
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gopt20

Optimization
A Journal of Mathematical Programming and Operations Research

ISSN: 0233-1934 (Print) 1029-4945 (Online) Journal homepage: https://www.tandfonline.com/loi/gopt20

Smoothing techniques and difference of convex
functions algorithms for image reconstructions

Nguyen Mau Nam, Le Thi Hoai An, Daniel Giles & Nguyen Thai An

To cite this article: Nguyen Mau Nam, Le Thi Hoai An, Daniel Giles & Nguyen Thai An (2019):
Smoothing techniques and difference of convex functions algorithms for image reconstructions,
Optimization, DOI: 10.1080/02331934.2019.1648467

To link to this article: https://doi.org/10.1080/02331934.2019.1648467

Published online: 03 Aug 2019.

Submit your article to this journal

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gopt20
https://www.tandfonline.com/loi/gopt20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331934.2019.1648467
https://doi.org/10.1080/02331934.2019.1648467
https://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2019.1648467&domain=pdf&date_stamp=2019-08-03
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2019.1648467&domain=pdf&date_stamp=2019-08-03

OPTIMIZATION
https://doi.org/10.1080/02331934.2019.1648467

Smoothing techniques and difference of convex functions
algorithms for image reconstructions

Nguyen Mau Nama, Le Thi Hoai Anb, Daniel Gilesc and Nguyen Thai And

aFariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR,
USA; bComputer Science and Applications Department, LGIPM, University of Lorraine, Metz, France;
cDepartment of Mathematics, Santa Barbara City College, Santa Barbara, CA, USA; dInstitute of
Fundamental and Frontier Sciences, University of Electronic Science and Technology of China,
Chengdu, People’s Republic of China

ABSTRACT
In this paper, we study characterizations of differentiability
for real-valued functions based on generalized differentiation.
These characterizations provide the mathematical foundation
forNesterov’s smoothing techniques in infinite dimensions. As
an application, we provide a simple approach to image recon-
structions based on Nesterov’s smoothing and algorithms for
minimizing differences of convex (DC) functions that involve
the �1 − �2 regularization.

ARTICLE HISTORY
Received 13 October 2018
Accepted 5 July 2019

KEYWORDS
Generalized differentiation;
Nesterov’s smoothing
techniques; DC algorithm;
image reconstruction

AMS SUBJECT
CLASSIFICATIONS
49J52; 49J53; 90C31

1. Introduction and problem formulation

Gradient-based methods in optimization have been strongly developed over the
last decades to solve optimization problems. One of the disadvantages of these
methods is the requirement of the differentiability of the objective functions
involved, while nondifferentiability appears frequently and naturally in many
optimization models. A natural way to cope with the nondifferentiability in opti-
mization is to approximate nonsmooth objective functions by smooth functions
that are favourable for applying smooth optimization schemes. In his seminal
paper [1], Nesterov proposed a method for approximating a class of nondifferen-
tiable convex functions by smooth convex functions with Lipschitz continuous
gradients. It turns out that Nesterov’s smoothing is highly important in solving
nonsmooth optimization problems inmany fields such as facility location, sparse
optimization and compressed sensing.

The first goal of this paper is to study Nesterov’s smoothing techniques in
infinite dimensions. Note that a convex function f : Rn → R is Fréchet differ-
entiable at x̄ ∈ R

n if and only if the subdifferential in the sense of convex analysis
∂f (x̄) reduces to a singleton. This is the starting point for further studies of

CONTACT Nguyen Thai An thaian2784@gmail.com
Dedicated to Boris S. Mordukhovich on the occasion of his 70th birthday

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2019.1648467&domain=pdf&date_stamp=2019-08-02
mailto:thaian2784@gmail.com

2 N. MAU NAM ET AL.

characterizations of differentiability for both convex and nonconvex functions
in infinite dimensions based on generalized differentiation. These characteriza-
tions allow us to studyNesterov’s smoothing techniques in amore general setting,
while having the potential of applying to broader classes of nondifferentiable
functions usually considered in optimization.

Along with the difficulty in dealing with nondifferentiability, another chal-
lenge in modern optimization is to go from convexity to nonconvexity as non-
convex optimization techniques and algorithms allow us to solve more complex
optimization problems arising naturally in many practical applications. This is
a motivation of the search for new optimization methods to deal with broader
classes of functions and sets where convexity is not assumed. One of the most
successful approaches to go beyond convexity is to consider the class of DC
(difference of convex) functions. Given a linear space X, a DC program is an
optimization problem in which we would like to minimize a function f : X → R

representable as f = g−h, where g, h : X → R are convex functions. This exten-
sion of convex programming is not too far to take advantage of the available tools
from convex analysis and optimization. At the same time, DC programming is
sufficiently large to apply to many nonconvex optimization problems faced in
recent applications.

Although the role of DC functions had been known earlier in optimization
theory, the first algorithmic approach was developed by PhamDinh Tao in 1985.
The algorithm introduced by Pham Dinh Tao for minimizing f = g−h, called
the DCA, is based on subgradients of the function h and subgradients of the
Fenchel conjugate of the function g. This algorithm is summarized as follows:
with given x1 ∈ R

n, define yk ∈ ∂h(xk) and xk+1 ∈ ∂g∗(yk). Under suitable con-
ditions on the DC decomposition of the function f, two sequences {xk} and {yk}
in the DCA satisfy the monotonicity conditions in the sense that {g(xk) − h(xk)}
and {h∗(yk) − g∗(yk)} are both decreasing. In addition, the sequences {xk} and
{yk} converge to critical points of the primal function g−h and the dual func-
tion h∗ − g∗, respectively. In practice, with suitable initialization techniques, the
DCA is very effective, producing sequences that converge to global solutions of
the problem; see [2–4] and the references therein.

In our recent research, we have been successful in applyingNesterov’s smooth-
ing techniques and the DCA to a number of optimization problems in facil-
ity location and clustering. This paper continues this effort by providing their
applications to image reconstructions. Consider an unknown image M of size
N1 × N2. After the image is corrupted by a linear operator A and distorted by
some noise ξ , we observe only the image b = A(M) + ξ , and seek to recover
the true image M. The operator may act to simulate blurring, data compression
or down-sampling. In the case that the operator is the identity, the problem is
called denoising.

We denote the columns ofM asm1, . . . ,mN2 , to representM in vectorized form
as the N1N2 × 1 column vector M = [mT

1 mT
2 · · · mT

N2
]T. The vectorized form

OPTIMIZATION 3

ofM can be attained inMATLAB using the reshape function and is equivalent
to
∑N2

i=1(ei ⊗ IN1)(M · ei), where ei is the ith standard basis vector in R
N2 and ⊗

is the Kronecker product. Conversely, a vector M ∈ R
N1N2 is reshaped into an

N1 × N2 matrix.
A vector is referred to as sparse when many of its entries are zeros. An image

x ∈ R
n (in vectorized form) is said to have a sparse representation y under D if

there is some n × K matrix D, known as a dictionary, and a vector y ∈ R
K such

that x=Dy. In this case, the dictionary D maps a sparse vector to a full image.
The columns ofD are called atoms, and given a suitable dictionary in this model,
theoretically any image can be built from a linear combination of the columns
(atoms) of the dictionary. Using a clever choice of dictionary allows us to work
with sparse vectors, thereby reducing the amount of computer memory needed
to store an image. Further, sparse representations tend to capture the true image
without extraneous noise.

Themethod in this paper is based on the following foundationalmodel: given a
dictionaryD and an observed image bwhich has been corrupted by a linear oper-
ator A, recover a sparse representation of the image by solving the minimization
problem

min
y

‖y‖0 s.t. ‖A(Dy) − b‖2 ≤ ε

where ε > 0 is some small constraint term. Here ‖y‖0 is not a norm, but sim-
ply the number of nonzero entries in y. It is common to approximate ‖ · ‖0 with
‖ · ‖1, or with ‖ · ‖1 − ‖ · ‖, known as �1 and (�1 − �2) regularization, respec-
tively. In this paper, using the DCA and Nesterov’s smoothing techniques, we
develop a very simple algorithms based on the (�1 − �2) regularization for image
reconstructions. The proposed method allows us to avoid solving subproblems
in using the DCA for the (�1 − �2) regularization; see [5,6] and the references
therein.We also apply this idea to build a simple but effective algorithm for dictio-
nary learning. Our numerical examples show that our algorithms are competitive
with state-of-the-art methods for image reconstructions.

Our paper contains twomain sections. In Section 2, we study characterizations
of different concepts of differentiability and strict differentiability with applica-
tions to Nesterov’s smoothing techniques in infinite dimensions. In Section 3, we
provide a simple method for image reconstructions using Nesterov’s smoothing
techniques and the DCA. Throughout the paper, we use standard notations of
convex and nonsmooth analysis. For a vector x ∈ R

d, we use ‖x‖1 and ‖x‖ to
denote its �1-norm and Euclidean norm, respectively.

2. Characterizations of differentiability and Nesterov’s smoothing
techniques

In this section, we study characterizations of strict differentiability and their
applications to smoothing techniques. Consider a real normed space X with its

4 N. MAU NAM ET AL.

topological dual denoted by X∗ which consists of all real-valued linear continu-
ous functions defined on X. It is well known that X∗ is a normed space with the
dual norm given by

‖x∗‖ = sup{〈x∗, x〉 | ‖x‖ ≤ 1}, x∗ ∈ X∗,

where 〈x∗, x〉 = x∗(x).
Let f : X → R = (−∞,∞] be an extended real-valued function with the

effective domain dom (f) = {x ∈ X | f (x) < ∞} and x̄ ∈ int(dom (f)). We first
recall some classical concepts of differentiability. We say that f is Gâteaux
differentiable at x̄ if there exists x∗ ∈ X∗ such that

lim
t→0+

f (x̄ + td) − f (x̄) − t〈x∗, d〉
t

= 0 for all d ∈ X.

