
Metal-insulator transition in a random Hubbard model

Grigory Tarnopolsky, Chenyuan Li, Darshan G. Joshi, and Subir Sachdev

Department of Physics, Harvard University, Cambridge MA 02138, USA

(Dated: November 30, 2020)

Abstract

We examine the metal-insulator transition in a half-filled Hubbard model of electrons with random and

all-to-all hopping and exchange, and an on-site non-random repulsion, the Hubbard U . We argue that

recent numerical results of Cha et al. (arXiv:2002.07181) can be understood in terms of a deconfined

critical point between a disordered Fermi liquid and an insulating spin glass. We find a deconfined critical

point in a previously proposed large M theory which generalizes the SU(2) spin symmetry to SU(M),

and obtain exponents for the electron and spin correlators which agree with those of Cha et al.. We also

present a renormalization group analysis, and argue for the presence of an additional metallic spin glass

phase at half-filling and small U .
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I. INTRODUCTION

The Mott metal-insulator transition is central to an understanding of correlated electrons [1].

In many three-dimensional correlated electron compounds, and in dynamic mean-field theories,

this transition is first order. However, there are cases when the transition can be continuous, with

interesting possibilities for non-Fermi liquid and ‘strange metal’ behavior at non-zero temperature

in the vicinity of the critical point. One case which has been much studied theoretically [2–5] is

when the Mott insulator is a spin liquid with a spinon Fermi surface, and the continuous transition

involves condensation of an electrically charged boson which also carries charges under an emergent

gauge field.
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FIG. 1: Proposed phase diagram of the random Hubbard model in (1.1) with SU(2) spin

symmetry. The present paper describes the metal insulator transition at p = 0 between the

insulating spin glass and the disordered Fermi liquid as a deconfined critical point in Section III.

The non-zero p transition between two metallic states at large U was described by Joshi et al.

[10] as deconfined critical point in a t-J model.

In the present paper, we will focus on the continuous (or nearly continuous) Mott transition

observed recently in a numerical study of a Hubbard model supplemented by random exchange

interactions by Cha et al. [6]. Such a model was previously studied by Florens et al. [7] using a

large M approach which generalized the SU(2) spin symmetry to SU(M). In the large M limit,

the saddle point equations obtained by Florens et al. [7] turn out to be essentially identical to the

saddle point equations of a different model studied recently by Fu et al. [8]. Fu et al. [8] obtained

analytic results on the low energy structure of gapless states in their model, and so we can transfer

their results to the random Hubbard model of Florens et al. [7] and Cha et al. [6]. We will

find that the large M exponents obtained by Fu et al. [8] for the critical state in Section III B 1

agree with the corresponding exponents for the electron and spin correlators at the continuous

Mott transition obtained numerically Cha et al. [6] for the case with SU(2) spin symmetry. In

the large M theory, the Mott criticality is realized by a deconfined critical point [9], described by

the fractionalization of the electron into fermionic spinons and charged scalars both carrying an

emergent U(1) gauge charge. We argue that this deconfined critical point separates a disordered

Fermi liquid from an insulating spin glass (see Fig. 1).

In Section IV, we will present a renormalization group (RG) study of the random Hubbard
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model for the case with SU(2) spin symmetry (and also for general SU(M)). As in a recent

study of the random t-J model [10], the RG is performed on a quantum impurity model, with

the impurity site coupled to fermionic and bosonic baths, and supplemented by self-consistency

conditions. The RG analysis follows methods developed in Refs. 11 and 12. For the particle-hole

symmetric case relevant to half-filling, the RG requires a perturbative treatment of the on-site

repulsion (the Hubbard U) between the electrons in the context of an ε expansion (defined in

(4.1)). The solution of the self-consistency conditions requires an extrapolation to ε = 1; unlike

the previous work [10], we are unable to perform this extrapolation with any reliability as we do

not have access to the needed exponents to all orders in ε.

The RG analysis in the small U ,ε expansion yields a finite coupling fixed point with one relevant

direction. This fixed point is a candidate to describe the metal-insulator transition at p = 0 in

Fig. 1, with the larger U direction away from the fixed point flowing to the insulating spin glass

state. However, we don’t really have control over the computation far from the fixed point, and it

is possible that the fixed point actually describes the onset of metallic spin glass order from the

disordered Fermi liquid, as indicated in the phase diagram in Fig. 4. We also note that there is a

previous Landau-type theory [13, 14] for such a metal-metal transition, and this will be reviewed

in the present small U context in Appendix B.

We turn to a description of the model of interest in this paper, for the case with SU(2) spin

symmetry. We consider electrons, annihilated by ciα, spin α =↑, ↓ on N sites i = 1 . . . N with the

Hamiltonian

H =
N∑
i=i

(−µ(ni↑ + ni↓) + Uni↑ni↓) +
1√
N

N∑
i 6=j=1

tijc
†
iαcjα +

1√
N

N∑
i<j=1

JijSi · Sj (1.1)

where µ is the chemical potential,

niα = c†iαciα , Si =
1

2
c†iασαβciβ (1.2)

are the number and spin operators with σ the Pauli matrices. The density of the electrons is

specified by the filling p

p = 〈1− ni↑ − ni↓〉 . (1.3)

We can take the tij to be all equal between the sites of a Bethe lattice with large co-ordination

number, or use a fully connected cluster in which all tij = t∗ji are independent random variables

with zero mean and |tij|2 = t2. We will focus on the random case because it is a bit simpler, but

equivalent results apply to the Bethe lattice. The real exchange interactions Jij are independent

random numbers with zero mean and mean-square value J2
ij = J2.

Let us take a broader perspective, and consider the phase diagram of H as a function of U and

hole density away from half-filling, p = 0; see Fig. 1. At large U and p = 0, we have an insulating
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spin glass state: at p = 0 we need only consider the spin-only model with the Jij interactions, and

a spin glass state was found in numerical studies [15, 16], in contrast to the critical spin liquid

appearing in the large M limit [17]. We will be interested here in the approach to the spin glass

insulator at p = 0 from the small U side, across a metal-to-insulator transition from a disordered

Fermi liquid at small U and p = 0. Upon doping the spin glass, we expect a metallic spin glass

state for a range of non-zero p, before there is a distinct quantum phase transition to a disordered

Fermi liquid state at a nonzero p: this large U transition is also expected to be described by a

deconfined critical point, and is discussed in a separate paper [10].

The outline of the paper is as follows. Section II will described the limit of a large number

of sites, N , where H is mapped onto a non-local in time effective action for a single site with

self-consistency conditions on its correlators. Section III will describe the solution of the single

site problem for the case where the SU(2) spin symmetry is generalized to SU(M) with M large:

we will describe the correspondence between the large M solutions, and the numerical results of

Cha et al. [6] for M = 2. Section IV presents the RG analysis of the single site model with SU(2)

symmetry obtained in Section II. Appendix B reviews the theory of Ref. 13 for the onset of metallic

spin glass order in a disordered Fermi liquid in a conventional Landau-type transition (and not via

a large U deconfined critical point [10]) which can be present at small U , as indicated in Fig. 4.

