boundary, given by P 1, n and P 2, n is constructed. If the density of the candidate segment

is very close to ρm,i (up to a specified tolerance), it is inserted as segment n , otherwise the process of finding a candidate

segment is repeated until a suitable candidate is obtained. 

We construct another segment n + 1 from another random point P 0 ,n +1 using the approach mentioned above, which

belongs to the same slip system and is on the same slip plane but has opposite line direction. Thus, we have two segments

which have the same density and belong to the same slip system and are on the same slip plane but have opposite line

directions. This is to ensure that the net mobile dislocation density is very close to 0. Similarly, we construct a pair of

segments on the other slip systems. 

After this, we construct a number of sessile segments of total density ρs distributed isotropically across all slip systems

and with zero net dislocation density i.e. every segment constructed has a corresponding segment in the same slip system

at a different position and with same density but opposite line direction. 

3.2.2. Reinsertion of segments 

As the system of dislocation segments evolves, some mobile segments exit the box, leading to a reduction in the density

of mobile segments. To compensate for this, there is a possibility of reinsertion of segments. Possible strategies for reinser-

tion is discussed in the Remark of Section 4.2 . However, in the results that we present in the next sections, reinsertion of

segments is not done. 

3.3. Results 

We present the results of coarse graining DD simulations in time. Traction boundary conditions are applied and the

boundaries of the DD box are considered open (i.e. dislocation segments that exit are not reinserted and the infinite medium

stress fields of individual dislocation segments are employed without correction for finite boundaries - this is simply an

approximation, and not an essential restriction in MoDELib). 

3.3.1. Uniaxial tension 

We consider a cubic box and apply tensile loading (traction boundary condition) in the y -direction ( t 22 loading), with

the crystal in the symmetric double slip orientation (see, e.g., Pierce, 1983 ). The details of the crystallographic setup are in

the Appendix. 

We choose ρm 

= 5 × 10 12 m 

−2 and ρs = 2 × 10 14 m 

−2 . We insert mobile segments in two slip systems, called the primary

and the conjugate slip systems are [101](11 ̄1 ) and [110](1 ̄1 1) respectively (see Fig. 3 ). 
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Fig. 3. Rotated Thompson tetrahedron of the crystal in tension, the primary and conjugate slip systems are given by { b 1 , n 1 } and { b 2 , n 2 } respectively. The 

fixed laboratory axes are marked with subscript l . 

Fig. 4. Evolution of ρ . 

Fig. 5. Evolution of L p . 

 

 

 

 

 

 

 

 

 

 

 

All simulation parameters are provided in Table 1 . 

The following are the results obtained in this setting: 

Fig. 4 shows how ρ evolves with increasing stress. It increases as the mobile segments form junctions with the sessile

segments around which they expand and grow in length. Fig. 5 shows that L p is increased with increasing stress. The plastic

strain norm εp is obtained by integrating | L 
p | in time, i.e. εp (t) = 

∫ t 
0 | L p (t ′ ) | dt ′ . The plastic strain components, which are also

called the directional plastic strain, are obtained as εp,i j = 

∫ t 
0 (L 

p ) sym 

i j 
(t ′ ) dt ′ , where ( L p ) 

sym = 

1 
2 ( L 

p + ( L p ) 
T 
) is the symmetric

part of L p . The stress-strain profile is shown in Fig. 6 . The hardening in the stress-strain profile depends on the mobile

and sessile segment density of the initial microstructure. In general, hardening increases with increase in sessile density

and decreases with increase in mobile density. It also depends on the applied loading rate and increases with increase in

the loading rate. These factors are discussed in more detail in Section 4.3 . In Fig. 7 , the directional plastic strain εp ,22 stays

positive with increasing stress as it should. This is not guaranteed to happen since we do not have a primary slip plane in

this case. However, our algorithm can robustly predict the correct direction of εp ,22 . 

The total strain ε is determined as ε = 

σ
μ + εp , where σ

μ is the elastic strain. The slope of the stress versus total strain

curve (tangent modulus) is shown in Fig. 8 and it is approximately μ
, which is the slope that we expect to see in Stage
200 
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Fig. 6. Stress-strain profile. 

Fig. 7. Stress vs εp ,22 . 

Fig. 8. Tangent modulus. 

 

 

 

 

 

 

 

II hardening ( Kocks and Mecking, 2003 ) (we expect Stage II hardening behavior as we start with a high density of sessile

segments). In general, the tangent modulus decreases with the increase in the ratio of the mobile to sessile segment density

of the initial microstructure. We see that we are able to reach appreciable values of strain at realistic loading rates, at

which experiments can be performed on macroscopic samples to study their plastic response. Performing simulations at

these loading rates using DD simulations alone, for the given domain size and dislocation density, is very expensive and

practically impossible. 

The speedup in compute time, S , of conventional DD to PTA is obtained as follows. The compute time t 
cpu 
DD 

to run DD up

to a time t DD on the slow time-scale is determined. The compute time t 
cpu 
PTA 

to run PTA up to a time t PTA , which is chosen to
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Fig. 9. Rotated Thompson tetrahedron of the crystal in shear. The fixed laboratory axes are marked with subscript l . 

Fig. 10. Evolution of ρ . 

Fig. 11. Evolution of L p . 

 

 

 

 

 

be the slow time at εp = 10% , is also determined. Then, the speedup in compute time, S , is obtained as S = 

(
t 
cpu 
DD 
t DD 

)
÷

(
t 
cpu 
PTA 
t PTA 

)
.

The value of S is around 50 0 0 for this loading case. 

3.3.2. Simple shear 

We consider the same setting as in uniaxial tension but apply shear loading (traction boundary condition) in t 12 direction.

We rotate the crystal such that the crystallographic direction [1 ̄1 1] lies along the global Y axis and the slip direction [011]

lies along the global X direction. The corresponding details of the crystallographic setup are in the Appendix. 

In this case also, we insert segments on two slip systems: [011](1 ̄1 1) and [ ̄1 01](1 ̄1 1) . The former is the primary slip

system as after rotation, its normal is along the global Y axis and we shear along its slip direction (global X axis). The

rotated crystal is shown in Fig. 9 . 

The results are presented below: 
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Fig. 12. Stress-strain profile. 

Fig. 13. Stress vs εp ,12 . 

Fig. 14. Tangent modulus. 

