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Abstract

The swimming larvae of many marine animals identify a location on the
seafloor to settle and undergo metamorphosis based on the presence of
specific surface-bound bacteria. While bacteria-stimulated metamorphosis
underpins processes such as the fouling of ship hulls, animal development
in aquaculture, and the recruitment of new animals to coral reef ecosystems,
little is known about the mechanisms governing this microbe-animal
interaction. Here we review what is known and what we hope to learn about
how bacteria and the factors they produce stimulate animal metamorphosis.
With a few emerging model systems, including the tubeworm Hydroides
elegans, corals, and the hydrozoan Hydractinia, we have begun to identify
bacterial cues that stimulate animal metamorphosis and test hypotheses
addressing their mechanisms of action. By understanding the mechanisms
by which bacteria promote animal metamorphosis, we begin to illustrate
how, and explore why, the developmental decision of metamorphosis relies
on cues from environmental bacteria.
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INTRODUCTION

Microbes have been evolving on Earth for more than three billion years, setting the biological
and ecological foundations for the evolution of eukaryotic life (78). Within this context, animals
evolved 400 million years ago in an environment already dominated by abundant and diverse
bacteria (121, 133). Interactions with this microbial world shaped animal biology, whether in inti-
mate symbioses or as organisms that share and modify a common habitat. Recently, the beneficial
roles of microbes in animal development have gained widespread appreciation, paving the way for
our realization that microbes fundamentally influence animal health, development, and evolution
(46, 101, 103). For example, bacteria direct multicellular behavior in choanoflagellates—the clos-
est living relatives to animals—(2, 168), budding in hydra (125), light organ development in the
Hawaiian bobtail squid (79, 116), digestive tract development in zebrafish (7, 60), and immune sys-
tem development and maturation in mammals (14, 100). These instances of bacteria-stimulated
development stand in opposition to the conventional notion that each animal’s development is
directed solely by its own genome (101). Growing attention has focused on how the host micro-
biome drives diverse aspects of eukaryotic development. Yet, bacteria in the microbiome are not
the only bacteria influencing eukaryotic development. Although often disregarded, environmental
bacteria also provide cues that regulate essential developmental processes in diverse eukaryotes.
However, these widespread interactions raise the provocative and, until recently, largely unad-
dressed question: How do environmental bacteria shape normal animal development?
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Bacteria Adults
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Metamorphosis
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Figure 1

Model of the stimulation of animal metamorphosis by bacteria. The swimming larvae of diverse marine
animals (e.g., corals, tubeworms, and urchins) are stimulated to undergo settlement and metamorphosis by
the presence of bacteria bound to the seafloor.

THE INFLUENCE OF BACTERIA ON ANIMAL METAMORPHOSIS
AND EVOLUTION

A widespread yet poorly understood example of bacteria shaping animal development is the stim-
ulation of animal metamorphosis by bacteria. During these interactions in marine environments,
surface-attached bacteria on the seafloor serve as an indicator and provide a stimulus for the swim-
ming larvae of many animals, promoting larval settlement and triggering metamorphosis into the
juvenile form (Figure 1). Once induced to undergo metamorphosis by bacteria, the larval animal
undergoes a dramatic developmental transition, losing larval features and taking on adult char-
acteristics. Bacteria that promote metamorphosis are thought to serve as a critical indicator of a
preferable habitat for adult animals.While this process is fundamental to the life history of diverse
animals, and likely shaped their ecology and evolution, there has still been much to learn since this
phenomenon was first reported in the 1930s (178).

The diversity of animals that undergo metamorphosis is enormous. Yet apart from a few ani-
mal groups, metamorphosis is poorly characterized. Most of our knowledge of animal metamor-
phosis is derived from only a few model organisms, notably the fruit fly (Drosophila melanogaster)
and African clawed frog (e.g., Xenopus laevis, Xenopus tropicalis), which are not currently believed
to undergo metamorphosis in response to bacteria. Studying the metamorphosis of marine in-
vertebrates offers valuable insight into the basis of environmental bacteria signaling in animal
development in a setting where the very persistence of benthic marine ecosystems depends on it.

The complexity of settlement and metamorphosis of marine larvae invites the use of proper
definitions. Here, settlement is defined as a behavioral process by which larvae that possess the
ability to undergo metamorphosis (competency) reversibly bind to the substratum, while the term
metamorphosis describes the transition from the attached larval stage to a sessile juvenile stage—a
morphogenetic process (12). Competency permits marine invertebrate larvae to live a planktonic
life and allows some flexibility in the timing for settlement and metamorphosis in response to
a suitable location based on environmental cues. The developmental change of metamorphosis
is often accompanied by a corresponding change from a free-swimming to a surface-associated
state (12). Importantly, metamorphosis is an irreversible process. Therefore, making the decision
of where and when to transition from a planktonic to a sessile state is critical for survival and
reproduction as a surface-bound adult (144).Here, we explore what is known and what we hope to
learn about bacteria that stimulate metamorphosis, the signaling molecules present within marine
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biofilms, the chemical diversity of known bacterial cues, and challenges in identifying the animal
sensory machinery that triggers this developmental transition.

