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1. Introduction and problem formulation

Gradient-based methods in optimization have been strongly developed over the
last decades to solve optimization problems. One of the disadvantages of these
methods is the requirement of the differentiability of the objective functions
involved, while nondifferentiability appears frequently and naturally in many
optimization models. A natural way to cope with the nondifferentiability in opti-
mization is to approximate nonsmooth objective functions by smooth functions
that are favourable for applying smooth optimization schemes. In his seminal
paper [1], Nesterov proposed a method for approximating a class of nondifferen-
tiable convex functions by smooth convex functions with Lipschitz continuous
gradients. It turns out that Nesterov’s smoothing is highly important in solving
nonsmooth optimization problems in many fields such as facility location, sparse
optimization and compressed sensing.

The first goal of this paper is to study Nesterov’s smoothing techniques in
infinite dimensions. Note that a convex function f : R” — R is Fréchet differ-
entiable at x € R” if and only if the subdifferential in the sense of convex analysis
df (x) reduces to a singleton. This is the starting point for further studies of
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characterizations of differentiability for both convex and nonconvex functions
in infinite dimensions based on generalized differentiation. These characteriza-
tions allow us to study Nesterov’s smoothing techniques in a more general setting,
while having the potential of applying to broader classes of nondifferentiable
functions usually considered in optimization.

Along with the difficulty in dealing with nondifferentiability, another chal-
lenge in modern optimization is to go from convexity to nonconvexity as non-
convex optimization techniques and algorithms allow us to solve more complex
optimization problems arising naturally in many practical applications. This is
a motivation of the search for new optimization methods to deal with broader
classes of functions and sets where convexity is not assumed. One of the most
successful approaches to go beyond convexity is to consider the class of DC
(difference of convex) functions. Given a linear space X, a DC program is an
optimization problem in which we would like to minimize a functionf : X — R
representable as f = g—h, where g,h : X — R are convex functions. This exten-
sion of convex programming is not too far to take advantage of the available tools
from convex analysis and optimization. At the same time, DC programming is
sufficiently large to apply to many nonconvex optimization problems faced in
recent applications.

Although the role of DC functions had been known earlier in optimization
theory, the first algorithmic approach was developed by Pham Dinh Tao in 1985.
The algorithm introduced by Pham Dinh Tao for minimizing f =g—h, called
the DCA, is based on subgradients of the function /4 and subgradients of the
Fenchel conjugate of the function g. This algorithm is summarized as follows:
with given x; € R”, define yx € dh(xx) and x4+ € dg*(yk). Under suitable con-
ditions on the DC decomposition of the function f, two sequences {xx} and {yj}
in the DCA satisfy the monotonicity conditions in the sense that {g(xx) — h(xy)}
and {h*(yx) — g*(yx)} are both decreasing. In addition, the sequences {x;} and
{yx} converge to critical points of the primal function g—h and the dual func-
tion h* — g*, respectively. In practice, with suitable initialization techniques, the
DCA is very effective, producing sequences that converge to global solutions of
the problem; see [2-4] and the references therein.

In our recent research, we have been successful in applying Nesterov’s smooth-
ing techniques and the DCA to a number of optimization problems in facil-
ity location and clustering. This paper continues this effort by providing their
applications to image reconstructions. Consider an unknown image M of size
N1 x Nj. After the image is corrupted by a linear operator A and distorted by
some noise &£, we observe only the image b = A(M) + &, and seek to recover
the true image M. The operator may act to simulate blurring, data compression
or down-sampling. In the case that the operator is the identity, the problem is
called denoising.

We denote the columns of M as my, . . ., mp;,, to represent M in vectorized form

as the N;N, x 1 column vector M = [mlT mZT m{,z]T. The vectorized form
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of M can be attained in MATLAB using the reshape function and is equivalent
to Zfﬁl (e; ® In,) (M - e;), where e; is the ith standard basis vector in RM and ®
is the Kronecker product. Conversely, a vector M € RM™: is reshaped into an
N; x N matrix.

A vector is referred to as sparse when many of its entries are zeros. An image
x € R" (in vectorized form) is said to have a sparse representation y under D if
there is some 7 x K matrix D, known as a dictionary, and a vector y € RX such
that x=Dy. In this case, the dictionary D maps a sparse vector to a full image.
The columns of D are called atoms, and given a suitable dictionary in this model,
theoretically any image can be built from a linear combination of the columns
(atoms) of the dictionary. Using a clever choice of dictionary allows us to work
with sparse vectors, thereby reducing the amount of computer memory needed
to store an image. Further, sparse representations tend to capture the true image
without extraneous noise.

The method in this paper is based on the following foundational model: given a
dictionary D and an observed image b which has been corrupted by a linear oper-
ator A, recover a sparse representation of the image by solving the minimization
problem

min yllo st IA(Dy) — b|* <&

where ¢ > 0 is some small constraint term. Here ||y||o is not a norm, but sim-
ply the number of nonzero entries in y. It is common to approximate || - ||o with
[l - ll1, or with || - |l1 — || - ||, known as £; and (¢; — £,) regularization, respec-
tively. In this paper, using the DCA and Nesterov’s smoothing techniques, we
develop a very simple algorithms based on the (¢; — ¢;) regularization for image
reconstructions. The proposed method allows us to avoid solving subproblems
in using the DCA for the (¢; — ¢;) regularization; see [5,6] and the references
therein. We also apply this idea to build a simple but effective algorithm for dictio-
nary learning. Our numerical examples show that our algorithms are competitive
with state-of-the-art methods for image reconstructions.

Our paper contains two main sections. In Section 2, we study characterizations
of different concepts of differentiability and strict differentiability with applica-
tions to Nesterov’s smoothing techniques in infinite dimensions. In Section 3, we
provide a simple method for image reconstructions using Nesterov’s smoothing
techniques and the DCA. Throughout the paper, we use standard notations of
convex and nonsmooth analysis. For a vector x € RY, we use ||x||; and ||x] to
denote its ¢! -norm and Euclidean norm, respectively.

2. Characterizations of differentiability and Nesterov’s smoothing
techniques

In this section, we study characterizations of strict differentiability and their
applications to smoothing techniques. Consider a real normed space X with its
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topological dual denoted by X* which consists of all real-valued linear continu-
ous functions defined on X. It is well known that X* is a normed space with the
dual norm given by

1]l = sup{(x*, x) | [lx]| < 1},x" € X¥,

where (x*, x) = x™(x).

Let f: X — R= (—00,00] be an extended real-valued function with the
effective domain dom (f) = {x € X | f(x) < oo} and x € int(dom (f)). We first
recall some classical concepts of differentiability. We say that f is Gdteaux
differentiable at x if there exists x* € X* such that

lim fx+td) — f(x) — t(x*, d)
t—0+ t

=0 foralld € X.

Such an element x* is unique if exists and is called the Gdteaux derivative of f
at x denoted by Vgf (x). It follows directly from the definition that f is Gateaux
differentiable at x with Vgf (x) = x* if and only if

lim fx+td) — f(x) — t(x*,d)

t—0 t

=0 foralld € X.

We say that f is Fréchet differentiable at x if there exists x* € X* such that

i JE D —f) — (5 h)
h—>0 I

=0.

The element x* is called the Fréchet derivative of f at x denoted by Vgf(x). It
follows from the definition that if f is Fréchet differentiable at X, then it is Gateaux
differentiable at this point.

Let us now discuss three important concepts of strict differentiability. Let f :
X — R be an extended real-valued function with x € int(dom(f)).

