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We present a systematic classification and analysis of possible pairing instabilities in graphene-
based moiré superlattices. Motivated by recent experiments on twisted double-bilayer graphene
showing signs of triplet superconductivity, we analyze both singlet and triplet pairing separately,
and describe how these two channels behave close to the limit where the system is invariant under
separate spin rotations in the two valleys, realizing an SU(2)+ × SU(2)− symmetry. Further, we
discuss the conditions under which singlet and triplet can mix via two nearly degenerate transi-
tions, and how the different pairing states behave when an external magnetic field is applied. The
consequences of the additional microscopic or emergent approximate symmetries relevant for su-
perconductivity in twisted bilayer graphene and ABC trilayer graphene on hexagonal boron nitride
are described in detail. We also analyze which of the pairing states can arise in mean-field theory
and study the impact of corrections coming from ferromagnetic fluctuations. For instance, we show
that, close to the parameters of mean-field theory, a nematic mixed singlet-triplet state emerges.
Our study illustrates that graphene superlattices provide a rich platform for exotic superconducting
states, and allow for the admixture of singlet and triplet pairing even in the absence of spin-orbit
coupling.

I. INTRODUCTION

Experiments on twisted bilayers of graphene have re-
cently revealed interaction-induced insulating phases and
superconductivity when the relative angle between the
layers is fine-tuned to yield almost flat moiré bands,
which enhances the impact of electronic correlations [1–
4]. Due to the strong-coupling nature of the problem,
which is corroborated by tunneling spectroscopy mea-
surements [5–9], the form and mechanism of the insulat-
ing and superconducting phases are still under debate,
despite considerable theoretical effort [10–46]. Another
graphene-based moiré system that displays both super-
conducting and correlated insulating behavior is ABC-
stacked trilayer graphene on hexagonal boron nitride
[47, 48]. In this case, the moiré pattern results from the
difference in lattice constants, and it can be controlled
by application of a vertical electric field [49, 50].

The most recent member of the family of strongly cor-
related graphene superlattice systems is twisted double-
bilayer graphene [51–53], where two individually aligned
AB-stacked graphene bilayers are twisted with respect to
one another. As theoretical calculations show [54–60],
flat electronic bands can be realized by tuning the twist
angle and a vertical electric field. Similar to the above-
mentioned graphene moiré systems, both correlated in-
sulating [51–53] and superconducting [51, 52] phases are
observed in experiment. However, in stark contrast to
twisted bilayer and trilayer graphene, the superconduct-
ing transition temperature is found to increase linearly
with a weak in-plane magnetic field [52], which is a strong
indication of triplet pairing [42, 57]. Furthermore, the
gap of the correlated insulating phase is seen to increase
with an applied magnetic field, indicating ferromagnetic
order [51–53]. There are also clear experimental indica-

tions of ferromagnetism in twisted bilayer [4, 61, 62] and
ABC trilayer graphene [63].

In this paper, we study the possible pairing states in
graphene moiré superlattices. Motivated by the recent
experimental signatures of triplet pairing, we pay spe-
cial attention to the triplet channel, and possible mixed
singlet and triplet phases. While the weak spin-orbit
coupling in graphene seems to disfavor the latter class of
phases, projections of the Coulomb interaction on the rel-
evant moiré bands evince that the interaction terms that
couple the spin degrees of freedom of the two valleys,
v = ±, of the system are much weaker than other inter-
action terms that do not [13, 50, 57]. Together with the
nearly valley-diagonal band structure, this indicates that
the system is approximately invariant under independent
spin rotations in the two valleys. As has been pointed out
before [19, 44], the associated SU(2)+ × SU(2)− sym-
metry renders the singlet and triplet pairing channels
degenerate. This paper will address the questions: (i)
under which conditions can singlet and triplet mix when
the SU(2)+ × SU(2)− symmetry is only weakly broken,
and (ii) which triplet state transforms into which sin-
glet upon reversing the sign of the symmetry-breaking
interactions? In this way, we map out all possible phase
diagrams close to the SU(2)+ × SU(2)−-invariant limit.

In light of the narrow bandwidth and strong correla-
tions of the graphene-based moiré superlattices we are
interested in, our analysis will begin with a comprehen-
sive study of exact constraints resulting from symmetry.
The symmetry-based classification will then be supple-
mented with energetics, by studying which of the pair-
ing states can be realized in the weak-coupling limit and
what changes in the presence of additional fluctuation
corrections. As it has the smallest set of symmetries, we
will begin our classification with twisted double-bilayer
graphene: while the lattice is invariant under threefold
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FIG. 1. Geometry (top), lattice symmetries (bottom left), and Brillouin zone with symmetries (bottom right) for (a) twisted
double-bilayer graphene, (b) twisted bilayer graphene, and (c) ABC-stacked trilayer graphene on hexagonal boron nitride. In
all three cases, we assume a commensurate superlattice structure for simplicity. For (a) twisted double-bilayer, we only show
ABAB stacking, which exhibits a π-rotation symmetry C2x along the x-axis. For ABBA stacking, we have a C2y symmetry
instead. Our symmetry analysis of pairing applies to both stacking orders as the applied electric field breaks both of these
in-plane rotation symmetries. In (b) twisted bilayer graphene, superconductivity emerges without any applied electric field
and, hence, the C2y symmetry of the lattice has to be taken into account. In addition, the system is approximately invariant
under a C6 symmetry [15] as indicated in gray in the Brillouin zone in (b). In (c), we show only the top boron nitride layer and
one of the graphene layers for image clarity in the main panel; the other two graphene layers are indicated in the close-up view
of the lattice in light blue. We assume no additional twist such that the moiré pattern is solely due to the lattice mismatch.
This leads to the reflection symmetry σxz, which for the effective two-dimensional description of the system can be viewed as
an in-plane rotation C2y as is done in the main text. Also, this system is believed to exhibit an approximate C6 symmetry [50]
as indicated in gray in the respective Brillouin zone.

rotation, C3, perpendicular to the graphene sheets, and
under a twofold in-plane rotation [see Fig. 1(a)], the lat-
ter is broken due to the vertical electric field that is
applied to tune the band structure and to induce su-
perconductivity. It seems currently unclear whether the
superconducting state coexists with the likely ferromag-
netic correlated insulator and whether, at least in part of
the phase diagram, there is a thermal transition directly
from the (paramagnetic) normal metal to superconduc-
tivity without any ferromagnetic order. For this reason,
we will analyze two scenarios separately: (I) there is no
ferromagnetic order around the critical temperature, Tc,
of superconductivity, and (II) there is ferromagnetic or-
der already at T > Tc that coexists microscopically with
superconductivity for T < Tc (or at the minimum, the
associated ferromagnetic moments couple significantly to
the superconducting order parameter). We will begin
with the analysis of the superconducting states trans-
forming under the IRs of the point group C3 assuming
time-reversal symmetry in the high-temperature phase—
this is relevant for case (I) above. In order to capture
scenario (II), we will later add the coupling to the time-
reversal-symmetry breaking magnetic moments and ex-

amine how it affects the superconducting transition. This
allows us to determine which of the pairing states are
compatible with the linear increase of the critical tem-
perature with small magnetic field, B, and to describe
the possible phase diagrams in the temperature-B plane.

We also generalize our discussion to twisted bilayer
graphene and ABC trilayer graphene on hexagonal boron
nitride. Here, we have to take into account an addi-
tional twofold rotation symmetry, C2, perpendicular to
the plane of the system and an in-plane rotation sym-
metry C2y along the y-axis; these symmetries are either
realized as exact microscopic symmetries of the lattice or
as approximate emergent symmetries [15, 17, 50] of those
systems, see Fig. 1(b) and (c).

A. Brief summary of the main results

Due to the length of the paper, here, we provide a very
concise summary of the key results of this work for the
convenience of the reader:

(1) We analyze the consequences of the enhanced
SU(2)+ × SU(2)− spin symmetry, taking into ac-
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count the possibility of several consecutive supercon-
ducting transitions with their difference in transition
temperatures vanishing in the limit where SU(2)+ ×
SU(2)− becomes exact. The resulting complete sets
of possible phases for the relevant symmetry groups
C3 and D3 (or, equivalently, D6, see Sec. VIA) are
summarized in Tables I, II, and IV.

(2) As follows from these tables, all point groups and
all of their irreducible representations (IRs) allow
for singlet-triplet admixed phases in the absence of
any spin-orbit coupling. As opposed to the conven-
tional mechanism of singlet-triplet admixture, which
is based on a reduced symmetry [64], here, it results
from (the proximity to) an enhanced spin symmetry.

(3) To supplement these purely symmetry-based consid-
erations with energetics, we analyze which of those
states can be realized in single-band mean-field the-
ory, i.e., whether there exists a form of the effec-
tive electron-electron interaction that can stabilize
the superconducting state when treated within the
mean-field approximation; the result is indicated in
the last column in Tables I, II, and IV. This identi-
fies the most important pairing states from a weak-
coupling perspective. The presence of any of the
remaining pairing phases—as might eventually be
established in future experiments—must result from
the strong-coupling and/or interband nature of su-
perconductivity.

(4) We also study corrections to mean-field theory com-
ing from ferromagnetic fluctuations, within a sim-
plified phenomenological approach in Sec. V that is
justified microscopically in Appendix B 1. We ana-
lyze two limits. First, we consider the case of weak
fluctuations in order to lift the residual degeneracies
within mean-field theory. We find that out of the
two possible phase diagrams for the IR E close to
mean-field theory, shown in Fig. 5, the one in part
(b) [part (a)] is favored for spin (orbital) ferromag-
netic fluctuations. This reveals that a nematic mixed
singlet-triplet phase is a natural candidate pairing
phase in graphene moiré superlattices. Second, we
analyze which pairing states are favored in the case
where the fluctuation corrections dominate over the
mean-field contributions (see last column in the ta-
bles mentioned above).

(5) We study the coupling of the superconducting states
to the magnetic field, B, and examine which states
can give rise to a linear increase of the critical tem-
perature for small B: if SU(2)+ × SU(2)− is bro-
ken significantly, triplet pairing has to dominate for
B = 0 and there are only three possible triplet
states as leading instabilities for B 6= 0. In the case
where SU(2)+ × SU(2)− is an approximate symme-
try, even singlet pairing at B = 0 can yield a linear

increase. For instance, the possible phase diagrams
in the presence of a magnetic field for pairing in the
trivial IR A of C3 are shown in Fig. 3.

B. Relation to other works

Let us briefly comment on the relation of this article to
other works in the literature. While our classification also
contains the pure singlet states, which have been subject
to intense scrutiny in twisted bilayer graphene, we are
mainly interested in elucidating the consequences of the
enhanced SU(2)+ × SU(2)− spin symmetry with respect
to subsequent transitions and the associated nontrivial
interplay of singlet and triplet pairing.

In the context of twisted double-bilayer graphene,
where, recently, signs of triplet pairing have been discov-
ered, Ref. 65 mainly focuses on the correlated insulat-
ing phase in this system, whereas Ref. 57 also discusses
pairing. We extend the work of Ref. 57 by allowing for
momentum-dependent pairing states, contrasting weakly
and significantly broken SU(2)+ × SU(2)− symmetry, in-
vestigating admixed singlet and triplet phases, analyzing
fluctuation corrections to mean-field theory, and mapping
out the phase diagram in the presence of a magnetic field.
In a follow-up work [66], we will complement the analysis
of this paper by a microscopic energetic study specifically
for twisted double-bilayer graphene. In Ref. 66, we dis-
cuss which IR is expected to be favored, the form of the
associated basis functions, and the impact of disorder on
superconductivity.

C. Structure of the paper

This paper is organized as follows: as described above,
we start with twisted double-bilayer graphene. In Sec. II,
we introduce the model and the action of the relevant
symmetries. We first discuss pairing in the trivial IR of
the point group of the system in Sec. III and then gener-
alize to the complex IR E in Sec. IV. Section V demon-
strates how strong fluctuations can yield significant cor-
rections to mean-field theory. We extend our analysis to
twisted bilayer graphene and ABC trilayer graphene in
Sec. VI, and explore the consequences of the additional
microscopic and emergent symmetries relevant to those
systems. A discussion of our results can be found in
Sec. VII.

II. MODEL AND SYMMETRIES

We first focus on the (nearly flat) conduction band
of twisted double-bilayer graphene which appears to
host the superconducting phase observed experimentally
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[51, 52], and later discuss the modifications for the re-
lated moiré systems, bilayer and trilayer graphene. Ow-
ing to the presence of a gap to other bands in the rel-
evant parameter regime [56–59], it is reasonable to de-
scribe the superconducting instability in a single-band
picture. We stress, however, that many of our conclusions
are symmetry-based and thus, also apply when several
bands are taken into account. Exceptions are provided by
the energetic mean-field and fluctuation considerations,
where we will specifically comment on the consequences
of interband effects that might be present in these sys-
tems [8].

Denoting the corresponding electronic creation and an-
nihilation operators by ckσv, where k is crystal momen-
tum, σ spin, and v = ± represents the valleys, the general
pairing term can be written as

HSC =
∑
k

c†kσv
(
∆kiσyτx

)
σv,σ′v′

c†−kσ′v′ + H.c.. (1)

Here and in the following, σj and τj are Pauli matri-
ces in spin and valley space, respectively, and the 4 × 4
matrix ∆k is the superconducting order parameter. In
Eq. (1), we have already made the assumptions that only
Cooper pairs with zero net momentum form and that su-
perconductivity preserves translational symmetry. Due
to the proximity of superconductivity to ferromagnetic
order [51, 52], relaxing this assumption could be interest-
ing, but we leave this for future work. Consequently, we
need not consider IRs of the full space group but rather,
can concentrate on the point group G of the system and
time-reversal Θ.

In this regard, we study two different point groups: an
approximate point group,

G1 = C3 × SU(2)+ × SU(2)− × U(1)v, (2)

where C3 is the crystalline point group, SU(2)± is spin
rotation in valley v = ±, and U(1)v corresponds to valley
charge conservation. As argued in Ref. 57, the intervalley
“Hund’s” coupling J is much smaller than the intravalley-
density interaction V . In combination with the fact that
the noninteracting band structure only has very small
valley mixing, the system is invariant under Eq. (2) to a
good approximation. In the presence of a finite Hund’s
coupling, Eq. (2) is reduced to

G2 = C3 × SU(2)s × U(1)v, (3)

where SU(2)s is global spin rotation. To define these
symmetries more precisely, we specify their representa-
tion on the electronic field operators:

C3 : ck −→ cC3k (4a)

SU(2)s : ck −→ eiϕ·σck (4b)

SU(2)± : ck −→
(
P±e

iϕ·σ + P∓
)
ck, (4c)

U(1)v : ck −→ eiϕτzck, (4d)

with P± = (τ0 ± τz)/2 being the valley projection oper-
ators. Furthermore, time-reversal is represented by the
antiunitary operator Θ with

ΘckΘ† = iσyτxc−k. (5)

To classify superconductivity, we proceed as usual [67]
and express ∆k in Eq. (1) in terms of the IRs n (with
dimension dn) of the point group as

∆k =
∑
n

dn∑
µ=1

ηnµχ
n
µ(k), ηnµ ∈ C, (6)

where χnµ(k), µ = 1, . . . , dn, are partner functions trans-
forming under the IR n. Within the minimal descrip-
tion of pairing in Eq. (1), which only involves one band
per valley, χnµ(k) ∈ C4×4 are matrices in spin and valley
space.

In our case, the point group has the form Gj = C3 ×
U(1)v × Gsj with Gs1 = SU(2)+ × SU(2)− ' SO(4) and
Gs2 = SU(2)s. As a consequence, the IRs of Gj have the
form n = nC3 × nv × ns where nC3 , nv, and ns are IRs
of C3, U(1)v, and Gsj , respectively. We can thus rewrite
Eq. (6) more explicitly as

∆k =
∑

nC3
,nv,ns

dnC3∑
µ1=1

dnv∑
µ2=1

dns∑
µ3=1

ηnµ1µ2µ3
χ
nC3
µ1 (k)χnvµ2

χnsµ3
.

(7)
In order to classify superconducting states, we need to
consider the different IRs of C3, U(1)v, and Gsj .

Let us begin our discussion of IRs with U(1)v. While it
has, in general, countably infinite IRs (one-dimensional
and with character eimvϕ, mv ∈ Z), only three are rele-
vant here as all representations with |mv| > 1 cannot be
realized with only two valleys. First, there is the trivial
representation, mv = 0, with χmv=0 = aτ0 + bτz with a
priori unknown a, b. Recalling the extra factor of τx in
Eq. (1), this translates to purely intervalley pairing. Sec-
ondly, the pair of complex conjugate representations with
mv = ±1 has to be considered. Note that due to time-
reversal symmetry, the complex representations cannot
be discussed separately. Here, the basis functions read as
χmv=±1 = τx ± iτy; as such, this corresponds to purely
intravalley pairing.

We thus see that U(1)v prohibits the mixing of inter-
and intravalley pairing. As time-reversal (5) interchanges
the valleys along with sending k → −k and we assume
zero-momentum Cooper pairs, we will restrict our dis-
cussion to intervalley pairing, i.e., mv = 0 for the rest of
the paper.

As is well known [68], C3 has the following IRs, both
of which are one-dimensional: the trivial one, A, and
the complex representation E (and its complex conjugate
partner). We analyze each of these IRs in Secs. III and
IV, and in both cases, discuss the differences between Gs1
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and Gs2 ; we will also see how the states “connect” once Gs1
is weakly broken to Gs2 due to a small but finite value of
the Hund’s coupling.

III. TRIVIAL REPRESENTATION OF THE
CRYSTALLINE POINT GROUP

For simplicity, we begin with the trivial representation
A of C3, which is real and one-dimensional. In fact, the
following discussion will not be modified as long as the
IR is real and one-dimensional and there is no crystalline
symmetry relating the two valleys. Interestingly, the last
assumption is violated in twisted bilayer graphene and
trilayer graphene on boron nitride; see Sec. VI for a de-
tailed discussion of the associated modifications.

As already mentioned, we consider only intervalley
pairing which corresponds to a real and one-dimensional
IR as well. This means that the order parameter in
Eq. (7) has the form

(∆k)σv,σ′v′ = δv,v′χ
A(k, v)

dns∑
µ=1

ηnsµ
(
χnsµ (v)

)
σσ′

, (8)

where χA(k, v) is invariant under k→ gk for all genera-
tors g of the crystalline point group (here, we only have
g = C3).

A. Limit of exact SU(2)+×SU(2)− symmetry

To proceed further, we have to inspect the scenarios for
both Gs1 and Gs2 . We start with the former, i.e., we assume
that the Hund’s coupling is zero. Inserting Eq. (8) in the
general pairing Hamiltonian (1), we obtain a pairing term
of the form

HSC =
∑
k,v

c†kσv
(
Mkviσy

)
σ,σ′

c†−kσ′v̄ + H.c., (9)

Mkv = χA(k, v)∆v,

where v̄ = ∓ for v = ±, and Mkv as well as ∆v =∑
µ η

ns
µ χnsµ (v) are matrices in spin space. Fermi-Dirac

statistics implies

Mkv = σyM
T
−kv̄ σy. (10)

Rewriting pairing in terms of singlet and triplet asMkv =
σ0∆s

kv + σ · dkv, Eq. (10) is equivalent to ∆s
kv = ∆s

−kv̄
and dkv = −d−kv̄, as expected.

We now study the stable superconducting phases in
this channel by writing down the most general Ginzburg-
Landau expansion constrained by the symmetries

Θ :Mkv −→ M†kv, (11a)

SU(2)+ × SU(2)− :Mkv −→ e−iϕ+·σMkve
iϕ−·σ. (11b)

Due to the constraint (10) stemming from Fermi-Dirac
statistics, we express the free energy in terms of one valley
only (say v = +) as F = F [Mk+ = χA(k,+)∆+], and
the pairing in the other valley just follows from Eq. (10).
The most general free energy to quartic order in ∆+,
invariant under Eq. (11) and ∆v → eiϕ∆v, reads as

F ∼ a(T )

2
tr
[
∆†+∆+

]
+
b1
4

(
tr
[
∆†+∆+

])2

(12)

+
b2
2
tr
[
∆†+∆+∆†+∆+

]
+
b3
4

∣∣∣tr [σy∆+σy∆T
+

]∣∣∣2 .
Note that |tr[σy∆+σy∆T

+]|2/2 = tr[∆+σy∆T
+∆∗+σy∆†+],

so the latter is not an independent term to consider. It
further holds that |tr[σy∆+σy∆T

+]|2/2 = (tr[∆†+∆+])2 −
tr[∆†+∆+∆†+∆+], which allows us to set b3 = 0 in the
following without loss of generality.