BIOFILMS AND THEIR ROLES AS SETTLEMENT CUES FOR MARINE
INVERTEBRATE LARVAE

Biofilms are consortia of intimately interacting microbial cells enclosed in an extracellular matrix;
biofilms cover all underwater biological,mineral, or artificial surfaces (41). Rather than being con-
glomerations of cells and slime, biofilms are organized communities with functional microcolonies
and channels that perform complex metabolic processes (23). The microbes within biofilms pro-
duce a matrix of extracellular polymeric substances (EPSs), composed of polysaccharides, proteins,
nucleic acids, and lipids, which provide mechanical stability, mediate adhesion to surfaces, and
form a cohesive, three-dimensional polymer network that interconnects and transiently immobi-
lizes biofilm cells (39). EPSs are prominent components of biofilms that have been implicated in
stimulating metamorphosis (52), although this has not been shown explicitly.

Natural biofilms are composed of many microbial species including bacteria, diatoms, fungi,
and protozoa. Multispecies biofilms can form stable consortia, develop physiochemical gradients,
and facilitate horizontal gene transfer and intense cell-cell communication; thus, these consortia
represent highly competitive environments (40). To understand the stimulation of metamorphosis
bymarine biofilms, a number of studies have characterized themicrobial diversity within inductive
biofilms. It has been shown that the bacterial community structure of natural biofilms varies in its
response to environmental factors such as salinity, temperature (85), tidal level (31, 124), dissolved
oxygen (115), hypoxia (19, 81, 142), and habitat (20, 70, 93). Natural biofilms formed under differ-
ent environmental conditions vary in their attractiveness to settling larvae (16, 20, 31, 70, 85, 93).
However, most factors influencing biofilm community composition, including salinity and tem-
perature (85), or succession over time (21, 93, 140), did not influence settlement, whereas biofilm
cell density was correlated with settlement. Importantly, denser mature biofilms support a matrix
of complex molecules and morphogenic signaling compounds that are thought to contribute to
larval settlement in marine invertebrates. While some studies have provided evidence that bac-
terial community structure might be important for settlement of marine larvae (114), the actual
settlement cues associated with biofilm communities often remain unknown or poorly understood
(42, 69).

FOR MOST ANIMALS, THE SPECIFIC BACTERIAL FACTORS THAT
INDUCE METAMORPHOSIS ARE UNKNOWN

Animals that undergo metamorphosis represent all major branches of the animal tree of life
(Figure 2). Of these animal types, almost all clades possess representative species that undergo
metamorphosis in response to bacteria (Figure 2). Bacteria stimulate larval settlement and
metamorphosis in diverse marine invertebrates, including sponges (160, 164, 165, 167), mollusks
(6, 38, 48, 74, 131, 153, 161, 173), crabs (4), barnacles (37, 76), bryozoans (8, 31), annelids (141),
urochordates (152), echinoderms (33, 68), and ascidians (18, 75, 129, 166). While the cues medi-
ating most of these interactions are unknown, the chemical compositions of a few metamorphosis
cues from laboratory-developed bacterial biofilms have been partially characterized; for example,
carbohydrates induce larval attachment and metamorphosis of the polychaete Janua (Dexiospira)
brasiliensis (77) and larval attachment of the tunicate Ciona intestinalis (152). Histamine isolated
from algae, or the biofilm coating the algae, stimulates the metamorphosis of the sea urchin
Holopneustes purpurascens (150, 151).

140 Cavalcanti et al.
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Figure 2

Bacteria-stimulated metamorphosis is widespread among diverse animal taxa. Shown is a representation of
the animal tree of life. Taxa that undergo metamorphosis are indicated in purple. Taxa that undergo
metamorphosis in response to bacteria are indicated in orange. Adapted from Reference 139.

In the study of bacterial factors that stimulate metamorphosis, and the animal receptors and re-
sponse mechanisms, the use of simplified model systems is beginning to reveal how environmental
bacteria promote animal metamorphosis. Here we review the mechanisms by which environmen-
tal bacteria influence the metamorphosis of three marine animals: (a) the polychaete tubeworm
Hydroides elegans and the cnidarians, (b) corals, and (c) Hydractinia.

THE TUBEWORM HYDROIDES ELEGANS AS A MODEL ANIMAL

The marine tubeworm Hydroides elegans (hereafter Hydroides) is a powerful model organism to
investigate how bacteria stimulate animal metamorphosis. In the 1990s, Hadfield et al. (55) first
documented that the larvae ofHydroides respond to bacterial biofilms by undergoingmetamorpho-
sis. In the laboratory,Hydroides larvae undergo metamorphosis in response to biofilms composed
of multispecies communities of microorganisms (66, 93, 140) and single species of bacteria (45,
141, 158).

Hydroides was first developed as a model organism for biofouling because it forms thick crusts
of calcified tubes on submerged boat hulls, causing corrosion and higher fuel consumption when
ships are underway (111). The properties that make this tubeworm a pest also make it an effec-
tive model organism for studying how bacteria stimulate metamorphosis. Specifically,Hydroides is
easily propagated in the lab, each female can yield thousands of eggs per spawning, and the lar-
vae have a short development period (six days) before acquiring the ability to sense bacteria and
undergo metamorphosis (i.e., become competent). To demonstrate thatHydroides is adapted to re-
spond to surface-bound bacteria, Hadfield et al. (54) showed that Hydroides changes its swimming
and settlement behavior when in direct contact with biofilms.