II. LARGE VOLUME LIMIT

The limit of large volume (N → ∞) of H is obtained by the methods described in Refs. [6,

10, 17–19]. We introduce field replicas in the path integral, and average over tij and Jij. At the

N =∞ saddle point, the problem reduces to a single site problem, with the fields carrying replica

indices. The replica structure is important in the spin glass phase [18, 19]. In the interests of

simplicity, we drop the replica indices here as they play no significant role in the critical theory

and the RG equations. Within the imaginary time path integral formalism (with τ ∈ [0, 1/T ], with

T the temperature), the solution of the model involves a local single-site effective action which

reads:

Z =

∫
Dcα(τ)e−S

S =

∫
dτ

[
c†α(τ)

(
∂

∂τ
− µ

)
cα(τ) +

U

2
c†α(τ)c†β(τ)cβ(τ)cα(τ)

]
− t2

∫
dτdτ ′R(τ − τ ′)c†α(τ)cα(τ ′)− J2

2

∫
dτdτ ′Q(τ − τ ′)S(τ) · S(τ ′) , (2.1)

In this expression, µ is the chemical potential chosen to ensure p = 0. Decoupling the path integral

introduces fields analogous to R and Q which are initially off-diagonal in the spin SU(2) indices.
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We have assumed above that the large-volume limit is dominated by the saddle point in which

spin rotation symmetry is preserved on the average, and so R and Q were taken to diagonal in

spin indices. The path integral Z is a functional of the fields R(τ) and Q(τ), and we define its

correlators

R(τ − τ ′) = −
〈
cα(τ)c†α(τ ′)

〉
Z

Q(τ − τ ′) =
1

3
〈S(τ) · S(τ ′)〉Z (2.2)

In the thermodynamic (N →∞) limit, the solution of the model is obtained by imposing the two

self-consistency conditions:

R(τ) = R(τ) , Q(τ) = Q(τ). (2.3)

These equations and the mapping to a local effective action are part of the extended dynam-

ical mean-field theory framework (EDMFT), which becomes exact for random models on fully

connected lattices [14]. They can also be viewed as an EDMFT approximation to non-random

models [20–23].

III. LARGE M THEORY

We consider here a large M generalization of the N -site Hubbard model, following Refs. [7, 8,

24, 25], and examine the structure of the large M limit at N = ∞. We consider an electron cp,α

with a spin index α = 1 . . .M , and an ‘orbital’ index p = 1 . . .M ′. We will take the limit of large

number of sites, N , followed by the limit of large M and M ′ at fixed

k ≡ M ′

M
. (3.1)

We are interested in the case with SU(2) spin symmetry which has the values M = 2, M ′ = 1,

k = 1/2. The large M ,M ′ limit requires us to fractionalize the electron as

c†ipα = Xipf
†
iα , (3.2)

where Xip is a complex ‘slave rotor’ [24, 25], with p = 1 . . .M ′, obeying the constraint

M ′∑
p=1

|Xip|2 = M ′ . (3.3)

This representation has a U(1) gauge invariance

Xip → Xipe
iφi(τ) , fiα → fiαe

iφi(τ) (3.4)
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We shall be interested in the sector in which the U(1) gauge charge is fixed on each site by [24]

M∑
α=1

f †iαfiα + L̂i =
M

2
(3.5)

where L̂i is the U(1) angular momentum operator for the rotors.

The Hamiltonian generalizing (1.1) we shall study in this section is a combination of those in

Refs. [7, 17, 24]:

H =
U

2M ′

∑
i

(
M∑
α=1

f †iαfiα −
M

2

)2

+ ε0
∑
ipα

f †iαfiα

+
1√
NM

∑
i,j,p,α

tijc
†
ipαcjpα +

1√
NM

∑
i>j,αβ

Jijf
†
iαfiβf

†
jβfjα . (3.6)

The value of ε0 is adjusted to fix the average electron density at each site,
∑M

α=1 f
†
iαfiα to equal

M/2 for the half-filled case.

We now take the large volume limit of Section II. For (3.6), the N → ∞ limit reduces to the

following single-site path integral (replacing (2.1))

Z =

∫
DfαDXpDλDhe−S

S =

∫ 1/T

0

dτ

[
1

2U

∑
p

∣∣∣∣( ∂

∂τ
+ ih

)
Xp

∣∣∣∣2 + iλ

(∑
p

|Xp|2 −M ′

)
+
∑
α

f †α

(
∂

∂τ
+ ε0 + ih

)
fα − ih

M

2

]

− t2

M

∑
p,α

∫ 1/T

0

dτdτ ′R∗(τ − τ ′)Xp(τ)X∗p (τ ′)f †α(τ)fα(τ ′)

− J2

2M

∑
α,β

∫ 1/T

0

dτdτ ′Q(τ − τ ′)f †α(τ)fβ(τ)f †β(τ ′)fα(τ ′) . (3.7)

Here T is the temperature, λ is the Lagrange multiplier imposing Eq. (3.3) and h is the Lagrange

multiplier imposing Eq. (3.5). The U(1) gauge invariance (3.4) applies also to (3.7) after we

transform

h→ h− ∂τφ . (3.8)

The self-consistency equations (2.3) now become

R(τ − τ ′) = − 1

MM ′

∑
p,α

〈
Xp(τ)X∗p (τ ′)f †α(τ)fα(τ ′)

〉
Z

Q(τ − τ ′) =
1

M2

∑
α,β

〈
f †α(τ)fβ(τ)f †β(τ ′)fα(τ ′)

〉
Z
. (3.9)

Having taken the large N limit, we can now take the large M , M ′ limit at fixed k = M ′/M .

We have set things up so we can decouple the quartic terms in S by Hubbard-Stratonovich fields,
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perform the path integrals over fα and Xp, and then perform a 1/M expansion about the saddle

point. The large M saddle point equations are essentially those obtained in Ref. 8, and we adapt

the relevant analysis here. We limit ourselves to the particle-hole symmetric case with p = 0, in

which case we can set ε0 = 0 and h = 0. We obtain for the f fermion Green’s function, Gf , and

the X correlator χ

Gf (iωn) =
1

iωn − Σf (iωn)
, Σf (τ) = −J2G2

f (τ)Gf (−τ) + k t2Gf (τ)χ2(τ) (3.10)

χ(iωn) =
1

ω2
n/U + χ−1

0 − P (iωn) + P (iωn = 0)
, P (τ) = −t2Gf (τ)Gf (−τ)χ(τ) (3.11)

where

iλ = χ−1
0 + P (iωn = 0) (3.12)

is the saddle point value of iλ. Note that we have introduced notation so that

χ(iωn = 0) ≡ χ0 , (3.13)

is the static X susceptibility. Formally, the value of χ0 is to be determined by solving the constraint

equation Eq. (3.3):

T
∑
ωn

χ(iωn) = 1 . (3.14)

The saddle-point equations (3.10), (3.11), and (3.14) were examined numerically and analyti-

cally in Ref. 8 in the context of a different model. Here we transfer their analysis to our model.

We recall the analytic low energy structure of the solutions, starting with large U , and then with

decreasing U . At very large U , we expect the X boson correlators to decay rapidly in time, and

to become progressively longer ranged as U is decreased. A sketch of our proposed large M phase

diagram is shown in Fig. 2.