Such an element x∗ is unique if exists and is called the Gâteaux derivative of f
at x̄ denoted by ∇Gf (x̄). It follows directly from the definition that f is Gâteaux
differentiable at x̄ with ∇Gf (x̄) = x∗ if and only if

lim
t→0

f (x̄ + td) − f (x̄) − t〈x∗, d〉
t

= 0 for all d ∈ X.

We say that f is Fréchet differentiable at x̄ if there exists x∗ ∈ X∗ such that

lim
h→0

f (x̄ + h) − f (x̄) − 〈x∗, h〉
‖h‖ = 0.

The element x∗ is called the Fréchet derivative of f at x̄ denoted by ∇Ff (x̄). It
follows from the definition that if f is Fréchet differentiable at x̄, then it is Gâteaux
differentiable at this point.

Let us now discuss three important concepts of strict differentiability. Let f :
X → R be an extended real-valued function with x̄ ∈ int(dom(f)).

We say that f is Fréchet strictly differentiable at x̄ if there exists an element x∗ ∈
X∗ such that

lim
x,y→x̄,x �=y

f (x) − f (y) − 〈x∗, x − y〉
‖x − y‖ = 0.

In this case, the element x∗ is uniquely defined and is called the Fréchet strict
derivative of f at x̄ denoted by ∇sFf (x̄).

We say that f isHadamard strictly differentiable at x̄ if there exists x∗ ∈ X∗ such
that for any d ∈ X we have

lim
t→0+,x→x̄

f (x + td) − f (x) − t〈x∗, d〉
t

= 0,

where the convergence is uniform for d in compact subset of X. Similarly, we call
x∗ the Hadamard strict derivative of f at x̄ denoted by ∇sHf (x̄).

OPTIMIZATION 5

We say that f is Gâteaux strictly differentiable at x̄ if there exists an element
x∗ ∈ X∗ such that for any d ∈ X we have

lim
x→x̄,t→0+

f (x + td) − f (x) − t〈x∗, d〉
t

= 0.

In this case, the element x∗ is uniquely defined and is called the Gâteaux strict
derivative of f at x̄ denoted by ∇sGf (x̄).

Observe from the definition that

Fréchet strict differentiability ⇒ Hadamard strict differentiability

⇒ Gâteaux strict differentiability .

The Proposition provides further relation between Gâtaeux differentiability and
Hadamard strict differentiability, see [7, Proposition 2.2.1].

Proposition 2.1: Let X be a normed space and let f : X → R with x̄ ∈
int(dom (f)). Then the following properties are equivalent:

(a) f is Hadamard strictly differentiable at x̄.
(b) f is locally Lipschitz continuous around x̄ and Gâteaux strictly differentiable

at x̄.

Remark 2.2: (a) The Fréchet strict differentiability is equivalent to the
Hadamard strict differentiability in finite dimensions.

(b) For locally Lipschitz continuous function, a natural question is whether the
Hadamard strict differentiability implies the Fréchet strict differentiability.
The answer is no and we can find a counterexample such as f (x) = ‖x‖1 for
x ∈ �1.

Given a function f : X → R that is locally Lipschitz continuous around x̄ ∈
int(dom (f)), theClarke generalized directional derivative of f at x̄ in the direction
d ∈ X is defined by

f ◦(x̄; d) = lim sup
x→x̄,t→0+

f (x + td) − f (x)
t

.

Based on the generalized derivative of f at x̄, the Clarke subdifferential of f at x̄ is
defined by

∂Cf (x̄) = {x∗ ∈ X∗ | 〈x∗, d〉 ≤ f ◦(x̄; d) for all d ∈ X}.
Note that in the case where f is convex,

∂Cf (x̄) = ∂f (x̄) = {x∗ ∈ X∗ | 〈x∗, x − x̄〉 ≤ f (x) − f (x̄) for all x ∈ X},
which is the subdifferential in the sense of convex analysis of f at x̄. A characteri-
zation for Hadamard strict differentiability is given in the proposition below, see
[7, Proposition 2.2.4].

6 N. MAU NAM ET AL.

Theorem 2.3: Let X be a normed space and let f : X → R with x̄ ∈ int(dom (f)).
If f is Hadamard strictly differentiable at x̄, then f is locally Lipschitz continuous
around x̄ and ∂Cf (x̄) = {∇sHf (x̄)}. Conversely, if f is locally Lipschitz continu-
ous around x̄ and ∂Cf (x̄) reduces to a singleton {x∗}, then f is Hadamard strictly
differentiable at x̄ and ∇sHf (x̄) = x∗.

The following is a direct consequence of this result for the convex case.

Corollary 2.4: Let X be a normed space and let f : X → R be a convex function
with x̄ ∈ int(dom (f)). Then the following properties are equivalent:

(a) f is Hadamard strictly differentiable at x̄.
(b) f is continuous at x̄ and f is Gâteaux differentiable at this point.
(c) f is continuous at x̄ and ∂f (x̄) is a singleton.

Proof: (a) ⇒ (b): This is a direct consequence of Theorem 2.3 taking into
account that the strict Gâteaux differentiability implies the Gâteaux differentia-
bility.

(b) ⇒ (c): This implication is straight forward.
(c) ⇒ (a): By the convexity of f, its continuity at x̄ implies the local Lipschitz

continuity around x̄. Note that in this case the Clarke subdifferential of f at x̄
reduces to the subdifferential in the sense of convex analysis at this point, i.e.
∂Cf (x̄) = ∂f (x̄). Thus, this implication follows directly from Theorem 2.3. �

Note that the equivalence of (a) and (b) in Corollary 2.4 does not hold true in
the general nonconvex setting as shown in the example below.

Example 2.5: Consider the function f : R → R given by

f (x) =
{
x2 sin

(1
x
)

if x �= 0,
0 if x = 0.

Then we can show that f is not Hadamard strictly differentiable at 0, but it
is Fréchet differentiable and thus continuous and Gâteaux differentiable at this
point.

In what follows we study a characterization for Fréchet differentiability based
on Clarke subdifferentials. For a nonempty subset � and x̄ ∈ X, the notation
d(x̄;�) is used for the distance from x̄ to � defined by

d(x̄;�) = inf{‖x̄ − w‖ | w ∈ �}.

Given a set-valuedmapping F : X ⇒ X∗, where bothX andX∗ are equippedwith
the strong topology. We say that F is upper semicontinuous at x̄ ∈ dom (F) :=

OPTIMIZATION 7

{x ∈ X | F(x) �= ∅} if for any ε > 0, there exists δ > 0 such that

F(x) ⊂ B(F(x̄); ε) whenever x ∈ B(x̄; δ),

where B(F(x̄); ε) = {x∗ ∈ X∗ | d(x∗; F(x̄)) ≤ ε} and B(x̄; δ) denotes the closed
ball with centre x̄ and radius δ in X.

The following version of the mean value theorem (see [7]) is useful in what
follows.

Theorem 2.6: Let X be a normed space and let f : X → R be Lipschitz continuous
on an open set G ⊂ X. For any [a, b] ⊂ G, there exists z ∈ (a, b) such that

f (b) − f (a) ∈ 〈∂Cf (z), b − a〉.

Let us now present a characterization of Fréchet strict differentiability based
on Clarke subdifferentials, see, e.g. [8]. We provide an alternative detailed proof
here for the convenience of the reader.

Theorem 2.7: Let X be a normed space and let f : X → R with x̄ ∈ int(dom (f)).
Then the following properties are equivalent:

(a) f is Fréchet strictly differentiable at x̄.
(b) f is locally Lipschitz continuous around x̄, ∂Cf (x̄) is a singleton, and ∂Cf (·) is

upper semicontinuous at x̄.

Proof: (a) ⇒ (b): Suppose that f is Fréchet strictly differentiable at x̄. Then it
is Hadamard strictly differentiable at this point. By Theorem 2.3, the function f
is locally Lipschitz continuous around x̄ and ∂Cf (x̄) is a singleton. It remains to
show that ∂Cf (·) is upper semicontinuous at x̄. Fix any sequence {xk} in X that
converges to x̄, and fix any x∗

k ∈ ∂Cf (xk). Fix any ε > 0. Then there exists δ > 0
such that

|f (x) − f (u) − 〈∇sFf (x̄), x − u〉| ≤ ε‖x − u‖ whenever x, u ∈ B(x̄; δ).

Since {xk} converges to x̄, we can find k0 ∈ N such that xk ∈ B(x̄; δ/4) for all k ≥
k0. Fix any k ≥ k0 and any v ∈ X. If ‖x − xk‖ < δ/4 and 0 < t < δ/(2(‖v‖ + 1)),
then‖x − x̄‖ ≤ ‖x − xk‖ + ‖xk − x̄‖ < δ/4 + δ/4 = δ/2 < δ. It follows that
‖x + tv − x̄‖ ≤ ‖x − x̄‖ + t‖v‖ < δ/2 + δ/2 = δ, and so

f (x + tv) − f (x) ≤ 〈∇sFf (x̄), tv〉 + ε‖tv‖.

This implies

f (x + tv) − f (x)
t

≤ 〈∇sFf (x̄), v〉 + ε‖v‖ for such x, t.

8 N. MAU NAM ET AL.

It follows that

f ◦(xk; v) = lim sup
t→0+,x→xk

f (x + tv) − f (x)
t

≤ 〈∇sFf (x̄), v〉 + ε‖v‖.