A valuable feature of model organisms is that they have genes and molecular pathways that are
conserved among diverse animals.To further developHydroides as amodel organism,we sequenced
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its genome (139) and found that the gene content of this tubeworm more closely resembles that
of anemones, sea squirts, and humans than it does other model invertebrates such as the fruit
fly (Drosophila melanogaster) or nematode (Caenorhabditis elegans). Therefore, insights into how
Hydroides senses and responds to bacteria may be applicable to diverse animal lineages.

Diverse bacteria have been shown to induceHydroidesmetamorphosis, including those belong-
ing to gram-negative (Gammaproteobacteria and Alphaproteobacteria classes, Cytophaga-Flexibacter-
Bacteroides group) and gram-positive (Firmicutes phylum) groups (56, 66, 83, 87). However, so far
bacterial taxonomy has not been correlated with the induction of metamorphosis. In fact, different
isolates belonging to the same genus can differ tremendously in their ability to induce metamor-
phosis, varying from no induction to moderate induction to very strong induction. For example,
the marine bacterium Pseudoalteromonas luteoviolacea is a potent inducer of metamorphosis, while
diverse other Pseudoalteromonas species show little stimulatory effect onHydroidesmetamorphosis.
Hydroides is well suited for the reductionist approach of studying the effect of one bacterium on
one animal to identify specific bacterial factors that stimulate metamorphosis. Identifying these
factors and the different mechanisms by which they stimulate metamorphosis will provide signif-
icant insight into the diversity and mechanisms of how bacteria influence animal development.

A SURPRISINGLY DIFFERENT WAY THAT BACTERIA STIMULATE
METAMORPHOSIS

Since the 1930s discovery that bacteria stimulate animal metamorphosis (178), the prevailing
model has been that animals respond to factors that are bound to the surface of bacterial cells
or released nearby (Figure 3). For many marine animal larvae, dissolved factors have been shown
to stimulate metamorphosis (52). However, the stimulation ofHydroidesmetamorphosis by bacte-
ria was shown to require physical contact with a biofilm surface (54).These findings hinted that the
bacterial factors that induce metamorphosis are diverse in their biological and physical properties.

Recently, we discovered a surprisingly different way that bacteria stimulate animal
metamorphosis—the first known bacterial injection system that stimulates the metamorphosis of
an animal (141) (Figure 4a,b). We called these structures metamorphosis-associated contractile
structures (MACs) because they form syringe-like protein complexes that induce tubeworm
metamorphosis. A pioneering study by Huang et al. (67) used forward genetics to identify a set of
4 genes in the genome of P. luteoviolacea that are required to stimulate tubeworm metamorphosis.

Soluble
factor

Cell/biofilm-
associated

factor

Seafloor

Biofilm

Injected
factor

Bacterium

AnimalOcean a

b

c

2

31

Figure 3

Model of types of bacterial factors that stimulate animal metamorphosis. Stimulatory factors from bacteria
can be (●1 ) soluble, (●2 ) bound to the bacterial cell or biofilm surface, or (●3 ) injected into host cells.
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c 
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3

Figure 4

MACs are an example of a CIS that often injects protein effectors into target cells. Panels a and b show a side view of MACs in extended
and contracted states and a segmented model of the array, respectively. (c) CISs are related to the contractile tails of bacteriophage
(viruses of bacteria, ●1 ). T6SSs (●2 ) act from within a bacterial cell, while eCISs (●3 ) are released by bacterial cell lysis and autonomously
bind to target cells. MACs are one example of an eCIS. Abbreviations: CIS, contractile injection system; eCIS, extracellular CIS; MAC,
metamorphosis-associated contractile structure; T6SS, type VI secretion system. Panels a and b adapted from Reference 141 with
permission.

They did this by using a transposon to randomly mutagenize the bacterial genome and then
screen for mutants deficient in inducing metamorphosis.We subsequently found that the 4 genes
identified in this screen belong to a cluster of over 40 genes that encode the syringe-like MACs
(141).

Instead of soluble or surface-bound factors produced by bacteria, MACs are complex syringe-
like structures that inject protein effectors into target cells. MACs are one example of contractile
injection systems (CISs), which are related to the contractile tails of some bacteriophage [the
viruses of bacteria (Figure 4c)]. Like other CISs, MACs are composed of a rigid inner tube sur-
rounded by a contractile sheath, a tail spike, and a baseplate complex. Contraction of the sheath
propels the inner tube and tail spike into target cells and delivers effector proteins that elicit a
host response. While other CISs typically form individual syringe-like structures, MACs are the
first example of a CIS forming arrays of about 100 CIS structures arranged in a star conformation
(Figure 4a,b).

Since the discovery ofMACs, related CISs have been discovered that also formmulti-CIS com-
plexes (13). In addition to stimulatingmetamorphosis, closely related structures were found tome-
diate interactions between microbes and amoebae, insects, and potentially humans (13, 132, 159,
172).While a number of pathogenic bacteria use type VI secretion systems to inject protein toxins
into target cells to cause disease (97), MACs are the first CIS to promote a beneficial microbe-
animal interaction. Such a mechanism of bacteria stimulating metamorphosis is unprecedented
and provides a paradigm shift in our thinking about how microbes stimulate animal development.

