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Abstract
Speech enhancement techniques that use a generative adver-
sarial network (GAN) can effectively suppress noise while al-
lowing models to be trained end-to-end. However, such tech-
niques directly operate on time-domain waveforms, which are
often highly-dimensional and require extensive computation.
This paper proposes a novel GAN-based speech enhancement
method, referred to as S-ForkGAN, that operates on log-power
spectra rather than on time-domain speech waveforms, and uses
a forked GAN structure to extract both speech and noise infor-
mation. By operating on log-power spectra, one can seamlessly
include conventional spectral subtraction techniques, and the
parameter space typically has a lower dimension. The perfor-
mance of S-ForkGAN is assessed for automatic speech recogni-
tion (ASR) using the TIMIT data set and a wide range of noise
conditions. It is shown that S-ForkGAN outperforms existing
GAN-based techniques and that it has a lower complexity.
Index Terms: speech enhancement, generative adversarial net-
work, log-power spectra.

1. Introduction
Speech enhancement aims to improve the intelligibility and per-
ceptual quality of degraded speech signals that are affected by
noise. Speech enhancement is an important component in Au-
tomatic Speech Recognition (ASR) systems and it is used ex-
tensively in many applications, including wireless mobile com-
munication systems and hearing aids. Speech enhancement re-
search [1, 2] typically focuses on improving perception metrics,
which are “meta” objects in a speech system. It is our aim to
use the phone error rate (PER) at the output of the ASR system
to quantify the performance of speech enhancement techniques.

Traditional speech enhancement techniques include Wiener
filters [3], spectral subtraction [4], statistical learning meth-
ods [5] and non-negative matrix factorization [6]. Recent ad-
vances in deep learning have contributed to better speech en-
hancement algorithms. In particular, algorithms that use a deep
neural network (DNN) have been shown to achieve excellent
speech enhancement performance due to their powerful non-
linear function approximation capabilities [7], which are ap-
plied to recover noise-corrupted speech [2, 8, 9]. For exam-
ple, in [9], a DNN is used as a non-linear regression function,
and the objective is to minimize the distance between the clean
and enhanced speech signals using a mean square error (MSE)
loss metric during the training stage. The performance of DNN-
based systems is further improved by applying global variance
equalization and noise-aware training strategies. In [2], a DNN-

based architecture is proposed that uses a multi-objective learn-
ing and ensemble (MOLE) framework, and it is shown that
one can improve the performance by combining two compact
DNNs via boosting. Such DNN-based methods are commonly
referred to as feature-mapping methods. Other speech enhance-
ment methods are based on mask-learning [10, 11, 12], where a
DNN is used to estimate the ideal ratio mask or the ideal binary
mask based on the noisy input features. The mask is used to
filter noisy speech signals and recover clean speech signals.

A generative adversarial network (GAN), introduced
in [13], uses a DNN to learn synthetic images without any su-
pervision signals. Similarly, adversarial learning can be used
to minimize the discrepancy between the distributions of clean
features and enhanced features. In [1], a speech enhancement
generative adversarial network (SEGAN) was introduced which
trains the model directly upon receiving raw audio data in an
end-to-end fashion, and it was shown that significant perfor-
mance gains can be obtained in terms of perceptual speech qual-
ity metrics. In [14], SEGAN’s auto-encoder was replaced by a
standard DNN, and differences in performance were quantified
using L1 and L2 norms. In [15], a GAN-based de-reverberation
front-end for an ASR system was investigated, and the perfor-
mance was studied for different DNN architectures.

Currently, most state-of-the-art ASR systems use spectral
features as input rather than time-domain waveforms. Common
techniques to extract spectral features include the use of filter
banks. In [16], a GAN-based algorithm was proposed that di-
rectly operates on spectral features instead of waveforms, and
as such, post-ASR modules do not need to perform extra fea-
ture extraction operations.