Now, 〈x∗
k , v〉 ≤ f ◦(xk; v) ≤ 〈∇sFf (x̄), v〉 + ε‖v‖. Then ‖x∗

k − ∇sFf (x̄)‖ ≤ ε for all
k ≥ k0. Therefore, {x∗

k} converges strongly to∇sFf (x̄). The upper semicontinuity
of the Clarke subdifferential mapping is now straightforward.

(b) ⇒ (a): Let us prove the converse by assuming that (b) is satisfied. Suppose
that ∂Cf (x̄) = {x∗}. Since ∂Cf (·) is upper semicontinuous at x̄, for any ε > 0 there
exists δ > 0 such that

∂Cf (u) ⊂ B(x∗, ε) whenever u ∈ B(x̄, δ).

We can choose δ > 0 sufficiently small such that f is Lipschitz continuous on the
open ball B(x̄, δ). Fix any x, y ∈ B(x̄; δ) with x �= y. By Theorem 2.6, there exist
u ∈ (x, y) and w∗ ∈ ∂Cf (u) such that

f (x) − f (y) = 〈w∗, x − y〉.

Then ‖w∗ − x∗‖ ≤ ε, and hence

∣∣ f (x) − f (y) − 〈x∗, x − y〉
‖x − y‖

∣∣ = ∣∣〈w∗ − x∗, x − y〉
‖x − y‖

∣∣ ≤ ‖w∗ − x∗‖ ≤ ε.

Therefore, f is Fréchet strictly differentiable at x̄. �

Let us now derive a corollary for the convex case.

Corollary 2.8: Let X be a normed space and let f : X → R be a convex function
with x̄ ∈ int(dom (f)). Then the following properties are equivalent:

(a) f is Fréchet strictly differentiable at x̄.
(b) f is Fréchet differentiable at x̄.
(c) f is locally Lipschitz continuous around x̄, ∂f (x̄) is a singleton, and ∂f (·) : X ⇒

X∗ is upper semicontinuous at x̄.

Proof: The implication (a) ⇒ (b) is obvious. If f is Fréchet differentiable at x̄, it
is well known that ∂Cf (x̄) = ∂f (x̄) = {∇Ff (x̄)} under the convexity of f. In addi-
tion, f is locally bounded around x̄, so it is locally Lipschitz continuous around
this point. Let us show that the subdifferential mapping is upper semicontinuous

OPTIMIZATION 9

at x̄. Let x∗ = ∇Ff (x̄). We have

lim
x→x̄

f (x) − f (x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ = 0.

For any ε > 0, we can choose δ > 0 such that

〈x∗, x − x̄〉 ≤ f (x) − f (x̄) + ε‖x − x̄‖ whenever ‖x − x̄‖ < δ.

Fix any x ∈ B(x̄; δ) and any u∗ ∈ ∂f (x). Then

〈x∗ − u∗, x − x̄〉 = 〈x∗, x − x̄〉 + 〈u∗, x̄ − x〉
≤ f (x) − f (x̄) + ε‖x − x̄‖ + f (x̄) − f (x) = ε‖x − x̄‖.

This implies ‖x∗ − u∗‖ ≤ ε, which justifies the upper semicontinuity of the subd-
ifferential mapping. Thus the implication (b)⇒ (c) holds. Finally, the implication
(c)⇒ (a) follows from Theorem 2.7. �

Next, we will study characterizations of strict differentiability via Mor-
dukhovich/limiting subdifferentials in Asplund spaces; see [9]. Consider an

extended real-valued function f : X → R. In the sequel, the notation x
f−→ x̄

means that x → x̄ and f (x) → f (x̄). Given ε ≥ 0, the ε-Fréchetsubdifferential of
f at x̄ ∈ dom f is the set

∂̂εf (x̄) =
{
x∗ ∈ X∗ ∣∣ lim inf

x→x̄

f (x) − f (x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ −ε

}
.

The set ∂̂0f (x̄) (ε = 0) is called the Fréchet subdifferential of f at x̄ and is denoted
simply by ∂̂f (x̄). The limiting/Mordukhovich subdifferential of f at x̄ is defined by
the Kuratowski upper limit:

∂Mf (x̄) = Lim sup
x

f−→x̄,ε→0+

∂̂εf (x).

Proposition 2.9: Let X be an Asplund space and let f : X → R with x̄ ∈
int(dom (f)). If f is Hadamard strictly differentiable at x̄, then f is locally Lipschitz
continuous around x̄ and ∂Mf (x̄) = {∇sHf (x̄)}. Conversely, if f is locally Lipschitz
continuous around x̄ and ∂Mf (x̄) reduces to a singleton {x∗}, then f is Hadamard
strictly differentiable at x̄ and ∇sHf (x̄) = x∗.

Proof: Suppose that f is Hadamard strictly differentiable at x̄. By Theorem 2.3,
the function f is locally Lipschitz continuous around x̄ and ∂Cf (x̄) = {∇sHf (x̄)}.
In addition, by [9, Corollary 2.25], ∂Mf (x̄) is nonempty and ∂Mf (x̄) ⊂ ∂Cf (x̄). It

10 N. MAU NAM ET AL.

follows that ∂Mf (x̄) is a singleton. Now, suppose that f is locally Lipschitz con-
tinuous around x̄ and ∂Mf (x̄) reduces to a singleton {x∗}. By [9, Theorem 3.57],

∂Cf (x̄) = cl∗co
(
∂Mf (x̄)

)
, (1)

here cl∗ stands for the weak∗ topological closure of a set in X∗. This implies that
∂Cf (x̄) is a singleton, and so by Theorem 2.3, f is Hadamard strictly differentiable
at x̄. �

Theorem2.10: Let X be a normed space and let f : X → Rwith x̄ ∈ int(dom (f)).
Consider the following statements:

(a) f is Fréchet strictly differentiable at x̄.
(b) f is locally Lipschitz continuous around x̄, ∂Mf (x̄) is a singleton, and ∂Mf (·) is

upper semicontinuous at x̄.

If X is an Asplund space, then (a) implies (b). The converse also holds true if we
assume that X is reflexive.

Proof: (a) ⇒ (b): Suppose that (a) is satisfied. By Theorem 2.7 and the fact that
∅ �= ∂Mf (x̄) ⊂ ∂Cf (x̄), the function f is locally Lipschitz continuous around x̄
and ∂Mf (x̄) is a singleton. Let x∗ = ∇sFf (x̄). The upper semicontinuity of ∂Mf (·)
follows directly from that of ∂Cf (·), which is also guaranteed by Theorem 2.7.

(b) ⇒ (a): Suppose that (b) is satisfied with ∂Mf (x̄) = {x∗}. By (1), we have
∂Cf (x̄) = {x∗}. Applying Theorem 2.7, it suffices to show that ∂Cf (·) is upper
semicontinuous at x̄. Given any ε > 0, there exists δ > 0 such that

‖u∗ − x∗‖ < ε whenever ‖x − x̄‖ < δ, u∗ ∈ ∂Mf (x).

We can choose δ > 0 sufficiently small so that f is locally Lipschitz continuous
on B(x̄; δ). Fix any x ∈ X with ‖x − x̄‖ < δ and fix any z∗ ∈ co(∂Mf (x)). Then
there exist λi ≥ 0 and u∗

i ∈ ∂Mf (x) for i = 1, . . . ,m with
∑m

i=1 λi = 1 such that

z∗ =
m∑
i=1

λiu∗
i .

It follows that

‖z∗ − x∗‖ = ‖
m∑
i=1

λiu∗
i − x∗‖ = ‖

m∑
i=1

λi(u∗
i − x∗)‖ ≤

m∑
i=1

λi‖u∗
i − x∗‖ ≤ ε.

Therefore, co(∂Mf (x)) ⊂ B(x∗, ε) whenever x ∈ B(x̄; δ). Under the reflexivity of
X, we can apply the celebrated Mazur theorem and get

∂Cf (x) = cl∗co
(
∂Mf (x)

) = clwco
(
∂Mf (x)

) = clco
(
∂Mf (x)

)
.

OPTIMIZATION 11

Now, for any u∗ ∈ ∂Cf (x), there exists a sequence {u∗
k} in co(∂Mf (x)) that

converges to u∗ strongly. Thus

‖u∗ − x∗‖ = lim
k→∞

‖u∗
k − x∗‖ ≤ ε.

This implies the upper semicontinuity of ∂Cf (·) and completes the proof. �

Given a function f : X → R, recall that the Fenchel conjugate of f is given by

f ∗(x∗) = sup{〈x∗, x〉 − f (x) | x ∈ X}, x∗ ∈ X∗.

Proposition 2.11: Let X be a normed space and let f : X → R. Suppose that f is
proper, l.s.c., convex, and coercive in the sense that

lim
‖x‖→∞

f (x)
‖x‖ = ∞. (2)

Then dom (f ∗) = X∗ and f ∗ is continuous on X∗, where X∗ is equipped with the
strong topology.

Proof: Since f is proper, l.s.c., and convex, we can find v∗ ∈ X∗ and c ∈ R such
that

c + 〈v∗, x〉 ≤ f (x) for all x ∈ X.

Fix any x∗ ∈ X∗. Under the coercive property of f, we can find δ > 0 such that

‖x‖(‖x∗‖ + 1) ≤ f (x) whenever ‖x‖ ≥ δ.