While we identifiedMACs as the structures stimulating tubewormmetamorphosis, it remained
unclear howMACs influencedHydroides’ metamorphic transition.Recently,we used cryo–electron
tomography (cryo-ET) to directly observe a protein effector loaded within the inner tube lu-
men of the MAC’s syringe-like needle (36). We identified the protein effector and named it
metamorphosis-inducing factor 1 (Mif1) because it is sufficient for stimulating tubeworm meta-
morphosis when delivered to tubeworm larvae by electroporation. AlthoughMif1 is the first iden-
tified bacterial protein that stimulatesmetamorphosis,we do not yet know itsmechanism of action,
and its protein sequence possesses no identifiable domains that could yield clues to its function.
However, Mif1 still provides an intriguing entry point into understanding how a bacterial factor,
particularly a proteinaceous factor, stimulates metamorphosis.
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It is unclear how bacteria benefit from producing MACs. One clue is a second protein effector
thatMACs deliver to target cells in vitro (130).Paradoxically, this second effector,whichwe termed
Pseudoalteromonas nuclease effector 1 (Pne1), is toxic to insect and murine cells in vitro but had no
observable effect onHydroides larvae. Reciprocally, we did not observe an effect of Mif1 on the cell
lines in vitro. We currently hypothesize that the two MAC effectors target different organisms
to promote the P. luteoviolacea lifestyle as a free-living yet host-associated marine bacterium. A
recent study exploring the distribution and diversity of MACs’ structural gene homologs in the
marine environment found them to be more abundant in biofilms than in the water column (28),
suggesting that MACs may benefit surface-attached bacteria by facilitating their interaction with
animal larvae while deterring potential biofilm-eating predators like protozoans (99).

DIFFERENT BACTERIAL FACTORS STIMULATE METAMORPHOSIS
IN THE SAME ANIMAL

A surprising finding derived from studyingHydroides is that chemically different factors from bac-
teriamay be able to stimulate the same developmental process ofmetamorphosis.Diverse bacterial
strains that are able to induce Hydroides settlement have been isolated (83, 158), which shows that
the inductive chemical(s) can be produced by many different bacterial families and classes. For
instance, Loktanella hongkongensis, a marine alphaproteobacterium that induces Hydroides meta-
morphosis, does not possess genes that produce MACs (84). Instead, it has been suggested that
L.hongkongensis produces low-molecular-weight compounds associatedwith the exopolymericma-
trix of the bacterial cells that are able to induce Hydroides metamorphosis (82).

Hydroidesmetamorphosis is also triggered by taxonomically distant strains of Cellulophaga lytica
(Flavobacteriia class), and the gram-positive bacteria Bacillus aquimaris and Staphylococcus warneri
(Bacilli class) (45). Freckelton and colleagues (44) revealed that the gene assemblies for MACs
are lacking in these bacteria, but they observed the presence of inductive extracellular vesicles
from C. lytica, B. aquimaris, and S. warneri. Employing a biochemical structure-function approach,
they recently showed that lipopolysaccharide extracted from C. lytica cultures is able to induce
Hydroides metamorphosis (44). Interestingly, extracellular vesicles from both gram-positive and
gram-negative species have been found to provide a mechanism for cell-to-cell interaction, in-
cluding the transfer of DNA, protein, and small signaling molecules (11, 27). Thus, membrane
vesicles are potentially a widespread mechanism of interaction between biofilm bacteria and in-
vertebrate larvae.

In addition to proteinaceous MACs, small-molecule compounds have been demonstrated to
stimulate Hydroides metamorphosis. Hung et al. (69) described two lipid moieties isolated from a
mixed bacterial biofilm that also induce metamorphosis. These two compounds were a long-chain
fatty acid (12-octadecenoic acid) and a hydrocarbon (6,9-heptadecadiene) that induced Hydroides
larval settlement to a similar extent as natural biofilms. These two compounds are quite distinct
from proteinaceous MACs, and it is currently unclear whether each bacterial factor stimulates
metamorphosis through the same pathway. Thus, inducers that have been discovered indicate that
there are a variety of modes that bacteria can use to stimulate their animal hosts, demonstrating
that diverse mechanisms of interaction can promote the same developmental process.

BACTERIA-INDUCED METAMORPHOSIS OF CNIDARIANS; CORALS
AND HYDRACTINIA

Corals

Many cnidarians have free-swimming planula larvae that settle and develop into sessile polyps.
Larval settlement and metamorphosis of reef-building corals are of particular interest due to the
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decline of coral reef ecosystems.Understanding how bacteria stimulate coralmetamorphosis could
have implications for reef restoration through the recruitment of larvae and survival of newly
metamorphosed juveniles. Both bacteria and crustose coralline algae (CCA), which are encrust-
ing red algae, have been described as natural inducers of coral metamorphosis (51). Morse and
colleagues (104) were the first to demonstrate that CCA induce agariciid coral metamorphosis.
Further studies went on to characterize the morphogen as an insoluble CCA-associated cell wall
fraction that appears to be a large polysaccharide (105, 106). Around the same time, a hypothesis
arose that CCA-associated bacteria could contribute to the inductive properties of CCA (73).This
hypothesis relied on the premise that CCA host distinct microbial assemblages, which was sup-
ported by a recent study that characterized CCA-associated bacteria using molecular techniques
(145).While multiple studies have attempted to determine whether it is the algae or bacteria that
stimulate metamorphosis, a consensus in the field has not been reached (47, 154).