 

 

 

 

 

 

 

These results follow a similar trend as in the uniaxial loading case presented in Section 3.3.1 . We see in Fig. 10 that

dislocation density ρ increases with stress. The definition of plastic strain norm εp , directional plastic strain εp,ij and the

total strain ε are provided in the previous section ( Section 3.3.1 ). In Fig. 13 , we see that the directional plastic strain strain

εp ,12 remains positive with increasing stress, as it is supposed to. In Fig. 14 , the slope of the stress-total strain curve ( Fig. 14 )

comes close to μ
200 , which is the slope we observe in Stage II hardening. The speedup in compute time, S , defined in

Section 3.3.1 , is around 20 0 0. 

4. DD-Continuum plasticity coupling 

All the discussions in the previous sections were for DD simulations in one box. Now we think of many boxes being part

of a larger domain in which we want to do regular plasticity calculations and couple this with a larger plasticity calculation
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Fig. 15. This figure shows the decomposition of the domain of size 25( μm ) 2 into 5 × 5 blocks. Each block contains a DD box. Each block also consists of 

a number of elements (10 × 10 in this figure). 

 

 

 

 

 

 

 

 

 

 

in the body, in which equilibrium equations are solved. The pde-based theory which represents time averaged Dislocation

Dynamics is MFDM, with its typically ‘non-closed’ time averaged inputs now specified from DD, which are obtained using

the framework of PTA as outlined in Section 2.3 and Section 2.4 . 

MFDM ( Acharya and Roy, 2006 ) involves the evolution of the following system of pdes: 

˙ α = −curl ( α ×V + L p ) (4.1a) 

curl χ = α

di v χ = 0 (4.1b) 

di v (grad ˙ z ) = di v ( α ×V + L p ) (4.1c) 

T = C : (grad( u − z ) + χ

di v T = 0 . (4.1d) 

The tensor α is the mesoscopic space-time averaged dislocation density tensor, V is the averaged dislocation velocity

vector, C is the fourth-order, possibly anisotropic, tensor of linear elastic moduli, u is the averaged total displacement vector,

χ is the incompatible part of the averaged elastic distortion tensor, u − z is a vector field whose gradient is the compatible

part of the averaged elastic distortion tensor and T is the averaged stress tensor. The averaged slipping distortion tensor S is

α ×V + L p . When the constitutive inputs L p and V are phenomenologically specified, the model is called Phenomenological

MFDM (PMFDM) ( Acharya and Roy, 2006 ). 

From here onwards, fields without overhead bars refer to averaged fields . 

4.1. DD-MFDM Coupling 

Here, we aim to obtain the constituitve inputs of MFDM theory using PTA .The values of the plastic distortion rate, L p 

and the polar dislocation velocity, V need to be defined at every Gauss point of the MFDM FE mesh. For this, we divide

the domain, �, into n × n blocks. For example, in Fig. 15 , the domain is divided into 5 × 5 blocks. In turn, each block is a

collection of a number of FEM elements that are used in the solution of the MFDM equations. Please note that the thickness

of the block is the same as the thickness of the sample, which implies a state of plane stress. 
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Every block contains a DD box of a fixed size in which DD simulations are performed. We assume the initial DD mi-

crostructure to be the same for the DD simulations corresponding to all the blocks. The stress that is used as input to

perform the DD simulation in each block is the volume average of the stress obtained from the solution of the MFDM equa-

tions, over the block. The (linear, in-plane) dimension of the block, denoted by B , is therefore called the stress-averaging size.

Let the entire domain be denoted by � and the set of all points that lie within block i be denoted as �i . The averaged stress

for block r is denoted as 〈 T 〉 B r , and is given by 

〈 T 〉 B r = 

∫ 
�r 

T dv 
| �r | , (4.2)

where | �r | := B × B × a , where a is the thickness of the block/sample. The stress-averaging size B plays a crucial role

in convergence of the solution for imposed inhomogeneous deformation. It is shown later in Section 4.3 that the in-plane

stress-averaging size is limited approximately by the DD box size, in order to obtain a converged solution in such cases.

However, for imposed homogeneous deformation, convergence in results occur for relatively large stress-averaging sizes. 

Since the size of the block remains fixed for the results in Section 4.3 (except for the convergence studies in Section 4.3.1 ), the

superscript B in 〈 T 〉 B r is dropped from here onwards for notational convenience. 

DD simulations for block r using 〈 T 〉 r at time t and t − 
 are run to obtain measures of the plastic strain rate and

dislocation velocity for that block by integrating (2.10) - (2.12) , which we denote as L 
p 
r and V r , respectively. 

4.1.1. Obtaining L p , V at gauss point of element 

Let the characteristic function of block i be 

χ i ( x ) = 

{
1 , if x ∈ �i 

0 , if x / ∈ �i 

Define ̃  L 
p 
( x ) by 

˜ L 
p 
( x ) = 

N B ∑ 

i =1 

L p 
i 
χ i ( x ) , x ∈ �

where N B is the total number of blocks. 

The field ̃  L 
p 
is discontinuous across blocks. To obtain a ( C 0 ) continuous field in �, we perform the following operations.

We obtain an L 2 projection of ̃  L 
p 
on the finite dimensional space, C 0, B , formed by the linear span of globally continuous,

piecewise smooth finite element shape functions corresponding to a FE mesh for �, comprising the blocks of size B (the

MFDM calculations involve another finer FE mesh that further discretizes the blocks). This projection, after discretization,

gives the values of the plastic strain rate at the nodes of the blocks. Each block, in turn, contains many elements for the

MFDM calculations, and we interpolate using the isoparametric shape functions for the blocks and for the elements within

them to obtain the value of L p at the MFDM elemental Gauss points. 

The above operations can be stated as follows. Define 

̂ L 
p 
:= argmin 

L ∈ C 0 ,B (�) 

∫ 
�

1 

2 
| L −˜ L 

p | 2 dv . 

To keep the debauch of indices to a minimum in what follows, we rename ̂  L 
p 
:= A . The above definition translates to the

following discrete statement: 

N ∑ 

R =1 

N ∑ 

Q=1 

δA R i j 

[ ∫ 
�i 

N 

R δik δ jl N 

Q dv 
] 
A Q 
kl 

= 

N ∑ 

R =1 

δA R i j 

∫ 
�i 

N 

R δik δ jl ̃
 L 
p 

kl dv . 

(note that p is not an index). Here δA 

R is a test function and R and Q are indices representing nodes of the n × n ‘block’ FE

mesh with N 

R and N 

Q denote global shape functions of the mesh. N denotes the total number of nodes of the block mesh.

This results in a linear solve for the nodal values of A on the block FE mesh. 