We say that f is Fréchet strictly differentiable at X if there exists an element x* €
X* such that

lim fe) —f() — x5 x—y)

Xy—>xxy llx =yl

=0.

In this case, the element x* is uniquely defined and is called the Fréchet strict
derivative of f at X denoted by Vgf ().
We say that f is Hadamard strictly differentiable at x if there exists x* € X* such
that for any d € X we have
_ _ >k
lim flx+td) — f(x) — t{x*, d) _o,

t—0t x—>Xx t

where the convergence is uniform for d in compact subset of X. Similarly, we call
x* the Hadamard strict derivative of f at x denoted by Vg f (X).
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We say that f is Gdteaux strictly differentiable at x if there exists an element
x* € X* such that for any d € X we have
td) — —t{x*,d
g JEHE —f@) — . d)

x— X, t—01 t

In this case, the element x* is uniquely defined and is called the Gateaux strict
derivative of f at X denoted by Vgf ().
Observe from the definition that

Fréchet strict differentiability | = | Hadamard strict differentiability

= | Gateaux strict differentiability

The Proposition provides further relation between Gataeux differentiability and
Hadamard strict differentiability, see [7, Proposition 2.2.1].

Proposition 2.1: Let X be a normed space and let f:X — R with X €
int(dom (f)). Then the following properties are equivalent:

(a) fis Hadamard strictly differentiable at x.
(b) fis locally Lipschitz continuous around x and Gdteaux strictly differentiable
at x.

Remark 2.2: (a) The Fréchet strict differentiability is equivalent to the
Hadamard strict differentiability in finite dimensions.

(b) For locally Lipschitz continuous function, a natural question is whether the
Hadamard strict differentiability implies the Fréchet strict differentiability.
The answer is no and we can find a counterexample such as f (x) = ||x||; for
x e ll.

Given a function f : X — R that is locally Lipschitz continuous around ¥ €
int(dom (f)), the Clarke generalized directional derivative of f at X in the direction
d € X is defined by

b flx+td) — f(x)

f°(x;d) = limsu "

x—x,t—0t

Based on the generalized derivative of f at X, the Clarke subdifferential of f at x is
defined by

Acf (%) = {x" € X* | (x*,d) < f°(x;d) foralld € X}.
Note that in the case where f is convex,
Iof () = 0f(x) = {x* € X* | (x*,x—X) < f(x) — f(X) forallx € X},

which is the subdifferential in the sense of convex analysis of f at x. A characteri-
zation for Hadamard strict differentiability is given in the proposition below, see
[7, Proposition 2.2.4].
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Theorem 2.3: Let X be a normed space and let f : X — R with x € int(dom ).
If f is Hadamard strictly differentiable at x, then f is locally Lipschitz continuous
around x and dcf (X) = {Vsuf (x)}. Conversely, if f is locally Lipschitz continu-
ous around x and dcf (x) reduces to a singleton {x*}, then f is Hadamard strictly
differentiable at X and Vyf (x) = x*.

The following is a direct consequence of this result for the convex case.

Corollary 2.4: Let X be a normed space and let f : X — R be a convex function
with x € int(dom (f)). Then the following properties are equivalent:

(a) fis Hadamard strictly differentiable at x.
(b) fis continuous at x and f is Gdteaux differentiable at this point.
(c) fis continuous at x and df (x) is a singleton.

Proof: (a) = (b): This is a direct consequence of Theorem 2.3 taking into
account that the strict Gateaux differentiability implies the Gateaux differentia-
bility.

(b) = (c): This implication is straight forward.

(c) = (a): By the convexity of f, its continuity at x implies the local Lipschitz
continuity around x. Note that in this case the Clarke subdifferential of f at x
reduces to the subdifferential in the sense of convex analysis at this point, i.e.
dcf (x) = df (x). Thus, this implication follows directly from Theorem 2.3. W

Note that the equivalence of (a) and (b) in Corollary 2.4 does not hold true in
the general nonconvex setting as shown in the example below.

Example 2.5: Consider the function f : R — R given by

xzsin(l) if x=£0,

x

= 0 ifx=0.

Then we can show that f is not Hadamard strictly differentiable at 0, but it
is Fréchet differentiable and thus continuous and Gateaux differentiable at this
point.

In what follows we study a characterization for Fréchet differentiability based
on Clarke subdifferentials. For a nonempty subset 2 and x € X, the notation
d(x; 2) is used for the distance from x to Q defined by

d(x; Q2) = inf{||x — w|| | w € Q}.

Given a set-valued mapping F : X = X*, where both X and X* are equipped with
the strong topology. We say that F is upper semicontinuous at x € dom (F) :=
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{x € X | F(x) # @} if for any ¢ > 0, there exists § > 0 such that
F(x) C B(F(x);¢) whenever x € B(x;4),

where B(F(x);¢) = {x* € X* | d(x*; F(x)) < ¢} and B(X;8) denotes the closed
ball with centre x and radius § in X.

The following version of the mean value theorem (see [7]) is useful in what
follows.

Theorem 2.6: Let X be a normed space and let f : X — R be Lipschitz continuous
on an open set G C X. For any [a,b] C G, there exists z € (a, b) such that

fb) —f(a) € (3cf(2), b —a).

Let us now present a characterization of Fréchet strict differentiability based
on Clarke subdifferentials, see, e.g. [8]. We provide an alternative detailed proof
here for the convenience of the reader.

Theorem 2.7: Let X be a normed space and let f : X — R with x € int(dom ().
Then the following properties are equivalent:

(a) fis Fréchet strictly differentiable at x.
(b) fis locally Lipschitz continuous around X, dcf (x) is a singleton, and dcf (-) is
upper semicontinuous at x.

Proof: (a) = (b): Suppose that f is Fréchet strictly differentiable at x. Then it
is Hadamard strictly differentiable at this point. By Theorem 2.3, the function f
is locally Lipschitz continuous around x and d¢f (x) is a singleton. It remains to
show that d¢f (-) is upper semicontinuous at x. Fix any sequence {xi} in X that
converges to X, and fix any x;; € d¢f (xx). Fix any & > 0. Then there exists § > 0
such that

lf(x) — f(u) — (Vspf (%), x — u)| < e|lx — u|| whenever x,u € B(x;9).

Since {xx} converges to X, we can find kg € N such that x; € B(x;5/4) forall k >
ko.Fixanyk > kpandanyv € X. If |[x — x¢|| < 8/4and0 < t < 8/2(||v]| + 1)),
then||x — x|| < |lx — xxll + llxx — x|| < 8/4+8/4=38/2 < 8. It follows that
lx+tv—x| < |lx—X| +¢t||v| <8/24+65/2 =245, and so

flx+1tv) — f(x) < (ViFf (%), tv) + el tv].
This implies
flx+ tvt) — f(x) -

< (Vsef(x),v) + ¢||v|| for such x, ¢.
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It follows that

fo(xg;v) = limsup ACh tvt) —/® <AVef(x),v) +elvIl.

t—0F x—xp

Now, (x7, v) < f°(xksv) < (Vsef (%), v) + ¢||v|l. Then ||x; — Vsef (X) || < & forall
k > ko. Therefore, {x}} converges strongly to Vigf (x). The upper semicontinuity
of the Clarke subdifferential mapping is now straightforward.

(b) = (a): Let us prove the converse by assuming that (b) is satisfied. Suppose
that d¢cf (X) = {x*}. Since d¢f () is upper semicontinuous at X, for any ¢ > 0 there
exists § > 0 such that

dcf (u) C B(x*, &) whenever u € B(x, ).
We can choose § > 0 sufficiently small such that f is Lipschitz continuous on the

open ball B(x, §). Fix any x, y € B(x; §) with x # y. By Theorem 2.6, there exist
u € (x,y) and w* € d¢f (1) such that

f&) —f) = Wwx—y).