Approaches using natural heterogeneous (104, 163) or isolated single-species biofilms (112,
138, 156) demonstrated that bacteria alone are sufficient to induce metamorphosis in corals. Age,
location, and depth of the biofilm are considered important factors for natural biofilm-induced
coral metamorphosis (163). Systematic isolation and culturing of bacteria from inductive substrata
(i.e., CCA, coral host, and biofilmed slides), and subsequent laboratory assays utilizing single-
species biofilms, have led to the identification of several bacteria that can induce metamorphosis
in broadcasting and brooding coral larvae (112, 138, 156). Interestingly, the ability of diverse bac-
teria to stimulate coral metamorphosis suggests that taxonomy and the source of isolation are not
indicative of a bacterium’s capacity for stimulating coral metamorphosis (156).

To date, there is one well-characterized chemical compound, 2,3,4,5-tetrabromopyrrole
(TBP), from bacteria that is capable of stimulating coral metamorphosis. Negri and colleagues
(112) first identified a single bacterium, Pseudoalteromonas sp. A3, that when grown in a monospe-
cific biofilm elicits a strong but mixed coral larval response. Some larvae would undergo partial
metamorphosis (metamorphosis but unattached), while others fully attached and metamorphosed.
Characterization of inductive and phylogenetically related Pseudoalteromonas sp. A3, J010 (155),
and PS5 (146) strains identified TBP as an inducer of metamorphosis in globally distributed
species of coral larvae. Exposure of the larvae to the extracted chemical cue recapitulated sim-
ilar levels of attached and unattached metamorphosis in multiple species of coral larvae when
compared to the monospecific biofilm metamorphosis assays (146, 155). Genetic and biochemical
analyses identified the bmp biosynthetic gene cluster (bmp1–10) as being responsible for the pro-
duction of a suite of brominated natural products, including TBP (1). El Gamal and colleagues
(35) demonstrated that only genes bmp1–4 are necessary to produce TBP in vitro, and further,
Pseudoalteromonas strains A3, J010, PS5, and A757 have a version of the bmp cluster that produces
TBP almost exclusively.

While it was shown that extracted TBP is sufficient to induce metamorphosis, the significance
of TBP as an ecologically relevant metamorphosis-inducing factor remains debated because TBP
stimulates some coral larvae to undergo metamorphosis without settlement and attachment. Fur-
thermore, Tebben and colleagues argue that the predicted abundance of pseudoalteromonads on
the surface of CCA would not be sufficient to induce metamorphosis in the environment (154).
Despite the debate, one study utilized TBP extract in comparison with CCA to attempt to differ-
entiate the molecular processes of attachment and metamorphosis (143); however, the underlying
molecular mechanism by which TBP can induce metamorphosis in corals has not been character-
ized. A potential lead from a study utilizing mammalian microsomes demonstrated that ryanodine
receptors bind TBP, which triggers Ca2+ efflux (176). Understanding the breadth of molecular
triggers capable of initiating metamorphosis in corals may enable us to more effectively harness
them for potential restoration uses.
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While pseudoalteromonads have gained considerable attention for their role in coral meta-
morphosis, there are other isolates of bacteria capable of inducing metamorphosis whose
genomes do not appear to encode characterized inducers of metamorphosis, e.g., TBP (138, 156).
Of note, the biofilms of Thalassamonas agarivorans, a gammaproteobacterium, evoked a strong
metamorphic effect in the brooding coral Pocillopora damicornis (156). Cell cultures and filtrates of
an Alphaproteobacteria strain, Roseivivax sp. 46E8, induced metamorphosis of the brooding coral
Porites astreoides, albeit at a lower rate than that of CCA or natural biofilms (138). These findings
suggest that bacteria produce other factors besides TBP that can induce coral metamorphosis or
may synthesize TBP using a mechanism that has yet to be determined. Further, there could be
synergistic effects of multiple bacterial factors resulting in the metamorphosis of coral larvae in
the environment (138).

The current state of research in bacteria-stimulated coral metamorphosis could benefit
from a bilateral approach that aims to understand both the bacterial factors responsible for
inducing metamorphosis and the cellular responses that mediate metamorphosis in the coral
larvae. Recent advancements in high-throughput sequencing of coral genes have identified gene
products with potential for surface/biofilm recognition (57, 102, 143, 148). On the bacterial side,
a comprehensive approach for testing bacteria and identifying their factors that are described
to induce metamorphosis in other organisms may reveal universal underlying mechanisms for
bacteria-stimulated metamorphosis. Despite the importance of corals as animals of ecological
concern, the limitation of coral spawning events and lack of molecular tools make closely related
model organisms (e.g., Hydractinia) of key importance for the elucidation of this bacteria-animal
interaction.