With the nodal values of A determined so that it is a globally continuous function on the domain, we now determine

the values of this continuous function at the Gauss points of the finite elements comprising the FEM mesh for the MFDM

calculations (where A is needed as an input). This is done as follows. Let M be a node of element e that is contained in

block r , whose isoparametric coordinate (with respect to the containing block r that is an element of the block-FE solve)

is denoted as ξ r 
e,M 

. Then A at node M of element e can be obtained as A e,M,r = 

∑ N v 
Q=1 A 

Q N 

Q (ξ r 
e,M 

) , where N 

v is the number

of nodes on a block (e.g. 8 for a hexahedral brick element). Finally, L p at Gauss point I of element e in block r can be

obtained as L 
p 
e,I,r 

= 

∑ N v 
K=1 A e,K,r N 

K (ξ e 
I 
) , where K is a node of element e (see Fig. 15 ) and ξ e 

I 
is the isoparametric coordinate

of Gauss point I in element e (and we have made the (non-essential) assumption that the each element of the block-mesh

and MFDM-mesh have the same number of nodes). 

We obtain the polar dislocation velocity at the Gauss point I of element e , of block r , V e,I,r in the same way. 
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4.1.2. Ensuring non-negative dissipation 

Let the L p and V (we revert here to dropping overhead bars) obtained at a Gauss point of an element (for MFDM calcu-

lations) as described above be denoted as L 
p 
gp and V gp , respectively. In order to ensure that the dissipation is non-negative,

we redefine the L p and V as 

1. If T : L 
p 
gp = d and d < 0, we take the component of L 

p 
gp given by 

L p = L p gp − d 
T 

| T | 2 . (4.3) 

2. If β = V gp · ( X T α) < 0 , we take the component of V gp given by 

V = V gp − β
X T α

| X T α| 2 . (4.4) 

Here, T and α are the stress and the dislocation density tensor at the Gauss point respectively, while X is the third order

alternating tensor. The dissipation resulting from the components of L p and V given by (4.3) and (4.4) is 0, which can be

verified by taking an inner product of (4.3) and (4.4) with T and XT α, respectively. These L p and V are used to solve the

MFDM equations which is described in detail in Section 4.2.1 . 

4.2. Some practical considerations 

In this section, we discuss some practical aspects relevant to the success of the coupled DD-MFDM strategy. 

• Setting the time interval �∗
For the average of the state functions ( R �t defined in (2.5) ) to converge, the fast dynamics, which is DD in this case,

has to be run long enough. During this period, many junctions are formed and broken, as part of thermal activation

described in Section 2.2 . This period t ′ should be much smaller than the interval 
∗ (a fraction of time period of slow

time-scale T s ; the running time average R �t , of state functions of DD, are averaged over the nondimensional interval


 = 


∗
T s 

to generate coarse variables, see (2.6) ), due to the vast separation in the time-scale of the fast and the slow 

dynamics. Therefore, it is reasonable to say that a � t ′ � 
∗ (where the maximum junction breaking time a is defined

in the discussion following (2.2) in Section 2.2 ) and we fix 
∗ as 
∗ = n a, where n is a positive integer (for the results

presented in Section 4.3 , n was set as 100). 

The MFDM time step is denoted as 
t . It is also necessary that 
∗ < 
t , which is a necessary constraint for the appli-

cation of PTA (see Section 7 in Chatterjee et al. (2018) ). 

The above discussion can be summarized as the following constraint: 

a � 
∗ < 
t . (4.5) 

• The limit load and the FDM time step �t 

The MFDM system evolves in a stable way when the plastic strain increment is less than a threshold of 0.2% in a given

time increment, which is stated as 


t ≤ 0 . 002 

| α ×V | + | L p | . (4.6) 

Eqs. (4.6) and (4.5) have to be always satisfied and form the constraints of the DD-MFDM coupling problem. However,

when | L p | is high, such that 

0 . 002 

| α ×V | + | L p | ≤ 
∗, (4.7) 

for one or more blocks, (4.6) and (4.7) , when combined together, may violate (4.5) . For instance, if 
∗ = 0 . 01 s and

| α ×V | + | L p | = 0 . 03 s −1 , (4.7) is satisfied and 
t ≤ 0.0067 < 
∗ by (4.6) . Thus, (4.5) is violated. In such situations,

since 
t is free to choose, we explicitly set it as 
t = 
∗. When L p is high, it is physically expected that the local flow

stress either stays fixed or decreases. Based on this, we assume that the local stress at time t − 
∗(= t − 
t) and t are

the same, which implies ˙ L 
p = 0 and ˙ V = 0 by (2.10) . When such a plastic instability happens at any point, we declare

that the system has reached a limit load and do not allow the external loading to increase, i.e., L = 0 in (2.3) (we consider

that the simulation is performed in a sophisticated loading apparatus). 

However, if ˙ L p following (2.10) is such that it reduces | L p | to a value such that (4.7) is not true, L p is allowed to evolve

using ˙ L p for that block. If it happens at any time that none of the blocks satisfy (4.7) , then the system is no longer in

the state of limit load. In that case, the loading rate is set back to the prescribed non-zero value for the problem. Hence,

the system is allowed to get out of the limit load condition in a consistent manner. 

We next outline the algorithm of the coupled strategy, which is based on PMFDM algorithm but is modified to incorpo-

rate the above features. 
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Fig. 16. Overview of the DD-MFDM coupling strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.1. Algorithm of DD-MFDM coupling 

A flowchart comprising the key steps in the coupled DD-MFDM strategy is shown in Fig. 16 . In the following part of this

section, we describe the above steps in more detail. 

Let BC and IC be the abbreviation for Boundary Condition and Initial Condition respectively. 

Step 1 : 

BC : z constrained to prevent rigid body motion; χn = 0 , where n is the outward unit normal at the boundary surface, 

IC : α0 is prescribed. 

Solve for χ0 . Solve for z and the initial state of stress due to α0 . 

Step 2 : 

In case a problem on the elastic theory of continuously distributed dislocations (ECDD) needs to be solved for the distri-

bution α0 with applied displacement and/or traction boundary conditions, impose displacement and traction BCs as per the

physical problem we are trying to solve. Superpose the initial state of stress due to α0 with the stress due to displacement

and traction BCs. This is done by solving the MFDM problem with V and L p set to 0 . 

Step 3 : Now initialize the MFDM problem. 

IC: u , z , α and χ to be retrieved from the previous step results. 

BC: χn = 0 at the boundary, which implies that the incompatible part of U 

e is 0 if α = 0 . z is to be specified at one point

to get a unique solution. 