Using the singular-value decomposition of ∆+, it is
straightforward to find all symmetry-inequivalent min-
ima of Eq. (12). There are two different states depending
on the sign of b2 which we label by Amv=0(∆s;d), where
∆s and d refer to the singlet and the triplet vector, re-
spectively, A indicates the trivial IR of C3, and mv = 0
signifies intervalley pairing (IR of U(1)v with mv = 0).
If b2 > 0, we get ∆+ ∝ σ0, i.e., Mk,± = λ±kσ0 with
λC3k

= λk; according to the notation introduced above,
this state will be labeled as Amv=0(1; 0, 0, 0). There
are (infinitely) many different equivalent representations
of this state since, for instance, the transformations in
Eq. (11b) mix the singlet and triplet components—as de-
scribed by the isomorphism SU(2)+ × SU(2)− ' SO(4).
However, for the sake of notational clarity, we will hence-
forth only show one convenient representative of each
state. The Amv=0(1; 0, 0, 0) state preserves time-reversal
symmetry and breaks SU(2)+ × SU(2)− down to SU(2)s
[rotations of the total spin, i.e., ϕ+ = ϕ− in Eq. (11b)].

On the other hand, if b2 < 0, we find ∆+ ∝ σ0 + σz,
which corresponds to Amv=0(1; 1, 0, 0). For this phase,
the order parameter in Eq. (9) assumes the form Mk,± =
λ±k (σ0 ± σz) with λC3k = λk. This state preserves time-
reversal symmetry too, but it breaks SU(2)+ × SU(2)−
down to O(2)s (with ϕ+ = ϕ− = ϕ êz), i.e., rotations of
the total spin along a single axis.

B. Turning on the Hund’s coupling

In reality, there is, of course, a finite Hund’s coupling
that reduces Gs1 = SU(2)+ × SU(2)− to only global spin
rotations, Gs2 = SU(2)s, already in the high-temperature
phase. In Ref. 57, the Hund’s coupling J has been es-
timated to be about 60 times smaller than the intraval-
ley interaction V . Note, however, J might be enhanced
due to loop corrections. For this reason, we first classify
the possible instabilities in the absence of an approxi-
mate SU(2)+ × SU(2)− symmetry and then, analyze how
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the different states “connect” for small values of J and
whether admixtures of singlet and triplet are possible.

To introduce our notation, we will begin with the clas-
sification for the reduced symmetry group G2 in Eq. (3);
in that case, we have either singlet or triplet pairing:

a. Singlet: This corresponds to the dns = 1 one-
dimensional IR of Gs2 with χns =σ0 in Eq. (8). The pair-
ing Hamiltonian simply has the form

HSC =
∑
k,v

λskvc
†
kσv

(
iσy
)
σ,σ′

c†−kσ′v̄ + H.c., (13)

with λskv = λs−kv̄ and λsC3kv
=λskv. All symmetries of

the high-temperature phase are preserved. We refer to
this state as A1s

mv=0 with the 1s referring to spin singlet,
mv = 0 to intervalley pairing, and A to the trivial repre-
sentation of C3.

b. Triplet: This pairing channel is associated with
the three-dimensional IR of Gs2 . A possible choice of basis
functions is χnsµ (v) = σµ, µ = 1, 2, 3, in Eq. (8). As
it is a multidimensional representation, the free energy
has to be expanded beyond quadratic order. Writing
d = (ηns1 , ηns2 , ηns3 ), we have up to quartic order

F ∼ a(T )d†d+ bt1

(
d†d

)2

+ bt2|d
∗ × d|2. (14)

Observe that |dTd|2 is not an independent quartic term
since |dTd|2 = (d†d)2 − |d∗ × d|2. The free energy in
Eq. (14) has two stable minima. For bt2 > 0, we have
d ∝ (1, 0, 0)T and the corresponding pairing term is

HSC =
∑
k,v

λtkvc
†
kσv

(
σxiσy

)
σ,σ′

c†−kσ′v̄ + H.c., (15)

with λtkv = −λt−kv̄ and λtC3kv
= λtkv. As is easily seen,

this term preserves time-reversal symmetry and breaks
SU(2)s down to spin rotation along a single axis. This
state will be referred to as unitary triplet and denoted
by the symbol A3s

mv=0(1, 0, 0), where the three compo-
nents just indicate the direction of the triplet vector. If,
instead, bt2 < 0, we obtain d ∝ (1, i, 0)T , whence

HSC =
∑
k,v

λtkvc
†
kσv ((σx + iσy)iσy)σ,σ′ c

†
−kσ′v̄ + H.c.,

(16)
with λtkv as above. This is a nonunitary triplet state. It
breaks time-reversal symmetry and will be denoted by
A3s
mv=0(1, i, 0).
One might wonder what kind of interaction or band

structure would favor A3s
mv=0(1, i, 0) over A3s

mv=0(1, 0, 0)
and vice versa. In mean-field theory, as detailed in Ap-
pendix A, it is straightforward to show by evaluation of
a one-loop diagram that

bt2 = T
∑
ωn

∫
d2k

(2π)2

|λtk|4

(ω2
n + ξ2

k+)2
. (17)

Here, ωn are fermionic Matsubara frequencies and ξk+

is the electronic band energy in valley v = + of the
nearly flat band hosting superconductivity. We observe
that bt2 > 0 holds irrespective of microscopic details and
hence, A3s

mv=0(1, 0, 0) is generically favored if we neglect
corrections beyond mean-field theory (such as residual
interactions or frequency dependence of pairing). In-
triguingly, there have been experimental reports [69] of
intrinsically nonunitary pairing in LaNiC2, i.e., nonuni-
tary triplet pairing born out of a paramagnetic normal
state. Thus, there is reason to believe that we cannot
generically exclude this state, but we do not expect it to
show up in any simple mean-field computation.

1. How do the states connect in the J = 0 limit?

Next, we establish how the three possible states,
A1s
mv=0, A

3s
mv=0(1, 0, 0), and A3s

mv=0(1, i, 0), connect to the
two derived in the previous subsection with enhanced
SU(2)+ × SU(2)− symmetry, namely Amv=0(1; 0, 0, 0)
and Amv=0(1; 1, 0, 0). To this end, we decompose the
Ginzburg-Landau expansion (12) into singlet and triplet
by writing ∆+ = ∆s +σ ·d. Since tr

[
∆†+∆+

]
= |∆s|2 +

d†d, singlet and triplet are degenerate at quadratic order
in F as a consequence of the enhanced SU(2)+ × SU(2)−
symmetry. For nonzero J , this degeneracy is lifted and
we have

F ∼ a(T )
(
|∆s|2 + d†d

)
+ δa(T )

(
|∆s|2 − d†d

)
, (18)

where δa can be made arbitrarily small as J → 0.
Neglecting, for now, the “back action” of the super-
conducting order parameter that condenses first on the
second one (as described by higher-order terms in the
Ginzburg-Landau expansion), we conclude that there are
two superconducting transitions at T±c,0 = Tc,0±∆Tc with
∆Tc = |δa (Tc,0)|/α, taking a(T ) ∼ α(T − Tc,0) near
Tc,0. The extra index 0 in T±c,0 highlights the fact that
the aforementioned higher-order terms in the Ginzburg-
Landau expansion can significantly affect the lower tran-
sition temperature, T−c 6= T−c,0; of course, this has no
effect on the higher transition temperature, T+

c = T+
c,0.

Before analyzing these corrections, it is useful to es-
timate the temperature scale ∆Tc. Using the expected
result, T±c ' Λ exp(−1/[(V ± J)ν]) of mean-field theory
(from the linearized gap equations)—where Λ is the cut-
off and ν the density of states at the Fermi level—leads
to

∆Tc
Tc,0

∼ |J |
V 2ν

. (19)

The large density of states, taken together with the esti-
mated value of V—which is larger than even the band-
width [57] of the flat bands—and the relation J � V ,
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implies that ∆Tc � Tc,0 [70]; the temperature/energy
scale ∆Tc is most likely too small to be visible in ex-
periments. While the estimate above is only based on
mean-field theory, it indicates at least that it is important
to study the behavior of superconductivity in the limit
of small ∆Tc/Tc,0 (and hence, weakly broken SU(2)+ ×
SU(2)− symmetry), accounting for the possibility of two
transitions and mixing of singlet and triplet pairing (de-
spite the absence of spin-orbit coupling). Moreover, we
will see that nearly degenerate singlet and triplet pairing
also has crucial consequences for the behavior of super-
conductivity in the presence of a magnetic field.

While we postpone the analysis of magnetic fields to
Sec. III C, here, we investigate the possibility of an ad-
mixture of singlet and triplet in the presence of time-
reversal symmetry [relevant to scenario (I) defined in the
introduction]. As anticipated above, this requires also
considering the quartic terms of Eq. (12). We find

F ∼ a(T )
(
|∆s|2 + d†d

)
+ δa

(
|∆s|2 − d†d

)
+ (b1 + b2)|∆s|4 + (b1 + b2)

(
d†d

)2

+ b2 |d∗ × d|2

+ 2(b1 + 2b2)|∆s|2d†d+ 2b2Re
[
(∆s)

2
d†d∗

]
, (20)

neglecting corrections to the quartic terms coming from
finite J .

Looking at the first transition with the higher tran-
sition temperature, we assess which of the two dis-
tinct triplet states, A3s

mv=0(1, 0, 0) and A3s
mv=0(1, i, 0),

and the singlet state can be stabilized by starting from
Amv=0(1; 0, 0, 0) or Amv=0(1; 1, 0, 0) and turning on a fi-
nite Hund’s coupling J . For this purpose, we can ne-
glect the coupling terms in the third line of Eq. (20).
Clearly, if δa < 0 (“anti-Hund’s coupling”), we get a sin-
glet state for both Amv=0(1; 0, 0, 0) and Amv=0(1; 1, 0, 0).
A straightforward way of establishing which of the triplet
states is realized when δa > 0 (“conventional” Hund’s
coupling) proceeds by evaluating their respective free en-
ergy in Eq. (20). One finds that the state A3s

mv=0(1, 0, 0)

is realized if b2 > 0; otherwise, A3s
mv=0(1, i, 0) is favored.

This brings us to the conclusion that

Amv=0(1; 0, 0, 0) −→ A1s
mv=0 or A3s

mv=0(1, 0, 0), (21a)

Amv=0(1; 1, 0, 0) −→ A1s
mv=0 or A3s

mv=0(1, i, 0), (21b)

at the first transition (see the schematic phase diagram
in Fig. 2). This result is just a consequence of the fact
that the form ∆+ ∝ σ0 for the Amv=0(1; 0, 0, 0) state
we had chosen in the previous section can alternatively
be written as ∆+ ∝ σx due to the SU(2)+ × SU(2)−
symmetry and thus, explicitly assumes the form of the
unitary triplet state. Similarly, ∆+ ∝ σ0 +σz used above
for Amv=0(1; 1, 0, 0) can also be written as ∆+ ∝ σx +
iσy. This is why it transitions into the nonunitary triplet
state, upon turning on a nonzero Hund’s coupling.

Hund'sAnti-Hund's

tripletsinglet

singlet

tripletsinglet
+ triplet

Hund'sAnti-Hund's

FIG. 2. Schematic phase diagram as a function of tempera-
ture, T , and δ = δa

αTc,0
' J

V 2ν
close to the SU(2)+ × SU(2)−

invariant point (δ = 0) obtained by minimizing the free en-
ergy in Eq. (20). Parts (a) and (b) correspond to b2 > 0 and
b2 < 0, respectively, and are, hence, associated with the pair-
ing states Amv=0(1; 0, 0, 0) and Amv=0(1; 1, 0, 0) at δ = 0 as
indicated in red. In our notation for the pairing Amv (∆s;d),
mv is the valley quantum number, and ∆s and d are sin-
glet and triplet pairing amplitudes, respectively. As the pure
singlet and the unitary triplet state for b2 > 0 (the mixed
singlet-triplet phase and the nonunitary triplet for b2 < 0)
transform into each other under reversing the sign of δ ∝ J ,
we will refer to them as Hund’s partners.

In order to determine whether there is a second tran-
sition, we have to include the coupling terms between
singlet and triplet in the third line of Eq. (20). To illus-
trate that these terms can be crucial, we consider the case
δa > 0 and b2 > 0, i.e., the triplet state A3s

mv=0(1, 0, 0)
condenses first. This leads to the coupling between sin-
glet and triplet 2c|∆s|2|d(T )|2, c = b1 + b2, in the free
energy, where we have made use of the fact that a relative
phase of π/2 between singlet and triplet is energetically
most favorable. As a result of |d(T )|2 = (δa−a(T ))/(2c),
which is valid as long as there is no additional singlet
pairing, the growing triplet component induces the extra
term

2c|∆s|2|d(T )|2 = (δa− a(T ))|∆s|2, (22)

which is always larger than the “bare” quadratic term of
singlet pairing [in the first line of Eq. (20)]. Accordingly,
there is no second transition (at least close to Tc,0 where
our Ginzburg-Landau approach is valid) into a state that
has a nonzero singlet component. We also checked that
Eq. (20) does not allow for a first-order transition.

Similarly, all other cases can be scrutinized and one
finds that if triplet dominates, there is no second tran-
sition. However, if singlet has a larger transition tem-
perature (δa < 0), there is a second transition into a
phase with singlet and triplet pairing when b2 < 0. This
transition happens at the temperature

T−c = Tc,0

(
1 +

c− |b2|
|b2|

δ

)
, δ ≡ δa

αTc,0
' J

V 2ν
. (23)

The stability of the Ginzburg-Landau expansion only re-
quires c> 0 and c>−b2, so both T−c <T−c,0 and T−c >T−c,0
are possible. More importantly, unless |b2|/c is fine-tuned
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to be of order δ, generically, T−c → Tc,0 as J → 0 and the
two transitions, if present, are likely too close to be exper-
imentally discernible. Due to the term 2b2 Re[(∆s)

2
d†d∗]

in the free energy, we obtain the unitary triplet vector
d = d0(1, 0, 0)T with ∆sd∗0 ∈ R (same phase). This is
to be expected as ∆+ ∝ σ0 + σz for the “parent” state
Amv=0(1; 1, 0, 0).

A summary of these results is provided by the
schematic phase diagrams in Fig. 2. We observe that
the proximity to the enlarged symmetry in spin space,
SU(2)+ × SU(2)−, favors the possibility of having a
nonzero triplet component: for b2 < 0, even a nega-
tive Hund’s coupling (anti-Hund’s) allows for d 6= 0 and
leads to the exotic possibility of significant (d0 ' ∆s for
T−c − T > ∆Tc) singlet-triplet mixing in spite of the ab-
sence of spin-orbit coupling.

It is noteworthy that all the states are fully gapped
(more precisely, they have no symmetry-enforced nodes)
except for the nonunitary triplet A3s

mv=0(1, i, 0), which is
gapped for one spin species while the other is completely
gapless. The admixture of singlet and unitary triplet has
two unequal gaps for the two spin species both of which
are finite as long as the magnitudes of singlet and triplet
are not fine-tuned to be equal. All the states, along with
their order parameters and properties, are summarized
in Table I.

We finally comment on the nature of the thermal phase
transition for the different superconducting states once
fluctuations of the order parameter are taken into ac-
count. Neglecting stray fields, the transition into the
singlet phase A1s is expected to be a BKT transition
with quasi-long-range order of the complex-valued or-
der parameter ∆s below the transition temperature. For
the triplet states, it is important to keep in mind that
d cannot even have quasi-long-range order as it trans-
forms as a three-component vector under spin-rotation.
For the unitary triplet state [with order parameter man-
ifold (S2 × S1)/Z2] a BKT transition of the composite
charge-4e order parameter dTd is possible and is associ-
ated with the (un)binding of half vortices. This is differ-
ent for the nonunitary state [with order parameter man-
ifold S3/Z2 ' SO(3)] where dTd = 0 and no BKT tran-
sition into a quasi-long-range-ordered superconductor is
expected. For the case of the two consecutive transitions
in Fig. 2(b) with δ < 0, we first expect a BKT transition
into a singlet phase followed by a crossover at which the
triplet vector becomes nonzero.

However, we point out that, even in the simplest case
of the singlet A1s , there are significant corrections to the
BKT transition resulting from stray fields and mirror vor-
tices [71], which make the observation of a pristine BKT
transition in a (charged) superconductor difficult. We
believe that the current status of experiments does not
allow one to exclude pairing phases that will not exhibit
quasi-long-range order and a BKT transition in the limit
of infinite system size.

2. Expectations within mean-field theory

Lastly, we evaluate what a naïve mean-field compu-
tation is expected to yield. In fact, from Eq. (17), we
already know that the prefactor of the term |d∗ × d|2 in
Eq. (20) must be positive within mean-field theory and
therefore, it holds that b2 > 0. For completeness, we
mention that in the mean-field approximation, b1 = 0, as
shown in Appendix A. Consequently, a single-band mean-
field computation will generally favor Fig. 2(a) over (b);
in other words, only half of the phases proposed in this
section can be found in mean-field, which we also indicate
in the last column of Table I.

However, there is no fundamental mechanism prohibit-
ing the mixing of singlet and triplet via two transitions
(see, e.g., Ref. 72) and there are multiple reasons why we
can effectively have b2 < 0 (and b1 > 0 to ensure stabil-
ity): for instance, strong residual interactions and fluctu-
ations have been shown to modify the values of the quar-
tic terms in the free energy significantly [43, 73], thereby
stabilizing phases that are otherwise not possible in the
mean-field approximation. Given the small bandwidth
and the underlying strong-coupling features of the prob-
lem [5–9], it is plausible that there are sizable corrections
to mean-field theory. In addition, we recognize that there
are other corrections arising from interband pairing, and
that disorder can also dress the Ginzburg-Landau expan-
sion. Moreover, it is unclear whether adding frequency
dependence to the gap function could be of relevance.

In Sec. V, we will analyze the impact of ferromag-
netic fluctuations, which are expected to be relevant for
graphene moiré systems [4, 51–53, 61–63], and find that
these generically decrease the value of b2; if sufficiently
strong, these fluctuations will favor the phase diagram in
Fig. 2(b).

C. In the presence of a magnetic field

We now generalize the Ginzburg-Landau expansion
to also include the coupling to a Zeeman field MZ =
(Mx

Z ,M
y
Z ,M

z
Z) and an (in-plane) orbital couplingMO =

(Mx
O,M

y
O). Both of these terms can either be due to an

applied external magnetic field or due to the correlated
insulating state. This enables us to discuss (i) the be-
havior of the superconducting critical temperature T+

c

as a function of an external magnetic field in the ab-
sence of any ferromagnetic moments associated with the
correlated insulating state [case (I) defined in the intro-
duction]. At the same time, we can study (ii) how the
transition temperature and the order parameter of su-
perconductivity is affected by the potentially coexisting
ferromagnetic order [case (II)].
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TABLE I. Summary of the different intervalley pairing states transforming under the trivial representation of the point group
C3 in the absence of a magnetic field. For notational convenience, we neglect the extra label mv = 0 to indicate intervalley
pairing. λk is a real-valued and Brillouin-zone-periodic function that is invariant under C3. To lowest order, we can take λk to
be independent of k. We also indicate the minimal number of nodes, which state it transforms to when setting J = 0 [“SO(4)
parent”] and reversing the sign of J (“Hund’s partner”), and whether the state can be found in a single-band mean-field (MF)
computation neglecting residual interactions and/or when the ferromagnetic (FM) fluctuation corrections discussed in Sec. V
dominate. In the last line, η describes the temperature-dependent strength of admixing of the unitary triplet state.