Hydractinia

The colonial marine hydroid Hydractinia is a versatile, informative cnidarian model. Hydractinia
is a member of Cnidaria—multicellular animals possessing true tissues that lie at the base of the
Metazoa (43).Members of theHydractinia genus (H. echinata andH. symbiolongicarpus) have served
as important models to understand the origins of cell and tissue differentiation, histocompatibility,
and development (43), but they have also provided important, early insights into the phenomenon
of bacteria-stimulated animal metamorphosis.

The first account of bacteria inducing metamorphosis of Hydractinia was published in 1969 by
Müller (107). During these pioneering studies, Müller provided evidence that only some bacteria
produce cues that trigger Hydractinia metamorphosis through direct interaction and only under
specific growth conditions (108). Enrichments of bacterial communities from shells inhabited by
hermit crabs, the natural substrate colonized by some Hydractinia species, were more effective at
inducing metamorphosis when harvested closer to stationary phase. From tests with isolated bac-
terial strains,Müller determined that the inductive capabilities depended on the type of bacterium,
growth media, growth phase, density, and duration of exposure. In later studies, bacteria belong-
ing to the genera Alteromonas and Pseudoalteromonas were found to induce the metamorphosis of
larvae ofHydractinia (50, 109).However, in contrast toMüller’s observations, some studies suggest
that most of the bacteria tested have inductive metamorphosis capabilities, including Escherichia
coli (80).

In a recent study, the microbiome of H. echinata was characterized for the first time. Using
16S rRNA deep sequencing as well as a culture-dependent approach, Guo and colleagues (50) in-
vestigated the microbial secondary metabolite repertoire and the settlement and metamorphosis-
inducing activity of H. echinata–associated strains. Six isolated strains were able to induce rapid
settlement and metamorphosis (within 24 h); two Pseudoalteromonas strains exhibited the strongest
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induction capabilities. Another ten strains could induce slower settlement in 60–80% of lar-
vae within 48 h. Additionally, they reported four Pseudoalteromonas strains that caused lysis of
larvae.

Consistent with a previous study by Leitz & Wagner (88, 92), who biochemically identified
a lipophilic fraction obtained from the marine bacterium Alteromonas espejiana, Guo et al. (49)
recently found that bacterial (lyso)phospholipids and polysaccharides from Pseudoalteromonas sp.
P1–9 and Alcaligenes faecalis stimulate Hydractinia metamorphosis. Interestingly, exposure of Hy-
dractinia to both phospholipids and polysaccharides induced higher rates of metamorphosis than
either type of compound on its own, which the authors hypothesize could provide important en-
vironmental context for Hydractinia larvae to select an optimal habitat.

Anecdotal observations suggest thatHydractinia larvae will not metamorphose in the absence of
bacteria (107, 108). However, the degree to which Hydractinia larvae rely on bacteria to complete
their life cycle has not been explicitly addressed experimentally. Results of such a study could help
determine whether bacteria play an essential role in the metamorphosis of Hydractinia.

COSTS AND BENEFITS OF STIMULATING ANIMAL METAMORPHOSIS

The interactions between bacteria and animals during bacteria-stimulated metamorphosis are
not intimate, long-term symbioses. Rather, these interactions occur transiently as an animal larva
searches for a location to settle and metamorphose. It is interesting to contemplate what evolu-
tionary pressures ledmarine invertebrate larvae to evolve a reliance on bacterial cues for metamor-
phosis.While these interactionsmay be circumstantial, theremay be significant selective pressures
that promote this interaction for one or both partners.

It is currently debated whether a biphasic (larva and adult) life history was an ancestral char-
acteristic of the first animals or it arose multiple times among major animal clades (53, 65, 113,
119, 149). Similarly, it is unknown whether the ability to undergo metamorphosis in response
to bacteria was an ancestral characteristic of the first animals or whether it is a convergent trait
among diverse metazoans with a biphasic life cycle. Nonetheless, the widespread nature of this
phenomenon suggests that a strong selective pressure exists to evolve and maintain this microbe-
animal interaction.

As bottom-dwelling and often immobile adults, marine invertebrates may benefit from using
bacteria as a metamorphosis cue. Because metamorphosis is an irreversible process, the decisions
of where and when to undergo metamorphosis are critical for survival of the juvenile and adult
(71). Certain bacteria may serve as proxies for specific environmental conditions and a suitable
habitat, thus avoiding a switch to the benthic lifestyle in an unfavorable environment (5, 52). This
response may be especially important in aquatic environments where biotic and abiotic condi-
tions are constantly changing.Nonetheless, it is important to note that all underwater surfaces are
coated with dense microbial biofilms, and thus, animal larvae must interact with biofilms to set-
tle and metamorphose on the seafloor, i.e., to become bottom-dwelling organisms. It is, therefore,
reasonable to expect that larvae actively select attachment sites with certain biofilm characteristics.