A. Gapped boson

At very large U , we expect an energy gap in the boson correlator χ(ω), corresponding to

exponential decay of X correlators, and the Mott gap in an insulator. In this case, we can simply

drop the boson Green’s function in (3.10) at low energy, and (3.10) reduces to the equations of the

spin-only model examined originally in Ref. 17. As argued there, the fermion Green’s function is

gapless with the large imaginary time (τ →∞) form at T = 0

Gf (τ) = −sgn(τ)
F

|τ |2∆f
. (3.15)

The exponent ∆f = 1/4 [17]. Although the f fermion is gapless, the X boson is gapped, and so

the electron c is also gapped, and this solution describes an insulator. The spin correlations in this
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FIG. 2: Schematic phase diagram in the large M limit. This section does not describe the

disordered Fermi liquid where the Xp condense; for M ′ > 1, this phase also has orbital glass

order, associated with the orbital index p = 1 . . .M ′. For the physical case M = 2, M ′ = 1, the

insulating spin liquid is expected to be replaced by an insulating spin glass [15, 16], and we argue

that the intermediate critical phase with 1/4 < ∆f < 1/2 may not exist.

insulator are however gapless: the spin operator is Sa = c†pαT
a
αβcpβ, where T a, with a = 1 . . .M2−1,

is a generator of SU(M), and it has the long-time correlator

〈Sa(τ)Sa(0)〉 ∼ 1

|τ |4∆f
. (3.16)

With ∆f = 1/4, we conclude that the spin correlator decays as 1/|τ |. From numerical studies of

the insulating quantum magnet [15, 16], we now know that the present insulating, gapless ‘spin-

fluid’ solution is present only at large M . For the case M = 2 of interest to us, the insulator has

spin-glass order. So the gapped X solution discussed here should be mapped to the insulating spin

glass state found by Cha et al. [6] at large U .

The nature of the gapped boson correlator was also examined in Ref. 8, and it was found that

χ(τ) ∼ e−m|τ |√
|τ |

(3.17)

at large |τ |, where m is the Mott gap.
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B. Gapless boson

With decreasing U , we expect solutions in which the boson X is critical or condensed, as shown

in Fig. 2. We consider the critical case. Along with the low frequency form for the fermion in

(3.15), we assume a power-law form for the boson correlator at long times τ :

χ(τ) =
C

|τ |2∆b
. (3.18)

We will find below that consistency requires that ∆b ≤ 1/4, and so from (3.13) χ0 = ∞ due to a

IR divergence. In the large M limit, the ansatzes (3.15) and (3.18) imply that the gauge-invariant

electron Green’s function decays as

Gc(τ) = −
〈
cpα(τ)c†pα(0)

〉
∼ − sgn(τ)

|τ |2(∆f+∆b)
. (3.19)

Following Ref. 8, we will now see by explicit computation that the ansatzes (3.15) and (3.18)

are indeed valid solutions of the saddle point equations (3.10) and (3.11) at long times. First, we

need the Fourier transforms at T = 0 which are at small ω

Gf (iω) = −2i sgn(ω)
F

|ω|1−2∆f
cos(π∆f )Γ(1− 2∆f )

χ(iω) = 2
C

|ω|1−2∆b
sin(π∆b)Γ(1− 2∆b) . (3.20)

From Eq. (3.10) and (3.11), the self energies are

Σf (τ) = −sgn(τ)

(
J2F 3

|τ |6∆f
+

k t2FC2

|τ |2∆f+4∆b

)
P (τ) =

t2F 2C

|τ |4∆f+2∆b
, (3.21)

and their Fourier transforms are

Σf (iω) = −2i sgn(ω)

(
J2F 3

|ω|1−6∆f
cos(3π∆f )Γ(1− 6∆f )

+
kt2FC2

|ω|1−2∆f−4∆b
cos(π(∆f + 2∆b))Γ(1− 2∆f − 4∆b)

)
P (iω)− P (iω = 0) = 2

t2F 2C

|ω|1−4∆f−2∆b
sin(π(2∆f + ∆b))Γ(1− 4∆f − 2∆b) . (3.22)

From Eqns (3.20) and (3.22), and using Gf (iω)Σf (iω) = −1 and χ(iω)(P (iω)− P (iω = 0)) = −1

in the limit of low ω, we see that solutions are only possible when

∆f + ∆b = 1/2 . (3.23)
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From (3.19) we now see that the electron Green’s function Gc(τ) always has the decay ∼ 1/τ ,

which is the same as that in a Fermi liquid. This is in agreement with the electron correlator

obtained by Cha et al. [6] at the metal-insulator critical point, and in the Fermi liquid phase.

Further examination of the saddle point equations shows that two classes of solutions are pos-

sible, depending upon whether ∆f > 1/4 or ∆f = 1/4. We will examine these solutions in the

following subsections.

1. ∆f = ∆b = 1/4

In this case, both terms in Σ in Eq. (3.22) have the same low frequency power-law, and so both

contribute to the low ω limit. The Schwinger-Dyson equations have solutions which reduce to

J2F 4 + kt2C2F 2 =
1

4π

t2C2F 2 =
1

4π
. (3.24)

These can be solved uniquely for both F > 0 and C > 0 provided again k < 1. The existence of

a unique low ω solution with these exponents indicates that Eq. (3.14) will be satisfied at only a

particular value of the couplings i.e. this solution corresponds to a critical point as U is decreased

to smaller values from the gapped boson phase: numerical evidence for this structure was obtained

by Fu et.al. [8].

Consequently, we identify the present ∆f = ∆b = 1/4 solution with the metal-insulator critical

point found by Cha et al. [6]. Indeed, via (3.16) the spin correlator decays as 1/|τ |, and via

(3.19), the electron correlator decays as 1/τ , and these correspond to the leading exponents found

numerically by Cha et al. [6].

Although the 1/τ decay of the electron correlator is the same as that of a Fermi liquid, the spin

correlator is distinct from the 1/τ 2 decay in a Fermi liquid. Indeed, the presence of a 1/τ electron

correlator and a 1/|τ | spin correlator is evidence for fractionalization at this critical point: both

correlators are simply understood from a fractionalization of c into X and f in (3.2), and from the

scaling dimensions ∆f = ∆b = 1/4.

2. ∆f > 1/4

With a further decrease in U , Ref. 8 found that we should consider the case with a faster decrease

in spin correlations. With ∆f > 1/4, the first term in Σf (iω) in Eq. (3.22) is subdominant and can
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be ignored. Then the Schwinger-Dyson equations can be solved, and they simplify to the relations

kt2F 2C2 4π cot(π∆f )

2− 4∆f

= 1

t2F 2C2π cot(π∆f )

∆f

= 1 . (3.25)

Note that these equations are independent of J , and so the asymptotic low energy structure does

not depend upon the strength of the exchange interactions. They are consistent only if we choose

the scaling dimensions

∆f =
1

2k + 2
, ∆b =

k

2k + 2
. (3.26)

Note that ∆f > 1/4 requires k < 1. So the exponents are limited to the ranges

1

4
< ∆f <

1

2
, 0 < ∆b <

1

4
. (3.27)

This analysis of the low ω limit of the saddle point equations does not determine the values of F

and C separately, only the value of their product CF . So we expect that the ∆f > 1/4 solution

defines a critical phase which extends over a range of value of the couplings.