The BC on α can be specified in two ways, which are called the constrained and unconstrained cases. In the constrained

case, the body is plastically constrained on the boundaries and dislocations cannot exit the body, but can only move in

a tangential direction at the boundary. The BC for this case is ( α ×V + L p ) × n = 0 on the boundary. A less restrictive BC

which corresponds to the unconstrained case is the imposition of the dislocation flux α( V · n ) on the inflow points on the

boundary (where V · n = 0 ), along with the specification of L p × n on the entire boundary. This condition allows the free

exit of GNDs at the outflow points. 

The time step at the first increment is 
t 0 = 
t pres , where 
t pres is the prescribed time step for the problem. The total

time of the simulation is T s . 

The steps are as follows. For every increment k (while t k < T s ), 

1. The time step 
t k is subjected to the time step controls in items 7, 9 and 15 below. 

For each block r : 

2. Obtain the averaged stress at the start of increment k , 〈 T 〉 k r (the values of u k , z k , αk and χk are known at all Gauss

points at the start of increment k ). Next, we pass the stress ̂ T 
k 
r,t−
 = 〈 T 〉 k r and ̂ T 

k 
r,t = 〈 T 〉 k r + 


∗

t k −1 

(〈 T 〉 k r − 〈 T 〉 k −1 
r 

)
to

run PTA at block r . The time interval 
∗ was defined in Section 4.2 . 

3. If | ̂  T 
k 
r,t−
| and | ̂  T 

k 
r,t | are close to each other ( | ̂  T 

k 
r,t − ̂ T 

k 
r,t−
| is less than a threshold, which was found to be around

0.5 MPa ), the numerator on the rhs of (2.10) (which gives L p ) becomes small and DD cannot resolve it, which is a

limitation of DD and the library MoDELib which we used to implement DD. In that case, since ̂  T 
k 
r,t is the only variable
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we are free to modify, we change it, while keeping ̂  T 
k 
r,t−
 fixed, such that the difference is 0.5 MPa. It is obtained as:

mag = 

0 . 5 

| ̂  T k r,t −̂ T k r,t−
| 
, if mag > 1, ̂ T 

k 
r,t = ̂

 T 
k 
r,t−
 + mag ( ̂  T 

k 
r,t − ̂ T 

k 
r,t−
) . 

4. Obtain ˙ L 
p,k 

r and ˙ V 
k 

r using PTA (using (2.10) and (2.12) respectively). From here onwards, we drop the overhead bars from

the averaged velocity field for notational convenience . 

5. If mag > 1, then scale ˙ L 
p,k 

r and ˙ V 
k 

r down by mag i.e. ˙ L 
p,k 

r = 

˙ L 
p,k 
r 

mag and 
˙ V 
k 

r = 

˙ V 
k 
r 

mag . This is because ideally 
˙ L 
p,k 

r should be

generated from 

̂ T 
k 
r,t−
 and ̂ T 

k 
r,t using PTA as per Step 4 above. However, due to the restriction imposed by DD on

the minimum threshold of the difference | ̂  T 
k 
r,t − ̂ T 

k 
r,t−
| , the value of ̂ T 

k 
r,t+
 was modified in order to scale up the

difference to 0.5 MPa, as outlined in Step 3. Thus, the resulting ˙ L 
p,k 

r must be scaled down such that it corresponds to

the original stress difference between ̂ T 
k 
r,t and 

̂ T 
k 
r,t−
. 

6. Calculate L 
p,k 
r = L 

p,k −1 
r + 

˙ L 
p,k −1 

r 
t k −1 and V k r = V k −1 
r + 

˙ V 
k −1 

r 
t k −1 . 

7. We check if the limit load has been reached by checking if 0 . 002 

| αk ×V k | + | L p,k r | ≤ 
∗ ( Eq. (4.7) ) at any block r . If yes, we set the

loading rate L to 0, otherwise we keep it at the prescribed value for the problem. We also set 
t k = 
∗. Moreover, if for

any block r , Eq. (4.7) is satisfied, we set L 
p,k +1 
r = L 

p,k 
r and V k +1 

r = V k r (which is equivalent to setting ˙ L 
p,k 

r = 0 and ˙ V 
k 

r = 0 ).

The justification for these assignments is provided in Section 4.2 . 

8. For all Gauss points, calculate L p,k and V 

k as follows: 

(a) Obtain L 
p,k 
gp and V k gp at Gauss points of elements in block r from L 

p,k 
r and V k r using the procedure described in

Section 4.1.1 . 

(b) Modify L p,k and V 

k using (4.3) and (4.4) respectively, to ensure non-negative dissipation at every Gauss point. 

9. The numerical stability condition is given by: 


t k ≤ min gp 

(
0 . 002 

| αk ×V k | + | L p,k | , f 
d 

| V | 
)
, f ∼ 0 . 1 (4.8) 

where gp is the set of all Gauss points in the sample and d is a minimum element edge length. This reflects a conserva-

tive choice between a Courant condition and a maximum bound of 0.2% on the plastic strain increment. 

0. Impose displacement and/or traction boundary condition. 

1. Solve α Eq. (4.1a) for αk +1 : αk +1 = αk − 
t k curl ( αk +1 ×V k + L p,k ) . 

2. Solve χ Eq. (4.1b) for χk +1 : αk +1 = curl χk +1 and di v χk +1 = 0 . 

3. Solve z Eq. (4.1c) for z k +1 : di v (grad ˙ z k ) = di v ( αk +1 ×V k + L pk ) . 

4. Solve u Eq. (4.1d) for u k +1 : di v T k +1 = 0 , T k +1 = C : U 

e (k +1) , u e (k +1) = grad( u k +1 − z k +1 ) + χk +1 . 

If 
t k does not satisfy 


t k < = min gp 

(
0 . 002 

| αk +1 ×V k +1 | + | L p,k | , f 
d 

| V k +1 | 
)

, 

then it is likely that the computed state at increment k + 1 gives rise to a large plastic strain rate, and the increment from

k to k + 1 should be done with a smaller time step to have better control on the evolution. Therefore, as a preemptive

measure, set it as 


t k = min gp 

(
0 . 002 

| αk +1 ×V k +1 | + | L p,k +1 | , f 
d 

| V k +1 | 
)

. 

Then reinitialize the increment k and go to Item 1 of Step 4. This process of rerunning the increment is called cutback . 

Special algorithms are required to solve the MFDM equations (items 9 through 14 above). These algorithms can be found

in Roy and Acharya (2005, 2006) . 