It is currently unknown whether bacteria benefit or are harmed from stimulating animal meta-
morphosis. Many of the bacteria that induce animal metamorphosis frequently associate with eu-
karyotes, for example, by accumulating on surfaces of invertebrates as epibiotic biofilms (34, 62,
110). Surface-attached bacteria tend to be larger, with a higher proportion of cells with higher
metabolic activity than free-living bacteria (24). Because these bacteria produce exoenzymes that
could help them utilize animal-derived molecules for nutrition, it is possible that inducing eu-
karyotic development allows specific bacteria to rapidly colonize a valuable niche, i.e., the settled
animal.
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Interestingly, antimicrobial metabolites are produced by many bacteria associated with ma-
rine invertebrates, for example, several members of Pseudoalteromonas (15, 62, 117). These
properties—inducing metamorphosis, producing antimicrobial metabolites, association with
macroorganisms—may, in fact, be interconnected. An intriguing hypothesis is that an evolution-
ary arms race is imposed among sessile invertebrates: As larvae, they must locate and colonize a
surface in order to metamorphose; yet as adults they must keep their own surfaces clean and ward
off settlement of other larvae. The association with the bioactive bacteria might therefore offer a
favorable trade-off. The bacteria that promote settlement/metamorphosis might colonize a valu-
able niche, the adult animal, through which they can obtain nutrients via exoenzyme production.
But they also produce antimicrobials that protect their animal niche from being colonized by other
bacteria. Further characterization of marine invertebrate microbiomes could help illuminate this
hypothesis.

Alternatively, it is possible that the stimulation of animal metamorphosis does not directly
benefit the bacterium. Because surfaces in the ocean are often limiting, the bacterial partner might
be influencing marine animal metamorphosis through by-product cooperation, i.e., cooperation
as an incidental consequence of selfish action (135). Specifically, bacteria unavoidably produce
publicly usable resources (e.g., toxins and antibiotics) (135, 136) that become available to their local
community and might be interpreted by the animal larvae as a cue to an appropriate environment
for settling down. By-product mutualism might not seem like a typical form of cooperation, since
the cooperative phenotype carries no cost and because the trait need not evolve in the context of
the interaction (134). Therefore, it can be difficult to resolve by-product cooperation into clear
mechanisms.

CURRENT AND FUTURE CHALLENGES

The Biological Nature of Factors Inducing Metamorphosis

Identifying the chemical nature of bacterial factors that stimulate animal metamorphosis is a
compelling endeavor. Biofilms are abundant sources of chemical cues (5, 147), and we have only
scratched the surface when it comes to identifying specific metamorphosis cues, deciphering their
chemical nature, and determining their ecological roles within natural biofilm communities. A
few described inducers of invertebrate settlement are primary metabolites such as carbohydrates
or peptides that are water-soluble (147). For example, a soluble proteinaceous factor and amino
acids were found to stimulate oyster metamorphosis (128, 177). Water-soluble primary metabo-
lites may function as stimulatory factors, because they are also used as components of internal
signal transduction systems (127). Thus, the receptor machinery for responding to similar but
externally derived signals is already present in the larval animal. Additionally, some bacteria are
able to inject stimulatory factors, like Mif1, into larvae and stimulate metamorphosis (36). The
mode of delivery and chemical properties of bacterial factors that stimulate metamorphosis are
clearly diverse and likely have significant ecological implications for both microbe and animal.
Our understanding of the role that bacteria and biofilms play in larval attachment and metamor-
phosis would be substantially enhanced if the chemical cues originating from natural biofilms were
characterized.

Animal Sensing and Response Machinery

How animals directly sense bacterial factors that stimulate metamorphosis is currently unknown
for any animal. However, there are chemicals known to artificially stimulate metamorphosis, and
a few eukaryotic signal transduction pathways that mediate metamorphosis have been identified.
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Excess concentrations of potassium or cesium ions, or perturbations of potassium channels, have
been shown to induce metamorphosis in several animal species, and these ions have been used
as tools to study eukaryotic pathways that mediate metamorphosis (108, 109, 118, 175). In com-
paring the metamorphosis of Hydractinia induced by chemical versus bacterial factors, Seipp et al.
(137) showed that these processes occur in a similar manner. However, the larvae settled ear-
lier when induced with Pseudoalteromonas espejiana compared to exposure of cesium ions. More-
over, the apoptotic process of the cells on the anterior end also occurs earlier in the presence of
P. espejiana bacteria.

The protein kinase C (PKC) pathway has been heavily implicated in metamorphosis signaling
in a variety of marine organisms includingH. echinata, the sea urchin Strongylocentrotus purpuratus,
the barnacle Balanus amphitrite, multiple Red Sea coral planulae (Heteroxenia fuscescens, Xenia
umbellata, Dendronephthya hemprichii, Litophyton arboretum, Parerythropodium fulvum fulvum, and
Stylophora pistillata), and the annelid Capitella sp. 1 (3, 10, 58, 89, 171). PKC was first implicated
in the metamorphosis of H. echinata by Leitz & Klingmann et al. (89), who were able to stimulate
PKC and the metamorphosis signaling cascade using diacylglycerol and inhibit metamorphosis
using kinase inhibitors acting on PKC. PKC is a lipid-sensing kinase, and Leitz et al. (90, 91) have
additionally implicated several lipids regulating metamorphosis such as lysophosphatidylcholine
and arachidonic acid, a known PKC-sensitizing lipid. While it is unclear exactly how universal
the PKC pathway is in regulating metamorphosis in marine invertebrates, even the distantly
related insect Aedes aegypti metamorphic factor juvenile hormone was demonstrated to stimulate
its metamorphic induction through the PKC pathway (96).