It follows that

sup{〈x∗, x〉 − f (x) | ‖x‖ ≥ δ} ≤ −‖x‖.
We also have

sup{〈x∗, x〉 − f (x) | ‖x‖ ≤ δ} ≤ sup{〈x∗, x〉 − 〈v∗, x〉 − c | ‖x‖ ≤ δ} < ∞.

Therefore, f ∗(x∗) < ∞ and dom (f ∗) = X∗.
Observe that f ∗ is convex and lower semicontinuous on X∗, where X∗ is

equipped with the strong topology generated by the dual norm. Since X∗ with
the dual norm is a Banach space, f ∗ is continuous. �

The following result provides conditions on f ensuring the Gâteaux differen-
tiability of its Fenchel conjugate.

Theorem 2.12: Let f : X → R be proper l.s.c. function defined on a reflexive
Banach space X. If f is strictly convex and coercive on X, then the conjugate f ∗ is
Gâteaux differentiable on X∗.

12 N. MAU NAM ET AL.

Proof: By Proposition 2.11, the function f ∗ is convex and continuous on X∗. Fix
any v∗ ∈ X∗. Let us first prove the Gâteaux differentiability of f ∗ at v∗. Note that
x̄ ∈ ∂f ∗(v∗) if and only if v∗ ∈ ∂f (x̄), which holds iff

f (x̄) − 〈v∗, x̄〉 ≤ f (x) − 〈v∗, x〉 for all x ∈ X.

Equivalently, x̄ is an absoluteminimizer of the function g(x) := f (x) − 〈v∗, x〉 for
x ∈ X. It follows from (2) that lim‖x‖→∞ g(x) = ∞. Then by the strict convexity
of f, the function g has a unique absolute minimizer on X. Thus ∂f ∗(v∗) = {x̄} is
a singleton. Therefore, by Corollary 2.4, the function f ∗ is Gâteaux differentiable
at v∗. �

We say that a function f : X → R defined on a normed spaceX is strongly con-
vex with parameter
σ > 0 if

f (λx + (1 − λ)u) + σλ(1 − λ)
‖x − u‖2

2
≤ λf (x) + (1 − λ)f (u) for all x, u ∈ X, λ ∈ (0, 1).

Given a convex function f : X → R defined on a normed space X, we say that
its subdifferential mapping ∂f : X ⇒ X∗ is strongly monotone with parameter
σ > 0 (or σ−strong monotone) if

σ‖x1 − x2‖2 ≤ 〈v∗
1 − v∗

2, x1 − x2〉 whenever v∗
i ∈ ∂f (xi), i = 1, 2.

In particular, it implies that

σ‖x1 − x2‖ ≤ ‖v∗
1 − v∗

2‖ whenever v∗
i ∈ ∂f (xi), i = 1, 2.

The proposition below shows that the σ -strong convexity of a convex function f :
X → R defined on a Banach spaceX can be characterized by the σ -strongmono-
tonicity of the subdifferential mapping ∂f : X ⇒ X∗, see [10, Corollary 3.5.11].

Proposition 2.13: Let X be a Banach space and let f : X → R be proper, l.s.c., and
convex. Then the following properties are equivalent:

(a) If f is strongly convex with parameter σ > 0.
(b) The subdifferential mapping ∂f : X ⇒ X∗ is strongly monotone with parame-

ter σ > 0.

Theorem 2.14: Let X be a reflexive Banach space and let f : X → R be a proper
lower semicontinuous function. If f is strongly convex with parameter σ > 0, then
f ∗ is Fréchet differentiable and∇Ff ∗ is Lipschitz continuous with constant � = 1/σ .
In addition,

∇Ff ∗(v∗) = arg max{〈v∗, x〉 − f (x) | x ∈ X}.

OPTIMIZATION 13

Proof: It is not hard to prove that the strong convexity of f implies its strict
convexity and coercivity. By Proposition 2.11, the function f ∗ is convex and
continuous on X∗. Thus, for any fixed v∗ ∈ X∗, the function f ∗ is Gâtaeux dif-
ferentiable at v∗. Fix any v∗

i ∈ X∗ and xi ∈ X with xi ∈ ∂f ∗(v∗
i) for i=1,2. Then

v∗
i ∈ ∂f (xi) for i=1,2 and

‖x1 − x2‖ ≤ 1
σ

‖v∗
1 − v∗

2‖.

Thus, we can easily show that the subdifferential mapping ∂f ∗(·) : X∗ ⇒ X is
upper semicontinuous at v∗. It follows from Corollary 2.8 that f ∗ is Fréchet
differentiable, and in addition,

‖∇Ff ∗(v∗
1) − ∇Ff ∗(v∗

2)‖ ≤ 1
σ

‖v∗
1 − v∗

2‖

for all v∗
1, v

∗
2 ∈ X∗. This completes the proof. �

For a bounded linear mapping A : X → Y between normed spaces, we define
the norm of A as usual:

‖A‖ = sup
{‖A(x)‖ ∣∣ ‖x‖ ≤ 1

}
.

It follows from the definition that ‖A(x)‖ ≤ ‖A‖‖x‖ for all x ∈ X. The adjoint
mapping of A denoted by A∗ : Y∗ → X∗ is defined by A∗(y∗) = y∗ ◦ A for y∗ ∈
Y∗. It is well known that if A : X → Y is a bounded linear mapping, then ‖A‖ =
‖A∗‖.

Lemma 2.15: Let A : X → Y∗ be a bounded linear mapping, where Y is a
reflexive Banach space, and let ϕ : Y → R be proper and l.s.c. Consider the
function

g(x) = sup{〈Ax, y〉 − φ(y) | y ∈ Y}, x ∈ X. (3)

(a) If φ is strictly convex and coercive, then g : X → R is Gâteaux differentiable
on X.

(b) If φ is strongly convex with parameter σ > 0, then g is Fréchet differentiable
and ∇g is Lipschitz continuous on X with constant ‖A‖2/σ .

Proof: The function g can be represented as

g(x) = sup{〈Ax, y〉 − φ(y) | y ∈ Y} = φ∗(Ax).

If φ is strictly convex and coercive, then by Theorem 2.14, the function φ∗ is
Gâteaux differentiable on Y∗. Thus it is straightforward to see that g is Gâteaux
differentiable. Now, assume that φ is strongly convex with parameter σ > 0. It

14 N. MAU NAM ET AL.

follows from Theorem 2.14 that the function φ∗ is Fréchet differentiable and
∇Fφ

∗ is Lipschitz continuous with constant 1/σ . This implies that g is Fréchet
differentiable on X with the derivative representation

∇g(x) = A∗∇φ∗(Ax) for all x ∈ X,

and thus ∇g is Lipschitz continuous on X with constant ‖A‖2/σ . �

Using the obtained result together with the conjugate sum rule, we derive now
efficient conditions ensuring both Gâteaux and Fréchet differentiability of the
constrained version of function (3).

Let X and Y be normed spaces. Given a bounded linear mapping A : X → Y∗
and function ϕ : Y → R, consider the function

f (x) = sup{〈Ax, y〉 − ϕ(y) | y ∈ Y}, x ∈ X. (4)

In general, f : X → R is a nondifferentiable convex function.
Our goal now is to find a differentiable approximation of the function f given

by (4) in infinite dimensions. The idea comes from Nesterov in [1] with further
studies in [11,12] in finite dimensions. Fix a function p : Y → R. Given μ > 0,
define

fμ(x) = sup{〈Ax, y〉 − ϕ(y) − μp(y) | y ∈ Y}, x ∈ X. (5)

The theorem below allows us to build a family of differentiable functions based
on the structure of the function f.

Theorem 2.16: Let X be a normed space and let Y be a reflexive Banach space.
Consider the function f defined by (4) and the function fμ defined by (5) in which
A : X → Y∗ is a bounded linear mapping and ϕ : Y → R is proper, l.s.c., and
convex.

(a) If p is strictly convex and coercive with dom (ϕ) ∩ dom (p) �= ∅, then fμ is
Gâteaux differentiable.

(b) If p is strongly convex with parameter σ > 0 and dom (ϕ) ∩ dom (p) �= ∅,
then fμ is a C1,1 function with the Lipschitz constant for the gradient ∇fμ
calculated by ‖A‖2/σμ.

Proof: Observe that

fμ(x) = sup{〈Ax, y〉 − (ϕ(y) + μp(y)) | y ∈ Y} = (ϕ + μp)∗(Ax).

The conclusion follows directly from Lemma 2.15. Note that if p is strictly convex
and coercive, then the function h(u) = ϕ(u) + μp(u) for u ∈ Y is also strictly
convex and coercive. In addition, if p is strongly convex with parameter σ , then
h is strongly monotone with parameter σμ. �

OPTIMIZATION 15

The next step in Nesterov’s smoothing techniques involves imposing more
properties of the function p to ensure that fμ provides smooth approximations
to the function f.

We say that a function p : Y → R is a prox-function of the function f defined
in (4) if the following conditions are satisfied:

(a) p is proper, l.s.c., and σ -strongly convex with some σ > 0.
(b) dom (ϕ) ⊂ dom (p).
(c) p(y) ≥ 0 for all y ∈ dom (ϕ).
(d) D = supy∈dom(ϕ) p(y) < ∞.

Theorem 2.17: In the setting of Theorem 2.16 suppose that p is a prox-function
for f. Then

fμ(x) ≤ f (x) ≤ fμ(x) + μD for all x ∈ X,

where D = supy∈dom (ϕ) p(y).