Then ||w* — x*|| < &, and hence

‘f(x) —f()/) - <x*>X—)’>| _ |<W* _x*>x—)’>
llx — yll lx =yl

Therefore, f is Fréchet strictly differentiable at x. [ ]

Let us now derive a corollary for the convex case.

Corollary 2.8: Let X be a normed space and let f : X — R be a convex function
with x € int(dom (f)). Then the following properties are equivalent:

(a) fis Fréchet strictly differentiable at x.

(b) fis Fréchet differentiable at x.

(¢) fislocally Lipschitz continuous around x, of (X) is a singleton, and 9f (-) : X =
X* is upper semicontinuous at x.

Proof: The implication (a) = (b) is obvious. If f is Fréchet differentiable at x, it
is well known that d¢f (x) = 9f (X) = {VEf(X)} under the convexity of f. In addi-
tion, f is locally bounded around ¥, so it is locally Lipschitz continuous around
this point. Let us show that the subdifferential mapping is upper semicontinuous



OPTIMIZATION (&) 9
at x. Let x* = Vgf(x). We have

lim fo) —f(x) — (¥ x — %)

x—>X ||x — )_CH

=0.

For any ¢ > 0, we can choose § > 0 such that
(x*,x —Xx) < f(x) — f(X) + ¢|lx — X|| whenever ||x — x| < 3.
Fix any x € B(x;8) and any u* € df(x). Then

(X —uSx—%) = 5 x—X) + Wx—x)

=fG) —fG) +ellx =X +fG) — f(x) = ellx — X|.

This implies [|x* — u*|| < &, which justifies the upper semicontinuity of the subd-
ifferential mapping. Thus the implication (b)=> (c) holds. Finally, the implication
(c)= (a) follows from Theorem 2.7. [ |

Next, we will study characterizations of strict differentiability via Mor-
dukhovich/limiting subdifferentials in Asplund spaces; see [9]. Consider an

extended real-valued function f : X — R. In the sequel, the notation x i> X
means that x — X and f(x) — f(x). Given ¢ > 0, the e-Fréchetsubdifferential of
fatx € domf is the set

Bef (%) = {x* e X* | limipff(x) —f®) —_(x*,x—)_c) > _8}'
X=X llx — x|l

The set 9 f (x) (¢ = 0) is called the Fréchet subdifferential of f at x and is denoted

simply by 9f (%). The limiting/Mordukhovich subdifferential of f at X is defined by
the Kuratowski upper limit:

dvf(®) = Limsup 0.f(x).

fo_
x—=>x,e—01

Proposition 2.9: Let X be an Asplund space and let f: X — R with X €
int(dom (f)). If f is Hadamard strictly differentiable at X, then f is locally Lipschitz
continuous around x and dpif (x) = {Vuf (x)}. Conversely, if f is locally Lipschitz
continuous around x and dpf (X) reduces to a singleton {x*}, then f is Hadamard
strictly differentiable at X and Vgf (x) = x*.

Proof: Suppose that f is Hadamard strictly differentiable at x. By Theorem 2.3,
the function f is locally Lipschitz continuous around x and d¢f (x) = {Vsuf (x)}.
In addition, by [9, Corollary 2.25], dyf (x) is nonempty and dpf (X) C dgf (x). It
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follows that dpf (x) is a singleton. Now, suppose that f is locally Lipschitz con-
tinuous around x and dpf (x) reduces to a singleton {x*}. By [9, Theorem 3.57],

dcf (%) = cl*co (Amf (%)) » (1)

here cl* stands for the weak* topological closure of a set in X*. This implies that
dcf (x) is a singleton, and so by Theorem 2.3, f is Hadamard strictly differentiable
at x. |

Theorem 2.10: Let X be a normed space andletf : X — Rwithx € int(dom (f)).
Consider the following statements:

(a) fis Fréchet strictly differentiable at x.
(b) fislocally Lipschitz continuous around x, dpf (X) is a singleton, and dpf (-) is
upper semicontinuous at x.

If X is an Asplund space, then (a) implies (b). The converse also holds true if we
assume that X is reflexive.

Proof: (a) = (b): Suppose that (a) is satisfied. By Theorem 2.7 and the fact that
@ # omf(x) C dcf (x), the function f is locally Lipschitz continuous around x
and dpf (x) is a singleton. Let x* = V,gf (x). The upper semicontinuity of dpsf (-)
follows directly from that of d¢f(-), which is also guaranteed by Theorem 2.7.
(b) = (a): Suppose that (b) is satisfied with dpf (X) = {x*}. By (1), we have
dcf (x) = {x*}. Applying Theorem 2.7, it suffices to show that d¢f(-) is upper
semicontinuous at x. Given any ¢ > 0, there exists § > 0 such that

|u* — x*|| < & whenever ||x — X|| < §,u* € dpf (x).

We can choose § > 0 sufficiently small so that f is locally Lipschitz continuous
on B(x; ). Fix any x € X with ||x — x|| < § and fix any z* € co(dpf(x)). Then
there exist A; > 0 and u} € dyf(x) fori=1,...,mwith ) /* | A; = 1 such that

m
ZF = Zkiuf.
i=1
It follows that
m m m
2% = = 1) duf — 2 = 1D dilwf — ) <Y hlluf — x| < e

Therefore, co(dpf (x)) C B(x*, &) whenever x € B(x; §). Under the reflexivity of
X, we can apply the celebrated Mazur theorem and get

dcf (x) = cl*co (aMf(x)) = cl"co (aMf(x)) = clco (aMf(x)) .
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Now, for any u* € dcf(x), there exists a sequence {u;} in co(dpf(x)) that
converges to u* strongly. Thus

lu* =¥ = lim [|u} —x*|| <.
k—o00
This implies the upper semicontinuity of d¢f(-) and completes the proof. |

Given a function f : X — R, recall that the Fenchel conjugate of f is given by
fH(x") = sup{(x*,x) — f(x) | x € X},x™ € X™".

Proposition 2.11: Let X be a normed space and let f : X — R. Suppose that f is
propet, Ls.c., convex, and coercive in the sense that

f)

le\l—><><> Ixll

(2)

Then dom (f*) = X* and f* is continuous on X*, where X* is equipped with the
strong topology.

Proof: Since f is proper, L.s.c., and convex, we can find v* € X* and ¢ € R such
that
c+ (v, x) < f(x) forallx € X.

Fix any x* € X*. Under the coercive property of f, we can find § > 0 such that
Il (lx*[l + 1) < f(x) whenever [x|| > 4.

It follows that
sup{(x*, x) — f(x) | [lx]l = 8} < —[Ix].

We also have
sup{(x*,x) — f(x) | llx]| <8} < sup{(x*,x) — (v*,x) —c | ||lx[| <8} < oo.

Therefore, f*(x*) < oo and dom (f*) = X*.

Observe that f* is convex and lower semicontinuous on X*, where X* is
equipped with the strong topology generated by the dual norm. Since X* with
the dual norm is a Banach space, f* is continuous. [ |

The following result provides conditions on f ensuring the Gateaux differen-
tiability of its Fenchel conjugate.

Theorem 2.12: Let f : X — R be proper Ls.c. function defined on a reflexive
Banach space X. If f is strictly convex and coercive on X, then the conjugate f* is
Gateaux differentiable on X*.
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Proof: By Proposition 2.11, the function f* is convex and continuous on X*. Fix
any v* € X*. Let us first prove the Gateaux differentiability of f* at v*. Note that
X € f*(v*) if and only if v* € 9f (x), which holds iff

) — (v, x) <f(x) — (v, x) forallx € X.