Studies have implicated other signaling systems in addition to PKC in the induction of meta-
morphosis. The MAPK signaling pathway, which can be activated by various upstream signals,
including PKC, has also been demonstrated to be necessary for metamorphosis through the use
of pharmacological inhibitors in a sponge (Amphimedon queenslandica), an annelid (Hydroides),
and an ascidian (Ciona intestinalis) (17, 139, 157, 162). An alternative signaling pathway has been
shown in the annelid Phragmatopoma californica and musselMytilus coruscus, where the alterations
of cAMP levels have been shown to contribute to metamorphosis induction (72, 95). Additionally,
in M. coruscus, both inhibitors and activators of cAMP induced metamorphosis, implying that
there is a delicate balance required for cAMP to regulate metamorphosis.

How multiple eukaryotic signaling systems evolved to orchestrate metamorphosis in response
to bacteria is unclear. An intriguing possibility is that the ability to sense bacteria and proceed with
metamorphosis is linked to innate immunity. In a few instances, larval competency is correlated
with the expression of genes related to innate immunity, suggesting a possible role for Toll-like
receptors or other sensing machinery of the innate immune system (26, 129).How diverse animals
evolved the ability to recognize bacterial factors and subsequently signal the induction of meta-
morphosis has been pondered by scientists for decades and is a clear grand challenge for future
investigations.

Bacteria Inhibiting Metamorphosis

Many studies have shown that in addition to stimulating metamorphosis, microbial biofilms in-
hibit settlement and metamorphosis of a suite of fouling macroorganisms, such as tubeworms (30,
61), bryozoans (22, 31, 126), barnacles (61, 64, 86, 98), and ascidians (64), when in the presence
of an inductive cue or condition. Despite the presence of inductive bacteria, antifouling prop-
erties of certain bacteria can render experimentally mixed biofilms inhibitive (30). This finding
suggests that the presence of certain inductive cues is not sufficient to overcome inhibitory factors
in laboratory settings. Understanding the microbial ecology of natural heterogeneous biofilms
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containing both inducers and inhibitors will help us better understand the influence of microbes
on larval fate outside of laboratory conditions.

Despite uncertainty of the effects of themicroorganismswhen outside of laboratory conditions,
the need for green antifoulant solutions hasmotivated the identification of antifouling factors from
inhibitive bacteria (reviewed in 29, 123). Biochemical characterizations revealed that antifouling
factors include small molecules (9, 25, 94, 169, 170) and a protease (32) that have been successfully
embedded in paint and resins while retaining their inhibitory capabilities over some time (63, 174).

Applied Potential of Studying How Bacteria Stimulate Animal Metamorphosis

Animal metamorphosis in response to bacteria has several applied implications. For example,
knowledge of bacterial factors that stimulate metamorphosis can inform probiotic treatments that
promote the recruitment of new animals to degraded benthic ecosystems such as coral reefs (59,
120). This knowledge could also improve the husbandry protocols for aquaculture animals for
commercial use, such as oysters, that may depend on our knowledge of specific bacteria that stimu-
late metamorphosis in captivity (122). In addition, knowledge of the bacterial factors that stimulate
metamorphosis could inform new strategies for preventing biofouling, for example, through em-
bedding of antifouling compounds within paints for boat hull surfaces. Finally, bacteria-stimulated
metamorphosis is a widespread example of a beneficial host-microbe interaction, yet it is a largely
unexplored space for mining of biomedical and biotechnology applications. For example, based
on our discovery of MACs, we identified a new and previously undescribed family of CISs that are
produced by Bacteroidales bacteria commonly found in the human gut (132). Such systems inject
contents into diverse animal cell types and could someday be modified as nanometer-scale devices
for the delivery of specific proteins into target cells (130).

CONCLUSION

As we learn more about the astonishing ubiquity and diversity encompassing the microbial world
and the vast range of bacteria-animal interactions, it has become clear that microbes are often
essential for animal development. Although nearly all animals have stable associations with bac-
teria, investigating how these interactions shape animal development has been difficult, partially
because of a dearth of tractable and phylogenetically relevant model systems. Only a few inves-
tigations of these interactions have unraveled the specific mechanisms by which environmental
bacteria influence the life cycles of animals. Studying mechanisms by which environmental bac-
teria stimulate the metamorphosis of diverse animals may begin to provide explanations of why
stable associations with bacteria, once considered anathema to human health, are indispensable
for animals. Thus, there is still a great need to interrogate the molecular dialogue that mediates
microbe-animal interactions in diverse contexts, such as the stimulation of animal metamorphosis
by bacteria.

SUMMARY POINTS

1. Bacteria stimulate the metamorphosis of phylogenetically distant animals like corals,
tubeworms, and urchins.

2. The stimulation of metamorphosis by bacteria is an example of bacteria promoting ani-
mal development.
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3. Bacteria-stimulated metamorphosis is critical for coral reef formation, aquaculture, and
biofouling.

4. Bacteria stimulate animal metamorphosis by producing stimulatory factors that can be
biochemically very different (e.g., protein, lipid, diffusible small molecules).

5. Bacteria can stimulate metamorphosis by producing phage-tail-like structures that inject
a stimulatory protein.

6. For most marine animals that undergo metamorphosis, we still do not know the identity
of bacterial factors that stimulate metamorphosis, their mechanisms of action, or how
the animal senses these factors.
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