Pairing Mk+ Nodes SO(4) parent Hund’s partner MF/FM
A1s λkσ0 none A(1; 0, 0, 0) A3s(1, 0, 0) 3/3

A3s(1, 0, 0) λkσx none A(1; 0, 0, 0) A1s 3/7

A3s(1, i, 0) λk(σx + iσy) ↓ gapless/none A(1; 1, 0, 0) A1s +A3s(1, 0, 0) 7/3

A1s +A3s(1, 0, 0) λk(σ0 + η σx) none A(1; 1, 0, 0) A3s(1, i, 0) 7/3

1. Leading superconducting transition

We first turn our attention to the leading supercon-
ducting transition with the highest temperature T+

c ; po-
tential subsequent superconducting transitions at lower
temperatures are addressed later in Sec. III C 2. For the
goal of studying the first transition, we can restrict our-
selves to quadratic order in the order parameter. Only
keeping terms up to quadratic order in the magnetic field
as well, we obtain

FM ∼ a(T )
(
|∆s|2 + d†d

)
+ δa

(
|∆s|2 − d†d

)
+ 2δc1MZ · Im (d∗∆s) + ic2MZ · d∗ × d

+ (c3M
2
Z + c4M

2
O)
(
|∆s|2 + d†d

)
+ (δc5M

2
Z + δc6M

2
O)
(
|∆s|2 − d†d

)
. (24)

While the prefactors δa, δc1, δc5, and δc6 are necessarily
zero in the limit J → 0, where the SU(2)+× SU(2)− sym-
metry becomes exact, all remaining terms can be nonzero
(and different in their values) at J = 0. Notice that
the third term has not been considered in Ref. 57; this
term arises only when both singlet and triplet are al-
lowed for and leads to the admixture of a unitary triplet
state with a singlet superconductor. The vanishing of
δa and δc6 at J = 0 is an obvious consequence of the
enhanced SU(2)+× SU(2)− symmetry. To see that δc1
also has to vanish as J → 0, let us take MZ along
the z direction; this breaks SU(2)+× SU(2)− down to
O(2)+ × O(2)−, i.e., the system is only invariant under
ckv → eiϕvσzckv. Performing this transformation with
ϕ+ = 0 and ϕ− = π/2, we get (∆s, dz) → (idz, i∆

s)
and hence, δc1 → −δc1. With the same argument, it
can be proven that δc5 has to go to zero as J → 0. In
Appendix A, we show that δc1 = 0 in mean-field theory
within the single-band description, even when SU(2)+×
SU(2)− is broken; this results from an emergent valley-
exchange symmetry within the single-band mean-field
approximation.

In discussing the highest critical temperature and the
corresponding order parameter for MZ ,MO 6= 0, it is
instructive to first look at the linear-in-field terms in
Eq. (24). We find two different cases. If |c2MZ | + δa >√

(δc1MZ)2 + δa2, one obtains a pure triplet state of the
type A3s

mv=0(1, i, 0). Choosing MZ = MZex with MZ >

0, the triplet vector is given by d = (0, 1, sign(c2)i)
T and

the critical temperature is

Tc = Tc,0 + (δa+ |c2MZ |) /α. (25)

Else, if |c2MZ | + δa <
√

(δc1MZ)2 + δa2, one finds an
admixture of singlet and triplet with order parameter

∆s = ∆0, d = iex∆0
δc1MZ√

(δc1MZ)2 + δa2 − δa
. (26)

The transition temperature in this case is

Tc = Tc,0 +
√
δa2 + (δc1MZ)2/α. (27)

We see from Eq. (26) that there is an approximately
equal mixing of singlet and triplet for |δc1|MZ � |δa|
while in the opposite limit, |δc1|MZ � |δa|, either sin-
glet or triplet dominates depending on whether δa < 0
or δa > 0. The relative phase of π/2 between singlet
and triplet makes the pairing state break time-reversal
symmetry as is required in order to couple linearly to
magnetic moments.

To understand how the approximate SU(2)+ × SU(2)−
symmetry can naturally explain the linear-in-magnetic-
field behavior, we first consider case (II), i.e., there is al-
ready microscopically coexisting ferromagnetic order (or
there is at least a significant coupling between supercon-
ductivity and the ferromagnetic moments) at T+

c . Then,
MZ andMO should be thought of as the combination of
the applied external magnetic field and the ferromagnetic
order parameter. In this scenario, it is apt to assume
|δa| � max(δc1MZ , c2MZ) and we generically obtain a
linear increase of the critical temperature with magnetic
field [see Eqs. (25) and (27)]. If c2 > δc1, we obtain
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the nonunitary triplet state with d ∝ (1, i, 0)T , which we
expect close to the J = 0 line, while δc1 > c2 leads to
the admixture of singlet and triplet with d ∝ (1, 0, 0)T .
As δc1 vanishes for J = 0 and in single-band mean-field
theory (even when J 6= 0), we expect the former scenario
to be more likely, which will favor the nonunitary triplet
state as the leading instability.

In the case of scenario (I), we should view MZ

and MO in Eq. (24) as resulting entirely from the
Zeeman and orbital coupling of the external magnetic
field alone. For large magnetic fields where |δa| �
max (δc1MZ , c2MZ), the same conclusions as above will
apply and Tc will generically vary linearly with the field.
However, for sufficiently small magnetic fields, we have
|δa| � max(δc1MZ , c2MZ). In this limit, only δa > 0
favoring the nonunitary triplet pairing A3s

mv=0(1, i, 0) is
consistent with the transition temperature changing lin-
early with magnetic field. Alternatively, the system could
ultimately be in a singlet state at MZ = 0 (i.e., δa < 0)
but the magnitude of δa is sufficiently small such that
the “rounding off” of T+

c (MZ) at low MZ cannot be seen
in experiment.

2. Quartic terms and sub-leading transitions

Having examined the first superconducting transition
that takes place upon cooling the system down start-
ing from the normal state, we now assess whether and
what type of subsequent superconducting transitions can
occur. In this context, we need to include terms quar-
tic in the superconducting order parameter and extend
Eq. (24) to

FM ∼ (a(T ) + δa)|∆s|2 + (a(T )− δa)
∑
s=±,0

|ds|2 (28)

+ 2δc1MZIm (d∗0∆s) + c2MZ

(
|d−|2 − |d+|2

)
+ (b1 + b2)

(
|∆s|4 + |d0|4

)
+ (b1 + 2b2)

(
|d+|4 + |d−|4

)
+ 2(b1 + 2b2)|∆s|2

∑
s=±,0

|ds|2 − 4b2Re
[
d2

0d
∗
+d
∗
−
]

+ 2b2Re
[
(∆s)2((d∗0)2 + 2d∗+d

∗
−)
]

+ 2b1|d+|2|d−|2 + 2(b1 + 2b2)|d0|2(|d+|2 + |d−|2),

where we kept only the terms linear in magnetic field,
tookMZ along the z-axis, and re-expressed the triplet in
the form d= d+(1, i, 0)/

√
2+d−(1,−i, 0)/

√
2+d0(0, 0, 1).

This parametrization is more convenient in the presence
of a magnetic field than that used in Eq. (20). Addition-
ally, we have neglected the impact of the magnetic field
on the quartic terms.

Taking δc1 = 0 (as it has to vanish for J = 0), the dif-
ferent possible phase diagrams are summarized in Fig. 3.
The possibility illustrated in part (c) of Fig. 3 corre-
sponds to the picture put forward by Ambegaokar and
Mermin [74] for He3 in the presence of a magnetic field,

FIG. 3. Phase diagram as a function of temperature T and
Zeeman field MZ = MZex when (a,b) singlet dominates at
low fields and (c,d) triplet dominates, which we determine
by minimizing Eq. (28). Thin (thick) black lines correspond
to second (first) order transitions. The phases for MZ = 0
are indicated in red and we recover the four different possible
temperature dependences of Fig. 2. Recall from Sec. III B 2
that b2 > 0 is expected in mean-field theory. However, as we
will see in Sec. V, strong ferromagnetic fluctuations will favor
b2 < 0. As symmetry requires δc1 to be proportional to the
Hund’s coupling J , we have set δc1 = 0 here. For nonzero δc1,
the singlet superconducting phases will contain an admixture
of unitary triplet as described by Eq. (26) and a first-order
transition into a singlet state (with unitary triplet admixture)
will be possible at lower temperatures and nonzero Zeeman
field in part (c). Note that the transition temperature from
the normal state into the singlet superconductor is constant as
we neglect here the nonlinear coupling to the magnetic field.
A discussion of the latter can be found in Sec. III C 3.

which might very well also apply to twisted double-
bilayer graphene [52, 57]. The difference with Ref. 74
is that we do not get a third transition since we work
with a one-dimensional IR of the spatial point group.

However, there are three other options, depicted in
Fig. 3(a), (b), and (d), that we cannot easily ex-
clude given the experimental data: owing to the strong-
coupling properties of the problem at hand, a nonunitary
triplet state might be dominant at MZ = 0, as seems to
be the case in LaNiC2 [69] and is favored by our fluctu-
ation approach of Sec. V; under this condition, only one
transition is expected even when MZ 6= 0 [see Fig. 3(d)].
It could also be that singlet dominates without a mag-
netic field instead. We can see in Fig. 3(a) and (b) that,
in these two cases, triplet shows up and Tc increases lin-
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early when MZ > 2|δa|/c2. The small value of ∆Tc/Tc,0
estimated in Eq. (19) suggests that resolving this initial
region, where Tc is constant as a function of MZ , is ex-
perimentally challenging.

3. Nonlinear couplings in a magnetic field

We finally come back to the quadratic couplings to the
magnetic field, associated with the terms with prefactors
c3,4 and δc5,6 in Eq. (24). We first notice that this will
lead to an additional quadratic suppression of the leading
transition temperatures in Fig. 3; in particular, the tran-
sition temperature into the singlet state in part (a) and
(b) will not be field-independent any more. More inter-
estingly, the suppression of singlet and triplet is enforced
to be nearly identical for small J due to the SU(2)+ ×
SU(2)− symmetry, δc5,6 � c3,4. Resultantly, if the effec-
tive J relevant for superconductivity is indeed small, the
nonlinear terms ∝ M2

Z ,M
2
O are not expected to affect

the competition between singlet and triplet significantly
and the qualitative form of the phase diagrams in Fig. 3
is not modified.

IV. COMPLEX REPRESENTATION OF C3

In this section, we extend our previous analysis to the
complex IR E of the spatial point group C3. Time-
reversal symmetry necessitates treating the representa-
tion and its complex-conjugate partner on an equal foot-
ing. Alternatively, one can think of a two-dimensional
(reducible) representation with partner functions trans-
forming as x and y under C3.

Akin to our discussion earlier, we first study the case
of nonzero Hund’s coupling, J 6= 0, with point group G2

in Eq. (3), which enables us to distinguish between sin-
glet and triplet pairing. After discussing all symmetry-
allowed singlet and triplet states separately, we will de-
rive the phase diagrams analogous to Fig. 2: we will
examine how these states “connect” when adiabatically
changing the Hund’s coupling from negative to positive
values, and whether singlet and triplet can mix when J is
small and the SU(2)+ × SU(2)− symmetry is only weakly
broken.

A. Nonzero Hund’s coupling

To proceed with singlet pairing, we parametrize Mkv

in Eq. (9) according to

Mk+ =
∑
µ=±

ηµ (Xk + iµ Yk)σ0, (29)

while Mk− is determined by the Fermi-Dirac constraint
(10); Xk and Yk are real-valued functions that are con-

tinuous on the Brillouin zone and transform as kx and ky
under C3. A one-parameter family of possible choices for
the lowest-order functions (i.e., with minimal number of
sign changes in the Brillouin zone) is given by

(Xk, Yk)T = Rφ

(
X

(1)
k , Y

(1)
k

)T
(30a)

with arbitrary φ ∈ [0, 2π), where Rφ is a 2 × 2 matrix
describing rotations by angle φ, Rφ = eiφσy , and

X
(1)
k =

2√
3

sin(
√

3kx/2) cos(ky/2), (30b)

Y
(1)
k =

2

3

(
sin ky + cos(

√
3kx/2) sin(ky/2)

)
. (30c)

Both Xk and Yk have to vanish at Γ, K and K ′ as these
momenta are invariant under C3. Further, both Xk and
Yk must have lines of zeros going through these high sym-
metry points; the orientation of these lines is, however,
not fixed due to the absence of additional reflection or in-
plane rotation symmetries—this is different from the situ-
ation for twisted bilayer and trilayer graphene in Sec. VI.
For Eq. (30), the orientation of these zeros changes with
φ.

With the parametrization defined in Eq. (29), the rel-
evant symmetries act as follows

C3 : (η+, η−) −→ (ωη+, ω
∗η−), ω = ei

2π
3 , (31a)

Θ : (η+, η−) −→ (η∗−, η
∗
+). (31b)

It readily follows from Eq. (31) that the most general free
energy up to quartic order reads as

F ∼ a(|η+|2 + |η−|2) + bs1(|η+|2 + |η−|2)2 + bs2|η+|2|η−|2.
(32)

The sign of bs2 therefore distinguishes between two differ-
ent singlet phases: if bs2 > 0, we have (η+, η−) = (1, 0),
which corresponds to

Mk+ = (Xk + i Yk)σ0. (33)

Exactly as in Sec. III, we always show only one out of the
many symmetry-equivalent representations of the order
parameter—instead of using a general parametrization
of a phase—to make the notation and the discussion of
properties of the superconducting state more easily ac-
cessible. The state in Eq. (33) breaks time-reversal sym-
metry but preserves C3 (and spin-rotation symmetry).
We refer to this state as a chiral singlet superconductor
and denote it by E1s(1, i) in the following. It is fully
gapped (unless the Fermi surfaces go through the Γ, K,
or K ′ point) and has been investigated extensively in the
recent literature on pairing in twisted bilayer graphene
[12, 21, 27, 30, 33, 36, 37, 40, 42, 44].

Conversely, if bs2 < 0, we find that |η+| = |η−| at the
minimum of Eq. (32). As the relative phase ϕ between
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η+ and η− = η+e
iϕ is not fixed by Eq. (32), one might

naively conclude that higher order terms have to be con-
sidered. In fact, in sixth order, there is indeed the con-
tribution

c1Re
[
η3

+(η∗−)3
]

+ c2 Im
[
η3

+(η∗−)3
]
, c1,2 ∈ R, (34)

and the relative phase ϕ will depend on c1/c2. However,
upon reinserting η− = η+e

iϕ into Eq. (29), we notice that
ϕ 6= 0 simply corresponds to rotating the basis functions
Xk and Yk into each other, which does not change their
transformation behavior under C3 [ϕ is directly related to
φ in Eq. (30a)]. Consequently, we can set ϕ = 0 without
loss of generality, which implies

Mkv = ∆sXkσ0. (35)

This state, which we call E1s(1, 0), breaks C3 but pre-
serves time-reversal symmetry; this is the nematic singlet
phase.

Within a single-band mean-field description (see Ap-
pendix A), we find bs1 = bs2/2 > 0. As such, mean-field
theory generically favors the chiral singlet superconduc-
tor over the nematic state E1s(1, 0); this has been noted
before in the context of twisted bilayer graphene [44] and
Ref. 43 discusses how strong fluctuations can stabilize the
nematic phase.

Turning to triplet pairing, we now modify the
parametrization (29) to

Mk+ =
∑
µ=±

3∑
ν=1

ηµν (Xk + iµ Yk)σν , (36)

where Xk and Yk are defined exactly as before. For
simplicity, we introduce the complex-vector notation,
dµ = (ηµ,1, ηµ,2, ηµ,3)T , µ = ±. The representations of
the symmetries now read as

C3 : (d+,d−) −→ (ωd+, ω
∗d−), (37a)

Θ : (d+,d−) −→ (d∗−,d
∗
+), (37b)

SU(2)s : (d+,d−) −→ (Rd+,Rd−), (37c)

with R ∈ SO(3) and ω = ei
2π
3 . The most general free-

energy expansion is given by

F ∼ a
∑
µ=±

d†µdµ + bt1

(∑
µ=±

d†µdµ

)2

+ bt2(d†+d+)(d†−d−)

+ bt3|d
†
+d−|2 + bt4|d

T
+d−|2 + bt5

∑
µ=±
|dTµdµ|2 (38)

up to quartic order, where btj ∈R; the different symmetry-
allowed phases follow from the stable minima of the free
energy. When minimizing Eq. (38), we take into account
that the relative phase between d+ and d− can always
be absorbed into a redefinition of the basis functions Xk
and Yk, as for the singlet above. In total, we find eight

FIG. 4. (i, ii) The lowest lattice harmonics of the basis func-
tions [Eq. (30)]. (a–h) The momentum dependence of the gap
and the density of states, g(E), for the pairing phases, E3s(a)
through E3s(h). The Bogoliubov-de Gennes excitation spec-
trum is calculated using the band structure of the system pre-
dicted by the continuum model [58], assuming a pairing term
of the form of Eq. (9) with an overall scale of ∆0 = 4meV. The
nodal points/lines are demarcated in dark blue; note that the
states (b), (d), (g), and (h), taking α = π/4, are fully gapped,
(a) and (f) have nodal points, and (c), (e) have nodal lines,
as is also visible in g(E).

distinct triplet states which we label by E3s(a) through
E3s(h). Phase diagrams describing which of these phases
is realized for a given configuration of the quartic cou-
plings btj can be found in Appendix C; here, we list all
the phases, describe their properties, and refer to Fig. 4
for an illustration of their respective spectra and densities
of states:
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(a) This state, labeled as E3s(a), can be represented
by d+ =d−= (1, 0, 0)

T with the associated order
parameter Mk+ =Xk σx. More physically, it cor-
responds to a nematic unitary triplet phase. It
preserves time-reversal symmetry, but breaks both
SU(2)s spin-rotation symmetry [down to O(2)] and
C3 rotational symmetry. This state has two
symmetry-enforced nodal points at each Fermi sur-
face around the K, K ′, or Γ point. Owing to the
lack of any reflection symmetry (cf. the discussion
of D3 in Sec. VI below), the positions of these nodal
points are not pinned to any specific direction.

(b) One representative configuration of this phase is
given by d+ = (1,−i, 0)T /2 and d−= (1, i, 0)T /2; it
can thus be seen as a helical triplet, consisting of
two time-reversed copies of states with opposite chi-
rality. The order parameter can be more explicitly
written as Mk+ =Xkσx + Ykσy, which can alterna-
tively be thought of as a 2D analogue of the Balian-
Werthamer state of the B-phase of superfluid 3He
[75]. This state, denoted by E3s(b) in the following,
only has point nodes at Γ, K, and K ′, i.e., it is ex-
pected to exhibit a full gap for generic Fermi surfaces
not going through these high-symmetry points. It
preserves time-reversal symmetry. While this state
breaks spin-rotation symmetry as well as C3, the
product of C3 and a rotation in spin space along σz
with angle 2π/3 is preserved; this can be viewed as
the spontaneous formation of spin-orbit coupling.

(c) Here, we can write d+ =d−= (1, i, 0)T /2; hence,
Mk+ =Xk(σx + iσy). This is a nematic nonunitary
triplet state which breaks time-reversal symmetry
and C3. One spin-species will be gapless while the
other will have nodal lines (i.e., point nodes on the
Fermi surface).

(d) The triplet vectors in this phase can be
written as d+ = (1, 0, 0)T , d−= 0 leading to
Mk+ = (Xk + i Yk)σx. As one of the two chiralities
is preferred over the other (|d+| 6= |d−|), this state
can be referred to as chiral unitary triplet. It is a
2D analogue of the A-phase of 3He [75]. It breaks
SU(2)s spin-rotation symmetry [down to O(2)] and
time-reversal, but preserves C3. Except for Γ, K,
and K ′, this state has no symmetry-imposed nodal
points. In fact, its spectrum is identical to that of
the helical triplet E3s(b), which is why we group
these two states together in Fig. 4.