5. An additional stress-based time step control is placed due to the introduction of DD in the MFDM problem. It is imple-

mented as follows. Compute | ̂  T 
k +1 
r,t−
 − ̂ T 

k 
r,t−
| , if it is greater than a threshold (assumed to be 3 MPa), then reduce 
t k ,

calculated using item 7 above, by half, and rerun the current increment. If in this process, 
t k comes out less than 
∗,
then put 
t k = 
∗. Restricting the value of | ̂  T 

k +1 
r,t−
 − ̂ T 

k 
r,t−
| to within a threshold by reducing the time step has been

found to make the evolution of the DD-MFDM coupled problem more stable, as the DD microstructure is not subjected

to high variation in the applied stress that goes into the PTA calculation, between consecutive time steps. 

6. If it happens that 
t k < 
t step and min gp 

(
0 . 002 

| αk ×V k | + | L p,k | , f 
d 
V 

)
≥ 
t k (where gp is the set of all Gauss points in the sample)

for two consectutive steps, then double 
t k . This increases the time step when plastic strain rate reduces. 

Remark. There is only stress-coupling between DD and MFDM in this first exercise. The DD microstructure can also be

coupled to other descriptors and the density in the DD boxes can be adjusted through reinsertion of segments (which was
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Fig. 17. Boundary conditions for uniaxial tension. 
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discussed briefly in Section 3.2.2 ) in tune with such descriptors. One such descriptor is the GND density α predicted by the

coupled MFDM-DD strategy, whose field equation is provided in (4.1) . 

More importantly, another descriptor - the averaged total dislocation density ρ (whose evolution equation is derived in

Chatterjee and Acharya 3 ), where the microscopic total dislocation density is defined as ρ := α: α, needs to be solved and
evolved as an additional equation in MFDM-DD coupling, thus augmenting its current structure. These descriptors will act

as feedback for the initialization of the DD microstructure at discrete time steps. 

4.3. Results and discussion 

In this section, we present results on the 

• convergence 
• orientation effect 
• rate effect 
• effect of initial DD microstructure 

for the DD-MFDM coupled problem under load and displacement control. 

Following the discussion in Section 3.2 , there are two cases into which the results can be categorized: 

• Case 1. The sessile segments are constructed as Lomer Cottrell (LC) locks, with their Burgers vector out of the slip plane.

• Case 2. The sessile segments are constructed such that their Burgers vector lie in the slip plane. 

Most of the results presented in this Section correspond to Case 1, while a few results for Case 2 have also been pre-

sented. The justification for the preference of Case 1 in has been provided in Section 3.2 . 

4.3.1. Case 1 with load control 

We apply two load cases of simple shear and uniaxial tension. The boundary conditions for the two loading cases are as

follows. Standard displacement boundary condition to prevent rigid body motion is applied. For uniaxial tension, we apply

the traction t = t 22 e 2 on the top face and keep the bottom face fixed in the Y direction ( x 2 = 0 ), as shown in Fig. 17 . For

the shear problem, we apply the traction t = t 12 e 2 and t = t 12 e 1 on the top and right face respectively, and t = −t 12 e 1 and

 = −t 12 e 2 on the left and bottom faces respectively. The load ( t 12 for the shear problem and t 22 for the tension problem)

depends on the loading rate l , which is set as 1 MPa / s unless the limit load is reached, in which case it is set to 0. All
simulation details are mentioned in Table 1 in Section 3.3 . 

3 The evolution of ρ is given by 

˙ ρ = − grad ρ ·V − 2 ρ di v V + 2 α : (di v α �V ) + 2 α : { α grad V } − �gradρ · �V 

− 2 �ρ�di v V + 2 α : ( �di v α � �V ) + 2 �α : �di v α�V + 2 α : �α �grad V 

+ 2 �α : �α grad V , 

where �( · ) r epr esents the fluctuation of the quantity ( · ) and is defined as 

�(·) = (·) − (·) , 
where the space-time averaged field (·) is obtained using an averaging procedure utilized in the literature for multiphase flows (see Babic, 1997 ). 
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Fig. 18. Convergence in stress-strain response for 25 μm sample in tension for different stress-averaging sizes. The averaging blocks are squares with 

edge-lengths in μm . 

Fig. 19. Relative error between the responses in uniaxial tension. 

Fig. 20. Convergence in stress-strain response for 400 μm sample in tension for different stress-averaging sizes (in μm) . 

 

 

 

 

 

 

 

 

 

 

 

Convergence We choose a 25 μm × 25 μm × 1 μm sample and divide it into 2500 (tri)linear brick elements each of size

0.5 μm × 0.5 μm × 1 μm . As introduced and explained in Section 4 , we divide the domain into 5 × 5, 7 × 7 and 10 × 10

blocks with stress-averaging size of 5 μm , 3.5 μm and 2.5 μm respectively. We perform DD simulations in each such block (in

parallel). 

The stress strain curves for the 25 μm size in tension for different stress-averaging sizes (in units of μm ) are shown in

Fig. 18 . The relative error of the stress strain response is calculated as 
| σB 1 

(ε) −σB 2 
(ε) | 

| σB 2 
(ε) | × 100 , where σB 1 

(ε) and σB 2 
(ε) are the

stresses corresponding to strain ε, for runs with stress-averaging sizes of B 1 and B 2 respectively (where the smaller stress-

averaging size B 2 is taken as the base). The relative error is shown in Fig. 19 which is very small. We also found that there is

no significant size effect as we increase the sample size and the relative error for large samples with large stress-averaging

size still comes out to be small. For example, the response for a 400 μm sample with averaging sizes of 40 μm and 80 μm

are very close as shown in Fig. 20 and the average relative error is only 1.03%. This shows that for imposed homogeneous

boundary conditions, our model works like conventional plasticity (without constitutive assumptions) and the relative error

is small for relatively large stress-averaging sizes. 
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Fig. 21. Convergence in effective stress-strain response for 8 μm × 32 μm sample in pure bending for different stress-averaging sizes ( the stress-averaging 

blocks corresponding to the black curve are rectangular with dimensions (in μm) . The others are square with the mentioned edge-lengths (in μm)) . 