Proof: Since p(y) ≥ 0 for all y ∈ dom (ϕ) and dom (ϕ) ⊂ dom (p), we have

fμ(x) = sup{〈Ax, y〉 − (ϕ(y) + μp(y)) | y ∈ Y}
= sup{〈Ax, y〉 − (ϕ(y) + μp(y)) | y ∈ dom (ϕ) ∩ dom (p)}
= sup{〈Ax, y〉 − (ϕ(y) + μp(y)) | y ∈ dom (ϕ)}
≤ sup{〈Ax, y〉 − ϕ(y) | y ∈ dom (ϕ)} = f (x).

We also have

f (x) = sup{〈Ax, y〉 − ϕ(y) | y ∈ dom (ϕ)}
= sup{〈Ax, y〉 − (ϕ(y) + μp(y)) + μp(y) | y ∈ dom (ϕ)}
≤ sup{〈Ax, y〉 − (ϕ(y) + μp(y)) | y ∈ dom (ϕ)}

+ μ sup{p(y) | y ∈ dom (ϕ)}
= fμ(x) + μD.

The proof is now complete. �

Let us continue by providing some examples of the function p that satisfies
condition (a) or (b) in Theorem 2.16. Recall that a subset F with nonempty inte-
rior of a normed space is called strictly convex if for any x, y ∈ F with x �= y and
for any t ∈ (0, 1), we have tx + (1 − t)y ∈ int(F). The proof of the proposition
below is straightforward.

Proposition 2.18: Let X be a normed space and let F be a nonempty convex set in
X that contains the origin in its interior. Suppose that F is strictly convex. Consider

16 N. MAU NAM ET AL.

the Minkowski function associated with F defined by ρF(x) := inf{t > 0 | x ∈ tF}
for x ∈ X. Then the function p = (ρF)

2 is continuous, strictly convex and coercive.

We say that a function p : X → R is called F-strongly convex with parameter
σ > 0 if the function p − σ/2(ρF)2 is convex. In particular, if p is B-strongly
convex, where B is the closed unit ball of X, then this definition reduces to the
well-known definition of strong convexity.

Proposition 2.19: Let X be a normed space and let p : X → R be a continuous
function that is F-strongly convex, where the set F satisfies the conditions in Propo-
sition 2.18. Then p is also strictly convex and coercive. If we assume in addition that
X is a Hilbert space and p is strongly convex with parameter σ > 0, then ∂p(·) is
strongly monotone with parameter σ .

Proof: Define the function h = p − σ/2(ρF)2. Then h is a continuous convex
function. Thus there exist w∗ ∈ X∗ and b ∈ R such that

〈w∗, x〉 + b ≤ h(x) for all x ∈ X.

Since p = h + σ/2(ρF)2, the conclusions become straightforward. �

Finally, let us consider a direct corollary of Theorem 2.16 (b).

Corollary 2.20: Let X and Y be Hilbert spaces. In the setting of Theorem 2.16, let
p(y) = 1

2‖y − y0‖2 for y ∈ Y, where y0 ∈ Q and Q is bounded. The function fμ
given by (5) is Fréchet differentiable and its gradient is Lipschitz continuous on X
with Lipschitz constant �μ = ‖A‖2/μ. In addition,

fμ(x) ≤ f (x) ≤ fμ(x) + μ

2
[D(y0;Q)]2 for all x ∈ X,

where D(y0;Q) = sup{‖y0 − y‖ | y ∈ Q} < ∞.
In particular, if ϕ(y) = 〈b, y〉 for y ∈ Y, where b ∈ Y, then the function fμ has

the explicit representation

fμ(x) = ‖Ax − b‖2
2μ

+ 〈Ax − b, y0〉 − μ

2

[
d(y0 + Ax − b

μ
;Q)

]2
and is Fréchet differentiable on X with its gradient given by ∇Ffμ(x) = A∗uμ(x),
where uμ can be expressed in terms of the Euclidean projection

uμ(x) =

(
y0 + Ax − b

μ
;Q
)
.

Proof: The conclusion follows directly from Theorem 2.16 with the observation
that p is strongly convex with constant σ = 1. �‘

OPTIMIZATION 17

Figure 1. Smooth approximation of the absolute value function

Example 2.21: Let f (x) = |x| for x ∈ R. Then f (x) = sup{xu | |u| ≤ 1}. Using
p(u) = u2/2 for u ∈ R gives smooth approximations (Figure 1):

fμ(x) =

⎧⎪⎨⎪⎩
x2

2μ
if |x| ≤ μ,

|x| − μ

2
if |x| > μ.

Example 2.22: Let X be a Hilbert space. Given b ∈ X, define f (x) = ‖x − b‖ for
x ∈ X. Then

f (x) = sup{〈x − b, y〉 | y ∈ B} = sup{〈x, y〉 − 〈b, y〉 | y ∈ B}.

Using Corollary 2.20 with p(y) = 1/2‖y‖2 gives

fμ(x) = ‖x − b‖2
2μ

− μ

2

[
d
(
x − b

μ
;B
)]2

,

where B is the closed unit ball of X.

Lemma 2.23: For y = (y1, . . . , ym) ∈ R
m, define p(y) =∑m

i=1 yi ln(yi) + ln(m)

if yi > 0 for all i = 1, . . . ,m and
∑m

i=1 yi = 1, and p(y) = ∞ otherwise. Then p
is strongly convex and p(y) ≥ 0 for all y ∈ R

m.

Proof: Define the function p+(y) =∑m
i=1 yi ln(yi) + ln(m) if yi > 0 for i =

1, . . . ,m, where y := (y1, . . . , ym). We can show that ∇2p+(y) � 0 for all
y ∈ R

m with yi > 0 for all y = 1, . . . ,m. Thus p is strongly convex on G =
{(x1, . . . , xm) | xi > 0 for i = 1, . . . ,m}. It follows that p is strongly convex. An
elementary method of Lagrange multiplier shows that p(y) ≥ 0 for all y ∈
R
m. �

18 N. MAU NAM ET AL.

Example 2.24: Consider the function

f (x) = max{x1, . . . , xn} for x = (x1, . . . , xn) ∈ R
n.

The function f can be represented by

f (x) = sup

{
x1y1 + x2y2 + · · · + xnyn | y1, y2, . . . , yn ≥ 0,

n∑
i=1

yi = 1

}
= sup{〈x, y〉 − δ�(y) | y ∈ Y},

where � = {(y1, . . . , yn) ∈ R
n | y1, y2, . . . , yn ≥ 0,

∑n
i=1 yi = 1}.

Define the function

p(y) =
{∑n

i=1 yi ln(yi) + ln(n) if y1, . . . , yn ≥ 0,
∞ otherwise.

In this definition we use the convention that yi ln(yi) = 0 if yi = 0 for i =
1, . . . , n. With the method of Lagrange multipliers, we can easily show that p is a
prox-function for f and

fμ(x) = sup
{〈x, y〉 − δ�(y) − μp(y) | y ∈ Y

}
= sup{〈x, y〉 − δ�(y) − μp(y) | y ∈ �}

= sup

{ n∑
i=1

xiyi − μ

n∑
i=1

yi ln(yi) − μ ln(n) | y ∈ �

}

= μ ln

(n∑
i=1

exi/μ
)

− μ ln(n) = μ ln
(∑n

i=1 e
xi/μ

n

)
.

The smoothing technique obtained can be used to solve the smallest enclosing
ball problem:

minimize φ(x) = max{[d(x;�i)]2 | i = 1, . . . ,m}, x ∈ R
n,

where �i for i = 1, . . . ,m are nonempty closed convex sets in R
n. Indeed, a

smoothing approximation of φ is given by

φμ(x) = μ ln

(∑m
i=1 e[d(x;�i)]2/μ

m

)
.

This function can beminimized using accelerated first-order optimizationmeth-
ods.

3. Applications to image reconstructions

In this section, we consider an unknown image M of size N1 × N2. After the
image is corrupted by a linear operator A and distorted by some noise ε, we
observe only the image b = A(M) + ξ , and seek to recover the true imageM.

OPTIMIZATION 19

3.1. Patching an image

In this section, we describe an optimization problem which models the image
reconstruction problem by expressing an image as the sum of sparse represen-
tations of distinct ‘patches’ of the image, see, e.g. [13]. Given an N1 × N2 image
matrixM, let P be a collection of submatrices Pi,j ofM with size n1 × n2, which
cover M. We henceforth refer to these submatrices as patches, and sometimes
identify Pi,j with its index (i, j). The covering condition ensures that every pixel
ofM appears in some patch, and we will use collections only of non-overlapping
patches, so that P partitionsM.

Define Ri,j as the function that maps the image M to patch Pi,j, that is,
Ri,j(M) = Pi,j (Figure 2). If M is in vectorized form, Ri,j can be expressed as an
n1n2 × N1N2 matrix with exactly one 1 in each row and zeros elsewhere. In par-
ticular, [Ri,j]ab is 1 if the bth entry of the imageM appears in the ath entry of the
(vectorized) patch Pi,j, and 0 otherwise. For example, if M =

[m11 m12 m13
m21 m22 m23
m31 m32 m33

]
is a

3 × 3 image and patch P2,2 is the 2 × 2 bottom right corner, then

R2,2(M) =

⎡⎢⎢⎣
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11
m21
m31
m12
m22
m32
m13
m23
m33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎣
m22
m32
m23
m33

⎤⎥⎥⎦ = P2,2 ∼
[
m22 m23
m32 m33

]
,

where ∼ represents reshaping a vectorized form to amatrix. It is now straightfor-
ward to write a MATLAB code buildRij([N1 N2],[n1 n2],[s t])
to construct a matrix Ri,j which operates on a vectorized N1 × N2 image M to
produce the vectorized n1 × n2 patch whose upper-left index inM is (s, t).

For a collection P of patches of an imageM, define TP =
∑

(i,j)∈P
RTi,jRi,j.