Ref. 8 labeled this critical phase as ‘quasi-Higgs’. The numerical results of Cha et al. [6] do not

indicate such an extended critical phase for the SU(2) case. It is possible that such a phase only

appears for larger M , and is absent, or very small in extent, for M = 2.

We now argue that with a further decrease in U , the quasi-Higgs phase will be replaced by an

actual Higgs phase, as sketched in Fig. 2. Note from (3.22) and (3.23) that P (iω)−P (0) ∼ |ω|2∆f ,

and so with ∆f < 1/2, the frequency integral in (3.14) has no infra-red divergence (recall χ−1
0 = 0).

Consequently [18, 19], at small enough U we will not be able to satisfy (3.14) with a critical boson

solution, and we expect the quasi-Higgs phase to be replaced by a Higgs phase in which the X

boson condenses i.e. ∆b = 0. With X condensed, a low frequency analysis of the saddle point

equations shows that ∆f = 1/2. Consequently, such a Higgs phase realizes the disordered Fermi

liquid, with electron correlations decaying as 1/τ , and spin correlations decaying as 1/τ 2.

IV. RENORMALIZATION GROUP ANALYSIS

This section returns to the problem as defined in Section II for M = 2. We will view the path

integral in (2.1) as a quantum impurity problem in the presence of a bosonic bath Q(τ) and a

fermionic bath R(τ); we defer imposition of the self-consistency conditions in (2.3). We will then

follow the RG approach of Refs. 12 and 26 who studied a symmetric Anderson impurity coupled to

a fermionic bath. The symmetric case is of relevance to us because we are considering the particle-

hole symmetric case at half-filling, p = 0. Our problem also has a bosonic bath, not present in the

earlier work [12, 26], and we will include this bath using the methods of Ref. 11.
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As we are looking for critical states, we assume that the fields Q(τ) and R(τ) have a power-law

decay in time with

Q(τ) ∼ 1

|τ |d−1
, R(τ) ∼ sgn(τ)

|τ |r+1
. (4.1)

where, for now, d and r are arbitrary numbers determining exponents. Ultimately, once we have

found a RG fixed point, the values of d and r can be fixed by using the self-consistency condition in

(2.3). For now, our analysis exploits the freedom to choose d and r: we will show that a systematic

RG analysis of the path integral Z in (2.1) is possible in an expansion in ε and ε′, where

ε = 1− 2r , ε′ = 2− d ; Q(τ) ∼ 1

|τ |1−ε′ , R(τ) ∼ sgn(τ)

|τ |(3−ε)/2 . (4.2)

The analysis assumes ε and ε′ are of the same order, and expands order-by-order in homogeneous

polynomials in ε and ε′.

We note that the perturbation expansion in power of ε is closely related to a weak-coupling

small U expansion of the symmetric Anderson model [12]. Consequently, the analysis is carried

out directly in terms of the physical electron operator cα, and we will not fractionalize the electron

into rotors and spinons, as we did in (3.2) for the large M expansion in Section III. It therefore

possible that a critical point found in this approach is not ‘deconfined’.

We proceed by decoupling the last two terms in the action S in (2.1) by introducing fermionic

(ψα) and bosonic (φa, a = x, y, z) fields respectively, and then the path integral reduces to a

quantum impurity problem. The ‘impurity’ is a single site of a particle-hole symmetric Hubbard

model with 4 possible states, and this is coupled to the ‘bulk’ ψα and φa excitations. The quantum

impurity problem is specified by the Hamiltonian

Himp= −µ(n↑ + n↓) + Un↑n↓ + g0

(
c†α ψα(0) + H.c.

)
+ γ0c

†
α

σaαβ
2
cβ φa(0)

+

∫
|k|rdk k ψ†kαψkα +

1

2

∫
ddx

[
π2
a + (∂xφa)

2
]
. (4.3)

We now note features of the baths coupled to the impurity site.

The bosonic bath is realized by a free massless scalar field in d spatial dimensions, as in Refs. [11,

27, 28]. The field πa is canonically conjugate to the field φa. The impurity spin S couples to the

value of φa at the spatial origin, φa(0) ≡ φa(x = 0, τ). It is easy to verify that upon integrating

out φa from Himp, we obtain the J term in S, with Q(τ) obeying (4.1).

The fermionic bath is realized by free fermions ψkα with energy k and a ‘pseudogap’ density of

states ∼ |k|r. The impurity electron operator cα is coupled to ψα(0) ≡
∫
|k|rdk ψkα. Integrating

out ψkα from Himp yields the t term in S, with R(τ) obeying (4.1).

It turns out that the structure of the RG shows that there is additional ‘boundary’ renormal-

ization of φ2
a that must be accounted for in the ε, ε′ expansion, and this introduces a new coupling
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ζ. This is an important distinction from the previous analysis of the t-J model at non-zero p

[10], where there were no additional boundary renormalizations; this boundary renormalization

prevents us from making an all-orders extrapolation of certain exponents that was possible earlier

[10]. Our RG analysis will be carried out for the following action which includes the ζ coupling

Sc =

∫
dω

2π
c†α(ω)(iA0sgn(ω)|ω|r)cα(ω) +

1

2

∫
ddxdτ [(∂τφa)

2 + (∂xφ)2]

+
U0

2

∫
dτc†αc

†
βcβcα + γ0

∫
dτc†α

σaαβ
2
cβφa(0) +

ζ0

2

∫
dτφa(0)2 , (4.4)

Note that we have already integrated out the fermionic bath ψkα (as was also done in Refs. 12

and 26), to obtain a non-local propagator for the electron cα; A0 is an unimportant normalization

constant which has absorbed the value of g0. The action Sc contains three coupling constants, U0,

γ0, and ζ0, and we will present their renormalization group flow below.

A. RG equations and fixed points

The RG equations of the action (4.4) are derived in Appendix A for a generalized model with

SU(M)× SU(M ′) spin symmetry. For the SU(M = 2) case and M ′ = 1, and to the leading order,

the flow equations from (A10) are (notice that in this case we define βU = (βU + βV )|U+V→U)

βγ =
1

2
(ε− ε′)γ − γU

πA2
0

+
ζγ

2π
,

βU = εU − 3γ2

8π
,

βζ = −ε′ζ +
ζ2

2π
+

γ2

2πA2
0

, (4.5)

where ε = 1 − 2r and ε′ = 2 − d. Using the beta functions (4.5) we find the following four fixed

points (γ∗2, U∗, ζ∗):

FP1 = (0, 0, 0) (4.6)

FP2 = (0, 0, 2πε′) (4.7)

FP3 =
(4π2A2

0

9
ε(ε+ ξ),

πA2
0

6
(ε+ ξ),

π

3
(3ε′ − 2ε+ ξ)

)
(4.8)

FP4 =
(4π2A2

0

9
ε(ε− ξ), πA

2
0

6
(ε− ξ), π

3
(3ε′ − 2ε− ξ)

)
(4.9)

where ξ =
√

9ε′2 − 8ε2. In order for the fixed points (4.8) and (4.9) to be real ξ has to be real,

which gives the condition ε′2 > 8ε2/9. Additionally, for the fixed point (4.9) to be real we should

also have ε > ξ, which gives ε′2 < ε2.
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FIG. 3: (a) One-loop RG flow diagram in the ζ − γ2 − U space for ε = 1 and ε′ = 0.95. The gray

point is the stable fixed point (FP2), red points are the fixed points (FP1, FP3) with one

relevant direction, and the black point is the non-trivial fixed point (FP4) with two relevant

directions. All four fixed points are on the same plane 3γ2

8πε
− U = 0 coloured in light red. The

black lines are the separatrix for the non-trivial fixed points. The dashed line connecting FP3

and FP4 has βγ = βU = 0. (b) One-loop RG flow projected on to the U − γ plane for ε′ > 0. (c)

Same as (b) for ε′ < 0. In both (b) and (c) the nature of the flow is similar and controlled by the

non-trivial fixed point FP3 (4.8), which corresponds to a quantum critical point.