Fig. 22. Relative error between the responses in pure bending. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also consider a 8 μm × 16 μm × 1 μm sample and divide the domain into 2 × 8, 4 × 16 and 8 × 16 blocks with stress-

averaging size of 4 μm × 4 μm , 2 μm × 2 μm and 1 μm × 2 μm respectively and apply the traction t = t 22 e 2 = t m 

(1 − 2 
x 1 
H )

on the top face (where t m 

is a constant and H is the size of the sample in the x 1 direction), while keeping the bottom face

fixed and all other faces free (compare with Fig. 17 ). This corresponds to pure bending of a beam with applied axial force

on the top face varying linearly from positive to negative with the bottom face fixed. The effective stress strain response

corresponding to the different stress-averaging sizes are presented in Fig. 21 (please note that ˜ σ = 

M 

bH 2 
and ˜ ε = θ H 

2 L are the

effective stress and effective strain respectively, where M is the moment of the applied axial forces about the neutral axis

x 1 = H/ 2 , θ is the averaged rotation of the top face about the plane x 2 = L and L and b are the dimensions of the sample in

the x 2 and x 3 directions respectively). The relative errors between the different responses are shown in Fig. 22 . This shows

that in order to see convergence in results for strongly inhomogeneous deformation like in this case, the stress-averaging

size needs to be approximately limited to the size of the DD box (which is 1 μm in our case). Nevertheless, there are still

significant savings due to time averaging, and the ‘error’ between the solution for the 2 × 2( μm ) 2 and the 1 × 2( μm ) 2

stress-averaging sizes is quite acceptable. 

We consider a 8 × 32( μm ) 2 sample with stress averaging size of 1 × 2( μm ) 2 and subject it to uniaxial tension and pure

bending. A field plot of the norm of the dislocation density in uniaxial tension is shown in Fig. 23 a while the same for pure

bending is shown in Fig. 23 b, at similar values of strain (approximately 0.19%). The sample in pure bending clearly shows

more inhomogeneity (as measured by | α|) compared to the sample in uniaxial tension. 

Microstructure, rate and orientation effects 

The initial state of DD for the simulation is refererred as the initial DD microstructure. The state of the sample obtained

from solving the MFDM system is simply called the microstructure. Here, we discuss about the details of the microstructure

and various effects that we observe. 

1. Microstructure We see the variation of the norm of the dislocation density tensor (| α|/ b ) and the norm of the deviatoric

stress, referred to as J here, across the domain for a 25 micron size with stress averaging size of 5 μm in uniaxial tension
2 
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Fig. 23. Spatial inhomgeneity measured by the norm of the dislocation density (| α|/ b ) for an 8 × 32( μm ) 2 sample with stress averaging size of 1 × 2( μm ) 2 

: ( a ) Uniaxial tension at 0.187% strain ( b ) Pure bending at 0.194% strain. 

Fig. 24. The microstructure for 25 μm sample in uniaxial tension with stress averaging size of 5 μm at 10.3% strain: (a) The norm of dislocation density 

(| α|/ b ) ; (b) The norm of the deviatoric stress J 2 . The development of significant heterogeneity can be observed. 

 

 

 

 

 

 

 

 

 

 

 

in Fig. 24 a and Fig. 24 b respectively. We see that both the dislocation density and stress profiles are heterogeneous at

high levels of strain. 

2. Orientation effects We see in Fig. 25 that the stress-strain profile for the 25 μm sample is harder for uniaxial tension

as compared to simple shear. This is expected, as in the shear case, we have dislocation segments in the primary plane

which have a higher Schmid factor, while in the tension case, we have segments in planes which have smaller Schmid

factor. The ratio of the sum of the Schmid factors of the active slip systems (denoted as f s,i and defined in (3.1) ) is 1.84.

The ratio of the stress response of the uniaxial tension and simple shear as shown in Fig. 25 lies between 1.99 and 2.31

with a mean of 2.13. Thus, the difference in the response between the two orientations is in accord with the prediction

of the Schmid factor. However, it is to be noted that this is an emergent behavior and there is no ad-hoc assumption

made here. 

3. Rate effects With the reduction of loading rate, the stress-strain response becomes softer in both tension and shear (as

shown in Fig. 26 for a 25 micron sample), as expected, because there is more time for plasticity to happen. The response

is appreciably rate dependent for the loading rate of 1 MPa/s and the nominal mobile and sessile dislocation densities

(of 1 . 51 × 10 12 m 

−2 and 1 . 63 × 10 14 m 

−2 respectively) involved. Rate independence is explored later. 
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Fig. 25. Orientation effect: stress-strain response for 25 micron sample in uniaxial tension ( t 22 ) and simple shear ( t 12 ) under load control. 

Fig. 26. Rate effect: stress-strain response for 25( μm ) 2 sample in uniaxial tension under load control at different rates. 

Fig. 27. Stress-strain response for 25( μm ) 2 sample in uniaxial tension with different initial microstructure described by their mobile and sessile densities, 

their average given by σ̄ and the upper and lower bounds given by σ̄ + std(σ ) and σ̄ − std(σ ) respectively, where std ( σ ) is the standard deviation of the 

stress across all the different initial microstructures. The units of ρm and ρs is m 

−2 . 

 

 

 

 

 

 

4. Effect of different initial DD microstructure We run a number of simulations with different initial DD microstructures

and then take the average of the stress-strain response obtained from these runs. The results are presented in Fig. 27 . 

The response varies with the choice of the initial DD microstructure. In general, for the same ρs , an increase in ρm leads

to a softer stress strain response. This is expected as more mobile density means more generation of plastic strain, and

hence the curve is supposed to be softer. 

The layout (configuration of the dislocation segments) of the initial DD microstructure also appears to be very important

in determining the response of the sample. However, in reality, for macroscopic samples of size greater than 100 μm ,

the layout of the initial microstructure does not play such an important role. Thus, this is a limitation of our strategy.
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Fig. 28. Stress-strain response for 25 micron sample in uniaxial tension under displacement control at applied strain rate of s = 10 −4 /s . 

Fig. 29. Orientation effect: stress-strain response for 25( μm ) 2 sample in uniaxial tension ( t 22 ) and simple shear ( t 12 ) under displacement control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One way to address this is to add macroscopic descriptors in MFDM, which will act as sources of feedback, based on

which the evolution of the DD microstructure can be controlled. 

4.3.2. Case 1 with displacement control 

We also perform the simulation for the 25 micron sample with displacement control. Standard displacement boundary

condition to prevent rigid body motion is applied. However, instead of applying the traction t = t 22 e 2 on the top face as

shown in Fig. 17 , we apply displacement boundary condition on the top face corresponding to uniaxial tension x = x 2 e 2 and

the bottom face is kept fixed in the Y direction. The current load x 2 depends on the strain rate s unless it is set to 0 when

the limit load is reached. However, one point of difference in the displacement control case from the load control case is

that when the load is kept fixed in the load control case, deformation still happens and we are supplying energy to the

system, which is not true when we keep the displacement fixed in the displacement control case. The goal is to be able to

run simulations for very slow loading rates upto appreciable values of strain. 