Figure 2. Left: R1,1 acts on a 4 × 5 matrix to extract the 2 × 2 patch (1, 1). Right: RT1,1 embeds a
2 × 2 patch into patch (1, 1) of a zero matrix.

20 N. MAU NAM ET AL.

Lemma 3.1: For all Pi,j ∈ P , RTi,jRi,j is diagonal and TP is invertible. If the patches
are non-overlapping, then TP is the identity matrix.

Proof: LetPi,j be some patch ofM, both in vector form. Then [Ri,j]rc = 1 iffMc =
[Pi,j]r. Because [Pi,j]r must contain exactly one element of M, each row of Ri,j
contains exactly 1 nonzero entry. As each element of M appears at most once
in Pi,j, each column of Ri,j contains at most one nonzero element. This means
that if a �= b then columns a and b of Ri,j cannot have a nonzero element in the
same row, so [RTi,jRi,j]a,b (being the dot product of columns a and b of Ri,j) must
be zero. So RTi,jRi,j is diagonal. Along the diagonal, [R

T
i,jRi,j]a,a is the dot product

of the ath column of Ri,j with itself, and is thus 1 iff the ath entry of M appears
in patch Pi,j. Since each entry of M appears in at least one patch, it follows that
summing RTi,jRi,j over all patch indices (i, j) ensures TP has nonzero diagonals
and is therefore invertible. When the patches are nonoverlapping, each entry of
M appears in only one patch, so [Ri,jRTi,j]a,a = 1 for all a = 1, . . . ,N1N2, by which
we find TP to be the identity matrix. �

We then express the imageM as

M = (TP)−1

⎛⎝ ∑
(i,j)∈P

RTi,jRi,j(M)

⎞⎠ .

Because in this paper we use only nonoverlapping patches,TP is the identity, thus

M =
∑

(i,j)∈P
Ri,jTRi,j(M).

For any (i, j) ∈ P , let yi,j ∈ R
K be a sparse representation of the patch Ri,j(M) =

Pi,j under an n1n2 × K dictionary D, so that Pi,j = Dyi,j. We thus say

M =
∑

(i,j)∈P
Ri,jTDyi,j.

To reconstruct the image with sparsely represented patches in a way which fits
the observed data, we solve the following:

min
yi,j

(i,j)∈P

∑
(i,j)∈P

‖yi,j‖1 −
∑

(i,j)∈P
‖yi,j‖ + ν

2

∥∥∥∥∥∥A
⎛⎝ ∑

(i,j)∈P
Ri,jTDyi,j

⎞⎠− b

∥∥∥∥∥∥
2

, (6)

and immediately note that (6) can be expressed as

min
y

ν

2
∥∥Ay − b

∥∥2 + ‖y‖1 − ‖y‖, (7)

where y = [yT11 yT12 ... yTīj̄
]T is the concatenation of all the sparse representations

of patches under D, ī and j̄ the final row and column, respectively, of the patch

OPTIMIZATION 21

partition, and finally

A = A
[
R11TD R12TD . . . Rīj̄TD

]
.

3.2. DCA for �1 − �2 regularization

The use of (�1 − �2) regularization causes the objective function to no longer
convex (Figure 3), and so we adopt the Difference of Convex Functions
Algorithm (DCA), used to minimize g−h where g : Rn → R and h : Rn → R

are both convex. The algorithm, developed by Pham Dinh and Le Thi in [3,4] is
as follows:

DC Algorithm

INPUT: x1, N ∈ N

for k = 1, . . . ,N do
Find yk ∈ ∂h(xk)
Find xk+1 ∈ ∂g∗(yk) (equivalently, xk+1 ∈ argmin{g(x) − 〈x, yk〉 : x ∈ R

n})
end for
OUTPUT: xN+1

Before using the DCA, we first apply Nesterov’s smoothing from
Corollary 2.20. Given a function of the form

f0(x) = max
u∈Q

{〈Ax, u〉 − ψ(u)}

where Q ⊂ R
m is a convex, closed, and bounded set, ψ is a convex map from

R
m to R, and A is an m × n matrix, for any μ > 0 we may obtain a smooth

approximation fμ using

fμ(x) = max
u∈Q

{〈Ax, u〉 − ψ(u) − μ

2
‖u‖2}.

Figure 3. Surface plots of ‖x‖1 (left) and ‖x‖1 − ‖x‖ (right) on R2. Minimizing an objective
function containing these terms drives solutions towards the axes, simulating sparsity. Note that
�1 − �2 regularization is not convex.

22 N. MAU NAM ET AL.

We now use this to smooth the �1 norm. Let p(x) = ‖x‖1, and note that this is
equivalent to p(x) = max

u∈Q
{〈x, u〉} when Q is the unit box, Q = {x ∈ R

n | |xi| ≤
1 , i = 1, . . . , n}. In the above general setting, this corresponds to A being the
identity matrix and ψ the zero map. Then pμ(x) is a smooth approximation to
p(x) = ‖x‖1 = max

u∈Q
{〈x, u〉} and can be expressed as

pμ(x) = 1
2μ

‖x‖2 − μ

2

(
d
(
x
μ
,Q
))2

,

where d(x;Q) is the Euclidean distance from x to Q.
Now let A be a real m × n matrix and b ∈ R

m. Using the above smooth
approximation for ‖x‖1 we approximate f (x) = ν

2‖Ax − b‖2 + ‖x‖1 − ‖x‖ with

fμ(x) = ν

2
‖Ax − b‖2 + 1

2μ
‖x‖2 − μ

2
(
d
(
μ−1x,Q

))2 − ‖x‖

= 1
2μ

‖x‖2 −
(μ

2
(
d
(
μ−1x,Q

))2 − ν

2
‖Ax − b‖2 + ‖x‖

)
= 1

2μ
‖x‖2 + γ

2
‖x‖2 −

(μ

2
(
d
(
μ−1x,Q

))2 − ν

2
‖Ax − b‖2 + γ

2
‖x‖2 + ‖x‖

)
.

Note this is the difference of convex functions g−h for

g(x) =
(
1 + μγ

2μ

)
‖x‖2 and

h(x) = μ

2
(
d
(
μ−1x,Q

))2 − ν

2
‖Ax − b‖2 + γ

2
‖x‖2 + ‖x‖,

assuming that γ > 0 is sufficiently large so that γ
2 ‖x‖2 − ν

2‖Ax − b‖2 is convex.
Note this is satisfied when γ is greater than ν times the largest eigenvalue ofATA.

To use the DCA algorithm, we will need yk in the subdifferential of h at xk.
Using

∇‖Ax − b‖2 = 2AT(Ax − b)

and

∇ (d (x,Q))2 = 2(x −
Q(x)),

where
Q(x) is the projection of x onto Q, along with the chain rule, we have a
subgradient of h at x given by

∂wh(x) = μ−1x −
Q
(
μ−1x

)− νAT(Ax − b) + γ x + ω(x),

where ω(x) is a subgradient of ‖ · ‖ at x. We point out that the projection onto
the unit box can be defined componentwise as [
Q(x)]i = max(−1,min(xi, 1)).

OPTIMIZATION 23

To find xk+1 ∈ ∂∗g(yk), we use the fact that u ∈ ∂∗g(v) iff v ∈ ∂g(u). The sub-
differential of g is simply the singleton set containing its gradient (see [14]), so
v ∈ ∂g(u) iff v = 1+μγ

μ
u iff u = μ

1+μγ
v.

We combine these results to implement the DCA algorithm in order to min-
imize a μ-smoothing approximation to f (x) = ν

2‖Ax − b‖2 + ‖x‖1 − ‖x‖, as
outlined below.

Algorithm 1 DCA for smoothed �1 − �2 regularization.
INPUT: μ > 0, sufficiently large γ , starting point x
repeat

Find ω = x
‖x‖ if x �= 0, ω = 0 otherwise

y ←− μ−1x −
Q
(
μ−1x

)− νA�(Ax − b) + γ x + ω

x ←− μ
1+μγ

y
until convergence
OUTPUT: x

Experiments suggest that incrementally decreasing μ over the course of the
algorithm induces better performance.

3.3. Choosing partitions

This section describes how to obtain t different partitions of the image, following
the approach described in [13]. Given anN1 × N2 imagematrix, choose a general
patch sizen1 × n2.We then choose a size c1 × c2 of the upper left-most patch,P11,
where ci ≤ ni for i=1,2. All of the patches not on the boundary of the image will
have size n1 × n2. The left boundary noncorner patches ofM are size n1 × c2, the
upper boundary noncorner patches have size c1 × n2, and the remaining patch
sizes are chosen to ensure their borders align with those patches already defined
(Figure 4).

If patch Pi,j has size less than n1 × n2, the patch extraction operator Ri,j still
creates a patch of size n1 × n2, in which Pi,j sits in the proper orientation, and the
remaining entries are zeros. Similarly, RT

i,j will embed an n1 × n2 patch into the
corresponding patch in the image, but zero out all entries which do not lie in the

Figure 4. Two partitions of an (N1 × N2) = (4 × 5) imagewith patch size (n1, n2) = (2, 2). Left:
The top left corner has size (c1, c2) = (2, 2). Right: The top left patch has size (c1, c2) = (1, 1).