Equivalently, x is an absolute minimizer of the function g(x) := f(x) — (v*, x) for
x € X. It follows from (2) that lim x| - oc g(x) = 00. Then by the strict convexity
of f, the function g has a unique absolute minimizer on X. Thus af*(v*) = {x} is
a singleton. Therefore, by Corollary 2.4, the function f* is Gateaux differentiable
at v*. [

We say that a function f : X — R defined on a normed space X is strongly con-
vex with parameter
o > 0if

llx — ull*
fOx+ (1 —2)u) +or(l — 1) —

<AM@x) + (1 —A)f(u) forallx, ue X, A € (0,1).

Given a convex function f : X — R defined on a normed space X, we say that
its subdifferential mapping df : X = X* is strongly monotone with parameter
o > 0 (or o —strong monotone) if

ollx1 — x||* < (Vi —vE,x1 — x2) whenever v} € 3f(x;), i = 1,2.

In particular, it implies that
ollx1 —x2|| < [lvi —v5|| whenever v} € 3f(x)), i = 1,2.

The proposition below shows that the o -strong convexity of a convex function f :
X — R defined on a Banach space X can be characterized by the o -strong mono-
tonicity of the subdifferential mapping df : X = X*, see [10, Corollary 3.5.11].

Proposition 2.13: Let X be a Banach space and letf : X — R be proper, Ls.c., and
convex. Then the following properties are equivalent:

(a) Iffis strongly convex with parameter o > 0.
(b) The subdifferential mapping of : X = X* is strongly monotone with parame-
tero > 0.

Theorem 2.14: Let X be a reflexive Banach space and let f : X — R be a proper
lower semicontinuous function. If f is strongly convex with parameter o > 0, then
¥ is Fréchet differentiable and Vf* is Lipschitz continuous with constant { = 1/o.
In addition,

Vif*(v*) = arg max{(v*,x) — f(x) | x € X}.
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Proof: 1t is not hard to prove that the strong convexity of f implies its strict
convexity and coercivity. By Proposition 2.11, the function f* is convex and
continuous on X*. Thus, for any fixed v* € X*, the function f* is Gataeux dif-
ferentiable at v*. Fix any v/ € X* and x; € X with x; € 9f*(v}) for i=1,2. Then
vi € 0f (x;) for i=1,2 and

1
% %
x1 — x| < —Ivi =%l
| | O_||1 >l

Thus, we can easily show that the subdifferential mapping af*(-) : X* = X is
upper semicontinuous at v*. It follows from Corollary 2.8 that f* is Fréchet
differentiable, and in addition,

1
IVEf*(v]) — VEf (")l < EIIVT — vl
for all v, v € X*. This completes the proof. |

For a bounded linear mapping A : X — Y between normed spaces, we define
the norm of A as usual:

1Al = sup {[A@)II | llx]l < 1}.

It follows from the definition that [|A(x)|| < ||A||l|x|| for all x € X. The adjoint
mapping of A denoted by A* : Y* — X* is defined by A*(y*) = y* o A for y* €
Y*. It is well known that if A : X — Y is a bounded linear mapping, then ||A|| =
Al

Lemma 2.15: Let A: X — Y* be a bounded linear mapping, where Y is a
reflexive Banach space, and let ¢ : Y — R be proper and ls.c. Consider the
function

g(x) = sup{{Ax,y) —d(y) | y € Y}, x € X. (3)

(a) If ¢ is strictly convex and coercive, then g : X — R is Gdteaux differentiable
on X.

(b) If ¢ is strongly convex with parameter o > 0, then g is Fréchet differentiable
and Vg is Lipschitz continuous on X with constant |A||*/o.

Proof: The function g can be represented as

g(x) = sup{{Ax,y) —p(y) | y € Y} = ¢ (Ax).

If ¢ is strictly convex and coercive, then by Theorem 2.14, the function ¢* is
Gateaux differentiable on Y*. Thus it is straightforward to see that g is Gateaux
differentiable. Now, assume that ¢ is strongly convex with parameter o > 0. It
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follows from Theorem 2.14 that the function ¢* is Fréchet differentiable and
Vr¢* is Lipschitz continuous with constant 1/o. This implies that g is Fréchet
differentiable on X with the derivative representation

Vg(x) = A*V¢*(Ax) forall x € X,

and thus Vg is Lipschitz continuous on X with constant [|A||?/o. |

Using the obtained result together with the conjugate sum rule, we derive now
efficient conditions ensuring both Géateaux and Fréchet differentiability of the
constrained version of function (3).

Let X and Y be normed spaces. Given a bounded linear mapping A : X — Y*
and function ¢ : Y — R, consider the function

flx) =sup{(Ax,y) — () | ye Y}, x e X. (4)

In general, f : X — R is a nondifferentiable convex function.

Our goal now is to find a differentiable approximation of the function f given
by (4) in infinite dimensions. The idea comes from Nesterov in [1] with further
studies in [11,12] in finite dimensions. Fix a functionp : ¥ — R. Given uw >0,
define

Sfu(x) = sup{{Ax,y) — () —up(y) |y € Yhx e X. (5)

The theorem below allows us to build a family of differentiable functions based
on the structure of the function f.

Theorem 2.16: Let X be a normed space and let Y be a reflexive Banach space.
Consider the function f defined by (4) and the function f,, defined by (5) in which
A: X — Y* is a bounded linear mapping and ¢ : Y — R is proper, Ls.c., and
convex.

(a) If p is strictly convex and coercive with dom (¢) N dom (p) # ¥, then f,, is
Gateaux differentiable.

(b) If p is strongly convex with parameter o > 0 and dom (¢) N dom (p) # ¥,
then f,, is a C" function with the Lipschitz constant for the gradient Vf,
calculated by || A||?/o .

Proof: Observe that

fu() = sup{{Ax,y) — (0(y) + up(y) | y € Y} = (¢ + up)*(Ax).

The conclusion follows directly from Lemma 2.15. Note that if p is strictly convex
and coercive, then the function h(u) = ¢(u) + up(u) for u € Y is also strictly
convex and coercive. In addition, if p is strongly convex with parameter o, then
h is strongly monotone with parameter o (. |
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The next step in Nesterov’s smoothing techniques involves imposing more
properties of the function p to ensure that f,, provides smooth approximations
to the function f.

We say that a function p : Y — R is a prox-function of the function f defined
in (4) if the following conditions are satisfied:

(a) pis proper, Ls.c., and o -strongly convex with some o > 0.
(b) dom (¢) C dom (p).

(c) p(y) > 0forall y € dom (¢).

(d) D= supyedom(w)p(y) < 00.

Theorem 2.17: In the setting of Theorem 2.16 suppose that p is a prox-function
for f. Then

fu() < f(x) <fu(x) + pD forallx € X,

where D = SUP)cdom ((p)p(y).

Proof: Since p(y) > 0 for all y € dom (¢) and dom (¢) C dom (p), we have

fu(x) = sup{(Ax,y) — (p(y) + up(») | y € Y}
= sup{(Ax,y) — (¢(») + np(y)) | y € dom (¢) N dom (p)}
up{(Ax,y) — (¢(y) + up(y)) | y € dom (¢)}
up{(Ax,y) — () | y € dom (¢)} = f(x).