(e) For this state, we have d+ = (1, i, 0)T , d−= 0, i.e.,
Mk+ = (Xk + i Yk)

(
σx + iσy

)
. It consists of only

one of the two time-reversed copies with opposite
chirality of the E3s(b) state discussed above and,
thus, is a chiral nonunitary triplet state. This
state can be seen as an analogue of the A1-phase

of 3He [75]. It preserves C3, but breaks SU(2)s
spin-rotation symmetry [down to O(2)] and time-
reversal. Here, one of the spin components will
be gapless while the other is fully gapped (as be-
fore, except for the high symmetry points Γ, K, and
K ′ which are generically not on the Fermi surface).
Note that although the spectrum of this state is not
strictly identical to that of the nematic nonunitary
triplet E3s

s (c), we grouped them together in Fig. 4
as their respective plots are practically indistinguish-
able; this is related to the fact that, in both cases,
the low-energy spectrum is dominated by the Fermi
surface of one of the spin species.

(f) In this phase, d+ = (1, 0, 0)T , d−= (0, 1, 0)T , im-
plying Mk+ = (Xk + i Yk)σx + (Xk − i Yk)σy. The
state can, thus, be thought of as a superposition of
two chiral unitary triplets with orthogonal spin po-
larizations or, when inserted into Eq. (9), as Cooper
pairs of electrons with spin polarization ↓↓ (↑↑) and
orbital basis function Xk + Yk (Xk − Yk). Time-
reversal, C3, and spin-rotation symmetry are all bro-
ken. The excitation spectrum is given by E±(k) =√
ξ2
k+ + 2(Xk ± Yk)2, so it is characterized by “two

gaps”, given by |Xk ± Yk|, both of which are forced
to vanish at two points for each Fermi surface en-
closing K, K ′, and Γ. While the number of nodes
of this state and of E3s(a) are the same, the spin
degrees of freedom on the Fermi surface have nodes
at the same two momenta for E3s(a). For E3s(f),
however, the two spin species have nodal points at
different momenta.

(g) Denoted by E3s(g), this phase has d+ = cos (α)
(1, i, 0)T /

√
2, d− = sin(α) (0, 0, 1)T , where the pa-

rameter α varies continuously with btj in the part
of the phase diagram where this state is realized.
The corresponding order parameter can be writ-
ten as Mk+ = cos(α) (Xk + i Yk) (σx + iσy)/

√
2 +

sin(α) (Xk − i Yk)σz, 0 < α < π, and can be viewed
as a superposition of a chiral nonunitary triplet state
and a unitary state with opposite chirality. This
state breaks time-reversal symmetry, spin-rotation
invariance, and C3 but preserves the product of C3

and spin rotation by angle 2π/3 along σz. So, sim-
ilar to the state E3s(b) above, this state sponta-
neously entangles rotations in spin and real space
and its spectrum, see Fig. 4(g), is C3 invariant. It
is fully gapped (again, as long as the Fermi sur-
faces do not go through Γ, K, and K ′), with two
different gaps [(1 ± gα)

(
X2
k + Y 2

k

)
]1/2, where gα =

cosα
√

1 + sin2 α.

(h) Finally, for the triplet phase E3s(h), one has d+ =
(cosα, 0, i sinα)T , d− = (0, cosα,−i sinα)T , which
yieldsMk+ = cos(α)[(Xk+i Yk)σx+(Xk−i Yk)σy]−
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2 sin(α)Ykσz. It can be seen as a superposition of the
states E3s(a) and E3s(f) to which it reduces for α =
π/2 and α = 0; it will have two nodal points for α
close to these limiting cases, but can be fully gapped
for other values of α. For α 6= π/2, this state breaks
time-reversal, C3, and spin-rotation symmetry.

In Appendix A, we show that bt1 = bt3/2 = −bt4/2 =
−2bt5 > 0 and bt2 = 0 within a single-band mean-field
description. Minimizing Eq. (38) yields that the phases
E3s(b) and E3s(d) have the lowest energy and are ex-
actly degenerate for this configuration of quartic cou-
plings. This degeneracy within mean-field theory, which
was noted before in Ref. 19, will be lifted by corrections
resulting, e.g., from residual interactions. In Sec. V, we
will find that E3s(b) (E3s(d)) is favored in the presence
of ferromagnetic spin (orbital) fluctuations. We will also
see that significant fluctuations can stabilize phases other
than the two, E3s(b) and E3s(d), favored in mean-field
theory.

B. Approximate SU(2)+ × SU(2)−

After having classified singlet and triplet separately,
we now focus on small Hund’s coupling for which SU(2)+

× SU(2)− is an approximate symmetry, and singlet and
triplet are nearly degenerate at the quadratic level of the
free energy. This requires studying them on an equal
footing and generalizing the parametrization in Eqs. (29)
and (36) to include both singlet and triplet, i.e., extend-
ing the summation over ν in Eq. (36) to ν = 0, 1, 2, 3. In
analogy with Sec. III A, we use 2× 2 matrices and write

Mkv =
∑
µ=±

(Xk + iµ Yk) ∆µ, ∆µ =
3∑

ν=0

ηµνσν . (39)

It is easy to see that the symmetries act according to

C3 : (∆+,∆−) −→ (ω∆+, ω
∗∆−), (40a)

Θ : (∆+,∆−) −→ (∆†−,∆
†
+), (40b)

Gs1 : ∆µ −→ e−iϕ+·σ∆µe
iϕ−·σ, (40c)

where, recall, Gs1 ≡ SU(2)+×SU(2)−. Imposing SU(2)+×
SU(2)− as an exact symmetry, the most general free en-
ergy up to quartic order reads as

F ∼ a
∑
µ=±

tr[∆†µ∆µ] +
b1
4

(∑
µ=±

tr[∆†µ∆µ]

)2

+
b2
2

∑
µ=±

tr[∆†µ∆µ∆†µ∆µ]

+
b3
4
tr[∆†+∆+] tr[∆†−∆−] +

b4
4

∣∣∣tr[∆†+∆−]
∣∣∣2

+
b5
2

(
tr[∆†+∆+∆†−∆−] + tr[∆−∆†−∆+∆†+]

)
. (41)

At first glance, one might think that there are additional
terms with extra factors of σy, similar to the last term in
Eq. (12). However, as before, all of them can be related
to combinations of the terms already present in Eq. (41)
as outlined in Appendix C.

Following the procedure applied in Sec. III to the
one-dimensional IR A, we now add a small quadratic
term, δa

∑
µ(|∆s

µ|2 − d
†
µdµ), where ∆s

µ and dµ are the
singlet and triplet component of ∆µ in Eq. (41), i.e.,
∆µ = σ0∆s

µ+σ ·dµ. This term breaks SU(2)+×SU(2)−
and hence, makes singlet and triplet inequivalent. It al-
lows us to study which of the different singlet and triplet
states defined above can mix, and to identify “Hund’s
partners”, i.e., which states transform into each other
when changing the sign of the Hund’s coupling J and ac-
cordingly, of δa. This generalizes the phase diagrams in
Fig. 2 and Table I to the complex representation.

We find that, out of the eight different triplet states
E3s(a) to E3s(h), only two—E3s(a) and E3s(d)—do not
allow for a singlet-triplet admixture when reversing the
sign of J (or δa) so that singlet has the higher transi-
tion temperature. The reason for the absence of an ad-
mixture is the same as sketched by way of example in
Sec. III B: besides pure singlet and pure triplet terms,
the quartic terms in Eq. (41) also contain couplings be-
tween singlet and triplet, as is readily seen by insert-
ing the parametrization ∆µ = σ0∆s

µ + σ · dµ, µ = ±
(the full expansion can be found in Appendix C). At the
first transition, one of either singlet or triplet becomes
nonzero and hence, “renormalizes” the quadratic term of
the other channel. In some cases, this renormalization
can prohibit the presence of a second transition. In the
case of phases E3s(a) and E3s(d), we just obtain the
pure singlets E1s(1, 0) and E1s(1, i), respectively, with-
out a second transition. The easiest way to interpret why
we do not have an admixture in these cases is to look
at the associated SO(4) parent states: the two triplets
correspond to (η+;d+) = (η−;d−) = (0; 1, 0, 0) and
(η+;d+) = (0; 1, 0, 0), (η−;d−) = 0, respectively. Both of
these configurations can be “rotated” into the pure sin-
glets (η+;d+) = (η−;d−) = (1; 0, 0, 0) and (η+;d+) =
(1; 0, 0, 0), (η−;d−) = 0 via a SU(2)+×SU(2)− transfor-
mation.

For all other triplets, the Hund’s partner is an ad-
mixed phase. Specifically, as regards E3s(b) and E3s(c),
the Hund’s partner is an admixture of a nematic singlet
state and a nematic unitary triplet E3s(a), with different
relative phases and spatial orientations: for the former,
the order parameter can be written as i Ykσ0 + ηXkσx,
where η describes the temperature-dependent strength
of mixing, while it is Xk(σ0 + ησx) for the latter. On
any Fermi surface around one of the high-symmetry
points Γ, K, or K ′, these two states have zero and two
nodal points, respectively. Again, the form of the ad-
mixed state can be understood from the representation
of the triplet state in terms of (ηµ;dµ). For instance,
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TABLE II. Summary of possible pairing states transforming under the complex representation E of C3. The labeling of the
pairing states and their symmetry properties can be found in the main text. The states are ordered by pure singlet, triplet,
and admixtures of singlet and triplet. The latter are only expected generically when the SU(2)−× SU(2)+ symmetry is weakly
broken. We use Xk and Yk to denote real-valued continuous functions on the Brillouin zone that transform as kx and ky
under C3 [see, e.g., Eq. (30)]. The temperature-dependent coefficient η describes the admixture of a triplet/singlet pairing
at a second transition to a purely singlet/triplet one. Furthermore, a, b ∈ R vary continuously with system parameters. The
minimal number of nodes on any Fermi surface enclosing the Γ, K, or K′ point is indicated in the column “Nodes”. As before,
two states are referred to as Hund’s partners if they transform into each other under reversing the sign of the Hund’s coupling,
see, e.g., Fig. 5. As singlet and triplet mix for both δ > 0 and δ < 0, there are no Hund’s partners for E3s(g) and E3s(h); the
corresponding mixed phases, contained in the last two lines of the table, are their own Hund’s partners.

Pairing Mk+ Nodes Hund’s partner MF/FM
E1s(1, 0) Xkσ0 2 points E3s(a) 7/3

E1s(1, i) (Xk + i Yk)σ0 0 E3s(d) 3/3

E3s(a) Xkσx 2 points E1s(1, 0) 7/7

E3s(b) Xkσx + Ykσy 0 E1s(0, i) + E3s(a) 3/7

E3s(c) Xk(σx + iσy) ↓ gapless/2 points E1s(1, 0) + E3s(a) 7/3

E3s(d) (Xk + i Yk)σx 0 E1s(1, i) 3/3

E3s(e) (Xk + i Yk)(σx + iσy) ↓ gapless/0 E1s(1, i) + E3s(d) 7/3

E3s(f) (Xk + i Yk)σx + (Xk − i Yk)σy 2 points E1s(1,−i) + E3s(d) 7/7

E3s(g) a(Xk + i Yk)(σx + iσy) + b(Xk − i Yk)σz 0 — 7/7

E3s(h) a[(Xk + i Yk)σx + (Xk − i Yk)σy] + bYkσz 0 — 7/7

E1s(0, i) + E3s(a) i Ykσ0 + ηXkσx 0 E3s(b) 3/7

E1s(1, 0) + E3s(a) Xk(σ0 + ησx) 2 points E3s(c) 7/3

E1s(1, i) + E3s(d) (Xk + i Yk)(σ0 + ησx) 0 E3s(e) 7/3

E1s(1,−i) + E3s(d) (Xk + i Yk)σ0 + η(Xk − i Yk)σx 2 points E3s(f) 7/7

E3s(g) + E1s(1,−i) a(Xk + i Yk)(σx + iσy) + (Xk − i Yk)(bσz + ησ0) 0 E1s(1,−i) + E3s(g) 7/7

E3s(h) + E1s(1, 0) a[(Xk + i Yk)σx + (Xk − i Yk)σy] + bYkσz + ηXkσ0 0 E1s(1, 0) + E3s(h) 7/7

we have (η+;d+) = (0; 1,−i, 0), (η−;d−) = (0; 1, i, 0)
for E3s(b), which is equivalent to (η+;d+) = (1; 1, 0, 0),
(η−;d−) = (−1; 1, 0, 0) after applying an appropriate
SU(2)+ × SU(2)− transformation.

Likewise, the Hund’s partners of E3s(e) and E3s(f)
are admixtures of a chiral singlet and a unitary triplet
state with the same and opposite chirality, respectively.
The associated order parameters can be written as (Xk+
i Yk)(σ0 + η σx) and (Xk + i Yk)σ0 + η (Xk − i Yk)σx.
While the first of the two states has two fully established
gaps, given by (1 ± η)

√
X2
k + Y 2

k (with ± referring to
the spin species), the other has two gaps, |Xk| and |Yk|,
with distinct momentum dependencies; it, thus, exhibits
two point nodes per Fermi surface which occur at dif-
ferent positions for the two spin species, similar to the
associated triplet phase E3s(f).

In general, admixing a singlet component at a second
transition to a triplet state is less likely to occur as a
singlet state has less options to “adapt” (the order pa-
rameter comprises two complex numbers for E) than a
triplet state (for which, the order parameter comprises
six complex numbers). While this is not possible for the
one-dimensional representation A (see Fig. 2), the IR E
does allow for this scenario but only for the triplet states

E3s(g) and E3s(h): for small δa < 0, we find a second
transition where an additional chiral (nematic) singlet
component is admixed to E3s(g) (E3s(h)). As both pure
triplet states can be fully gapped, the same holds for the
admixed phases. The admixture of the extra singlet com-
ponent does not change the symmetries of E3s(g) and
E3s(h) listed in Sec. IVA above. Reversing the sign of
δa to small positive values, we obtain the same admixed
phase. The only difference is that the first transition is
a singlet transition into a chiral (nematic) phase and the
secondary triplet E3s(g) [E3s(h)] becomes nonzero at a
lower transition temperature.

The key results of this section, the pure triplet/singlet
states and the possible admixed phases for small J along
with their order parameters and properties, are summa-
rized in Table II. As already discussed above, several
states are degenerate within single-band mean-field the-
ory. Depending on the form of the corrections to mean-
field theory lifting this degeneracy, there are two pos-
sible phase diagrams, shown in Fig. 5. Interestingly,
we observe that the chiral singlet, E1s(1, i), is not the
only possible phase close to mean-field theory for anti-
Hund’s coupling: as can be seen in Fig. 5(b), a secondary
phase transition into the nematic mixed singlet-triplet



16

Hund'sAnti-Hund's Hund'sAnti-Hund's

FIG. 5. The two possible phase diagrams of the complex
representation close to mean-field theory, using the labeling
of states defined in the main text and Table II. All transitions
are second order, except for the one indicated by the thick line,
which is first order. In Sec. V, we show that part (b) [part (a)]
is favored when taking into account corrections to mean-field
theory coming from ferromagnetic spin [orbital] fluctuations.

state E1s(0, i) +E3s(a) is predicted. It is a fully gapped
state with an anisotropic gap,

√
η2X2

k + Y 2
k , breaking

rotational symmetry. Note that this route to a nematic
superconducting state, indications of which are provided
by recent experiments [76], is distinct from that of other
works [43, 77]. Of course, sufficiently large corrections to
mean-field theory can in principle yield any of the phases
listed in Table II; we will come back to these corrections
in Sec. V below.

Let us finally discuss the impact of fluctuations of the
order parameter on the thermal phase transitions. As
readily follows from the respective order parameter man-
ifolds, the singlet phases in Table II exhibit a conven-
tional BKT transition, the triplets (a), (b), (d), (f), (g),
and (h) will be charge-4e superconductors where only
spin-rotation invariant combinations of the triplet vector
assume quasi-long-range order at finite temperature, and
the triplets (c) and (e) will only display a crossover. How-
ever, as pointed out above, none of these three classes of
transitions can currently be excluded based on the ex-
perimental data.

C. Behavior in a magnetic field

Finally, we turn our attention to the behavior of the
pairing states of the complex representation in the pres-
ence of a Zeeman field,MZ , and in-plane orbital coupling
MO, along the same lines as Sec. III C. From Eqs. (31)
and (37), it follows that there are three possible coupling
terms linear in the field and quadratic in the supercon-
ducting order parameter given by

∆FEM ∼MZ ·
∑
µ

[
δcE1 Im

(
d∗µηµ

)
+ cE2 µRe

(
d∗µηµ

)]
+ icE3 MZ ·

∑
µ

d∗µ × dµ. (42)

Notice that, exactly as for the IR A, there is no linear
coupling to the in-plane orbital field, which is prohibited
by time-reversal and C3 rotation symmetry. While the
first term in Eq. (42) is again forced to vanish for J →
0 [for the same reason as δc1 in Eq. (24)], the second
singlet-triplet-mixing coupling, cE2 , is not constrained to
be zero for J = 0. However, the emergent symmetry
in the single-band mean-field description of Appendix A,
leads to cE2 = 0, so it is natural to expect cE2 � cE3 such
that the last term in Eq. (42) describes the dominant
linear coupling to the magnetic field—even when J is
small. As expounded in Appendix A, the expression for
cE3 is identical in form to that for c2 in Eq. (24). As
such, the linear increase of the (first) superconducting
transition temperature with small magnetic fields seen in
experiment does not permit one to distinguish between
the IRs A and E.

There is one difference between the pairing states of
the two IRs worth mentioning here: while the form of
the leading triplet vector in a magnetic field is completely
fixed to be d ∝ (1, i, 0)T for the one-dimensional IR A,
the complex IR allows for either the nematic nonuni-
tary E3s(c) or the chiral nonunitary E3s(e) pairing for
nonzero MZ . Which of the two is realized, depends on
the value of the quartic terms in Eq. (38): if bt2 + bt3 > 0,
the state E3s(e) will be preferred while the opposite sign
corresponds to E3s(c). Within single-band mean-field
theory, we find bt2 = 0 and bt3 > 0, which leads to phase
E3s(e). In the next section, we will see that additional
ferromagnetic fluctuations will further enlarge the pos-
itive value of bt2 + bt3 and consequently, not affect the
mean-field prediction that E3s(e) is the leading triplet
state with the highest transition temperature in the pres-
ence of a magnetic field.

V. FLUCTUATION-INDUCED
SUPERCONDUCTIVITY

Among the plethora of possible superconducting
phases outlined in this paper, only a few can be realized
in single-band mean-field theory (see Tables I, II, and
IV). This originates from the fact that, within single-
band mean-field theory, the ratio of the quartic terms
is fixed and only one state or two degenerate states can
occur for each IR. However, the presence of sizable cor-
relations in the nearly flat bands of graphene moiré sys-
tems is expected to give rise to significant corrections to
mean-field theory. This has recently been demonstrated
for the case of charge-density-wave fluctuations in twisted
bilayer graphene [43], and in the context of nematic fluc-
tuations in the iron-based superconductors [73]. In this
section, we study how corrections associated with ferro-
magnetic fluctuations will split the mean-field degenera-
cies and, if sufficiently strong, realize phases distinct from
mean-field theory.
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To this end, we will first focus on spin fluctuations.
This is prompted by experiments [51–53], which indicate
a spin-polarized correlated insulating state in twisted
double-bilayer graphene, and by the fact that the su-
perconducting phase emerges when doping out of this
polarized state. Likewise, we also expect ferromagnetic
fluctuations to play an important role in twisted bilayer
[4, 61, 62] and trilayer graphene [63]. In particular, in
the latter two systems, however, these fluctuations will
likely not only be of spin but also of orbital origin. This
is why we will also discuss orbital fluctuations.