We now analyze the stability of the fixed points by looking at the eigenvalues of the stability

matrix (see Appendix A for details) and thus the RG flow. We will be interested in the situation

when the non-trivial fixed points (4.8) and (4.9) are real, i.e., 8/9 < (ε′/ε)2 < 1. We will have

ε > 0, and discuss the situations when ε′ is positive or negative.

(i) ε′ > 0: In this case, the trivial fixed point (4.7) is the only stable fixed point. The Gaussian

fixed point (4.6) and the non-trivial fixed point (4.8) have one relevant direction and two irrelevant

directions, while the other non-trivial fixed point (4.9) has one irrelevant direction and two relevant

directions in the RG flow phase-space of (γ2, U, ζ). This is shown in Fig. 3 (a), with a 2d projection

on the U − γ plane shown in Fig. 3 (b). Therefore, the non-trivial fixed point (4.8) separates the

RG flow between large γ or U and small γ or U , and thus corresponds to a quantum critical point.

We discuss the anomalous dimensions of the spin and electron correlators at this fixed point in

Sec. IV B.

(i) ε′ < 0: In this case, the Gaussian fixed point now becomes the stable fixed point, while the

other trivial fixed point (4.7) now has one relevant and two irrelevant directions. The discussion

of the non-trivial fixed points is the same as in case (i). The corresponding RG flow projected in

the U − γ plane is shown in Fig. 3 (c). Here again the fixed point (4.8) separates the flow at large
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γ or U and small γ or U , and therefore corresponds to a quantum critical point.

B. Scaling dimensions

A significant feature of the action (4.4) is that the quadratic term in the cα does not get

renormalized because of its non-analytic dependence on frequency. Consequently, the electron

correlator has the same long-time decay as in the Gaussian theory

Gc(τ) ∼ sgn(τ)

|τ |1−r (4.10)

and the scaling dimension of the electron operator is given exactly by

dim[cα] = (1− r)/2 = (1 + ε)/4 . (4.11)

This result is the same as that in the t-J model analysis by Joshi et al. [10]. Comparing with (4.1)

and the self-consistency condition in (2.3), we observe that the only possible self-consistent value

is r = 0 or ε = 1. Clearly, the ε-expansion cannot be trusted at this large value in determining

other features of the RG. Note that the electron scaling dimension in (4.11) at r = 0 agrees with

the gapless boson solutions of the large M analysis, where the scaling dimension of cα is specified

by (3.19) and (3.23).

Turning to the spin operator S, we now find important differences from the t-J model analysis

[10]. The scaling dimension of S is not a RG invariant because of the boundary renormalization

associated with the coupling ζ. As explained in the Appendix A the spin operator S mixes with

the boundary value of the bosonic bath field φa(0). This mixing is described by the matrix of

anomalous dimensions is

γij =

 − U

πA2
0

γ

2πA2
0

γ

2π

ζ

2π

 . (4.12)

The full scaling dimensions are obtained by adding diag(1 − r, d−1
2

) to γij and diagonalizing the

full matrix. At the fixed points we find,

FP1 : ∆+ =
1− ε′

2
, ∆− =

1 + ε

2
, (4.13)

FP2 : ∆+ =
1 + ε′

2
, ∆− =

1 + ε

2
, (4.14)

FP3 : ∆+ =
1 + ε′

2
, ∆− =

1− ε′
2

, (4.15)

FP4 : ∆+ =
1 + ε′

2
, ∆− =

1− ε′
2

. (4.16)
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Note that these expressions are valid for both positive and negative values of ε′, as long as the

conditions mentioned above are met.

Let us use these scaling dimensions to impose the second of self-consistency conditions in (2.3).

We consider the case of primary interest, the fixed point FP3, with non-zero coupling. We have

to match the exponent in (4.2) with the smaller of the two exponents at FP3; this leads us to

conclude that self-consistency is achieved for any ε′ ≥ 0. Presumably a specific value of ε′ will be

chosen at higher orders.

Finally, let us combine the consequences of the two self-consistency conditions in (2.3). From the

first condition we found above that ε = 1. Using ε′ ≥ 0, we also have the restriction on the existence

of FP3 at real couplings, ε′ >
√

8/9ε, and so the values of ε′ are restricted to ε′ >
√

8/9 = 0.943.

We expect spin correlations to decay with time, and so (4.2) also restricts ε′ < 1. But let us note

that all these results are obtained as leading terms an expansion in ε and ε′, so these large values

cannot be trusted.

C. Physical interpretation

The physical interpretation of the quantum criticality described by the fixed point FP3 remains

an interesting open question. It is possible that it describes the deconfined metal-insulator tran-

sition at p = 0 in Fig. 1. However, another reasonable possibility is that the larger U side of the

fixed point is not an insulator, but a metallic spin glass. We sketch a possible phase diagram in

Fig. 4, which shows a metallic spin glass phase at larger J and small U . One indication we are

approaching a metallic spin glass phase is that the critical spin correlations at FP3 decay extremely

slowly. By (4.2), the spin correlations decay with the exponent (1 − ε′), and we estimated above

that 0 < (1− ε′) < 0.057 by (the unreliable) extrapolation from the one-loop results.

In Appendix B, we will review an alternative Landau-type theory [13, 14] of the transition to

metallic spin glass order from a metallic phase. It is unlikely that the fixed point obtained in

this section is the same as that of Appendix B: whereas the present RG analysis, when combined

with the self-consistency conditions, requires ε′ > 0 on quite general grounds, we will see that the

critical exponents in Appendix B require ε′ < 0.
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FIG. 4: Schematic phase diagram at half-filling, p = 0, as a function of the Hubbard repulsion,

U , and the mean-square exchange interaction J .

V. CONCLUSIONS

Our paper has presented two approaches to analyzing the metal-insulator transition of the

random Hubbard model (1.1) at half-filling (p = 0); see Fig. 1.

The large M analysis in Section III leads to the fractionalization of the electron cα into a boson

X (with scaling dimension ∆b) and a fermion f (with scaling dimension ∆f ). We argued that

the deconfined critical point with ∆f = ∆b = 1/4 realized the metal-insulator transition observed

numerically by Cha et al. [6]. These exponents imply the electron correlator in (3.19) and the spin

correlator in (3.16), both consistent with the results of Cha et al. [6].