We also have

f(x) = sup{{Ax,y) — @(y) | y € dom (p)}
= sup{(Ax, y) — (¢(») + up(y)) + up(y) | y € dom (¢)}
< sup{{Ax,y) — (p(y) + up() | y € dom (¢)}
+ wsup{p(y) | y € dom ()}
= fu(x) + uD.

The proof is now complete. |

Let us continue by providing some examples of the function p that satisfies
condition (a) or (b) in Theorem 2.16. Recall that a subset F with nonempty inte-
rior of a normed space is called strictly convex if for any x, y € F with x # y and
for any t € (0, 1), we have tx 4+ (1 — t)y € int(F). The proof of the proposition
below is straightforward.

Proposition 2.18: Let X be a normed space and let F be a nonempty convex set in
X that contains the origin in its interior. Suppose that F is strictly convex. Consider
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the Minkowski function associated with F defined by pp(x) := inf{t > 0 | x € tF}
for x € X. Then the function p = (pg)? is continuous, strictly convex and coercive.

We say that a function p : X — R is called F-strongly convex with parameter
o > 0 if the function p — 0/2(pp)? is convex. In particular, if p is B-strongly
convex, where B is the closed unit ball of X, then this definition reduces to the
well-known definition of strong convexity.

Proposition 2.19: Let X be a normed space and let p : X — R be a continuous
function that is F-strongly convex, where the set F satisfies the conditions in Propo-
sition 2.18. Then p is also strictly convex and coercive. If we assume in addition that
X is a Hilbert space and p is strongly convex with parameter o > 0, then dp(-) is
strongly monotone with parameter o.

Proof: Define the function h = p — o//2(pr)?. Then h is a continuous convex
function. Thus there exist w* € X* and b € R such that

(W*,x) +b < h(x) forallx € X.

Since p = h + 0/2(pr)?, the conclusions become straightforward. |

Finally, let us consider a direct corollary of Theorem 2.16 (b).

Corollary 2.20: Let X and Y be Hilbert spaces. In the setting of Theorem 2.16, let
P = 3lly — yoll* for y € Y, where yy € Q and Q is bounded. The function f,,
given by (5) is Fréchet differentiable and its gradient is Lipschitz continuous on X
with Lipschitz constant £, = A2/ . In addition,

fu®) < f) < fu(x) + %[D(yo; Q) forallx € X,
where D(yo; Q) = sup{llyo — yIl | y € Q} < o0,

In particular, if (y) = (b, y) for y € Y, where b € Y, then the function f,, has
the explicit representation

|Ax — b||>
—

fu (x) = 0

Ax—b _7?
(Ax—b,yo)—%[d(}’0+ * ;Q)}
7

and is Fréchet differentiable on X with its gradient given by Vgf, (x) = A*u, (x),
where u,, can be expressed in terms of the Euclidean projection

Ax—b
uu(x)zl'l(yoJr " ;Q).

Proof: The conclusion follows directly from Theorem 2.16 with the observation
that p is strongly convex with constant o = 1. [}
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Figure 1. Smooth approximation of the absolute value function

Example 2.21: Let f(x) = |x| for x € R. Then f(x) = sup{xu | |u| < 1}. Using
p(u) = u?/2 for u € R gives smooth approximations (Figure 1):

2
— if x| < u,

Ju() = {21
|x| — 5 if x| > w.

Example 2.22: Let X be a Hilbert space. Given b € X, define f(x) = ||x — b|| for
x € X. Then

f(x) = sup{(x — b,y) | y € B} = sup{(x,y) — (b,y) | y € B}.

Using Corollary 2.20 with p(y) = 1/2]|y||* gives

_ bl o (x=b N
=B =5 ()]

where B is the closed unit ball of X.

Lemma 2.23: Fory = (y1,...,ym) € R", define p(y) = Y 1, yiIn(y;) + In(m)
ifyi>O0foralli=1,...,mand Y ;" yi = 1, and p(y) = oo otherwise. Then p
is strongly convex and p(y) > 0 for all y € R™.

Proof: Define the function p*(y) = Y, yiIn(y;) + In(m) if y; > 0 for i =
1,...,m, where y:= (y1,...,ym). We can show that VZpT(y) = 0 for all
y e R™ with y; > 0 for all y=1,...,m. Thus p is strongly convex on G =
{(x15...,xm) | xi > 0 fori=1,...,m}. It follows that p is strongly convex. An
elementary method of Lagrange multiplier shows that p(y) > 0 for all y €
R™. [ |
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Example 2.24: Consider the function
f(x) = max{xi,...,x,} forx = (x1,...,x,) € R".

The function f can be represented by

n
f(x) = sup [x1y1 + X2t Xy | Y1y yn = O,Zyl:l
i=1

=sup{(x,y) —da(y) |y € Y},

where A = {(y1,...,yn) €R" | y1,¥2,. .,y > 0,3 1 yi = 1}.
Define the function

Yo yiln() +1In(n) ify,...,y. >0,
00 otherwise.

p(y) =

In this definition we use the convention that y;In(y;) =0 if y;, =0 for i =
1,...,n. With the method of Lagrange multipliers, we can easily show that pis a
prox-function for f and

fu(x) = sup {(x,y) —8a(y) — up(y) | y € Y}
= sup{(x,y) —a(y) — up(y) | y € A}

sup {me — 1) _yilnGy) — uln(n) | y € A}

i=1 i=1

n nooxi/u
=pnln (E exi/M> — pln(n) = pln (ZI:l—e>
n
i=1

The smoothing technique obtained can be used to solve the smallest enclosing
ball problem:

minimize ¢ (x) = max{[d(x; 2))* |i=1,...,m},x € R",

where Q; for i = 1,...,m are nonempty closed convex sets in R”. Indeed, a
smoothing approximation of ¢ is given by

.0:)12
¢u(x) = puln (Zﬁl eld(s$2)] /M) |

m

This function can be minimized using accelerated first-order optimization meth-
ods.

3. Applications to image reconstructions

In this section, we consider an unknown image M of size N; x N,. After the
image is corrupted by a linear operator A and distorted by some noise ¢, we
observe only the image b = A(M) + &, and seek to recover the true image M.
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3.1. Patching animage

In this section, we describe an optimization problem which models the image
reconstruction problem by expressing an image as the sum of sparse represen-
tations of distinct ‘patches’ of the image, see, e.g. [13]. Given an N; x N, image
matrix M, let P be a collection of submatrices P;; of M with size n; x n,, which
cover M. We henceforth refer to these submatrices as patches, and sometimes
identify P;; with its index (i, /). The covering condition ensures that every pixel
of M appears in some patch, and we will use collections only of non-overlapping
patches, so that P partitions M.

Define R;; as the function that maps the image M to patch P;j, that is,
R;j(M) = P;j (Figure 2). If M is in vectorized form, R;; can be expressed as an
niny X N1N, matrix with exactly one 1 in each row and zeros elsewhere. In par-

ticular, [R;;]ap is 1 if the bth entry of the image M appears in the ath entry of the
m m m

(vectorized) patch P;j, and 0 otherwise. For example, if M = [m; mys mos ] isa
ms3y ms3z ms3

3 x 3 image and patch P, is the 2 x 2 bottom right corner, then

mi1
ma1
0000710000 Z“
12
00000100 O
RoxM) =106 000001 0™
0000 00T OGO 1]]|™?
mis
my3
myp
_ | m32 —p N|:m22 m23}
- - 2,2 >
my3 msz ms3
ms3

where ~ represents reshaping a vectorized form to a matrix. It is now straightfor-
ward to write a MATLAB code buildRij ([N1 N2], [nl n2],[s t])
to construct a matrix R;; which operates on a vectorized N1 x N; image M to
produce the vectorized n; x n, patch whose upper-left index in M is (s, t).