As it is known to capture the essential physics [43,
73], we focus in the main text on a phenomenological
Ginzburg-Landau-like approach (that does not explicitly
take into account fluctuations with nonzero momentum
and frequencies), but provide a systematic microscopic
derivation in Appendix B 1. Representing the ferromag-
netic spin moment in valley v = ± bymv, we parametrize
its contribution to the free energy as

Fm =
1

2

∑
v,v′

(
χ̂−1

)
vv′
mv ·mv′ , χ̂ =

(
χ δχ

δχ χ

)
. (43)

In this expression, χ̂ plays the role of the spin suscepti-
bility (with |δχ| < χ to ensure stability) and we expect
δχ > 0 close to a phase where the spin moments in the
two valleys are aligned. The ratio δχ/χ controls how
strongly the SU(2)+× SU(2)− symmetry is broken down
to SU(2)s.

A. Trivial representation

Focusing first on the one-dimensional IR A of C3, the
magnetic moments couple to the superconducting order
parameter in Sec. III according to

FAm∆ = c2
∑
v=±

mv · [id
∗ × d− 2vRe(d∗∆s)] , (44)

where we have retained only the couplings invariant un-
der SU(2)+× SU(2)− and assumed that δχ 6= 0 in
Eq. (43) is the main symmetry-breaking perturbation.
Upon making the association MZ =

∑
vmv, we notice

that c2 is the same prefactor as in Eq. (24). In the same
vein as Ref. 43, we integrate out the massive fluctuations
ofmv. As a consequence of the coupling (44), this yields
corrections to the terms quartic in the superconducting
order parameters in Eq. (20), which can be conveniently
split into two categories. First, there are corrections that
preserve the SU(2)+× SU(2)− symmetry; these can be
restated as renormalizations of the coefficients b1 and b2
in Eq. (20). Corrections of the second type break this
symmetry, violating the form of the free-energy expan-
sion (20). More explicitly, the renormalization of the free
energy F in Eq. (20) due to the presence of ferromagnetic

spin fluctuations can be compactly stated as

F → F|bj→bj+δj − δ3|d
∗ × d|2, (45)

where δ1 =−δ2 = 2c22(χ− δχ)> 0 and δ3 = 2c22δχ. As re-
quired by symmetry, the contribution δ3 of the second
category breaking the SU(2)+× SU(2)− symmetry is pro-
portional to δχ.

We start with the limit |δχ| � χ, where the struc-
ture of Eq. (20) is asymptotically preserved and the
form of the two possible phase diagrams in Fig. 2 is un-
changed. Since δ2 < 0, strong ferromagnetic fluctuations
will change the sign of b2 from its positive mean-field
value to negative and, as opposed to mean-field theory,
favor the phase diagram in part (b) of Fig. 2 over part
(a). We point out that naively taking Eq. (45) alone
would render the quartic free-energy expansion unstable
for large enough χ. However, denoting the mean-field
value of b2 by b02, there exists a regime, b02/2 < c2sχ < b02,
for which b2 < 0 due to fluctuation corrections and the
free energy in Eq. (20) is stable. For larger values of χ,
we can imagine adding the sextic term c(tr[∆†+∆+])3 to
the free energy to restore stability.

When δχ is of order χ, the ferromagnetic fluctua-
tions described by Eq. (43) induce considerable SU(2)+×
SU(2)−-symmetry-breaking interactions. The presumed
sign δχ > 0 brings about a further enhancement of the
term −|d∗ × d|2 [as is obvious from Eq. (45)], which fa-
vors nonunitary triplet pairing relative to the SU(2)+×
SU(2)−-invariant form of the free energy in Eq. (20).
Given that δχ < χ, strong ferromagnetic fluctuations are
still expected to change the sign of b2 relative to mean-
field theory. The additional effect of δχ lies in effecting
an additional first-order transition to a nonunitary triplet
state in a third transition at lower temperatures for anti-
Hund’s coupling in Fig. 2(b).

We have thus shown that significant ferromagnetic fluc-
tuations can reverse the predictions of mean-field theory,
and favor the nonunitary triplet state A3s(1, i, 0) and the
admixed singlet-triplet phase A1s+A3s(1, 0, 0) in Table I.

B. Complex representation

The same analysis can be performed for the complex
IR E of Sec. IV. In this case, the most general SU(2)+×
SU(2)−-invariant coupling between the superconducting
order parameter and the spin fluctuations allows for two
independent coupling constants, c± ∈R, and has the form

FEm∆ =
∑
µ=±

∑
v=±

cv·µmv ·
[
id∗µ × dµ − 2vRe(d∗µηµ)

]
.

(46)
Integrating out mv, we again obtain corrections to the
free energy which are quartic in the superconducting
order parameter. In the limit of SU(2)+× SU(2)− in-
variance, δχ = 0, these corrections can be represented
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by renormalizations of the couplings, bj → bj + δbj , in
Eq. (41) with

δb1 = −δb2 = χ (c2+ + c2−)/2 > 0,

δb3 = −χ (c+ − c−)2 < 0,

δb4 = 0,

δb5 = −χ c+c−.

(47)

To study the ramifications of this result, we first con-
sider the limit of weak fluctuations, for which δbj in
Eq. (47) are much smaller in magnitude than the mean-
field value of b2. Albeit small, the corrections δbj are
crucial here due to the exact degeneracy of the states
E3s(b) and E3s(d) in mean-field theory observed earlier.
From Eq. (41) with the replacement bj → bj + δbj , we
find the free-energy difference of these two states to be

FE3s (b) −FE3s (d) = −1

4
χ(c+ − c−)2

(
d†µdµ

)2

≤ 0, (48)

thereby generically favoring E3s(b) along with its Hund’s
partner E1s(0, i) + E3s(a), defined in Table II; in other
words, the phase diagram in Fig. 5(b) is favored over that
in part (a). In the one-band description of Appendix B 2,
it always holds that c+ = c−, which is, in turn, a conse-
quence of an emergent valley-exchange symmetry. How-
ever, multiband effects are expected to be present [8] and
to lead to nonzero |c+ − c−| � |c+|, which is enough to
lift the degeneracy according to Eq. (48).

Next, we turn to the limit of strong ferromagnetic fluc-
tuations, where the mean-field values of bj have to be
treated as perturbations to the large δbj in Eq. (47). As
χ → ∞, we find that, out of the triplet states in Ta-
ble II, E3s(e) has the lowest energy unless c+ = c− or
c+ = −c−. We know that c+ ' c− and hence, can safely
neglect the latter. For the former option, E3s(e) is found
to be degenerate with E3s(c); however, for large but finite
χ, the additional contribution to bj from mean-field the-
ory lifts this degeneracy, always selecting E3s(e). Out of
the multitude of possible pairing states in Table II, strong
ferromagnetic fluctuations thus favor the chiral nonuni-
tary triplet state E3s(e) and the mixed singlet-triplet
phase E1s(1, i) + E3s(d). Which of these two states is
realized, depends on whether singlet or triplet has the
higher transition temperature (the sign of δa).

C. Orbital fluctuations

Anticipating its relevance for twisted bilayer and tri-
layer graphene, here, we extend the previous analysis to
the case of orbital ferromagnetic fluctuations. Due to the
two-dimensional nature of the system, the in-plane or-
bital moments, MO = (Mx

O,M
y
O), and the out-of-plane

momentMz
O behave quite differently. Beginning with the

complex representation, we already know from Sec. IVC

that there is no linear coupling to MO; however, the
superconductor can couple to Mz

O as

FEM∆ = cEO
∑
µ=±

µMz
O

(
|ηµ|2 + d†µdµ

)
. (49)

For concreteness, one might think of Mz
O as valley fluc-

tuations, associated with
∑
k c
†
kτzck, but our analysis is

more general. Taking an energetic contribution quadratic
in Mz

O similar to Eq. (43) and integrating over Mz
O, we

obtain a correction to the free-energy that can be conve-
niently expressed as

b1 → b1 − δb, b3 → b3 + 4δb, δb > 0, (50)

in Eq. (41). It is easily seen that taking this as a small
correction to mean-field theory will now favor the phase
diagram in Fig. 5(a) over that in part (b). On the other
hand, in the limit of strong orbital fluctuations, the chi-
ral unitary, E3s(d), and the chiral nonunitary triplet,
E3s(e), (along with their Hund’s partners) will be fa-
vored. This degeneracy will be lifted by the subleading
ferromagnetic spin fluctuations, which favor the latter
state, E3s(e) (and its Hund’s partner), as readily follows
from Eq. (47).

In the trivial representation, orbital fluctuations have
no impact on which of the two possible phase diagrams
in Fig. 2 is realized. This results from the fact that nei-
ther MO (see Sec. III C) nor Mz

O can couple linearly
to the superconducting states and their rotational in-
variant quadratic forms (Mz

O)2, M2
O can only couple

to |∆s|2 + d†d. Consequently, the energetic correction
obtained by integrating out the orbital fluctuations will
also only depend via |∆s|2 +d†d on the superconducting
states and, as such, not affect the value of b2 in Eq. (20)
and Fig. 2.

D. In a magnetic field

Finally, we come back to the impact of fluctuation cor-
rections on the leading triplet phase in the presence of a
magnetic field. As we have seen in Sec. IVC, the super-
conducting state with the highest transition temperature
in the presence of a sufficiently strong magnetic field will
be a triplet phase due to the linear coupling in the second
line of Eq. (42). At the mean-field level, bt2+bt3 > 0, which
prefers E3s(e) over E3s(c) as the order parameter of this
phase. Using the relations in Eq. (C6), it is straightfor-
ward to rephrase the fluctuation corrections (47) and (50)
of bj in terms of btj → btj + δbtj in Eq. (38). This yields
δbt1 + δbt2 = χ(c+ − c−)2 > 0 and δbt1 + δbt2 = 4δb > 0
for spin and orbital fluctuations, respectively. We con-
clude that, as expected, ferromagnetic fluctuations do not
change the mean-field prediction in this case and E3s(e)
is the dominant triplet order parameter in the presence of
a magnetic field, for both strong and weak ferromagnetic
fluctuations, and in their absence.
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VI. ADDING FURTHER SYMMETRIES

In this section, we will analyze how the results pre-
sented above are modified once the additional symme-
tries, twofold rotation, C2, perpendicular to the plane
of the system, and in-plane rotation symmetry, C2y, are
added. As shown in Fig. 1(b) and (c), these symme-
tries are relevant as either exact microscopic or approx-
imate emergent symmetries of twisted bilayer graphene
and ABC trilayer graphene on hexagonal boron nitride,
both of which exhibit superconductivity [2, 48].

A. Consequences of a C2 rotation symmetry

One crucial difference in twisted bilayer compared to
twisted double-bilayer graphene is that the former has an
approximate C2 symmetry [15] that mixes the two val-
leys, i.e., the system is (approximately) invariant under

C2 : ck −→ τxc−k. (51)

To relate to our notation used above, we assume that it is
sufficient to focus on a single band for describing super-
conductivity in twisted bilayer graphene as well. This is
quite a natural assumption and, unless stated otherwise,
we expect our conclusions to hold when additional bands
are taken into consideration.

This (approximate) symmetry has attracted a lot of
attention in the recent theory literature [13, 14, 17, 22]
of the system since it, combined with time-reversal and
C3, leads to a C6Θ symmetry, which is responsible for
not only the presence of (nearly gapless) Dirac cones
at K and K ′ but also the (approximate) vanishing of
Berry curvature in twisted bilayer graphene. If the twist
axis goes through the center of a hexagon, the system
has C6 rotation even as a microscopic symmetry. We
note in passing that the (nearly) flat bands obtained
in Refs. 57 and 58 for double-bilayer graphene do not
feature any Dirac cones but have well-separated conduc-
tion and valence bands that are characterized by nonzero
Chern numbers (at least in some parameter regime); this
strongly indicates that C2 is not an approximate symme-
try in twisted double-bilayer graphene since C2Θ would
enforce zero Berry curvature.

In a similar fashion, Ref. 50 has argued that the twofold
symmetry (51) is also an approximate symmetry for ABC
trilayer graphene on hexagonal boron nitride, although it
is clearly not a microscopic symmetry of the system, as
can be seen in Fig. 1(c).

All things considered, it is currently not known
whether an approximate C2 symmetry is relevant for
superconductivity in twisted bilayer and ABC trilayer
graphene. Therefore, we will now discuss what changes
for the possible superconducting instabilities once we as-
sume that the Hamiltonian is also invariant under the
transformation in Eq. (51).

The C2 transformation plays a special role in two di-
mensions as it is equivalent to k → −k and can, thus,
significantly affect superconducting instabilities [78]. In
graphene moiré superlattices, it also relates the two val-
leys and “interferes” with the Fermi-Dirac constraint (10):
decomposing the pairing into singlet and triplet,

Mkv = λskvσ0∆s + λtkvσ · d, (52)

Eq. (10) implies that λskv =λs−kv̄ and λ
t
kv =−λt−kv̄. Con-

sequently, it holds (as long as the pairing matrix elements
between different bands can be neglected) that

C2 : (∆s,d) −→ (∆s,−d), (53)

i.e., all representations even (odd) in C2 must be pure
singlet (triplet) states and vice versa. This has a few im-
plications worth mentioning. First, even if C2 is not a
good symmetry (say, it is significantly broken by interac-
tions), SU(2)s spin-rotation invariance requires that the
first transition must be into a pure singlet or triplet state
and hence, the pairing must be either even or odd under
C2. In this sense, we can still distinguish between p-wave
and d-wave pairing despite the presence of C2-symmetry-
breaking interactions. We emphasize that mixing will
only be possible via multiple superconducting transitions
(associated with admixtures of singlet and triplet) or in-
terband pairing. The latter is expected to be quite weak
given that the typical splitting between the bands at half-
filling (at least a few meV [5]) is about or more than an
order of magnitude larger than the superconducting crit-
ical temperature (' 0.15meV according to Ref. 2).

Secondly, if we do have an enhanced SU(2)+×SU(2)−
symmetry (or are close to it), singlet and triplet are
(nearly) degenerate. This forces the corresponding IRs of
the spatial point group D6 of the system, which behave
identically under the subgroup D3 but are even and odd
under C2, to be (nearly) degenerate at the quadratic level
of the Ginzburg-Landau expansion. For instance, A1 and
B1 of D6 have to be degenerate, as summarized in Ta-
ble III. Without a Zeeman field, an extra C2 symmetry
with action in Eq. (53) also has no consequences for the
higher-order terms in the free energy since spin-rotation
invariance necessitates that all of these terms are even in
the triplet vector. The only difference arises in the pres-
ence of a Zeeman field or magnetic fluctuations: with
C2 symmetry, it must hold that δc1 = 0 in Eq. (24) and
δcE1 = 0 in Eq. (42) even when the SU(2)+× SU(2)− sym-
metry is broken. Furthermore, a C2 symmetry implies
c+ = c− in Eq. (46). For this reason, weak ferromagnetic
spin fluctuations do not lift the degeneracy of mean-field
theory if we impose an exact C2 symmetry and other
types of fluctuations have to be considered. Recall, how-
ever, in both trilayer and twisted bilayer graphene, C2

should only be considered as an approximate symmetry
and terms breaking this symmetry will lead to c+ 6= c−,
thus lifting the degeneracy of mean-field theory by, e.g.,
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TABLE III. Character table of the point group D3 together
with the corresponding basis functions and IRs of D6 for sin-
glet/triplet pairing.

E 2C3 3C2y Basis functions IRs of D6

A1 1 1 1 x2 + y2/y(3x2 − y2) A1/B1

A2 1 1 −1 z/x(x2 − 3y2) A2/B2

E 2 −1 0 (2xy, x2 − y2)/(x, y) E2/E1

favoring Fig. 5(b) over (a). Note that the C2 symmetry
also forces cEO in Eq. (49) to vanish for Mz

O correspond-
ing to valley fluctuations. As such, the approximate C2

symmetry does not specify whether spin or valley fluctu-
ations are expected to be the dominant source of lifting
the mean-field degeneracy. It only indicates that strong
ferromagnetic fluctuations are most likely dominated by
spin fluctuations.

In summary, when classifying superconducting states
in twisted bilayer graphene or ABC trilayer graphene on
hexagonal boron nitride in the absence of a Zeeman field,
it is unimportant whether an approximate C2 symmetry
is relevant or not: singlet and triplet will always be even
and odd under it. We can thus work with D3 (instead of
D6) without loss of generality in the following. The only
difference with twisted double-bilayer graphene (with fi-
nite displacement field) is an extra twofold rotation sym-
metry, C2y, along the y-axes, see Fig. 1(b) and (c). Its
action on the electronic operators reads as

C2y : ck −→ τx cC2yk, (54)

where C2yk = (−kx, ky). The upshot of this additional
symmetry for the possible superconducting instabilities
is clarified in the next subsection.

B. D3 versus C3

Due to the additional C2y symmetry, D3 is a non-
Abelian group and has three IRs—two one-dimensional
and one two-dimensional representation (refer to the
character table in Table III). It is convenient to begin
with the one-dimensional IRs A1 and A2 and take J 6= 0.
Since C2y interchanges the valleys, its action on the in-
tervalley pairing order parameter (52) can be written as

C2y :
(
λskv, λ

t
kv

)
−→

(
λs−C2ykv,−λ

t
−C2ykv

)
. (55)

So, we see that a singlet (triplet) state transforming un-
der A1 (A2) has no nodes while a singlet (triplet) in the
A2 (A1) channel has symmetry-imposed nodes on the line
ky = 0 and along the directions rotated by ±π/3. This
creates six nodal points on any surface enclosing the Γ
point.

We can also readily understand from Eq. (55) how the
one-dimensional representations “connect” at the SU(2)+

× SU(2)− point: at the high-symmetry point, λskv = λtkv,
ergo A1s

1 and A3s
2 or A1s

2 and A3s
1 must meet at the J =

0 line in Fig. 2. We summarize these observations in
Table IV.

In addition, for the case of the two-dimensional rep-
resentation E of D3, the C2y symmetry has nontrivial
consequences. Once again, we take J 6= 0 which permits
us to study singlet and triplet independently. As singlet
pairing has already been analyzed in detail for twisted
bilayer graphene (see, e.g., Ref. 30), we are chiefly con-
cerned with the triplet states here. We parametrize the
triplet pairing as in Sec. IVA with the sole distinction
being that the basis functions Xk and Yk are now con-
strained by the symmetries of D3; we choose them to
obey X−C2yk = −Xk and Y−C2yk = Yk, while trans-
forming as kx and ky under C3. A possible choice is
given by Eq. (30) with φ = π/2 for the Brillouin zone
of twisted bilayer graphene in Fig. 1(b). With these
conventions, the triplet vector transforms according to
(d+,d−) → (d−,d+) under C2y. This does not fur-
ther constrain the quartic terms in the free energy (38),
wherefore we can use the analysis of Sec. IVA for the
point group C3, bearing in mind the caveat that the rel-
ative phase, ϕ, between d+ and d− cannot be absorbed
in a redefinition of the basis functions Xk and Yk any
more due to the extra C2y symmetry. While ϕ has no
consequences for E3s(d) or E3s(e) and can be absorbed
by performing a spin rotation for the phases E3s(b) and
E3s(g), it describes different phases for all other stable
minima of Eq. (38), and we have to go to higher order in
the free-energy expansion to determine its value.

Consider E3s(a) for instance. Writing d+ = (1, 0, 0)T

and d− = eiϕ(1, 0, 0)T , it is easy to verify that the most
general, ϕ-dependent sextic term to the free energy must
have the form c1 cos(3ϕ) with c1 ∈ R. This derives from
Eq. (34) where the C2y symmetry forces c2 to vanish. We
thus find ϕ = 2πn/3, n ∈ Z, for c1 < 0 and ϕ = π/3 +
2πn/3 when c1 > 0. These two minima correspond to
two different states, which can be compactly represented
by defining the “rotated” basis functions

(Xϕ
k , Y

ϕ
k )T = Rϕ/2(Xk, Yk)T , Rφ = eiφσy , (56)

with Xk and Yk as introduced above. The order pa-
rameters are Mk+ =X0

kσx and Mk+ =X
π
3

k σx≡ (
√

3Xk+
Yk)σx/2 for c1 < 0 and c1 > 0, respectively. We denote
these two states by E3s(a)0 and E3s(a)π

3
, respectively.