The stress-strain response depends on the ratio of mobile segment density ( ρm ) to sessile segment density ( ρs ). In gen-

eral, for a particular value of applied strain rate, there appears to exist an approximate ratio r = 

ρs 

ρm , for which the simula-

tions can be performed upto large values of strain, without the occurrence of a collapse (vanishing of the reaction force) in

the stress-strain response. For example, we used two microstructures with ρm and ρs mentioned in Fig. 28 ( ρm and ρs are

in units of m 

−2 here and in the results mentioned later). The ratio r comes out to be 590.28 and 625 respectively for the two

microstructures. Using a ratio of this order for the initial microstructure, the simulations could be performed with an applied

strain rate of s = 10 −4 /s, without a collapse. The response corresponding to ρm = 2 . 82 × 10 11 m 

−2 and ρs = 1 . 7 × 10 14 m 

−2 

shows a drop in stress from a strain of 0.07% to a strain of 0.17%. The drop in stress at very small strains is a common

feature of responses for uniaxial tension using displacement control (see Fig. 29 and Fig. 30 ). At small strains and high val-

ues of stress, there is increased motion of dislocations, leading to a rise in the plastic strain rate, which causes the drop in

stress. This follows with a rise in stress till a strain of 0.63%, which is caused by the internal stress fields which affect the

Peach-Koehler forces acting on the segments and slows their motion. 

Next, we discuss about the orientation and rate effect and the effect of different initial DD microstructures under dis-

placement control. 
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Fig. 30. Rate effect: stress-strain response for 25( μm ) 2 sample in uniaxial tension under displacement control at different rates. 

Fig. 31. Rate effect: stress-strain response for 25( μm ) 2 sample in uniaxial tension under displacement control at different rates. The strain rate s is in units 

of sec. −1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Orientation effects We see in Fig. 29 that the stress-strain profile for the 25 μm sample is harder and has higher yield

stress (the value of stress at which the slope reduces significantly from the initial slope of the elastic response) for

uniaxial tension as compared to simple shear. This is expected, as in the shear case, we have dislocation segments in the

primary plane which have a higher Schmid factor, while in the tension case, we have segments in planes which have

smaller Schmid factor. The ratio of the sum of the Schmid factors of the active slip systems (denoted as f s,i and defined

by (3.1) ) is 1.84. The ratio of the stress strain response of the uniaxial tension and simple shear, as shown in Fig. 29 , lies

between 2.87 and 3.49, for strain higher than 1 % (which is maximum value of strain at which the response for both the

loading cases show yielding). 

2. Rate effects We see in Fig. 30 that with the reduction of loading rate, the stress-strain response becomes softer and

has a lower yield stress in uniaxial tension. This is expected, as for lower strain rate, there is more time for plastic

deformation to happen. The response is rate dependent for a loading rate of 10 −3 /s and mobile and sessile dislocation

densities of 3 . 73 × 10 11 m 

−2 and 1 . 67 × 10 14 m 

−2 respectively. 

The response is harder for s = 10 −4 /s ( Fig. 31 ) compared to s = 2 × 10 −5 /s for ρs = 1 . 7 × 10 14 m 

−2 . However, for ρs =
10 15 m 

−2 , the response is rate independent for s = 10 −4 /s compared to s = 2 × 10 −5 /s, till a strain of 0.2%. For higher

strains, the response for s = 2 × 10 −5 /s is harder compared to that for s = 10 −4 /s . The response for s = 2 × 10 −5 /s shows

Stage I hardening till a strain of 0.2 %. Then it rises steeply till a strain of 0.35 %, which is characteristic of Stage II

hardening. The average slope of the stress-strain curve in this part is 17.71 GPa, which is much higher than μ
200 = 0 . 24 GPa

(where μ is the shear modulus, whose value has been provided in Table 1 ), which is the slope observed in Stage II

hardening in macroscopic samples. 

This follows with a decrease in the slope (Stage III hardening). It is observed that ρm does not appreciably increase

(while ρs is fixed), so the hardening is not caused by an increase in the density of dislocation segments. This strongly

implies that the internal stress field affects the Peach-Koehler force acting on the segments and causes the hardening. 

The response with different initial microstructures having approximately same ρm ( ≈ 1 . 5 × 10 12 m 

−2 ), ρs ( ≈ 10 15 m 

−2 )

and with loading rate s = 2 × 10 −5 s −1 are shown in Fig. 32 . We see variation in Stage I and Stage II hardening in these

responses. 
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Fig. 32. Rate effect: The strain rate s is in units of sec. −1 . 

Fig. 33. Stress-strain response for 25 micron sample in uniaxial tension with different initial microstructure described by their mobile and sessile densities, 

their average given by σ̄ and the upper and lower bounds given by σ̄ + std(σ ) and σ̄ − std(σ ) , where std ( σ ) is the standard deviation of the stress across 

all the different initial microstructures. 

 

 

 

 

 

 

 

 

 

 

 

 

3. Effect of different initial microstructure We run a number of simulations with different initial microstructures and

then take the average of the stress-strain response obtained from these runs. 

The results are presented in Fig. 33 . We see that there the response varies with the choice of the initial DD microstruc-

ture. In general, for the same ρs , higher the ρm , the softer the stress strain response is. This is expected as more mobile

density means more generation of plastic strain, and hence the curve is supposed to be softer. 

4. Initial yield In Fig. 29 , the intial yield stress (the value of stress at which the response deviates from being elastic) of

the response corresponding to uniaxial tension is approximately 35 MPa while that for simple shear is approximately

10 MPa. Thus, the ratio between the yield stresses for the two cases is around 3.5. The ratio of the Schmid factors

corresponding to the primary planes of the orientations for these two loading cases (as described in Section 3.3.1 and

3.3.2 respectively) is 2.45. This is a prediction of the coupled DD-MFDM strategy, without any ad-hoc assumption put in

by hand. 

4.3.3. Case 2 

In this case, the Burgers vector of the sessile segments lie in the slip plane. Thus, this is a more physically appropriate

case. We present some results for this case to show how it compares with Case 1. 

The stress strain response of a 25 μm sample in uniaxial tension, under load control, at loading rates of 1 MPa/s and

0.1 MPa/s is shown in Fig. 34 . Case 1 is represented as b s · n � = 0. Case 2 is represented as b s · n = 0 . 

The stress strain response of a 25 μm sample in uniaxial tension, under displacement control, at a strain rate of 10 −3 s −1 

is shown in Fig. 35 . 