We presented a renormalization group analysis of the random Hubbard model in Section IV.

This turns out to be effectively a small U analysis, and to leading order in an ε expansion we found

a fixed point (FP3) possibly describing a metal-insulator transition. The renormalization group

results have to be supplemented by the imposition of a self-consistency relation on the exponents,

and we found that this required extrapolation to values of ε of order unity where our expansion

breaks down. Consequently, we are not able to obtain the exponents accurately in this approach.

We also discussed the possibility that FP3 described the onset of a metallic spin glass phase from a

disordered Fermi liquid, and that FP3 was an alternative to the Landau theory of such a transition

[13, 14].
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Appendix A: Derivation of RG

We will consider here a generalized model in which the spin index α = 1, . . . ,M , and the

electron operator cp,α has an additional ‘orbital’ index p = 1, . . . ,M ′. The latter index will be

useful in the large M analysis presented in Section III. The effective action generalizing (4.4) is

Sc =

∫
dω

2π
c†p,α(ω)(iA0sgn(ω)|ω|r)cp,α(ω) +

1

2

∫
ddxdτ [(∂τφa)

2 + (∂xφ)2] + γ0

∫
dτc†p,αT

a
αβcp,βφa(0)

+
U0

2

∫
dτc†p,αc

†
q,βcq,βcp,α +

V0

2

∫
dτc†p,αc

†
q,βcp,βcq,α +

ζ0

2

∫
dτφa(0)2 , (A1)

where p = 1, . . . ,M ′, a = 1, . . . ,M2 − 1 and α = 1, . . . ,M . We have introduced a coupling V , an

additional local interaction allowed by the enlarged symmetry. The matrix T a is the fundamental

representation of SU(M) algebra, and has the properties

tr(T aT b) =
1

2
δab, T aT a =

M2 − 1

2M
· 1 , T aαβT

a
γδ =

1

2

(
δαδδβγ −

1

M
δαβδγδ

)
. (A2)

The action (A1) has SU(M)× SU(M ′) global symmetry.

Dimensional analysis yields

[c] = [µ]
1−r
2 , [U0] = [V0] = [µ]2r−1, [γ0] = [µ]

1
2

+r− d
2 , [ζ0] = [µ]2−d . (A3)

Therefore introducing new notations ε = 1 − 2r and ε′ = 2 − d we write renormalized fields as

c0 = Z
1/2
c c and φ0 = Z

1/2
φ φ and dimensionless couplings as

U0 = µ−εZ−2
c (U + δU) , V0 = µ−εZ−2

c (V + δV ), γ0 = µ
ε′−ε
2 Z−1

c Z
−1/2
φ (γ + δγ) , ζ0 = µε

′
Z−1
φ (ζ + δζ) ,

(A4)

where Zφ = 1 + δφ, Zc = 1 + δc and µ is a mass scale parameter.

S =

∫
dω

2π
c†a(ω)(iA0sgn(ω)|ω|r)ca(ω) +

1

2

∫
ddxdτ [(∂τφa)

2 + (∂xφ)2] + µ
ε′−ε
2 γ

∫
dτc†a1

T aa1a2
ca2φa

+
1

4
µ−ε

∫
dτJa1a2,a3a4c

†
a1
c†a2
ca3ca4 +

1

2
µε
′
ζ

∫
dτφa(0, τ)2 + δS , (A5)
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where the counter-terms action reads

δS =δc

∫
dω

2π
c†a(ω)(iA0sgn(ω)|ω|r)ca(ω) +

δφ
2

∫
ddxdτ [(∂τφa)

2 + (∂xφ)2] + µ
ε′−ε
2 δγ

∫
dτc†a1

T aa1a2
ca2φa

+
1

4
µ−ε

∫
dτδJa1a2,a3a4c

†
a1
c†a2
ca3ca4 +

1

2
µε
′
δζ

∫
dτφa(0, τ)2 (A6)

and we combined two indices (p, α) in one bold index a and introduce T aa1a2
= δp1p2T

a
α1α2

and the

tensor Ja1a2,a3a4 , which reads Ja1a2,a3a4 = UJ
(1)
a1a2,a3a4 + V J

(2)
a1a2,a3a4 and is given by

Ja1a2,a3a4 = U(δp1p4δα1α4δp2p3δα2α3 − δp1p3δα1α3δp2p4δα2α4) + V (δp1p3δα1α4δp2p4δα2α3 − δp1p4δα1α3δp2p3δα2α4) .

(A7)

We depicted Feynman rules for the propagators in figure 5 and for the vertices in figure 6. Next

FIG. 5: Feynman rules for the propagators

FIG. 6: Feynman rules for the vertices

we are computing all diagrams contributing in the leading order to renormalization of couplings

γ, U , V and ζ.

We assume that bubble diagrams like in figure 11 are zero and omit them in all the figures. To
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FIG. 7: Leading order diagrams contributing to βU and βV .

FIG. 8: Leading order diagrams contributing to βγ.

FIG. 9: Leading order diagrams contributing to βζ .

FIG. 10: Leading order diagrams contributing to renormalization of the fermionic self energy.

FIG. 11: An example of bubble Feynman diagrams, which are zero and omitted in all other

pictures.

compute the Feynman diagrams we use three main integrals∫ +∞

−∞

dω

2π

sgn(ω)sgn(ω + ω′)

|ω|α1 |ω + ω′|α2
=

1

(4π)1/2

Γ(2−α1

2
)Γ(2−α2

2
)Γ(α1+α2−1

2
)

Γ(1+α1

2
)Γ(1+α2

2
)Γ(2−α1−α2

2
)

1

|ω′|α1+α2−1
,∫ +∞

−∞

dω

2π

sgn(ω + ω′)

|ω + ω′|α1 |ω|α2
=

1

(4π)1/2

Γ(2−α1

2
)Γ(1−α2

2
)Γ(α1+α2

2
)

Γ(1+α1

2
)Γ(α2

2
)Γ(3−α1−α2

2
)

sgn(ω′)

|ω′|α1+α2−1
,∫

ddk

(2π)d
kα

k2 + ω2
=

π

(4π)d/2Γ(d/2) sin π(d+α)
2

1

|ω|2−d−α . (A8)
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Using these integrals we find for the leading order counter-terms

δ(1)
γ =

γ(U +M ′V )

πA2
0

1

ε
+
ζγ

2π

1

ε′
,

δ
(1)
U = −U

2(MM ′ − 2) + 2(M −M ′)UV − V 2

πA2
0

1

ε
− γ2

4πM

1

ε′
,

δ
(1)
V = −V

2(M −M ′)− 2UV

πA2
0

1

ε
− γ2

4π

1

ε′
,

δ
(1)
ζ =

ζ2

2π

1

ε′
− M ′γ2

2πA2
0

1

ε
. (A9)

and δ
(1)
c = 0 and also δφ = 0 at all orders. Using that βγ = dγ/d log µ, βU = dU/d log µ,

βV = dV/d log µ and βζ = dζ/d log µ we find the leading order beta functions

βγ =
1

2
(ε− ε′)γ − γ(U +M ′V )

πA2
0

+
ζγ

2π
,

βU = εU +
U2(MM ′ − 2) + 2(M −M ′)UV − V 2

πA2
0

− γ2

4πM
,

βV = εV +
V 2(M −M ′)− 2UV

πA2
0

− γ2

4π
,

βζ = −ε′ζ +
ζ2

2π
+
M ′γ2

2πA2
0

. (A10)

1. Anomalous dimension of the operator Sa = c†a1T
a
a1a2

ca2

We would like to compute anomalous dimension of the operator Sa(τ) = c†a1
(τ)T aa1a2

ca2(τ).