The first state, E3s(a)0, preserves C2y, but breaks C3

rotation symmetry, and has a nodal line which is, as op-
posed to the states in Sec. IVA, pinned to ky = 0. The
other state, E3s(a)π

3
, however, breaks C2y and the nodal

line is not pinned to the kx axis.
The remaining triplet states, E3s(c), E3s(f), and

E3s(h) of Sec. IVA can be analyzed in the same way. In
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TABLE IV. Summary of the different intervalley pairing states classified by the IRs of the point group D3. The notation closely
parallels that of Table II. Here, we use λ1

k and λ2
k to denote continuous functions on the Brillouin zone that are even and odd

under (kx, ky) → (kx,−ky), respectively, and are both invariant under C3, λjk = λjC3k
. Furthermore, Xϕ

k and Y ϕk are rotated
basis functions defined in Eq. (56); for instance, a possible choice for twisted bilayer graphene with Brillouin zone in Fig. 1(b) is
given by (Xk, Yk)T = R(π+ϕ)/2(X

(1)
k , Y

(1)
k )T with X(1)

k , Y (1)
k in Eq. (30a). To keep the notation short, each line with reference

to ϕ1 or ϕ2 corresponds to two distinct states with ϕ1 = 0, π/3 and ϕ2 = 0, π/2. The indicated number of nodal points refers
to a Fermi surface enclosing the Γ point.

Pairing Mk+ Nodes around Γ Hund’s partner MF/FM
A1s

1 λ1
kσ0 none A3s

2 (1, 0, 0) 3/3

A1s
2 λ2

kσ0 6 points A3s
1 (1, 0, 0) 3/3

A3s
1 (1, 0, 0) λ2

kσx 6 points A1s
2 3/7

A3s
2 (1, 0, 0) λ1

kσx none A1s
1 3/7

A3s
1 (1, i, 0) λ2

k(σx + iσy) ↓ gapless/6 points A1s
2 +A3s

1 (1, 0, 0) 7/3

A3s
2 (1, i, 0) λ1

k(σx + iσy) ↓ gapless/none A1s
1 +A3s

2 (1, 0, 0) 7/3

A1s
1 +A3s

2 (1, 0, 0) λ1
k(σ0 + η(σx + iσy)) none A3s

2 (1, i, 0) 7/3

A1s
2 +A3s

1 (1, 0, 0) λ2
k(σ0 + η(σx + iσy)) 6 points A3s

1 (1, i, 0) 7/3

E1s(1, 0)ϕ1 Xϕ1
k σ0 2 points E3s(a)ϕ1 7/3

E1s(1, i) (X0
k + i Y 0

k )σ0 0 E3s(d) 3/3

E3s(a)ϕ1 Xϕ1
k σx 2 points E1s(1, 0)ϕ1 7/7

E3s(b) X0
kσx + Y 0

k σy 0 (E1s(0, i) + E3s(a))ϕ1 3/7

E3s(c)ϕ1 Xϕ1
k (σx + iσy) ↓ gapless/2 points (E1s(1, 0) + E3s(a))ϕ1 7/3

E3s(d) (X0
k + i Y 0

k )σx 0 E1s(1, i) 3/7

E3s(e) (X0
k + i Y 0

k )(σx + iσy) ↓ gapless/0 E1s(1, i) + E3s(d) 7/3

E3s(f)ϕ2 (Xϕ2
k + i Y ϕ2

k )σx + (Xϕ2
k − i Y

ϕ2
k )σy 2 points (E1s(1,−i) + E3s(d))ϕ2 7/7

E3s(g) a(X0
k + i Y 0

k )(σx + iσy) + b(X0
k − i Y 0

k )σz 0 — 7/7

E3s(h)ϕ1 a[(Xϕ1
k + i Y ϕ1

k )σx + (Xϕ1
k − i Y

ϕ1
k )σy] + bY ϕ1

k σz 0 — 7/7

(E1s(0, i) + E3s(a))ϕ1 i Y ϕ1
k σ0 + ηXϕ1

k σx 0 E3s(b) 3/7

(E1s(1, 0) + E3s(a))ϕ1 Xϕ1
k (σ0 + ησx) 2 points E3s(c)ϕ1 7/3

E1s(1, i) + E3s(d) (X0
k + i Y 0

k )(σ0 + ησx) 0 E3s(e) 7/3

(E1s(1,−i) + E3s(d))ϕ2 (Xϕ2
k + i Y ϕ2

k )σ0 + η(Xϕ2
k − i Y

ϕ2
k )σx 2 points E3s(f)ϕ2 7/7

E3s(g) + E1s(1,−i) a(X0
k + i Y 0

k )(σx + iσy) + (X0
k − i Y 0

k )(bσz + ησ0) 0 E1s(1,−i) + E3s(g) 7/7

(E1s(1, 0) + E3s(h))ϕ1 a[(Xϕ1
k + iY ϕ1

k )σx + (Xϕ1
k − iY

ϕ1
k )σy] + bY ϕ1

k σz + ηXϕ1
k σ0 0 (E3s(h) + E1s(1, 0))ϕ1 7/7

all cases, we find two states corresponding to two different
discrete values of the relative phase ϕ between d+ and
d−: for E3s(c) and E3s(h), we find ϕ = 0 or ϕ = π/3 as
before, whereas E3s(f) requires even higher-order terms
in the free energy expansion, yielding ϕ = 0 or ϕ = π/2.
In analogy to E3s(a)ϕ, we label the states by E3s(c)ϕ,
E3s(f)ϕ, E3s(h)ϕ; their order parameters are the same
as those of the corresponding states in Sec. IVA but with
the rotated basis functions in Eq. (56) using the respec-
tive value of ϕ. Taken together, we obtain twelve triplet
states for D3, which are summarized in Table IV, instead
of only eight for the point group C3.

Finally, we can also ask how the different states behave
for small J , i.e., whether singlet and triplet can mix and
which phases are Hund’s partners. Exactly as illustrated
above for the pure triplet phases, we have to consider
higher-order terms that determine the relative phase be-
tween the chiral, µ = +, and antichiral, µ = −, basis

functions. As this analysis closely parallels our previous
discussions, we just present the result in Table IV. In
total, there are ten symmetry-inequivalent mixed singlet
and triplet phases. Seven of them are only possible if
δa < 0 (singlet dominates); the remaining three can be
realized for either sign of δa.

VII. DISCUSSION AND CONCLUSION

In this work, we have presented a systematic classi-
fication and analysis of superconducting instabilities in
graphene moiré systems. To this end, we have focused on
zero-momentum Cooper pairs formed out of electrons in
different valleys. Intervalley pairing is expected to be the
dominant pairing channel as time-reversal relates the two
valleys. We have first analyzed singlet and triplet pair-
ing separately since spin-orbit coupling is expected to be
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very weak in graphene. However, theoretical estimates
of the interaction terms of twisted bilayer [13], double-
bilayer [57], and trilayer [50] graphene indicate that these
systems are approximately invariant under independent
spin rotations in the two valleys, leading to an (approx-
imate) SU(2)+ × SU(2)− symmetry and the (near) de-
generacy of singlet and triplet pairing. For this reason,
we have also classified the pairing instabilities close to
this high-symmetry point, analyzing which triplet state
transforms into which singlet phase upon changing the
sign of the interactions breaking the SU(2)+ × SU(2)−
symmetry. We have further derived the conditions under
which singlet and triplet can mix despite the absence of
spin-orbit coupling.

As it has the fewest symmetries, we first considered
twisted double-bilayer graphene, for which there are also
clear experimental indications of triplet pairing [51, 52].
Here, a displacement field, which is required to stabilize
the superconducting state, reduces the point group to C3.
The pairing states and their properties associated with
the real representation A and the complex representation
E of C3 are summarized in Tables I and II, respectively.

Being one-dimensional and real, A only allows for one
singlet, a unitary and a nonunitary triplet phase, and
one mixed phase. The latter is expected to be rele-
vant only if SU(2)+ × SU(2)− is weakly broken and the
two consecutive transitions in the schematic phase dia-
gram of Fig. 2(b) are very close. Using the values of
the coupling constants in Ref. 57, we estimate the split-
ting to be about two orders of magnitude smaller than
the critical temperature and hence, hard to see exper-
imentally [70]. Whether renormalization-group correc-
tions could enhance the impact of these weak symmetry-
breaking perturbations at energies of order of the transi-
tion temperature is an open question, which we leave for
future work. The gap structure of the four phases trans-
forming under A is quite different: while the nonunitary
triplet is gapless for one of the spin species, the singlet
and unitary triplet have a single, fully established gap,
and the mixed phase has two finite but distinct gaps
for the two spin species. We have further shown that
single-band mean-field theory will generically favor the
phase diagram in Fig. 2(a) over Fig. 2(b). However, the
small bandwidth and strong-coupling nature inherent in
the problem makes the applicability of mean-field theory
questionable and can lead to significant corrections which
might eventually select other phases. We have illustrated
these corrections for ferromagnetic fluctuations, expected
to be relevant for twisted double-bilayer graphene [51–
53], twisted bilayer [4, 61, 62], and ABC trilayer graphene
[63]. We find that the resulting corrections will, as op-
posed to mean field, generally favor the phase diagram
in part (b) of Fig. 2 over that in part (a).

The complex representation allows for many more
states: two pure singlets, eight triplets, and, if SU(2)+ ×
SU(2)− is only weakly broken, six distinct mixed phases.

As compiled in Table II, all of these three classes of states
allow for nodal points and fully gapped phases. However,
only the triplets can have nodal lines (residual ungapped
Fermi surfaces of one spin species). Only one out of the
two different triplet states of the IR A allow for an admix-
ture of singlet and triplet for weak anti-Hund’s coupling
but, in contrast, six out of the eight triplets transforming
under E do so.

Out of the possible pairing states in Table II, single-
band mean-field theory favors the two triplet states
E3s(b) and E3s(d) along with their respective Hund’s
partners—the nematic mixed phase E1s(0, i) + E3s(a)
and the chiral singlet E1s(1, i). We show the associated
phase diagrams in the vicinity of mean-field theory in
Fig. 5(a) and (b). We have discussed how additional weak
ferromagnetic spin (orbital) fluctuations can lift the exact
degeneracy of E3s(b) and E3s(d), generically favoring the
former (latter) and, hence, the phase diagram in Fig. 5(b)
[Fig. 5(a)]. In the limit of strong ferromagnetic fluctua-
tions, we obtain the chiral nonunitary triplet E3s(e) or,
for weak anti-Hund’s coupling, the mixed singlet-triplet
state E1s(1, i) + E3s(d) as the dominant instability.

Motivated by the experimentally observed [52] linear
increase of the transition temperature with an in-plane
magnetic field in twisted double-bilayer graphene and
signs of magnetism in bilayer and trilayer graphene, we
have also mapped out the possible phase diagrams in the
presence of a magnetic field. As expected, if the SU(2)+

× SU(2)− symmetry is significantly broken, the linear in-
crease is only consistent with triplet pairing. For pairing
in the A channel, there are two possible phase diagrams,
shown in Fig. 3(c) and (d), depending on which triplet
state is realized in the absence of a magnetic field. The
magnetic field fully determines the form of the leading
triplet state to be A3s(1, i, 0) in the A channel. For order
parameters transforming under E, there are two possi-
bilities for the leading triplet state, E3s(c) or E3s(e), in
a magnetic field; which of the two is realized depends
on the value of the quartic couplings in the free energy.
Both mean-field theory and ferromagnetic fluctuations
favor the E3s(e) state. If, however, SU(2)+ × SU(2)− is
only very weakly broken, singlet pairing as the dominant
instability of the system is also consistent with the lin-
ear increase of the critical temperature; the two possible
phase diagrams for the case of pairing in the IR A are
illustrated in Fig. 3(a) and (b).

We have also derived (within mean-field theory) the
key couplings, c2 in Eq. (24) and cE3 in Eq. (42), between
the superconducting order parameter and the magnetic
field B that determine the slope of the increase, ∆Tc, of
the critical temperature with magnetic field. We found
that they have the exact same mathematical form; as
such, the behavior ∆Tc ' 2µBB, with Bohr magneton
µB , seen in experiment [52], is equally surprising for both
pairing channels and does not favor one channel over the
other. In both cases, this might either be accidental or
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due to quantum critical scaling [57].
We have also studied, in Sec. VI, the changes in the

classification when there is an extra in-plane rotation
symmetry, C2y, and a twofold rotation, C2, perpendic-
ular to the plane. These two symmetries are relevant
(either as exact or emergent symmetries) to twisted bi-
layer graphene and ABC trilayer graphene. We find that
while the C2 symmetry has no consequences for the clas-
sification, C2y not only pins the nodes of certain pairing
states along high-symmetry lines but also leads to more
pairing states as summarized in Table IV.

This work further illustrates that graphene moiré sys-
tems provide a very rich playground for novel strongly
correlated superconducting phases. We hope that our
systematic analysis of pairing in the absence and pres-
ence of magnetic fields will help future theoretical and
experimental studies to pinpoint the microscopic form of
the superconducting state.
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Appendix A: Microscopic Ginzburg-Landau
expansion

In this appendix, we derive the prefactors of the various
free-energy expansions in the main text within mean-field
theory. Unless stated otherwise, we use a single-band
description.

1. Without a magnetic field

We imagine performing a mean-field decomposition in
the Cooper channel and keeping only the singlet and
triplet pairing of the dominant IR. The ensuing mean-
field Hamiltonian for the one-band model has the form

Hmf =
∑
k

ξkvc
†
kσvckσv (A1)

+
∑
k

c†kσ+

[
(∆s

k + σ · dk)iσy
]
σ,σ′

c†−kσ′−,

where ξk+ = ξ−k− due to time-reversal symmetry. In
Eq. (A1), we have omitted a constant term, which is
quadratic in the superconducting order parameter and
does not affect the quartic terms we derive below. Upon

integrating out the fermions in Eq. (A1) and expanding
the resulting free energy in the superconducting order
parameter, the Ginzburg-Landau expansion coefficients
can be obtained order by order.

Starting with the one-dimensional real IR A of C3,
we write ∆s

k = λsk∆s, dsk = λtkd, where λsk and λtk
are momentum-dependent basis functions that are invari-
ant under C3. Using the generalization of Eq. (20) to
parametrize the free energy,

F ∼ a(T )
(
|∆s|2 + d†d

)
+ δa

(
|∆s|2 − d†d

)
+ γ1|∆s|4

+ γ2

(
d†d

)2

+ γ3 |d∗ × d|2 + γ4|∆s|2d†d

+ γ5Re
[
(∆s)

2
d†d∗

]
, (A2)

which allows us to account for a nonzero J making singlet
and triplet nonequivalent, we find

γ1 = F[|λsk|4], γ2 = γ3 = F[|λtk|4], (A3)

γ4 = 4F[|λtk|2|λsk|2], γ5 = 2F[(λtk)2(λs∗k )2]. (A4)

To keep the expressions compact, we have defined the
functional

F[fk] := T
∑
ωn

∫
d2k

(2π)2

fk
(ω2
n + ξ2

k+)2
. (A5)

When J = 0, we have λsk = λtk and hence, obtain

γ1 = γ2 = γ3 = γ4/4 = γ5/2 > 0, (A6)

which is compatible with the prefactors in Eq. (20) as
required from the SU(2)+ × SU(2)− symmetry. On top,
γ1 = γ3 is an additional constraint arising from the mean-
field approximation (and not related to an exact symme-
try). In terms of the prefactors in Eq. (20), it sets b1 = 0,
as stated in the main text. The positive sign of the coef-
ficients in Eq. (A6) implies that mean-field theory always
favors part (a) in the phase diagram in Fig. 2.

Similarly, we can study the complex representation of
C3 introduced in Sec. IV of the main text. Using the
representation in Eq. (29) for the singlet pairing, ∆s

k =∑
µ ηµ (Xk + iµ Yk), it is straightforward to show that

bs1 = bs2/2 = F[(X2
k + Y 2

k )2] > 0 (A7)

for the coefficients bs1,2 in Eq. (32). Being positive, these
coefficients favor the chiral superconductor E1s(1, i) as
was observed earlier as well [43, 44].

Finally, repeating this procedure for the triplet state
with parametrization (36), dk =

∑
µ dµ (Xk + iµ Yk),

the coefficients in Eq. (38) evaluate to

bt1 = bt3/2 = −bt4/2 = −2bt5 = 2F[(X2
k + Y 2

k )2] > 0,

bt2 = 0. (A8)
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The triplet states E3s(b) and E3s(d) will have the low-
est energy for this configuration of quartic coefficients as
argued in the main text. The degeneracy between these
two states is lifted by corrections beyond the mean-field
approximation, such as the ferromagnetic fluctuations of
Sec. V. In the presence of a magnetic field, Eq. (A8)
uniquely determines the chiral nonunitary triplet E3s(e)
as the leading instability (see Sec. IVC).

2. Coupling to a magnetic field

In this subsection, we will analyze several important
coupling terms between the superconductor and the mag-
netic field from a weak-coupling perspective. The micro-
scopic form of the coupling to the Zeeman, MZ , and
in-plane orbital field, MO, reads as

HB =
∑
k

c†kσvσσσ′ckσ′v ·MZ +
∑
k

gv(k)c†kσvckσv ·MO,

(A9)
where we have absorbed the g-factor of the Zeeman cou-
pling into the definition of MZ . This is not possible for
the orbital coupling, as its g-factor gv(k) depends signif-
icantly on momentum. The form of gv(k) is determined
by microscopic details such as the Bloch states. All we
need here is that gv(k) = −gv̄(−k), as follows from time-
reversal symmetry (5), and we refer to Ref. 57 for a mi-
croscopic derivation of its momentum dependence.

Let us first note that even when the actual interacting
multiband system is not invariant under C2, the single-
band mean-field Hamiltonian, HMF+HB , is left invariant
under the action of C2 in Eq. (51) if we further set dk →
−dk in Eq. (A1) and MO → −MO. This emergent
symmetry is a consequence of the special role of C2 in
two dimensions as it acts on k in the same manner as
time-reversal and, as such, can have crucial consequences
for superconducting pairing [78].

In the present case, this symmetry implies that the
coupling terms δc1 in Eq. (24) and δcE1 , cE2 in Eq. (42)
will vanish within single-band mean-field theory as is also
readily confirmed by explicit calculation; we emphasize,
however, that this is not an exact statement and we have
checked that a multiband mean-field description allows
for nonzero values. Nonetheless, we view the vanishing
of these coupling in the weak-coupling single-band limit
as an indication that they are likely small in the system.

Finally, the couplings of the Zeeman term to the triplet
vector in Eqs. (24) and (42) are also not constrained by
the emergent C2 symmetry. We find these to be nonzero
and given by

c2 = −4F
[
ξk+|λtk|2

]
, (A10a)

cE3 = −4F
[
ξk+(X2

k + Y 2
k )
]
, (A10b)

respectively. Our main observation here is that the forms
of c2 and cE3 are identical: the nonuniversal part is a mo-

mentum integral which, in both cases, is weighted by a
function that is invariant under C3 and has no symmetry-
imposed nodes on the Fermi surface. Accordingly, it is
not possible to distinguish between the IRs A and E
based on the slope of the increase of T+

c in small magnetic
fields.

Appendix B: Fluctuation corrections to mean-field

In this appendix, we provide further details on Sec. V.

1. Microscopic derivation

In this first part, we will derive, from a microscopic
description of the system, that the prediction of the phe-
nomenological approach of the main text provides the
leading correction to the free energy of the supercon-
ductor in the limit where the mass of the fluctuations
approaches zero.