For a collection P of patches of an image M, define Tp = Z RZJ-RZ- e

(i,))eP
Riy 819 100 — Igr7 Ry | = L=
11213 14 15 01000 0

161718 19 20 0/0/0/0/0

Figure 2. Left: Ry 1 acts on a 4 x 5 matrix to extract the 2 x 2 patch (1, 1). Right: R1TV1 embeds a
2 x 2 patch into patch (1, 1) of a zero matrix.
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Lemma3.1: ForallP;j € P, REjRi j is diagonal and Tp is invertible. If the patches
are non-overlapping, then Tp is the identity matrix.

Proof: Let P;jbe some patch of M, both in vector form. Then [R; ], = 1iff M, =
[Pij]r. Because [P;;], must contain exactly one element of M, each row of R;;
contains exactly 1 nonzero entry. As each element of M appears at most once
in P;j, each column of R;; contains at most one nonzero element. This means
that if a # b then columns a and b of R;; cannot have a nonzero element in the
same row, so [RE]-Ri jlap (being the dot product of columns a and b of R;j) must
be zero. So R};-R,- j is diagonal. Along the diagonal, [RZJ-R,- jla.a is the dot product
of the ath column of R;; with itself, and is thus 1 iff the ath entry of M appears
in patch P;;. Since each entry of M appears in at least one patch, it follows that
summing RE]-RI' ;j over all patch indices (i, ) ensures T has nonzero diagonals
and is therefore invertible. When the patches are nonoverlapping, each entry of
M appears in only one patch, so [Ri,jREj]a,a = 1foralla =1,..., N1 Ny, by which
we find Tp to be the identity matrix. [ |

We then express the image M as

M= (Tp)~! Z RZjRi,j(M)
(i,))eP

Because in this paper we use only nonoverlapping patches, T is the identity, thus
M= )" Ryj"Rij(M).
(ij)eP
For any (i, ) € P, let y;j € RX be a sparse representation of the patch R;j(M) =
P;j under an nyn; x K dictionary D, so that P;; = Dy; ;. We thus say
M = Z R,',jTDy,‘,j.
(i)eP

To reconstruct the image with sparsely represented patches in a way which fits
the observed data, we solve the following:

2
, v
min >yl — Y yijll + > A > Ry™Dy; | —b| . (6
ipep  ()EP (ij)eP (i)eP
and immediately note that (6) can be expressed as
. v 2
min 2 Ay = b >+ Iyl = Iyl (7)

T . . .
where y = [ 711 1> - 5 | is the concatenation of all the sparse representations
of patches under D, 7 and j the final row and column, respectively, of the patch
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partition, and finally

_A:A[RHTD RL™D ... Ri—jTD].

3.2. DCA for {1 — {5 regularization

The use of (¢; — €,) regularization causes the objective function to no longer
convex (Figure 3), and so we adopt the Difference of Convex Functions
Algorithm (DCA), used to minimize g—h where g: R” — Rand h: R" - R
are both convex. The algorithm, developed by Pham Dinh and Le Thi in [3,4] is
as follows:

DC Algorithm

INPUT: x1,N € N
fork=1,..., Ndo
Findyk € 3h(Xk)
Find Xk11 € 8g* (yk) (equivalently, k11 € argmin{g(x) — (x,yx) : x € R™})
end for
OUTPUT: Xnt1

Before using the DCA, we first apply Nesterov’s smoothing from
Corollary 2.20. Given a function of the form

folx) = ‘;?5‘{ (Ax,u) — Y (w)}

where Q C R™ is a convex, closed, and bounded set, ¥ is a convex map from
R™ to R, and A is an m X n matrix, for any £ > 0 we may obtain a smooth
approximation f,, using

fu) = max{{Ax, 1) — ¥ (w) %uuuz}.

VK

RS 11

e\l
\\/,
,~\\\§§\\§§§\{<,,§/////lllllll

Figure 3. Surface plots of x|y (left) and |ix|l1 — lIx|| (right) on R2. Minimizing an objective
function containing these terms drives solutions towards the axes, simulating sparsity. Note that
£y — £ regularization is not convex.
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We now use this to smooth the ¢; norm. Let p(x) = ||x||;, and note that this is
equivalent to p(x) = maé)({(x, u)} when Q is the unit box, Q = {x € R" | |x;| <
ue

1,i=1,...,n}. In the above general setting, this corresponds to A being the
identity matrix and v the zero map. Then p, (x) is a smooth approximation to
px) = |Ix|1 = maéc{ (x,u)} and can be expressed as

ue

1 2
pul) = 5l —%(d(ﬁ,e)) ,

where d(x; Q) is the Euclidean distance from x to Q.
Now let A be a real m x n matrix and b € R™. Using the above smooth
approximation for ||x[|; we approximate f (x) = 3[|Ax — bl|? + |lx]l1 — llx|| with

Ju) = —IIAx —bl* + — n || I” - % (d ("% Q) — llxl

|| 1= (5 (@ ("%Q)" = Slax— bI* + I+l

- ﬂuxnz + 212 = (5 (@ (% Q)" = SlAx— bl + Z > + 1l )

Note this is the difference of convex functions g—h for

1
g(x)z( J;/fy)nxnz and

h(x)=%(d(u_1x,Q)) ——||A P+ Y ||x|| + I,

assuming that y > 0 is sufficiently large so that %||x||2 - 3l Ax — bl|? is convex.
Note this is satisfied when y is greater than v times the largest eigenvalue of ATA.
To use the DCA algorithm, we will need yi in the subdifferential of h at x;.

Using

V|Ax — b|?> = 24T (Ax — b)
and

V(d (% Q)" = 2(x — o)),
where TTq(x) is the projection of x onto Q, along with the chain rule, we have a
subgradient of h at x given by

dh(x) = plx — 1§ 10) (uflx) —vAT(Ax — b) + yx + w(x),

where w(x) is a subgradient of || - || at x. We point out that the projection onto
the unit box can be defined componentwise as [[1g(x)]; = max(—1, min(x;, 1)).
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To find xx41 € 9*g(yk), we use the fact that u € 9*g(v) ift v € dg(u). The sub-
differential of g is simply the singleton set containing its gradient (see [14]), so
vedg(u)iffv= 1+p’fyuiffu = 1+‘Lyv.

We combine these results to implement the DCA algorithm in order to min-

imize a u-smoothing approximation to f(x) = 3[|Ax — blI? + |lxlli — llx|l, as
outlined below.

Algorithm 1 DCA for smoothed ¢; — ¢, regularization.

INPUT: o > 0, sufficiently large y, starting point x
repeat
Find w = ﬁ if x # 0, w = 0 otherwise
y<«—pulx—Tqo(n'x) —vATAx—b) + yx+ o
X <«— ﬁy
until convergence
OUTPUT: x

Experiments suggest that incrementally decreasing p over the course of the
algorithm induces better performance.

3.3. Choosing partitions

This section describes how to obtain ¢ different partitions of the image, following
the approach described in [13]. Given an N; x N, image matrix, choose a general
patchsize n; x n,. We then choose asizec; x c; of the upper left-most patch, P;y,
where ¢; < n; for i=1,2. All of the patches not on the boundary of the image will
have size n; x n,. The left boundary noncorner patches of M are size n; x ¢, the
upper boundary noncorner patches have size c; x 1, and the remaining patch
sizes are chosen to ensure their borders align with those patches already defined
(Figure 4).