First of all we notice that it has bare dimension [Sa] = [µ]1−r. On the other hand the operator

φa(τ, x = 0) has bare dimension [φa] = [µ]
d−1
2 , therefore when r → 1/2 and d → 2 these two

operators can mix. Thus we define renormalized dimensionless operators as

[Sa(τ)]R = ZSSµ
r−1Sa(τ) + ZSφµ

1−d
2 φa(τ, 0) ,

[φa(τ)]R = ZφSµ
r−1Sa(τ) + Zφφµ

1−d
2 φa(τ, 0) , (A11)

where the counter-terms have only poles in ε and ε′ and have the following form

ZSS = 1 + z
(1)
SS(U, V, γ, ζ, ε, ε′) + z

(2)
SS(U, V, γ, ζ, ε, ε′) + . . . ,

ZSφ = z
(1)
Sφ(U, V, γ, ζ, ε, ε′) + z

(2)
Sφ(U, V, γ, ζ, ε, ε′) + . . . ,

ZφS = z
(1)
φS (U, V, γ, ζ, ε, ε′) + z

(2)
φS (U, V, γ, ζ, ε, ε′) + . . . ,

Zφφ = 1 + z
(1)
φφ (U, V, γ, ζ, ε, ε′) + z

(2)
φφ (U, V, γ, ζ, ε, ε′) + . . . , (A12)
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and as usual ε = 1− 2r and ε′ = 2− d. It is convenient to work in momentum space so we have

[Sa(ω)]R = ZSSµ
r−1Sa(ω) + ZSφµ

1−d
2

∫
ddk

(2π)d
φa(ω, k) . (A13)

We find the counter-terms ZSS, ZSφ, ZφS and Zφφ by demanding that expressions

ΓSS(ω|ω′) =
〈[Sa(ω)]Rca1(ω

′)c†a2
(ω + ω′)〉c

G(ω′)G(ω + ω′)
, ΓSφ(ω|k) =

〈[Sa(ω)]Rφb(−ω,−k)〉c
D(ω, k)

,

ΓφS(ω|ω′) =
〈[φa(ω)]Rca1(ω

′)c†a2
(ω + ω′)〉c

G(ω′)G(ω + ω′)
, Γφφ(ω|k) =

〈[φa(ω)]Rφb(−ω,−k)〉c
D(ω, k)

(A14)

are free of divergencies, where G(ω) = 〈c(ω)c†(ω)〉 and D(ω, k) = 〈φ(ω, k)φ(−ω,−k)〉 = 1/(ω2 +

k2). To the leading order we can write expressions for (A14) as

ΓSS(ω|ω′) = ZSSµ
r−1(1 + A) + ZSφµ

1−d
2 B ,

ΓSφ(ω|k) = ZSSµ
r−1C + ZSφµ

1−d
2 (1 +D) ,

ΓφS(ω|ω′) = ZφSµ
r−1(1 + A) + Zφφµ

1−d
2 B ,

Γφφ(ω|k) = ZφSµ
r−1C + Zφφµ

1−d
2 (1 +D) , (A15)

where diagrams A,B,C and D are listed in figure 12. Computing the diagrams we find the

FIG. 12: All leading order diagrams for renormalization of operators Sa and φa.

counter-terms

z(1)
ss =

U +M ′V

πA2
0

1

ε
, z

(1)
sφ = −M ′γ

2πA2
0

1

ε
z

(1)
φs =

γ

2π

1

ε′
, z

(1)
φφ =

ζ

2π

1

ε′
. (A16)

Therefore the matrix of anomalous dimensions is

γij =

(
−U+M ′V

πA2
0

M ′γ
2πA2

0
γ
2π

ζ
2π

)
. (A17)

The full scaling dimensions are obtained by adding diag(1 − r, d−1
2

) to γij and diagonalizing the

full matrix.
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2. Stability of fixed points

In this subsection we discuss the stability of fixed points found above and listed in Eqs. (4.6) -

(4.9). First we construct the stability matrix,

J ≡

J1 J2 J3

J4 J5 J6

J7 J8 J9

 , (A18)

where,

J1 ≡
∂βγ
∂γ

=
ε− ε′

2
− U

πA2
0

+
ζ

2π
, J2 ≡

∂βγ
∂U

= − γ

πA2
0

, J3 ≡
∂βγ
∂ζ

=
γ

2π
,

J4 ≡
∂βU
∂γ

= −3γ

4π
, J5 ≡

∂βU
∂U

= ε , J6 ≡
∂βU
∂ζ

= 0 ,

J7 ≡
∂βζ
∂γ

=
γ

πA2
0

, J8 ≡
∂βζ
∂U

= 0 , J9 ≡
∂βζ
∂ζ

= −ε′ + ζ

π
. (A19)

The eigenvalues of matrix J at the trivial fixed points (4.6) and (4.7) are (ε, (ε − ε′)/2,−ε′) and

(ε, (ε + ε′)/2, ε′) respectively. Thus, for any positive values of ε and ε′ all the eigenvalues corre-

sponding to FP2 are positive, and thus it is a stable fixed point. The eigenvalues at the non-trivial

fixed points (4.8) and (4.9) are given by the roots of their respective characteristic polynomials,

p3(λ) = λ3 + a3λ
2 + b3λ+ c3 , p4(λ) = λ3 + a4λ

2 + b4λ+ c4 , (A20)

where,

a3,4 = −ε± ξ
3

, b3,4 =
ε

9
(−11ε∓ 2ξ) , c3,4 = ±2

9
εξ(ε± ξ) . (A21)

Recall that for non-trivial fixed points to be real we need ξ to be real as well as ε > ξ. Now

examining the coefficients of the characteristic polynomials we see that the fixed point (4.8) has

one negative eigenvalue and two positive eigenvalues, while (4.9) has two negative eigenvalues and

one positive eigenvalue.

3. Next order beta functions

In this subsection we list all diagrams in figure 13 contributing at the next order to the beta

functions and renormalization of the fermionic self-energy. Notice that we list only diagrams which

represent distinct graphs, whereas some diagrams in this list can include different sub-cases, like

in figure 7. All the diagrams can be computed with the use of the integrals in eq. (A8). The result
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FIG. 13: The next order diagrams contributing to renormalization of the couplings and

self-energy.

of the computation is

β
(2)
U =−

(
(MM ′ + 1)U3 + (MM ′ + 5)UV 2 + (M −M ′)(2U2V − V 3)

)
(π − 4 log(2))

π2A4
0

− (M2 − 1)γ2U(γE − log(4π))

4π2A2
0M

,

β
(2)
V =− V

(
(MM ′ + 5)U2 + 2MM ′V 2 + 2(M −M ′)UV

)
(π − 4 log(2))

π2A4
0

− (M2 − 1)γ2V (γE − log(4π))

4π2A2
0M

,

β(2)
γ =−

(
(MM ′ − 1)(U2 + V 2) + 2(M −M ′)UV

)
γ(π − 4 log(2))

2π2A4
0

+
γ3(γE − log(4π))

8π2A2
0M

, (A22)

and β
(2)
ζ = 0 and δ

(2)
c = 0, where γE is the Euler constant. We see that there is no renormalization

of the fermionic self-energy to this order and we can guess that this is true to all orders of the

perturbation theory. We also notice that upon taking γ = 0, M = 2, M ′ = 1 and defining

βU = (βU + βV )|U+V→U we recover the result reported in [12].