To this end, we will use the field-theoretical formalism
and describe the system by the action

S = Sc + Sc∆ + Sφ + Scφ, (B1)

which consists of several contributions: first,

Sc =

∫
k

c†kσv (−iωn + ξkv) ckσv (B2)

is the free-electron contribution (with Grassmann fields
c and c†, in analogy to the operators in the main text),
where

∫
k
· · · ≡ T

∑
ωn

∑
k . . . with fermionic Matsubara

frequencies ωn = πT (2n+1), and k = (k, ωn) comprising
momentum and frequency. The second term,

Sc∆ =

∫
k

c†kσ+

[
(∆s

k + σ · dk)iσy
]
σ,σ′

c†−kσ′−, (B3)

describes pairing, similar to the second line of Eq. (A1),
where we omitted the term proportional to the order
parameter squared, since it is irrelevant for the free-
energy contribution at quartic order in the supercon-
ducting state. The ferromagnetic fluctuations in valley
v with associated bosonic fields φqv = (φxqv, φ

y
qv, φ

z
qv)

T

are described by the action

Sφ =
1

2

∫
q

φqv · φ−qv′
[
χ̂−1(q)

]
vv′

, (B4)

where q ≡ (q,Ωn) is the bosonic analogue of k, i.e.,
Ωn = 2πTn are bosonic Matsubara frequencies. Physi-
cally, χ̂(q, iΩn) plays the role of the (analytic continua-
tion of the) dynamical spin susceptibility [as compared
to the static one in Eq. (43) of the main text]. We will fo-
cus here on the SU(2)+×SU(2)−-symmetric limit, where
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[χ̂(q)]vv′ = δv,v′χ(q), and take the conventional Ornstein-
Zernike form

χ(q, iΩn) =
χ0

Ω2
n + (vq)2 +m2

, (B5)

with velocity v and mass m (related to the correlation
length, ξ, as ξ = v/m). Finally, the spin fluctuations
couple to the electrons as described by the last contribu-
tion,

Scφ = g

∫
k

∫
q

c†kσvσσσ′ck+qσ′v · φqv, (B6)

with a coupling constant g that, of course, can be ab-
sorbed into χ0 (or vice versa), but we will keep g explicit
here.

We follow Ref. 43 and focus on the leading-order cor-
rection of the coupling g (second order, ∝ g2) to the free
energy, F [∆k,dk], but emphasize that our expressions
will differ from those of Ref. 43 as we consider a different
type of fluctuations (centered around zero rather than
finite momenta). These corrections are derived system-
atically by first integrating out the fermions, expanding
the action to quadratic order in the bosonic fields φvq,
which is sufficient to quadratic order in g, and integrating
out the massive bosons.

We are interested in terms quartic in the supercon-
ducting order parameter, leaving us with the four dis-
tinct types of contributions in leading order in g which
are represented diagrammatically in Fig. 6. As indicated,
the first diagram, in Fig. 6(a), only involves the zero-
momentum and zero-frequency, q = 0, fluctuations and
it exactly captures the contributions of the simplified ap-
proach discussed in Sec. V of the main text.

The remaining diagrams—the self-energy in Fig. 6(b),
the ladder in (c), and the vertex correction in (d) to
the mean-field box-diagram—are fundamentally differ-
ent: the loop-integrals involve integration over finite fre-
quency and momentum of the bosonic fluctuations. As
such, it is intuitively clear that they are less singular in
the limit m → 0 than the first diagram in Fig. 6(a),
which is proportional to χ(q = 0, iΩn = 0) = m−2. In
fact, these additional contributions can be shown to di-
verge with log(m) for small m. To illustrate this, let us
consider the diagram in Fig. 6(b), which is proportional
to

Db =

∫
k

∫
q

χ0

Ω2
n + (vq)2 +m2

fb(k)

i(ωn + Ωn)− ξk+q,+
,

(B7)
where we introduced the function

fb(k) =
iωn + ξk+

(ω2
n + ξ2

k+)3
(λ1
k)∗(λ2

k)∗λ3
kλ

4
k (B8)

that only depends on the fermionic momenta and fre-
quencies. Here, λjk represent the basis functions of the
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FIG. 6. Diagrammatic representation of the four different
types of fluctuation corrections quartic in the superconducting
order parameter (schematically represented by dashed lines
and ∆, ∆∗) to leading order in g in Eq. (B6). The solid black
lines with arrows are the bare electronic Green’s functions,
associated with Sc, and the wavy lines denote the bosonic
propagator defined in Eq. (B5). The diagram in (a) repro-
duces the contribution of the “phenomenological approach” of
the main text, whereas the remaining diagrams in (b–d) are
subleading in the limit m→ 0.

involved superconducting order parameters. In the fol-
lowing, we will cut off the q integral by Λ/v and expand
ξk+q ∼ ξk + vk · q, allowing us to write

Db =

∫
k

T
∑
Ωn

∫
dϕ

∫ Λ

0

EdE
χ0/v

2

Ω2
n + E2 +m2

× fb(k)

i(ωn + Ωn)− ξk+ + v̂kE cosϕ
,

(B9)

with the dimensionless velocity ratio v̂k := |vk|/v. Since
|ωn| ≥ πT and we work at finite temperature (given by
the critical temperature of superconductivity), the term
in the second line of Eq. (B9) is finite in the limit E → 0.
The integral, thus, diverges as log(m) at small E (in-
frared), as stated above. The other two diagrams in
Fig. 6(c) and (d) can be analyzed in the same way and
are also found to be subdominant as m→ 0 compared to
the one in Fig. 6(a). This justifies the approach of Sec. V
microscopically.

2. Enhanced symmetry in the one-band description

In the last part of this appendix, we discuss why
c+ ' c− in Eq. (46) is expected. From the previous
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subsection of this appendix, we know that the results
of the main text on fluctuation-induced superconductiv-
ity are captured by zero-momentum and zero-frequency
fluctuations. Writing mv := φq=0v in Eq. (B6) and gen-
eralizing to a momentum- and valley-dependent coupling
constant, we here consider

Hm =
∑
k,v

gmv (k)c†kσvσσσ′ckσv ·mv, (B10)

where gmv (k) = gmv̄ (−k) as a consequence of time-reversal
symmetry and we have, as before, assumed that we can
focus on a single isolated electronic band. It is easy to see
that HMF+Hm, with HMF in Eq. (A1), is again invariant
under the C2 symmetry in Eq. (51) if we further replace

dk → −dk, mv → mv̄. (B11)

While Eq. (44) is automatically invariant under
Eq. (B11), the coupling for the two-dimensional repre-
sentation in Eq. (46) is invariant only if c+ = c−. Con-
sequently, multiband effects are required for nonzero
c+−c−, wherefore we expect its value to be much smaller
than c+ +c−, as stated in the main text. We also checked
by explicit calculation that c+ 6= c− is possible in a multi-
band description.

Appendix C: Details for the complex representation

In this appendix, we present additional details of the
different phases transforming under the complex repre-
sentation E of C3.

As a starting point, it is helpful to chart out a phase
diagram describing which of the triplet phases E3s(a)
to E3s(h) is realized as a function of the quartic terms
bt1,2,3,4,5 in Eq. (38). Upon recognizing that bt1 does not
affect the form of the order parameter (but is assumed
to be chosen so as to guarantee the stability of the ex-
pansion), we can conveniently display the phases as a
function of btj/|bt2|, j = 3, 4, 5, discussing the two possi-
ble signs of bt2 separately. Such a phase diagram is drawn
in Fig. 7.

As the main text contends, there are no indepen-
dent terms involving σy to add to the SU(2)+× SU(2)−-
invariant form of the free energy in Eq. (41). To see
this, we note that it suffices to consider terms involving
both ∆+ and ∆− since terms with only ∆+ (or ∆−) have
already been addressed in Sec. III A. Among the terms
that mix ∆+ and ∆−, the following are consistent with
time-reversal and C3 symmetry:

∆F1 =
∣∣tr [σy∆+σy∆T

−
]∣∣2 , (C1)

∆F2 = tr
[
∆+σy∆T

−∆∗−σy∆†+

]
+ tr

[
∆†−σy∆∗+∆T

+σy∆−

]
,

∆F3 = tr
[
∆+σy∆T

−∆∗+σy∆†−

]
+ tr

[
∆†−σy∆∗+∆T

−σy∆+

]
.

However, all of these terms can be reformulated as

∆F1 = tr
[
∆†+∆+

]
tr
[
∆†−∆−

]
+
∣∣∣tr [∆†+∆−

]∣∣∣2 − (tr [∆†+∆+∆†−∆−

]
+ tr[∆−∆†−∆+∆†+]

)
, (C2)

∆F2 = 2 tr
[
∆†+∆+

]
tr
[
∆†−∆−

]
−
(
tr
[
∆†+∆+∆†−∆−

]
+ tr[∆−∆†−∆+∆†+]

)
, (C3)

∆F3 = 2
∣∣∣tr [∆†+∆−

]∣∣∣2 − (tr [∆†+∆+∆†−∆−

]
+ tr[∆−∆†−∆+∆†+]

)
, (C4)

so they do not constitute independent terms to add to Eq. (41).
In concluding this appendix, we present the explicit form of the free-energy (41) in terms of singlet and triplet

components. Inserting ∆µ = σ0∆s
µ + σ · dµ, µ = ± in Eq. (41) and adding SU(2)+ × SU(2)− symmetry breaking

only at the level of the quadratic terms, one arrives at

F ∼ a(T )
∑
µ

(
|∆s

µ|2 + d†µdµ

)
+ δa

∑
µ

(
|∆s

µ|2 − d
†
µdµ

)
+ β1

(∑
µ

|∆s
µ|2
)2

+ β2|∆s
+|2|∆s

−|2

+ β3

(∑
µ

d†µdµ

)2

+ β4(d†+d+)(d†−d−) + β5|d†+d−|2 + β6|dT+d−|2 + β7

∑
µ

|dTµdµ|2

+ β8

∑
µ

|∆s
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FIG. 7. Phase diagram for the free energy in Eq. (38). The different triplet states labeled (a) to (h) are defined in the main
text in Sec. IVA.

where µ̄ = − for µ = + and vice versa. Due to the fewer number of independent parameters in Eq. (41), there are
many relations between the different coefficients β1, . . . , β12, namely:

β1 = b1 + b2, β2 = b3 + b4 + 2(b5 − b2), β3 = b1 + 2b2, β4 = b3 + 2b5 − 4b2,

β5 = b4 + 2b5, β6 = −2b5, β7 = −b2, β8 = 2(b1 + 2b2),

β9 = 2(b1 + b5) + b3, β10 = 2b4 + 4b5, β11 = 2b2, β12 = 4b5. (C6)

It is not difficult to observe that the five different purely triplet quartic terms, βj=3,4,5,6,7, are all independent.
Consequently, we can parametrize all twelve βj in terms of the five purely triplet terms and realize all of the triplet
states of Sec. IVA.

[1] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken,
J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe,
T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-
Herrero, “Correlated insulator behaviour at half-filling
in magic-angle graphene superlattices,” Nature (London)
556, 80 (2018), arXiv:1802.00553 [cond-mat.mes-hall].

[2] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. Jarillo- Herrero, “Unconventional su-
perconductivity in magic-angle graphene superlattices,”
Nature (London) 556, 43 (2018), arXiv:1803.02342
[cond-mat.mes-hall].

[3] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watan-

abe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean,
“Tuning superconductivity in twisted bilayer graphene,”
Science 363, 1059 (2019).

[4] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir,
I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang,
A. Bachtold, A. H. MacDonald, and D. K. Efetov, “Su-
perconductors, orbital magnets and correlated states in
magic-angle bilayer graphene,” Nature (London) 574,
653 (2019), arXiv:1903.06513 [cond-mat.str-el].

[5] A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian,
M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi,
J. Hone, C. Dean, A. Rubio, and A. N. Pasupathy, “Max-

http://dx.doi.org/ 10.1038/nature26154
http://dx.doi.org/ 10.1038/nature26154
http://arxiv.org/abs/1802.00553
http://dx.doi.org/10.1038/nature26160
http://arxiv.org/abs/1803.02342
http://arxiv.org/abs/1803.02342
http://dx.doi.org/10.1126/science.aav1910
http://dx.doi.org/10.1038/s41586-019-1695-0
http://dx.doi.org/10.1038/s41586-019-1695-0
http://arxiv.org/abs/1903.06513


28

imized electron interactions at the magic angle in twisted
bilayer graphene,” Nature 572, 95 (2019).

[6] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora,
R. Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael, F. von
Oppen, K. Watanabe, T. Taniguchi, and S. Nadj-Perge,
“Electronic correlations in twisted bilayer graphene near
the magic angle,” Nature Phys. (2019).

[7] Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule,
J. Mao, and E. Y. Andrei, “Charge order and bro-
ken rotational symmetry in magic-angle twisted bilayer
graphene,” Nature 573, 91 (2019).

[8] Y. Xie, B. Lian, B. Jäck, X. Liu, C.-L. Chiu, K. Watan-
abe, T. Taniguchi, B. A. Bernevig, and A. Yazdani,
“Spectroscopic signatures of many-body correlations in
magic-angle twisted bilayer graphene,” Nature 572, 101
(2019).

[9] M. S. Scheurer, “Spectroscopy of graphene with a magic
twist,” Nature 572, 40 (2019).

[10] G. Baskaran, “Theory of Emergent Josephson Lattice in
Neutral Twisted Bilayer Graphene (Moiré is Different),”
arXiv e-prints (2018), arXiv:1804.00627 [cond-mat.supr-
con].

[11] X.-C. Wu, K. A. Pawlak, C.-M. Jian, and C. Xu, “Emer-
gent Superconductivity in the weak Mott insulator phase
of bilayer Graphene Moiré Superlattice,” arXiv e-prints
(2018), arXiv:1805.06906 [cond-mat.str-el].

[12] H. Guo, X. Zhu, S. Feng, and R. T. Scalettar, “Pairing
symmetry of interacting fermions on a twisted bilayer
graphene superlattice,” Phys. Rev. B 97, 235453 (2018),
arXiv:1804.00159 [cond-mat.str-el].

[13] M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi,
K. Kuroki, and L. Fu, “Maximally Localized Wannier
Orbitals and the Extended Hubbard Model for Twisted
Bilayer Graphene,” Phys. Rev. X 8, 031087 (2018),
arXiv:1805.06819 [cond-mat.mes-hall].

[14] N. F. Q. Yuan and L. Fu, “Model for the metal-
insulator transition in graphene superlattices and be-
yond,” Phys. Rev. B 98, 045103 (2018), arXiv:1803.09699
[cond-mat.str-el].

[15] H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, “Ori-
gin of Mott Insulating Behavior and Superconductivity
in Twisted Bilayer Graphene,” Phys. Rev. X 8, 031089
(2018), arXiv:1803.09742 [cond-mat.str-el].

[16] B. Lian, Z. Wang, and B. A. Bernevig, “Twisted Bilayer
Graphene: A Phonon-Driven Superconductor,” Phys.
Rev. Lett. 122, 257002 (2019).

[17] L. Zou, H. C. Po, A. Vishwanath, and T. Senthil,
“Band structure of twisted bilayer graphene: Emergent
symmetries, commensurate approximants, and Wan-
nier obstructions,” Phys. Rev. B 98, 085435 (2018),
arXiv:1806.07873 [cond-mat.str-el].

[18] J. F. Dodaro, S. A. Kivelson, Y. Schattner, X. Q. Sun,
and C. Wang, “Phases of a phenomenological model
of twisted bilayer graphene,” Phys. Rev. B 98, 075154
(2018), arXiv:1804.03162 [cond-mat.supr-con].

[19] C. Xu and L. Balents, “Topological Superconductivity
in Twisted Multilayer Graphene,” Phys. Rev. Lett. 121,
087001 (2018), arXiv:1803.08057 [cond-mat.str-el].

[20] A. Thomson, S. Chatterjee, S. Sachdev, and M. S.
Scheurer, “Triangular antiferromagnetism on the honey-
comb lattice of twisted bilayer graphene,” Phys. Rev. B

98, 075109 (2018), arXiv:1806.02837 [cond-mat.str-el].
[21] M. Fidrysiak, M. Zegrodnik, and J. Spałek, “Uncon-

ventional topological superconductivity and phase dia-
gram for an effective two-orbital model as applied to
twisted bilayer graphene,” Phys. Rev. B 98, 085436
(2018), arXiv:1805.01179 [cond-mat.supr-con].

[22] J. Kang and O. Vafek, “Symmetry, maximally localized
wannier states, and a low-energy model for twisted bi-
layer graphene narrow bands,” Phys. Rev. X 8, 031088
(2018).

[23] E. Laksono, J. N. Leaw, A. Reaves, M. Singh, X. Wang,
S. Adam, and X. Gu, “Singlet superconductivity en-
hanced by charge order in nested twisted bilayer graphene
Fermi surfaces,” Solid State Commun. 282, 38 (2018),
arXiv:1808.04829 [cond-mat.str-el].

[24] J. Kang and O. Vafek, “Strong Coupling Phases of Par-
tially Filled Twisted Bilayer Graphene Narrow Bands,”
Phys. Rev. Lett. 122, 246401 (2019).

[25] K. Seo, V. N. Kotov, and B. Uchoa, “Ferromagnetic Mott
state in Twisted Graphene Bilayers at the Magic Angle,”
Phys. Rev. Lett. 122, 246402 (2019).

[26] H. Isobe, N. F. Q. Yuan, and L. Fu, “Unconven-
tional Superconductivity and Density Waves in Twisted
Bilayer Graphene,” Phys. Rev. X 8, 041041 (2018),
arXiv:1805.06449 [cond-mat.str-el].

[27] C.-C. Liu, L.-D. Zhang, W.-Q. Chen, and F. Yang,
“Chiral Spin Density Wave and d +i d Superconductiv-
ity in the Magic-Angle-Twisted Bilayer Graphene,” Phys.
Rev. Lett. 121, 217001 (2018), arXiv:1804.10009 [cond-
mat.supr-con].

[28] Y. Sherkunov and J. J. Betouras, “Electronic phases in
twisted bilayer graphene at magic angles as a result of
Van Hove singularities and interactions,” Phys. Rev. B
98, 205151 (2018), arXiv:1807.05524 [cond-mat.str-el].

[29] Y. Su and S.-Z. Lin, “Pairing symmetry and spontaneous
vortex-antivortex lattice in superconducting twisted-
bilayer graphene: Bogoliubov-de Gennes approach,”
Phys. Rev. B 98, 195101 (2018), arXiv:1807.02196 [cond-
mat.str-el].

[30] J. W. F. Venderbos and R. M. Fernandes, “Correlations
and electronic order in a two-orbital honeycomb lattice
model for twisted bilayer graphene,” Phys. Rev. B 98,
245103 (2018), arXiv:1808.10416 [cond-mat.supr-con].

[31] T. J. Peltonen, R. Ojajärvi, and T. T. Heikkilä,
“Mean-field theory for superconductivity in twisted bi-
layer graphene,” Phys. Rev. B 98, 220504 (2018),
arXiv:1805.01039 [cond-mat.supr-con].

[32] Z. Liu, Y. Li, and Y.-f. Yang, “Possible nodeless s±-wave
superconductivity in twisted bilayer graphene,” Chinese
Phys. B 28, 077103 (2019).

[33] D. M. Kennes, J. Lischner, and C. Karrasch, “Strong
correlations and d +id superconductivity in twisted
bilayer graphene,” Phys. Rev. B 98, 241407 (2018),
arXiv:1805.06310 [cond-mat.str-el].

[34] Y. W. Choi and H. J. Choi, “Strong electron-phonon cou-
pling, electron-hole asymmetry, and nonadiabaticity in
magic-angle twisted bilayer graphene,” Phys. Rev. B 98,
241412 (2018), arXiv:1809.08407 [cond-mat.mes-hall].