If patch P;; has size less than n; x ny, the patch extraction operator R;; still
creates a patch of size n; x 5, in which P;; sits in the proper orientation, and the
remaining entries are zeros. Similarly, R;F] will embed an n; x n, patch into the
corresponding patch in the image, but zero out all entries which do not lie in the

Figure 4. Two partitions of an (N7 x Ny) = (4 x 5) image with patch size (n1,ny) = (2,2). Left:
The top left corner has size (¢q, ¢2) = (2, 2). Right: The top left patch has size (¢1, ¢2) = (1,1).
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smaller patch. For example, if the general patch size is 8 x 8 but the corner patch
P11 is5 x 5,then Ry embeds the top left 5 x 5 patch into an 8 x 8 patch of zeros.
We say P;; has ‘virtual size’ 5 x 5. Note that the cell array of patch extraction
matrices does not need to be constructed every time a problem is solved. Once
it has been constructed for some partition of a given size image, it can be saved
and reused. The general algorithm given in [13] is as follows: Given a dictionary
D, choose some t different patch partitions of the image, P;, P2, ..., P;. For
each k =1,...,t, find the solution Mj to the unconstrained problem (7) using
partition P. Then use the average of those solutions, M = % > M, as the final
reconstruction.

3.4. Dictionaries

In this summary, we use two types of dictionary. One is constructed from the
discrete cosine transform (DCT). The other is a learned dictionary ; constructed
using a collection of images as training data, and for which the learned dictionary
allows sparse representations. The i,j entry of an M x N discrete cosine transform
(DCT-II) matrix D is given by

1 .
D;; = \/; J=1

ij — .
geos(FG—DG+D) j=2,...,N.

Alternatively, a ‘wavelet’ dictionary can be called using MATLAB’s
wmpdictionary ( ) function, with argument equal to the number of atoms.

We find better results when we ‘learn” a dictionary from a training data.
Consider a training matrix X = [x,...,x1] € R™L of L images of size n in
vectorized form. We seek a dictionary D = [dy, . .., dk] € R of K atoms of
size n and a corresponding coefficient matrix W = [wy,...,wr] € REXL g0 that
x; = Dw; and wj is as sparse as possible, foralli=1,..., L.

There exist several methods for learning a dictionary. One of the most popular
algorithms is the K-SV D proposed in [15] which can be modelled as

i DW — X ||
min [ 7
subjectto |[|di]l =1 foralli=1,...,K and |wjllo <s forallj=1,...,L,

where s is a parameter to control the sparsity. Another popular method is the
Online Dictionary Learning (OLM) proposed in [16] which solves the following
problem:

A
in —|DW — X|*+ |W
Inin JI e+ I Wlh

>

subjectto ||di]| =1 foralli=1,...,K, (8)
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where |[W|; = Z,-Lzl lwill; = Zle ZKZI |wij| and X is a trade-off parameter to
balance data fitting and sparsity level.

To promote the sparsity, our approach is to use the £; — ¢, regularization by
solving the following problem:

. A
min - |DW — X[IE + [IWl1 — [W]l2,1

D,W
subjectto ||di]| <1 foralli=1,...,K, 9)
where [|[W]|1 = ZiL:1 lw;ll = ZiL:1 ZJK:1 wjzl This is a nonconvex problem

whose nonconvexity comes from two sources: the sparsity promotion £; — £,
and the bilinearity between the dictionary D and the code W in the fitting term.
For solving this problem, we alternatively update W and D by using the DCA
and Nesterov’s smoothing.
1. Sparse coding phase: In this phase, we fix a dictionary D and try to update
the code W by solving (9). The objective function is now a DC function with
respect to W:

A 2
Jw) = SIDW = Xl + Wl = I Wll2,1.

Let P(W) = ||W]||;. Using the smoothing technique as before, we can approxi-
mate the function P(W) by

L 1 . 2
P (W)=Y [aninz — % [d (%;Q)]

i=1

L 2
1 28 Wi
= —|W[:-= [d (—;Q>] :

where Q= {w € RX | |w|lco <1}. Recall that the ith component of the
Euclidean projection from w € RX onto the box Q can be computed as

[Mo(w)]; = max(—1, min(1, w;)). (10)

To process further, we denote Q=Qx Qx ... x QC REXL For an K x L
matrix W, the projection from W = [wy, ..., wr] onto Q is defined by

(W, Q) = [I(w;Q),...,M(wy; Q)] € RF*L,

We thus have

L

[dW; Q) = [W — LW, Q)7 = ) _[d(ws Q.

i=1
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The function f (W) can be approximated by the DC function f,, (W) = g, (W) —
h, (W), where

1 Y1 2
W)y=—+=)IWI3
g,u( ) (2M+ 2)” ”F
2
% w A y
hu(W) = 2 [d (Z ;Q)} = JIDW — XIE + ZHIWIE + Wi,

and y; is chosen such that £! is greater than the spectral radius of the symmetric
matrix D D in order to guarantee the convexity of the function h,, (W).
A subgradient Y of &, at W is given by
w w T
Y=—-I(— Q) =AD" (DW =X) + i W 4+ n(W),
% %
where (W) is an K x L matrix whose i column is defined via the i" column
of W by
W
— ifw; #£0,
[n(W))i = | lIwil (11)
ORK if w; = 0.

The DCA for solving the sparse coding phase can be outlined as follows.

Algorithm 2 DCA for sparse coding phase.

INPUT: X € R"™*L D e R"*K, u > 0, A > 0 sufficiently small,
y1 > 0 sufficiently large and starting code W € REX*L,

repeat
Find IT(W, Q) = [[T(w1;Q), . .., IT(wr; Q)] according to (10)
Find n(W) according to (11)

Y ¥ n(%;g) — ADT(DW — X) + m W + n(W)

W «—
1+ un
until convergence

OUTPUT: W

2. Dictionary updating phase. Now we fix the sparse code W that has been
found from the previous phase and update the dictionary D by solving

mDin ||DW—X||12: subjectto ||d;]| < 1lforalli=1,...,K.

For solving this nonconvex problem, we use the DCA by reformulating itasa DC
programming problem as follows:

. 7 V2 V2
min 70 = [2IDI} + @) - [ 21012 - 1DW - X113].
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whereC = {D = [dy,...,dx] € R™K | ||d;|| < 1foralli=1,...,K}isthecon-
straint. Here y, is chosen greater than the spectral radius of the matrix WW T to
ensure the convexity of the function E(D) = % ||D||12D — |DW - X ||12D.

This function h is differentiable and its gradient given by

Vh(D) = y»,D — [DW — X]W .

Note that the ith component of the Euclidean projection from D onto the
constraint C can be computed by

d

— fori=1,...,K.
max{1, ||d;||}

(Me(D)]i =
Thus, the DCA iterative sequence in this phase is simply defined by Dy, =
(Vh(Dk))
Ile .
V2

Algorithm 3 DCA for dictionary updating phase.
INPUT: X € R, W e REXL ) > 0 sufficiently large,

starting dictionary D € R"*K,
repeat
Y «— »D— [DW — X]W T
D «— Tl¢ (V—Z)
until convergence
OUTPUT: D

In practice, when alternatively perform Algorithm 2 and Algorithm 3 to solve
(9), we can use a value y > 0 sufficiently large to play the role of both y; and y».
In addition, we also gradually decrease the value of smoothing parameter p until
a preferred [t is attained. The final scheme for £; — ¢, dictionary learning can
be outlined as follows.