This important physical idealization appears to suggest (as evident in Fig. 34 and Fig. 35 ) that the response is harder

when the Burgers vector of the sessile segments lie in the slip plane, when compared to the case where they lie outside
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Fig. 34. Stress strain response of a 25 micron sample in uniaxial tension at different loading rates under load control for Case 1 ( b s · n � = 0) and Case 2 

( b 
s · n = 0 ). 

Fig. 35. Stress strain response of a 25 micron sample in uniaxial tension at strain rate of 10 −3 s −1 under displacement control for Case 1 ( b s · n � = 0) and 

Case 2 ( b 
s · n = 0 ).. 

 

 

 

 

 

 

 

 

 

 

the slip plane. The Burgers vector distribution of the sessile segments affect the Peach-Koehler force driving the motion of

each segment, thus affecting the overall plasticity in the block. These preliminary results suggest that, even after averaging,

this is a significant effect. 

4.3.4. Speedup 

The speedup in compute time for a single Gauss point case, for a 1 μm DD box, as mentioned in Section 3.3 , is around

10 0 0. So, for a 25 μm sample, the speedup is around 

25 

1 
× 25 

1 
× 10 0 0 = 6 . 25 × 10 5 . 

This is a very conservative estimate since we are not considering the interactions that would exist between these 1 μm

boxes throughout the sample of 25 μm . But even for such a conservative estimate, the speedup is very high when compared

to conventional DD, which shows the advantage of our DD-MFDM coupling strategy. 

5. Summary and conclusions 

A novel concurrent, multiscale approach to meso/macroscale plasticity has been implemented using a carefully designed

coupling of MFDM with space-time averaged inputs from DD simulations. Stress-strain response at realistic slow loading

rates for large sample sizes and with significant speedup in compute time (around 10 5 using a conservative estimate) have

been obtained, showing the advantage of our coupled approach compared to conventional DD. 

We demonstrate a strong dependence of the results on 

• the orientation of the microstructure (for the two loading cases of simple shear and uniaxial tension) 

• the loading rate, and 
• the ratio of mobile to sessile segment density, 

in both load and displacement controlled simulations. There appears to be a limiting stress-averaging size for imposed inho-

mogeneous deformation for which converged stress-strain response may be obtained. The collective behavior of dislocations
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accounting for their stress interactions in detail is demonstrated. The effect of internal stresses, which control the Peach-

Koehler forces acting on the segments and affect their motion, is visible in the computed stress-strain response. 

The only constitutive assumption used in this coupled strategy is a simplified adaptation of the thermal activation of

dislocation motion past obstacles ( Kocks and Mecking, 2003 ), which is described in Section 2.2 . However, the order of the

timescale set by the plastic strain rate obtained in our simulations is very different from the timescale set by the junction

breaking time. 

We point out the (current) limitations of our approach. These are 

• The dislocation content that is allowed to be mobile does not grow in density to the extent that is observed in reality.

In a well annealed crystal, the total dislocation density grows by around 8 orders of magnitude and a large fraction

of the mobile segments becomes sessile. Our simulations are currently incapable of representing such growth of the

dislocation density. To account for this deficiency, we adopt the physical picture of Kocks-Mecking ( Kocks and Mecking,

2003 ) and work with an a-priori assumption of a sessile distribution of dislocations in each DD box and a separate

mobile population, the latter being allowed to evolve and grow (or diminish), with full interaction within itself as well

as with the sessile population. 

• The polar dislocation velocity is negligible. 
• The response is highly dependent on the configuration of the segments in the initial DD microstructure. In reality, for

macroscopic samples, it is generally observed that the response does not vary so much based on the state of the ini-

tial microstructure. Whether our simulations bear out this expectation for larger sample sizes needs to be explored.

A difficulty associated with performing our simulations for large sample sizes is the computational expense. However,

this is not a fundamental difficulty but a practical one, which can be addressed with more sophisticated parallelization

algorithms and implementation than this first effort. 

Immediate partial remedial measures for these limitations are expected to be the accounting of the mobile density in DD

boxes in accord with the averaged dislocation density ρ (as discussed in Section 4.2 ) and the GND density α suggested by

MFDM, in the coupled DD-MFDM strategy. These descriptors will act as feedback for the initialization of the DD microstruc-

ture at discrete time steps. 
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Appendix. Some details of crystallographic setup 

Let an orthonormal basis (in which crystallographic vectors of a lattice are most easily represented in components) be

called a crystal basis { ̂ e i } . Let a global orthonormal basis representing a laboratory frame be { e i }. The crystal-to-global (C2G)

transformation matrix A is defined as the transformation rule expressing components of any vector on the global basis

in terms of its components in the crystal basis. Thus, writing any vector v as v = c i ̂ e i = g i e i , we have g k = ( e k · ˆ e i ) c i , and
therefore, A ki = e k · ˆ e i . 

Now suppose we do not have information on the crystal basis vectors but instead know a set of orthonormal crystal-

lographic directions { c j } that coincide with the global basis vectors, i.e. c j = e j , where c j = C i j ̂  e i and the C ij are known by

hypothesis . Then, 

e j = c j ⇒ δmj = ( e m 

· ˆ e i ) C i j = A mi C i j ⇒ C −1 
mp = A mp . 

But the matrix C has for columns the components of an orthonormal basis expressed on the basis { ̂ e i } . Thus, C is an orthog-
onal matrix and its transpose is its inverse. Then, A has as rows the components of the basis { c j } expressed in the crystal

basis { ̂ e i } . 
In the symmetric double slip orientation used for the uniaxial tension in Section 3.3.1 , the crystal is rotated such that the

crystallographic direction 1 √ 

2 
[0 ̄1 1] is along the global X axis and the crystallographic direction 1 √ 

6 
[211] is along the global Y

axis. The C2G transformation matrix corresponding to this orientation is 

A = 

⎡ 

⎣ 

0 − 1 √ 

2 

1 √ 

2 
2 √ 

6 

1 √ 

6 

1 √ 

6 

− 1 √ 

3 

1 √ 

3 

1 √ 

3 

⎤ 

⎦ . 
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The C2G transformation matrix corresponding to the simple shear orientation (as described in Section 3.3.2 ) is 

A = 

⎡ 

⎣ 

0 1 √ 

2 

1 √ 

2 

− 1 √ 

3 

1 √ 

3 
− 1 √ 

3 

− 2 √ 

6 
− 1 √ 

6 

1 √ 

6 

⎤ 

⎦ . 
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