In this paper, we propose a novel speech enhancement
method that operates on the log-power spectra (LPS) of noisy
speech waveforms and use a forked GAN structure to extract
both speech and noise information. The proposed method, re-
ferred to as S-ForkGAN, simultaneously extracts both speech
and noise information to aid the reconstruction of the speech
signals. This concept is motivated in part by recent work on
a time-domain forked GAN framework for speech and noise
extraction, which achieved significant performance gains rela-
tive to prior GAN-based methods [17]. It will be shown that
spectral processing has several significant advantages relative
to time-domain processing. The performance of the proposed
S-ForkGAN method will be assessed in the scope of automatic
speech recognition (ASR) using the TIMIT data set [18] and a
wide range of noise conditions.
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2. Basic Concepts and Architecture
A general adversarial network (GAN) [13] consists of two neu-
ral networks that compete with each other in a two-player min-
max game, offering the implicit loss function to train the gener-
ator without any supervision. Speech enhancement can be mod-
eled with a GAN-based framework, where a discriminator even-
tually cannot distinguish the distributions of the original and the
enhanced speech signals. The speech enhancement generative
adversarial network (SEGAN) model [1] can be expressed as
a combination of two component networks: 1) a generator net-
work G that tries to learn a distribution Pg(x) of a noisy speech
signal x̃ and a prior input noise variable pz(z). The goal is to
generate the true data distribution Pt(x) to fool the discrimina-
tor; 2) The discriminator network D serves as a binary classi-
fier which aims to determine the probability that a given sample
comes from the real data set rather than from G. A least-squares
GAN (LS-GAN) is used to stabilize training and improve the
quality of the generated samples in the generator in the original
SEGAN concept. A speech enhancement module is to output a
signal x̂ that is as close as possible to the clean speech signal x̃.
The objective functions are given by

LD =
1

2
Ex,x̃∼pdata(x,x̃)[(D(x̃,x)− 1)2] (1)

+
1

2
Ez∼pz(z),x̃∼pdata [D(G(z,x),x)2]

LG =
1

2
Ez∼pz(z),x∼pdata(x)[(D(G(z,x),x)− 1)2] (2)

+ λEz∼pz(z),x̃,x∼pdata
||G(z,x)− x̃||1.

In this paper, we propose a framework that utilizes noise in-
formation to aid speech enhancement. Several previous studies
also showed that noise information is beneficial when using a
deep neural network for speech recognition (noise-aware train-
ing) [19] and for speech enhancement [20]. The basic concept
of the proposed method is to extract spectral features from the
noisy speech signal x and to use two forked GAN networks
to simultaneously extract both speech and noise information
to aid the reconstruction of the speech signals. We refer to
this framework as a spectral forked GAN-based (S-ForkGAN)
framework.

Spectral processing has three major advantages: 1) speech
enhancement can seamlessly interface with a post-ASR system,
since state-of-the-art ASRs widely use acoustic features in the
frequency domain; 2) the input dimensions of the raw time-
domain noisy speech signals are typically much higher than for
the spectral features; and 3) by performing speech enhancement
in the frequency domain, one reinforces ASR robustness.

2.1. Architecture

The proposed S-ForkGAN architecture uses a generator and
a discriminator network as shown in Fig. 1. It takes a noisy
speech signal x as input and extracts its LPS features using a
Fast Fourier transform (FFT). The LPS features are normalized
globally over all training speech samples into a zero mean and
unit variance. The generator consists of two forked GAN de-
coders that simultaneously estimate speech and noise patterns
conditioned on input latent variables. The resulting GAN net-
works are trained with adversarial learning and L1 regression
loss. The noise information that is learned by the extra decoder
can be integrated into the GAN-based framework via spectral
subtraction. Spectral subtraction is as such used to recover the
speech signal by subtracting an estimate of the average noise

spectrum from the noisy signal spectrum. Thus, a spectral do-
main speech enhancement model for an input LPS is achieved
by introducing two auxiliary loss functions that aid in decou-
pling the noise from the source signal: a margin-based loss
component which pushes the speech and noise signals apart,
and a spectral subtraction loss component that combines con-
ventional signal processing spectral subtraction with the neural
network predictions.

The denoising operation is now considered in more detail.
Let the encoding and decoding operation be denoted by Φ(·)
and Ψ(·), respectively. It should be noted that c ∈ Rd is a
latent representation of the noisy speech signal x ∈ Rn, and
s ∈ Rm represents the LPS features, where d < m� n.