24 N. MAU NAM ET AL.

smaller patch. For example, if the general patch size is 8 × 8 but the corner patch
P11 is 5 × 5, thenR11 embeds the top left 5 × 5 patch into an 8 × 8 patch of zeros.
We say P11 has ‘virtual size’ 5 × 5. Note that the cell array of patch extraction
matrices does not need to be constructed every time a problem is solved. Once
it has been constructed for some partition of a given size image, it can be saved
and reused. The general algorithm given in [13] is as follows: Given a dictionary
D, choose some t different patch partitions of the image, P1, P2, . . . , Pt . For
each k = 1, . . . , t, find the solution Mk to the unconstrained problem (7) using
partition Pk. Then use the average of those solutions,M = 1

t
∑

Mk, as the final
reconstruction.

3.4. Dictionaries

In this summary, we use two types of dictionary. One is constructed from the
discrete cosine transform (DCT). The other is a ‘learned dictionary ’, constructed
using a collection of images as training data, and for which the learned dictionary
allows sparse representations. The i,j entry of anM × N discrete cosine transform
(DCT-II) matrix D is given by

Di,j =
⎧⎨⎩
√

1
N j = 1,√
2
N cos

(
π
N (j − 1)(i + 1

2)
)

j = 2, . . . ,N.
.

Alternatively, a ‘wavelet’ dictionary can be called using MATLAB’s
wmpdictionary() function, with argument equal to the number of atoms.

We find better results when we ‘learn’ a dictionary from a training data.
Consider a training matrix X = [x1, . . . , xL] ∈ R

n×L of L images of size n in
vectorized form. We seek a dictionary D = [d1, . . . , dK] ∈ R

n×K of K atoms of
size n and a corresponding coefficient matrixW = [w1, . . . ,wL] ∈ R

K×L so that
xi ≈ Dwi and wi is as sparse as possible, for all i = 1, . . . , L.

There exist several methods for learning a dictionary. One of themost popular
algorithms is the K-SV D proposed in [15] which can be modelled as

min
D,W

‖DW − X‖2F
subject to ‖di‖ = 1 for all i = 1, . . . ,K and ‖wj‖0 ≤ s for all j = 1, . . . , L,

where s is a parameter to control the sparsity. Another popular method is the
Online Dictionary Learning (OLM) proposed in [16] which solves the following
problem:

min
D,W

λ

2
‖DW − X‖2F + ‖W‖1

subject to ‖di‖ = 1 for all i = 1, . . . ,K, (8)

OPTIMIZATION 25

where ‖W‖1 =∑L
i=1 ‖wi‖1 =∑L

i=1
∑K

j=1 |wij| and λ is a trade-off parameter to
balance data fitting and sparsity level.

To promote the sparsity, our approach is to use the �1 − �2 regularization by
solving the following problem:

min
D,W

λ

2
‖DW − X‖2F + ‖W‖1 − ‖W‖2,1

subject to ‖di‖ ≤ 1 for all i = 1, . . . ,K, (9)

where ‖W‖2,1 =∑L
i=1 ‖wi‖ =∑L

i=1

√∑K
j=1 w

2
ji. This is a nonconvex problem

whose nonconvexity comes from two sources: the sparsity promotion �1 − �2
and the bilinearity between the dictionary D and the codeW in the fitting term.

For solving this problem, we alternatively updateW and D by using the DCA
and Nesterov’s smoothing.

1. Sparse coding phase: In this phase, we fix a dictionary D and try to update
the code W by solving (9). The objective function is now a DC function with
respect toW:

f (W) = λ

2
‖DW − X‖2F + ‖W‖1 − ‖W‖2,1.

Let P(W) = ‖W‖1. Using the smoothing technique as before, we can approxi-
mate the function P(W) by

Pμ(W) =
L∑

i=1

[
1
2μ

‖wi‖2 − μ

2

[
d
(
wi

μ
;Q
)]2]

= 1
2μ

‖W‖2F − μ

2

L∑
i=1

[
d
(
wi

μ
;Q
)]2

,

where Q = {w ∈ R
K | ‖w‖∞ ≤ 1}. Recall that the ith component of the

Euclidean projection from w ∈ R
K onto the box Q can be computed as

[
Q(w)]i = max(−1,min(1,wi)). (10)

To process further, we denote Q = Q × Q × . . . × Q ⊂ R
K×L. For an K × L

matrixW, the projection fromW = [w1, . . . ,wL] ontoQ is defined by

 (W,Q) = [
(w1;Q), . . . ,
(wL;Q)] ∈ R
K×L.

We thus have

[d(W;Q)]2 = ‖W −
(W,Q)‖2F =
L∑

i=1
[d(wi;Q)]2.

26 N. MAU NAM ET AL.

The function f (W) can be approximated by the DC function fμ(W) = gμ(W) −
hμ(W), where

gμ(W) =
(

1
2μ

+ γ1

2

)
‖W‖2F ,

hμ(W) = μ

2

[
d
(
W
μ
;Q
)]2

− λ

2
‖DW − X‖2F + γ1

2
‖W‖2F + ‖W‖2,1,

and γ1 is chosen such that γ1
λ
is greater than the spectral radius of the symmetric

matrix D�D in order to guarantee the convexity of the function hμ(W).
A subgradient Y of hμ atW is given by

Y = W
μ

−

(
W
μ
;Q
)

− λD�(DW − X) + γ1W + η(W),

where η(W) is an K × L matrix whose ith column is defined via the ith column
ofW by

[η(W)]i =
⎧⎨⎩

wi

‖wi‖ if wi �= 0,

0RK if wi = 0.
(11)

The DCA for solving the sparse coding phase can be outlined as follows.

Algorithm 2 DCA for sparse coding phase.
INPUT: X ∈ R

n×L, D ∈ R
n×K , μ > 0, λ > 0 sufficiently small,

γ1 > 0 sufficiently large and starting codeW ∈ R
K×L.

repeat
Find
(W,Q) = [
(w1;Q), . . . ,
(wL;Q)] according to (10)
Find η(W) according to (11)
Y ←− W

μ
−

(
W
μ
;Q
)

− λD�(DW − X) + γ1W + η(W)

W ←− μ

1 + μγ1
Y

until convergence
OUTPUT:W

2. Dictionary updating phase. Now we fix the sparse code W that has been
found from the previous phase and update the dictionary D by solving

min
D

‖DW − X‖2F subject to ‖di‖ ≤ 1 for all i = 1, . . . ,K.

For solving this nonconvex problem, we use the DCA by reformulating it as a DC
programming problem as follows:

min
D

f̃ (D) =
[γ2
2

‖D‖2F + IC(D)
]

−
[γ2
2

‖D‖2F − ‖DW − X‖2F
]
,

OPTIMIZATION 27

whereC = {D = [d1, . . . , dK] ∈ R
n×K | ‖di‖ ≤ 1 for all i = 1, . . . ,K} is the con-

straint. Here γ2 is chosen greater than the spectral radius of the matrixWW� to
ensure the convexity of the function h̃(D) = γ2

2 ‖D‖2F − ‖DW − X‖2F .
This function h̃ is differentiable and its gradient given by

∇h̃(D) = γ2D − [DW − X]W�.

Note that the ith component of the Euclidean projection from D onto the
constraint C can be computed by

[
C(D)]i = di
max{1, ‖di‖} , for i = 1, . . . ,K.

Thus, the DCA iterative sequence in this phase is simply defined by Dk+1 =

C
(∇h(Dk)

γ2

)
.

Algorithm 3 DCA for dictionary updating phase.
INPUT: X ∈ R

n×L,W ∈ R
K×L, γ2 > 0 sufficiently large,

starting dictionary D ∈ R
n×K .

repeat
Y ←− γ2D − [DW − X]W�

D ←−
C
(
Y
γ2

)
until convergence
OUTPUT: D

In practice, when alternatively perform Algorithm 2 and Algorithm 3 to solve
(9), we can use a value γ > 0 sufficiently large to play the role of both γ1 and γ2.
In addition, we also gradually decrease the value of smoothing parameterμ until
a preferred μ∞ is attained. The final scheme for �1 − �2 dictionary learning can
be outlined as follows.

3.5. Implementation

Our goal is to restore an unknown image M of size N1 × N2 from its corrupted
linear measurements of the form b = A(M) + ξ . We first choose a general patch
size n1 × n2 with ni � Ni for i=1,2. Then we generate a dictionary of size
n1n2 × K by using DCT or learning from a training data set X of size n1n2 × L
with n1n2 ≤ K � L. Let P be a patch partition associated with some choice of
upper left-most patch and let S be the number of patches in P . For any (i, j) ∈

28 N. MAU NAM ET AL.

Algorithm 4 DCA for �1 − �2 dictionary learning.
INPUT: training set X∈R

n×L, λ>0 sufficiently small, γ >0 sufficiently large,
starting dictionary D0 ∈ R

n×K , starting codeW0 ∈ R
K×L

μ0 > 0, σ ∈ (0, 1) and μ∞ sufficiently small.
k ←− 0
repeat

ComputeWk+1 ←− Algorithm 2(X,Dk,Wk, λ, γ ,μk)

Compute Dk+1 ←− Algorithm 3(X,Dk,Wk+1, λ, γ ,μk)

Update μk+1 ←− σμk
Set k ←− k + 1

until μ < μ∞.
OUTPUT: D

{(1, 1), . . . , (ī, j̄)}, we find the extraction operator Rij and form the matrices

R =

⎡⎢⎢⎢⎣
R11
R12
...
Rīj̄

⎤⎥⎥⎥⎦ and RT =
[
RT11 RT12 . . . Rīj̄T

]
.