[35] F. Wu, A. H. MacDonald, and I. Martin, “Theory
of Phonon-Mediated Superconductivity in Twisted Bi-
layer Graphene,” Phys. Rev. Lett. 121, 257001 (2018),

http://dx.doi.org/10.1038/s41586-019-1431-9
https://doi.org/10.1038/s41567-019-0606-5
http://dx.doi.org/10.1038/s41586-019-1460-4
http://dx.doi.org/10.1038/s41586-019-1422-x
http://dx.doi.org/10.1038/s41586-019-1422-x
http://dx.doi.org/ 10.1038/d41586-019-02285-1
http://arxiv.org/abs/1804.00627
http://arxiv.org/abs/1804.00627
http://arxiv.org/abs/1805.06906
http://dx.doi.org/ 10.1103/PhysRevB.97.235453
http://arxiv.org/abs/1804.00159
http://dx.doi.org/ 10.1103/PhysRevX.8.031087
http://arxiv.org/abs/1805.06819
http://dx.doi.org/10.1103/PhysRevB.98.045103
http://arxiv.org/abs/1803.09699
http://arxiv.org/abs/1803.09699
http://dx.doi.org/ 10.1103/PhysRevX.8.031089
http://dx.doi.org/ 10.1103/PhysRevX.8.031089
http://arxiv.org/abs/1803.09742
http://dx.doi.org/ 10.1103/PhysRevLett.122.257002
http://dx.doi.org/ 10.1103/PhysRevLett.122.257002
http://dx.doi.org/10.1103/PhysRevB.98.085435
http://arxiv.org/abs/1806.07873
http://dx.doi.org/ 10.1103/PhysRevB.98.075154
http://dx.doi.org/ 10.1103/PhysRevB.98.075154
http://arxiv.org/abs/1804.03162
http://dx.doi.org/ 10.1103/PhysRevLett.121.087001
http://dx.doi.org/ 10.1103/PhysRevLett.121.087001
http://arxiv.org/abs/1803.08057
http://dx.doi.org/10.1103/PhysRevB.98.075109
http://dx.doi.org/10.1103/PhysRevB.98.075109
http://arxiv.org/abs/1806.02837
http://dx.doi.org/10.1103/PhysRevB.98.085436
http://dx.doi.org/10.1103/PhysRevB.98.085436
http://arxiv.org/abs/1805.01179
http://dx.doi.org/10.1103/PhysRevX.8.031088
http://dx.doi.org/10.1103/PhysRevX.8.031088
http://dx.doi.org/ 10.1016/j.ssc.2018.07.013
http://arxiv.org/abs/1808.04829
http://dx.doi.org/ 10.1103/PhysRevLett.122.246401
http://dx.doi.org/ 10.1103/PhysRevLett.122.246402
http://dx.doi.org/10.1103/PhysRevX.8.041041
http://arxiv.org/abs/1805.06449
http://dx.doi.org/10.1103/PhysRevLett.121.217001
http://dx.doi.org/10.1103/PhysRevLett.121.217001
http://arxiv.org/abs/1804.10009
http://arxiv.org/abs/1804.10009
http://dx.doi.org/ 10.1103/PhysRevB.98.205151
http://dx.doi.org/ 10.1103/PhysRevB.98.205151
http://arxiv.org/abs/1807.05524
http://dx.doi.org/ 10.1103/PhysRevB.98.195101
http://arxiv.org/abs/1807.02196
http://arxiv.org/abs/1807.02196
http://dx.doi.org/ 10.1103/PhysRevB.98.245103
http://dx.doi.org/ 10.1103/PhysRevB.98.245103
http://arxiv.org/abs/1808.10416
http://dx.doi.org/10.1103/PhysRevB.98.220504
http://arxiv.org/abs/1805.01039
http://dx.doi.org/ 10.1088/1674-1056/28/7/077103
http://dx.doi.org/ 10.1088/1674-1056/28/7/077103
http://dx.doi.org/10.1103/PhysRevB.98.241407
http://arxiv.org/abs/1805.06310
http://dx.doi.org/ 10.1103/PhysRevB.98.241412
http://dx.doi.org/ 10.1103/PhysRevB.98.241412
http://arxiv.org/abs/1809.08407
http://dx.doi.org/10.1103/PhysRevLett.121.257001


29

arXiv:1805.08735 [cond-mat.supr-con].
[36] Y.-P. Lin and R. M. Nandkishore, “Chiral twist on the

high-Tc phase diagram in moiré heterostructures,” Phys.
Rev. B 100, 085136 (2019).

[37] T. Huang, L. Zhang, and T. Ma, “Antiferromagnet-
ically ordered Mott insulator and d+id superconduc-
tivity in twisted bilayer graphene: a quantum Monte
Carlo study,” Sci. Bull. 64, 310 (2019), arXiv:1804.06096
[cond-mat.supr-con].

[38] J. González and T. Stauber, “Kohn-luttinger supercon-
ductivity in twisted bilayer graphene,” Phys. Rev. Lett.
122, 026801 (2019), arXiv:1807.01275 [cond-mat.mes-
hall].

[39] L. Chen, H.-Z. Li, and R.-S. Han, “Magnetic impu-
rity resonance states for different pairing symmetries in
twisted bilayer graphene,” J. Phys.: Condens. Matter 31,
065601 (2019), arXiv:1809.00436 [cond-mat.str-el].

[40] W. Chen, Y. Chu, T. Huang, and T. Ma, “Metal-
insulator transition and dominant d + id pairing sym-
metry in twisted bilayer graphene,” Phys. Rev. B 101,
155413 (2020).

[41] B. Roy and V. Juričić, “Unconventional superconduc-
tivity in nearly flat bands in twisted bilayer graphene,”
Phys. Rev. B 99, 121407 (2019), arXiv:1803.11190 [cond-
mat.mes-hall].

[42] F. Wu and S. Das Sarma, “Identification of superconduct-
ing pairing symmetry in twisted bilayer graphene using
in-plane magnetic field and strain,” Phys. Rev. B 99,
220507 (2019).

[43] V. Kozii, H. Isobe, J. W. F. Venderbos, and
L. Fu, “Nematic superconductivity stabilized by den-
sity wave fluctuations: Possible application to twisted
bilayer graphene,” Phys. Rev. B 99, 144507 (2019),
arXiv:1810.04159 [cond-mat.supr-con].

[44] Y.-Z. You and A. Vishwanath, “Superconductivity from
valley fluctuations and approximate SO(4) symmetry in
a weak coupling theory of twisted bilayer graphene,”
npj Quantum Materials 4, 16 (2019), arXiv:1805.06867
[cond-mat.str-el].

[45] S. Ray, J. Jung, and T. Das, “Wannier pairs in supercon-
ducting twisted bilayer graphene and related systems,”
Phys. Rev. B 99, 134515 (2019), arXiv:1804.09674 [cond-
mat.supr-con].

[46] M. Alidoust, M. Willatzen, and A.-P. Jauho, “Sym-
metry of superconducting correlations in displaced bi-
layers of graphene,” Phys. Rev. B 99, 155413 (2019),
arXiv:1903.11623 [cond-mat.mtrl-sci].

[47] G. Chen, L. Jiang, S. Wu, B. Lyu, H. Li, B. L. Chittari,
K. Watanabe, T. Taniguchi, Z. Shi, J. Jung, Y. Zhang,
and F. Wang, “Evidence of a gate-tunable Mott insulator
in a trilayer graphene moiré superlattice,” Nature Phys.
15, 237 (2019), arXiv:1803.01985 [cond-mat.mes-hall].

[48] G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. Fox,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi,
J. Jung, Z. Shi, D. Goldhaber-Gordon, Y. Zhang, and
F. Wang, “Signatures of tunable superconductivity in a
trilayer graphene moiré superlattice,” Nature 572, 215
(2019).

[49] B. L. Chittari, G. Chen, Y. Zhang, F. Wang, and J. Jung,
“Gate-tunable topological flat bands in trilayer graphene
boron-nitride moiré superlattices,” Phys. Rev. Lett. 122,

016401 (2019).
[50] Y.-H. Zhang and T. Senthil, “Bridging Hubbard

model physics and quantum Hall physics in trilayer
graphene/h − BN moiré superlattice,” Phys. Rev. B 99,
205150 (2019).

[51] C. Shen, N. Li, S. Wang, Y. Zhao, J. Tang, J. Liu,
J. Tian, Y. Chu, K. Watanabe, T. Taniguchi, R. Yang,
Z. Y. Meng, D. Shi, and G. Zhang, “Observation of
superconductivity with Tc onset at 12K in electrically
tunable twisted double bilayer graphene,” arXiv e-prints
(2019), arXiv:1903.06952 [cond-mat.supr-con].

[52] X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, K. Watan-
abe, T. Taniguchi, A. Vishwanath, and P. Kim,
“Spin-polarized Correlated Insulator and Superconduc-
tor in Twisted Double Bilayer Graphene,” arXiv e-prints
(2019), arXiv:1903.08130 [cond-mat.mes-hall].

[53] Y. Cao, D. Rodan-Legrain, O. Rubies-Bigordà, J. M.
Park, K. Watanabe, T. Taniguchi, and P. Jarillo-
Herrero, “Electric Field Tunable Correlated States and
Magnetic Phase Transitions in Twisted Bilayer-Bilayer
Graphene,” arXiv e-prints (2019), arXiv:1903.08596
[cond-mat.str-el].

[54] Y.-H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and
T. Senthil, “Nearly flat Chern bands in moiré superlat-
tices,” Phys. Rev. B 99, 075127 (2019), arXiv:1805.08232
[cond-mat.str-el].

[55] N. R. Chebrolu, B. L. Chittari, and J. Jung, “Flat bands
in twisted double bilayer graphene,” Phys. Rev. B 99,
235417 (2019).

[56] Y. W. Choi and H. J. Choi, “Intrinsic band gap and
electrically tunable flat bands in twisted double bilayer
graphene,” Phys. Rev. B 100, 201402 (2019).

[57] J. Y. Lee, E. Khalaf, S. Liu, X. Liu, Z. Hao, P. Kim,
and A. Vishwanath, “Theory of correlated insulating
behaviour and spin-triplet superconductivity in twisted
double bilayer graphene,” Nat. Commun. 10, 1 (2019).

[58] M. Koshino, “Band structure and topological properties
of twisted double bilayer graphene,” Phys. Rev. B 99,
235406 (2019).

[59] J. Liu, Z. Ma, J. Gao, and X. Dai, “Quantum Valley Hall
Effect, Orbital Magnetism, and Anomalous Hall Effect in
Twisted Multilayer Graphene Systems,” Phys. Rev. X 9,
031021 (2019).

[60] F. Haddadi, Q. Wu, A. J. Kruchkov, and O. V. Yazyev,
“Moiré Flat Bands in Twisted Double Bilayer Graphene,”
Nano Lett. 20, 2410 (2020).

[61] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney,
K. Watanabe, T. Taniguchi, M. A. Kastner, and
D. Goldhaber-Gordon, “Emergent ferromagnetism near
three-quarters filling in twisted bilayer graphene,” Sci-
ence 365, 605 (2019).

[62] U. Zondiner, A. Rozen, D. Rodan-Legrain, Y. Cao,
R. Queiroz, T. Taniguchi, K. Watanabe, Y. Oreg, F. von
Oppen, A. Stern, E. Berg, P. Jarillo-Herrero, and
S. Ilani, “Cascade of Phase Transitions and Dirac Re-
vivals in Magic Angle Graphene,” arXiv e-prints (2019),
arXiv:1912.06150 [cond-mat.mes-hall].

[63] G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi,
Z. Shi, T. Senthil, D. Goldhaber-Gordon, Y. Zhang, and
F. Wang, “Tunable correlated Chern insulator and fer-

http://arxiv.org/abs/1805.08735
http://dx.doi.org/10.1103/PhysRevB.100.085136
http://dx.doi.org/10.1103/PhysRevB.100.085136
http://dx.doi.org/10.1016/j.scib.2019.01.026
http://arxiv.org/abs/1804.06096
http://arxiv.org/abs/1804.06096
http://dx.doi.org/ 10.1103/PhysRevLett.122.026801
http://dx.doi.org/ 10.1103/PhysRevLett.122.026801
http://arxiv.org/abs/1807.01275
http://arxiv.org/abs/1807.01275
http://dx.doi.org/10.1088/1361-648X/aaf626
http://dx.doi.org/10.1088/1361-648X/aaf626
http://arxiv.org/abs/1809.00436
http://dx.doi.org/ 10.1103/PhysRevB.101.155413
http://dx.doi.org/ 10.1103/PhysRevB.101.155413
http://dx.doi.org/10.1103/PhysRevB.99.121407
http://arxiv.org/abs/1803.11190
http://arxiv.org/abs/1803.11190
http://dx.doi.org/10.1103/PhysRevB.99.220507
http://dx.doi.org/10.1103/PhysRevB.99.220507
http://dx.doi.org/10.1103/PhysRevB.99.144507
http://arxiv.org/abs/1810.04159
http://dx.doi.org/ 10.1038/s41535-019-0153-4
http://arxiv.org/abs/1805.06867
http://arxiv.org/abs/1805.06867
http://dx.doi.org/ 10.1103/PhysRevB.99.134515
http://arxiv.org/abs/1804.09674
http://arxiv.org/abs/1804.09674
http://dx.doi.org/10.1103/PhysRevB.99.155413
http://arxiv.org/abs/1903.11623
http://dx.doi.org/10.1038/s41567-018-0387-2
http://dx.doi.org/10.1038/s41567-018-0387-2
http://arxiv.org/abs/1803.01985
http://dx.doi.org/10.1038/s41586-019-1393-y
http://dx.doi.org/10.1038/s41586-019-1393-y
http://dx.doi.org/ 10.1103/PhysRevLett.122.016401
http://dx.doi.org/ 10.1103/PhysRevLett.122.016401
http://dx.doi.org/10.1103/PhysRevB.99.205150
http://dx.doi.org/10.1103/PhysRevB.99.205150
http://arxiv.org/abs/1903.06952
http://arxiv.org/abs/1903.08130
http://arxiv.org/abs/1903.08596
http://arxiv.org/abs/1903.08596
http://dx.doi.org/10.1103/PhysRevB.99.075127
http://arxiv.org/abs/1805.08232
http://arxiv.org/abs/1805.08232
http://dx.doi.org/ 10.1103/PhysRevB.99.235417
http://dx.doi.org/ 10.1103/PhysRevB.99.235417
http://dx.doi.org/10.1103/PhysRevB.100.201402
http://dx.doi.org/ 10.1038/s41467-019-12981-1
http://dx.doi.org/10.1103/PhysRevB.99.235406
http://dx.doi.org/10.1103/PhysRevB.99.235406
http://dx.doi.org/10.1103/PhysRevX.9.031021
http://dx.doi.org/10.1103/PhysRevX.9.031021
http://dx.doi.org/ 10.1021/acs.nanolett.9b05117
http://dx.doi.org/ 10.1126/science.aaw3780
http://dx.doi.org/ 10.1126/science.aaw3780
http://arxiv.org/abs/1912.06150


30

romagnetism in a moiré superlattice,” Nature 579, 56
(2020).

[64] L. P. Gor’kov and E. I. Rashba, “Superconducting 2D
System with Lifted Spin Degeneracy: Mixed Singlet-
Triplet State,” Phys. Rev. Lett. 87, 037004 (2001).

[65] X.-C. Wu, A. Keselman, C.-M. Jian, K. A. Pawlak, and
C. Xu, “Ferromagnetism and spin-valley liquid states in
moiré correlated insulators,” Phys. Rev. B 100, 024421
(2019).

[66] R. Samajdar and M. S. Scheurer, “Microscopic theory
of superconductivity in twisted double-bilayer graphene,”
arXiv e-prints (2020), arXiv:2001.07716 [cond-mat.supr-
con].

[67] M. Sigrist and K. Ueda, “Phenomenological theory of
unconventional superconductivity,” Rev. Mod. Phys. 63,
239 (1991).

[68] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group
Theory: Application to the Physics of Condensed Matter
(Springer-Verlag, Berlin Heidelberg, 2008).

[69] J. Quintanilla, A. D. Hillier, J. F. Annett, and R. Cy-
winski, “Relativistic analysis of the pairing symmetry of
the noncentrosymmetric superconductor LaNiC2,” Phys.
Rev. B 82, 174511 (2010).

[70] Taking ν ' 1/W with bandwidth W ' 10meV and V '
35meV, J ' 0.6meV [57], we estimate ∆Tc/Tc,0 ' 0.5%.

[71] V. G. Kogan, “Interaction of vortices in thin super-
conducting films and the Berezinskii-Kosterlitz-Thouless
transition,” Phys. Rev. B 75, 064514 (2007), arXiv:cond-
mat/0611187 [cond-mat.supr-con].

[72] J. Mráz and R. Hlubina, “Transition between triplet
and singlet pairing in two-dimensional superconductors,”
Phys. Rev. B 72, 144522 (2005).

[73] R. M. Fernandes and A. J. Millis, “Nematicity as a probe
of superconducting pairing in iron-based superconduc-
tors,” Phys. Rev. Lett. 111, 127001 (2013).

[74] V. Ambegaokar and N. D. Mermin, “Thermal Anomalies
of He3: Pairing in a Magnetic Field,” Phys. Rev. Lett.
30, 81 (1973).

[75] D. Vollhardt and P. Wolfle, The superfluid phases of he-
lium 3 (Courier Corporation, 2013).

[76] Y. Cao, D. Rodan-Legrain, J. M. Park, F. Noah Yuan,
K. Watanabe, T. Taniguchi, R. M. Fernandes, L. Fu, and
P. Jarillo-Herrero, “Nematicity and Competing Orders in
Superconducting Magic-Angle Graphene,” arXiv e-prints
(2020), arXiv:2004.04148 [cond-mat.mes-hall].

[77] D. V. Chichinadze, L. Classen, and A. V. Chubukov,
“Nematic superconductivity in twisted bilayer graphene,”
arXiv e-prints (2019), arXiv:1910.07379 [cond-mat.supr-
con].

[78] M. S. Scheurer, D. F. Agterberg, and J. Schmalian, “Se-
lection rules for cooper pairing in two-dimensional inter-
faces and sheets,” npj Quantum Materials 2, 9 (2017),
arXiv:1503.03646 [cond-mat.supr-con].

http://dx.doi.org/10.1038/s41586-020-2049-7
http://dx.doi.org/10.1038/s41586-020-2049-7
http://dx.doi.org/10.1103/PhysRevLett.87.037004
http://dx.doi.org/ 10.1103/PhysRevB.100.024421
http://dx.doi.org/ 10.1103/PhysRevB.100.024421
http://arxiv.org/abs/2001.07716
http://arxiv.org/abs/2001.07716
http://dx.doi.org/ 10.1103/RevModPhys.63.239
http://dx.doi.org/ 10.1103/RevModPhys.63.239
http://dx.doi.org/10.1007/978-3-540-32899-5
http://dx.doi.org/10.1007/978-3-540-32899-5
http://dx.doi.org/10.1103/PhysRevB.82.174511
http://dx.doi.org/10.1103/PhysRevB.82.174511
http://dx.doi.org/ 10.1103/PhysRevB.75.064514
http://arxiv.org/abs/cond-mat/0611187
http://arxiv.org/abs/cond-mat/0611187
http://dx.doi.org/10.1103/PhysRevB.72.144522
http://dx.doi.org/10.1103/PhysRevLett.111.127001
http://dx.doi.org/10.1103/PhysRevLett.30.81
http://dx.doi.org/10.1103/PhysRevLett.30.81
http://arxiv.org/abs/2004.04148
http://arxiv.org/abs/1910.07379
http://arxiv.org/abs/1910.07379
http://dx.doi.org/10.1038/s41535-016-0008-1
http://arxiv.org/abs/1503.03646

	Pairing in graphene-based moiré superlattices
	Abstract
	Introduction
	Brief summary of the main results
	Relation to other works
	Structure of the paper

	Model and symmetries
	Trivial representation of the crystalline point group
	Limit of exact SU(2)+ SU(2)- symmetry
	Turning on the Hund's coupling
	How do the states connect in the J=0 limit?
	Expectations within mean-field theory

	In the presence of a magnetic field
	Leading superconducting transition
	Quartic terms and sub-leading transitions
	Nonlinear couplings in a magnetic field


	Complex representation of C3
	Nonzero Hund's coupling
	Approximate SU(2)+  SU(2)-
	Behavior in a magnetic field

	Fluctuation-induced superconductivity
	Trivial representation
	Complex representation
	Orbital fluctuations
	In a magnetic field

	Adding further symmetries
	Consequences of a C2 rotation symmetry
	D3 versus C3

	Discussion and conclusion
	Acknowledgments
	Microscopic Ginzburg-Landau expansion
	Without a magnetic field
	Coupling to a magnetic field

	Fluctuation corrections to mean-field
	Microscopic derivation
	Enhanced symmetry in the one-band description

	Details for the complex representation
	References