3.5. Implementation

Our goal is to restore an unknown image M of size N; x N, from its corrupted
linear measurements of the form b = A(M) + &. We first choose a general patch
size n; x ny with n; < N; for i=1,2. Then we generate a dictionary of size
niny x K by using DCT or learning from a training data set X of size njn x L
with n;n, < K <« L. Let P be a patch partition associated with some choice of
upper left-most patch and let S be the number of patches in P. For any (i, }) €
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Algorithm 4 DCA for ¢; — ¢, dictionary learning.

INPUT: training set X € R, A > 0 sufficiently small, y > 0 sufficiently large,
starting dictionary D° € R"*X  starting code W? € RK*L
1o > 0,0 € (0,1) and o sufficiently small.
k<—0
repeat
Compute wktl Algorithm 2(X, DX, WE A, v, i)
Compute D1 «— Algorithm 3(X, DX, WKL Ay, ug)
Update pigy1 <— ok

Setk «— k+1
until 4 < oo
OUTPUT: D
{((Ln,..., (?,]_')}, we find the extraction operator Rjj and form the matrices
Ri1
Rz
R=| | and RT= [RTH RTy ... Ri—jT].
Ry

We continue by solving (7) to find y € RXS. Then express y € RKS asan K x S
matrix Y of patch representations under D, so Y = [y11 y12 ... yi_j] and DY is
an n1ny x S matrix whose columns are vectorized patches. Finally, reshaping DY
into 11128 x 1 vectorized form D_y, we have RTD_y =), j RZiji jisan Ny x Np
image in vectorized form.

We now use the above scheme to solve in-painting problems, where A is the
sampling operator. In-painting is a process wherein missing information in an
image is recovered, namely when some known set of pixels of an image have
been lost. Let M € RN1N2 be a vectorization of an Nj x N image, €2 a subset
of {1,...,N1N} and A be the |Q2| x N;N, matrix formed by removing all row i
from the identity matrix I, n, for all i ¢ Q. Then we call A a sampling operator
with sampling rate SR = % and A(M) is a vectorization of the original image,
containing only those pixels indexed by €2.

The patching approach developed by Xu and Yin [13] is implemented to min-
imize (7) using the DCA with Nesterov’s smoothing. In all settings, we compare
the discrete cosine transform (DCT) dictionary with two different learned dic-
tionaries: ¢; regularization by solving (8) with block proximal gradient (BPG)
proposedin [13,17] and ¢; — ¢, regularization by minimizing (9) with Algorithm
4. For all learned dictionaries, we use a training set of 10,000 greyscale patches
of size 8 x 8, chosen randomly from 100 images taken from the Berkeley Seg-
mentation Dataset!; see [18]. The training matrix X is of size 64 x 10, 000. The
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DCT dictionary {1 learned dictionary by BPG 0 — 22 learned dictionary by Alg 4

Figure 5. Three different types of dictionaries: (a) DCT dictionary, (b) £; learned dictionary by
BPG, (c) £1 — £; learned dictionary by Alg 4.

number of atoms for learned dictionaries is set to be K =256 and thus all learned
dictionaries are of size 64 x 256.

A technical step before performing the DCA-based learning algorithm is to set
each column of the training matrix X to zero mean. For the ¢; regularization, we
solve (8) with A = 0.1 by the BPG method using the same parameters as in [13,
Algorithm 3]. For £; — £, regularization, we randomly choose K columns from
the training matrix X and normalize them to form a starting dictionary D° when
solving (9) by Algorithm 4 with WO = pinv(D)X, A = 1, y = 2000, 0 = 0.8,
oo = 107>, The obtained dictionaries are shown in Figure 5.

For all tests, we use the 512 x 512 standard reference image Lena, and choose
ny X ny = 8 x 8 patches. Before running the test, a column of all ones is added to
the DCT and learned dictionaries. As discussed in [13], patching artefacts which
appear in the solution are mitigated by processing the image three times, each
with a different partition. The solution is then taken to be the average of the three
trials. Our partitions were determined by choosing upper left corner patches of

Table 1. Results for in-painting with three different dictionaries. FISTA and DCA are
£y and (£1 — £;) regularization, respectively. Best results are in bold.

SR Rel. error (%) PSNR
Corrupted image 70.72 8.458

50% DCT FISTA 4.81 31.83
DCA 6.06 29.81

€1 learned FISTA 3.45 34.699

DCA 411 33.168

€1 — £y learned FISTA 3.48 34.613

DCA 4.22 33.937

Corrupted image 83.77 6.987

30% DCT FISTA 7.01 28.501
DCA 8.27 27.101

€1 learned FISTA 5.21 31.113

DCA 5.89 30.048

€1 — £y learned FISTA 5.02 31.438

DCA 5.72 30.303
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Sampled image (SR=50%)

FISTA, DCT dictionary DCA, DCT dictionary

FISTA, ¢; learned dictionary DCA, /7 learned dictionary

FISTA, ¢; — £3 learned dictionary DCA, ¢; — £2 learned dictionary

Figure 6. In-painting result on Lena572 with DCT and learned dictionaries. FISTA and DCA are ¢4
and (£7 — £;) regularization, respectively. (a) Sampled image (SR = 50%), (b) FISTA, DCT dictio-
nary, (c) DCA, DCT dictionary, (d) FISTA, £, learned dictionary, (e) DCA, £1 learned dictionary, (f)
FISTA, ¢1 — £, learned dictionary, (g) DCA, €1 — £; learned dictionary.
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size 8 x 8,5 x 5,and 2 x 2. Corrupted images were defined as b = A(M) + 0§,

where £ is a matrix of noise with standard normal distribution scaled by o =
Al
1512
In our experiments, we fix the noise level ¢ = 1% and use v = % for £,
regularization with FISTA [19] and v = % for ¢; — ¢, regularization with
Algorithm 1.

We measure error of the solution M relative to the true image M by rel-

ative error, RE = H'\ﬂ,\_/lmllF, and peak signal to noise ratio as PSNR = 20 -

log4o W—»—%) See Table 1 for a comparison of the PSNR values and relative

errors of the in-painting result with different sampling rates and different dictio-
naries. Figure 6 gives a visual illustration for the case SR = 50%. Given these
results, it is evident that £; — ¢, learned dictionary obtained from Algorithm 4
yields results very close to the one constructed by the BPG method. Moreover,
it can be seen that the performance of DCA with smoothing technique is nearly
comparable to that of the FISTA on learned dictionaries.

3.6. Discussion

The fast patch dictionary method given by Xu and Yin [13] was qualitatively
successful in reconstructing corrupted images, using both ¢; regularization with
FISTA, and (¢; — £;) regularization with DCA in combination with Nesterov’s
smoothing. In every case, learned dictionaries improve results compared to a
DCT dictionary.

The FISTA approach converges after fewer iterations (Figure 7), but DCA
required less time per iteration. The optimal choice of ; and y parameters in
the DCA method is unknown, and allows for the possibility of future improve-
ment. Similarly, implementing FISTA without a backtracking line search is likely
to induce better results, in cases where the Lipschitz constant of the gradient can

108 FISTA, £,

+ [lyells

b)|?

5[ Ayy
~

2| Ay — Bl + llyell = llysll2

0 50 100 150 200 0 100 200 300 400 500 600 700 800 900
k k

Figure 7. Objective function value versus iteration for FISTA and DCA with learned dictionary.



32 N. MAU NAM ET AL.

be determined. Also, it is not known which choice of v (used to weight data-
fitting versus sparsity) leads to the best solution. Future work may explore optimal
parameter choice as well as characterize which problems benefit from ¢; versus
(¢ — £) regularization.

Note

1. Available at https://www?2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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