We continue by solving (7) to find y ∈ R
KS. Then express y ∈ R

KS as an K × S
matrix Y of patch representations under D, so Y = [y11 y12 . . . yīj̄] and DY is
an n1n2 × Smatrix whose columns are vectorized patches. Finally, reshapingDY
into n1n2S × 1 vectorized form Dy, we have RTDy =∑i,j R

T
i,jDyi,j is an N1 × N2

image in vectorized form.
We now use the above scheme to solve in-painting problems, where A is the

sampling operator. In-painting is a process wherein missing information in an
image is recovered, namely when some known set of pixels of an image have
been lost. Let M ∈ R

N1N2 be a vectorization of an N1 × N2 image, � a subset
of {1, . . . ,N1N2} and A be the |�| × N1N2 matrix formed by removing all row i
from the identity matrix IN1N2 for all i /∈ �. Then we call A a sampling operator
with sampling rate SR = |�|

N1N2
, andA(M) is a vectorization of the original image,

containing only those pixels indexed by �.
The patching approach developed by Xu and Yin [13] is implemented to min-

imize (7) using the DCA with Nesterov’s smoothing. In all settings, we compare
the discrete cosine transform (DCT) dictionary with two different learned dic-
tionaries: �1 regularization by solving (8) with block proximal gradient (BPG)
proposed in [13,17] and �1 − �2 regularization byminimizing (9)withAlgorithm
4. For all learned dictionaries, we use a training set of 10,000 greyscale patches
of size 8 × 8, chosen randomly from 100 images taken from the Berkeley Seg-
mentation Dataset1; see [18]. The training matrix X is of size 64 × 10, 000. The

OPTIMIZATION 29

Figure 5. Three different types of dictionaries: (a) DCT dictionary, (b) �1 learned dictionary by
BPG, (c) �1 − �2 learned dictionary by Alg 4.

number of atoms for learned dictionaries is set to beK=256 and thus all learned
dictionaries are of size 64 × 256.

A technical step before performing theDCA-based learning algorithm is to set
each column of the training matrix X to zero mean. For the �1 regularization, we
solve (8) with λ = 0.1 by the BPG method using the same parameters as in [13,
Algorithm 3]. For �1 − �2 regularization, we randomly choose K columns from
the training matrix X and normalize them to form a starting dictionaryD0 when
solving (9) by Algorithm 4 with W0 = pinv(D)X, λ = 1, γ = 2000, σ = 0.8,
μ∞ = 10−5. The obtained dictionaries are shown in Figure 5.

For all tests, we use the 512 × 512 standard reference image Lena, and choose
n1 × n2 = 8 × 8 patches. Before running the test, a column of all ones is added to
the DCT and learned dictionaries. As discussed in [13], patching artefacts which
appear in the solution are mitigated by processing the image three times, each
with a different partition. The solution is then taken to be the average of the three
trials. Our partitions were determined by choosing upper left corner patches of

Table 1. Results for in-painting with three different dictionaries. FISTA and DCA are
�1 and (�1 − �2) regularization, respectively. Best results are in bold.

SR Rel. error (%) PSNR

Corrupted image 70.72 8.458

50% DCT FISTA 4.81 31.83
DCA 6.06 29.81

�1 learned FISTA 3.45 34.699
DCA 4.11 33.168

�1 − �2 learned FISTA 3.48 34.613
DCA 4.22 33.937

Corrupted image 83.77 6.987

30% DCT FISTA 7.01 28.501
DCA 8.27 27.101

�1 learned FISTA 5.21 31.113
DCA 5.89 30.048

�1 − �2 learned FISTA 5.02 31.438
DCA 5.72 30.303

30 N. MAU NAM ET AL.

Figure 6. In-painting result on Lena512with DCT and learned dictionaries. FISTA and DCA are �1
and (�1 − �2) regularization, respectively. (a) Sampled image (SR= 50%), (b) FISTA, DCT dictio-
nary, (c) DCA, DCT dictionary, (d) FISTA, �1 learned dictionary, (e) DCA, �1 learned dictionary, (f)
FISTA, �1 − �2 learned dictionary, (g) DCA, �1 − �2 learned dictionary.

OPTIMIZATION 31

size 8 × 8, 5 × 5, and 2 × 2. Corrupted images were defined as b = A(M) + σξ ,
where ξ is a matrix of noise with standard normal distribution scaled by σ =
c‖A(M)‖2

‖ξ‖2 .
In our experiments, we fix the noise level c = 1% and use ν = 1

2σ for �1
regularization with FISTA [19] and ν = 3

20σ for �1 − �2 regularization with
Algorithm 1.

We measure error of the solution M̃ relative to the true image M by rel-
ative error, RE = ‖M−M̃‖F

‖M‖F
, and peak signal to noise ratio as PSNR = 20 ·

log10

(√
N1N2

‖M−M̃‖F

)
. See Table 1 for a comparison of the PSNR values and relative

errors of the in-painting result with different sampling rates and different dictio-
naries. Figure 6 gives a visual illustration for the case SR = 50%. Given these
results, it is evident that �1 − �2 learned dictionary obtained from Algorithm 4
yields results very close to the one constructed by the BPG method. Moreover,
it can be seen that the performance of DCA with smoothing technique is nearly
comparable to that of the FISTA on learned dictionaries.

3.6. Discussion

The fast patch dictionary method given by Xu and Yin [13] was qualitatively
successful in reconstructing corrupted images, using both �1 regularization with
FISTA, and (�1 − �2) regularization with DCA in combination with Nesterov’s
smoothing. In every case, learned dictionaries improve results compared to a
DCT dictionary.

The FISTA approach converges after fewer iterations (Figure 7), but DCA
required less time per iteration. The optimal choice of μ and γ parameters in
the DCA method is unknown, and allows for the possibility of future improve-
ment. Similarly, implementing FISTA without a backtracking line search is likely
to induce better results, in cases where the Lipschitz constant of the gradient can

Figure 7. Objective function value versus iteration for FISTA and DCA with learned dictionary.

32 N. MAU NAM ET AL.

be determined. Also, it is not known which choice of ν (used to weight data-
fitting versus sparsity) leads to the best solution. Futureworkmay explore optimal
parameter choice as well as characterize which problems benefit from �1 versus
(�1 − �2) regularization.

Note

1. Available at https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

Acknowledgements

Part of this work was done during the first author’s visit to the Vietnam Institute for Advanced
Study in Mathematics (VIASM). He would like to thank the VIASM and Prof. Nguyen Dong
Yen for the hospitality and support.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Research of Nguyen Mau Nam was partly supported by the National Science Foundation
(Division ofMathematical Sciences) under grant DMS-1716057. Research of Nguyen Thai An
was supported by the China Postdoctoral Science Foundation under grant No. 2017M622991.

References

[1] Nesterov Y. Smooth minimization of non-smooth functions. Math Program Ser A.
2005;103:127–152.

[2] An LTH, Tao PD. DC programming and DCA: thirty years of developments. Math
Program Special Issue. 2018;169(1):5–64.

[3] Tao PD, An LTH. Convex analysis approach to D.C. Programming. 1997;22:289–355.
[4] Tao PD, An LTH. A d.c. optimization algorithm for solving the trust-region subproblem.

SIAM J Optim. 1998;8:476–505.
[5] Xin J, Osher S, Lou Y. Computational aspects of L1–L2 minimization for compressive

sensing. Adv Intell Syst Comput. 2015;359:169–180.
[6] Yin P, Lou Y, He Q, et al. Minimization of L1–L2 for compressed sensing. SIAM J Sci

Comput. 2015;37:A536–A563.
[7] Clarke FH. Nonsmooth analysis and optimization. New York: John Wiley & Sons, Inc.;

1983.
[8] Giles JR. A survey of Clarke’s subdifferential and the differentiability of locally Lips-

chitz functions. In: Progress in optimization. applied optimization, Vol. 30, Boston, MA:
Springer.

[9] Mordukhovich BS. Variational analysis and generalized differentiation, I: basic theory,
II: applications. Grundlehren series (Fundamental Principles ofMathematical Sciences),
Vols. 330 and 331, Berlin: Springer; 2006.

[10] Zălinescu C. Convex analysis in general vector spaces. Singapore:World Scientific; 2002.
[11] Beck A, Teboulle M. Smoothing and first order methods: a unified framework. SIAM J

Optim. 2012;22:557–580.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

OPTIMIZATION 33

[12] Vandenberghe L. Optimization methods for large-scale systems, EE236C lecture notes,
UCLA.

[13] Xu Y, Yin W. A fast patch dictionary method for whole image recovery. Inverse Probl
Imaging. 2016;10:563–583.

[14] Mordukhovich BS, Nam NM. An easy path to convex analysis and applications. San
Rafael: Morgan & Claypool; 2014.

[15] Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Trans Signal Process. 2006;54:4311–4322.

[16] Mairal J, Bach F, Ponce J, et al. Online dictionary learning for sparse coding. Proc. 26th
Int’l Conf. Machine Learning. Montreal, Canada: 2009.

[17] Xu Y, Yin W. A block coordinate descent method for regularized multiconvex opti-
mization with applications to nonnegative tensor factorization and completion. SIAM
J Imaging Sci. 2013;6:1758–1789.

[18] Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural images and its
application to evaluating segmentation algorithms and measuring ecological statistics.
Proc 8th Int’l Conf Comput Vision. 2001;2:416–423.

[19] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J Imaging Sci. 2009;2:183–202.

View publication statsView publication stats

https://www.researchgate.net/publication/334947036

	1. Introduction and problem formulation
	2. Characterizations of differentiability and Nesterov's smoothing techniques
	3. Applications to image reconstructions
	3.1. Patching an image
	3.2. DCA for 1-2 regularization
	3.3. Choosing partitions
	3.4. Dictionaries
	3.5. Implementation
	3.6. Discussion

	Note
	Acknowledgements
	Disclosure statement
	Funding
	References