Appendix B: Onset of spin glass order in a metal

This Appendix will address the transition from the disordered Fermi liquid phase to the metallic

spin glass. There are 3 possible theories of this transition:

(i) At large U , and for p > 0, eliminate the doubly-occupied site, and address the transition in the

t-J model. This yields a deconfined critical point, described in Ref. 10.
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(ii) At small U , and at p = 0, perform the RG analysis presented in Section IV. This yields fixed

point FP3, which could describe the onset of spin glass order in a metal.

(iii) Use a weak-coupling Landau functional approach to quantum spin glasses [13, 29], which we

review in this section.

We begin with the disordered-averaged imaginary time path integral of the Hamiltonian in

(1.1), keeping track of replica indices, a, b = 1 . . . n; at the end we need to take the n → 0 limit.

The path integral has the form

Z =

∫
DQab(τ1, τ2) exp (−NS[Q])

S[Q] =
3J2

4

∫
dτ1dτ2

∑
ab

[
Qab(τ1, τ2)

]2
+ S1[Q] (B1)

where the functional S1[Q] is to obtained by a path integral over the electrons. Near the transition,

it turns out to be sufficient to evaluate S1[Q] in powers of J2 and U to understand the basic

structure of the critical point, as in other theories of the onset of broken symmetry in metals [30].

Explicitly the expression is

exp (−NS1[Q]) =

∫
DRab(τ1, τ2) exp

(
−Nt

2

2

∣∣Rab(τ1, τ2)
∣∣2 −NS2[Q,R]

)
exp (−S2[Q,R]) =

∫
Dcaα(τ) exp

{
−
∫
dτ

[
ca†α (τ)

(
∂

∂τ
− µ

)
caα(τ) +

U

2
ca†α (τ)ca†β (τ)caβ(τ)caα(τ)

]
+ t2

∫
dτdτ ′Rab(τ, τ ′)ca†α (τ)cbα(τ ′) +

J2

2

∫
dτdτ ′Qab(τ, τ ′)Sa(τ) · Sb(τ ′)

}
, (B2)

where the second expression generalizes (2.1). Analyzing the saddle-point equations of (B1) and

(B2) in the large N limit, it can be verified that we obtain the replica generalizations of the

self-consistency conditions in (2.2) and (2.3).

First, we explicitly solve the saddle-point equations for R at J2 = U = 0. The solution is replica

diagonal and depends only on time differences

Rab(τ, τ ′) = δabR(τ − τ ′) . (B3)

The equation for R(τ) is easily expressed in frequency space

R(iω) =
1

iω + µ− t2R(iω)
, (B4)

and yields the Green’s function of a disordered Fermi liquid with the expected semi-circular density

of the states

R(iω) =
1

2t2

(
iω + µ−

√
(iω + µ)2 − 4t2

)
. (B5)
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For |µ| < 2t, we have a non-zero density of states at the Fermi level, and the low frequency behavior

R(iω) =
µ

2t2
− sgn(ω)

√
4t2 − µ2

2t2
. (B6)

This is just the Fourier transform of the electron Green’s function in (3.19) with ∆f + ∆b = 1/2.

Next we expand (B2) in powers of J2 and U , and evaluate the path integral over the caα. This

results in an expression for S[Q] as a polynomial in the Qab(τ1, τ2) which has the form described

in Ref. 13; see also Chapter 22 in Ref. 31. A crucial term in this expansion is a term linear in Q

of the form

−J
2

2

∫
dτdτ ′Qab(τ, τ ′)

〈
Sa(τ) · Sb(τ ′)

〉
∼ −J

2

2

∫
dτdτ ′

Qaa(τ, τ ′)

(τ − τ ′)2

∼ TJ2
∑
ωn

Qaa(iωn,−iωn) [r + |ωn|] , (B7)

where ωn = 2πnT is a Matsubara frequency. The 1/τ 2 term is characteristic of the decay of spin

correlations in a disordered Fermi liquid, a direct consequence of the constant density of states

at the Fermi level in (B6). The frequency dependence in (B7) is primarily responsible for the

low frequency dynamics of the spin glass order parameter, and the frequency depends of all the

other terms in the action for Q can be safely neglected. Near the critical point, it turns out to be

sufficient to keep only the following terms in the effective action [13]

S[Q] =
r

κ

∫
dτ Qaa(τ, τ)− 1

πκ

∫
dτdτ ′

Qaa(τ, τ ′)

(τ − τ ′)2

− κ
3

∫
dτ1dτ2dτ3

∑
abc

Qab(τ1, τ2)Qbc(τ2, τ3)Qca(τ3, τ1)+
u

2

∫
dτ [Qaa(τ, τ)]2 . (B8)

Here we have performed a shift by an unimportant short-time correlator, Qab(τ, τ ′)→ Qab(τ, τ ′)−
Cδabδ(τ − τ ′), to eliminate quadratic terms in the action similar to that in (B1).

It is now a straightforward matter to solve the saddle point equations of (B8). The saddle-point

value Q has the following structure in Matsubara frequency space

Qab(iωn, iεn) =
δωn,0δεn,0
T 2

qab +
δωn+εn,0

T
δabQ(iωn) . (B9)

Here qab is the spin-glass order parameter, which is non-zero only for the parameter r (appearing

in (B7)) smaller than a critical value, r < rc. Focusing first on the Fermi liquid state found for

r > rc, it was shown that the second term in (B9) has the form

Q(iωn) ∼ −
√
r − rc + |ωn| , r ≥ rc . (B10)

This quantity is just the Fourier transform of Q(τ) appearing in (2.2) and (2.3), and so at the

critical point r = rc, the spin correlations decay as

Q(τ) ∼ 1

|τ |3/2 , r = rc . (B11)
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Comparing with (4.2), we see that ε′ = −1/2. So the present critical point appears distinct from

the fixed point FP3 found in Section IV, which can satisfy the self-consistency conditions only for

ε′ > 0.

Finally, let us also recall [13, 29] the nature of the solution for r < rc. Here the spin glass order

parameter qab is non-zero. In the simplest replica-symmetric ansatz, qab = qEA, the Edwards-

Anderson order parameter for all a and b, and

qEA ∼ rc − r , r < rc (B12)

At T > 0, the stable solution has replica symmetry breaking, but the structure of this is very

similar to that of the classical spin glass. The replica diagonal term Q(τ) in (B9) is the only one

with non-trivial time dependence, and this remains pinned at the r = rc form in (B11) for r < rc.
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