Algorithm 1 Denoising Algorithm

Input: Noisy speech signal data set X
Output: Enhanced signal ŝu, v̂u, ∀u ∈ X
for each u ∈ X do

Step 1. su ← LPS (xu);
Step 2. cu ← Φ(su);

Step 3.
(csu, c

v
u)←{CONCAT(wscu, z)|z ∼ N (0, I)},

{CONCAT(wvcu, z)|z ∼ N (0, I)};
Step 4. (ŝ, v̂)← Ψs(csu),Ψv(cvu) ;

end for

The computational procedure in the generator is outlined in
Algorithm 1. In Step 1, the LPS features are extracted as the
input of encoder using an FFT. Then, in Step 2, the encoder
function Φ(·) extracts a latent vector c from the received noisy
speech signal s̃. In Step 3, the latent vector c is decoupled using
a linear transformation to extract two latent features csu and cvu
for the decoder, where csu encodes the clean speech information
and cvu encodes the noise information. Each input of the de-
coder splices an encoder latent representation c with a random
vector z sampled from a normal distributionN (0, I). In Step 4,
the speech decoder Ψs(·) and the noise decoder Ψv(·) aim to
generate the speech signal and the additive noise signal, respec-
tively. Both decoders have the same architecture. The generator
G is an end-to-end module that performs convolutional opera-
tions, and both decoder layers have the inverse structure of the
encoder, with the same configurations. Note that each layer in-
put is concatenated with skip connections from the encoder. The
resulting outputs are the clean speech prediction ŝ ∈ Rm, and
the noise prediction v̂ ∈ Rm. In the training phase, the objec-
tive is to minimize the difference between the enhanced signal
pair (ŝ, v̂) and the ground truth signal pair (s̃, ṽ) by optimizing
the encoder and decoder functions.

2.2. Loss Functions

Additional training objectives that are based on the characteris-
tics of the proposed architecture are as follows:

Margin-based Loss. For S-ForkGAN to operate well, it is im-
portant to maximize the distance between the speech signal and
the noise signal. A max-margin-based loss function is proposed
to regularize the loss of the model, and to ensure that the dis-
tance between the embedding of the clean speech signal and the
noise speech signal is larger than some pre-defined margin. As
such, the loss function can make the generated speech and noise
as dissimilar as possible. A suitable function is to use the Eu-
clidean distance between the two embeddings in Step 3 of Al-
gorithm 1, which is defined as D = 1

d
Σ||cv − cs||2. Note that

a normalization factor on the embeddings is added to stabilize
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Figure 1: Proposed S-ForkGAN architecture which consists of forked GAN networks for simultaneous speech enhancement and noise
identification.

training, where cv ← cv/||cv||2, cs ← cs/||cs||2. The loss
for each pair of clean speech embedding and noise embedding
is thus:

Lmargin = Ex∼pdata max(0,∆−D(s)), (3)

where ∆ denotes the margin hyper-parameter.

Spectral Subtraction Loss. Spectral subtraction is one of the
traditional algorithms for enhancing a single speech channel.
Since the noisy signal xt = x̃t+vt is the addition of the desired
signal value x̃t and the noise value vt at time t, the standard
spectral subtraction is defined in the frequency domain as:

X̃(jω) = X(jω)− V (jω) (4)

where X(jω), X̃(jω) and V (jω) are Fourier transforms of xt,
x̃t, vt, respectively. As shown in (4), the accuracy of spec-
tral subtraction heavily depends on accurate noise spectrum es-
timation. Unlike conventional noise spectrum estimation, S-
ForkGAN uses a neural network as a function estimator to eval-
uate the noise signal. Since the S-ForkGAN directly operates
on the spectral domain features, a standard spectral subtraction
loss term is incorporated into the proposed training objectives.
The noise reduction term Lreduction can be derived by subtracting
the noise prediction term from the generator, i.e.,

Lreduction = Es∼pdata ||s− v̂ − s̃||1 (5)
The generator loss LG is the weighted sum of the margin-

based and spectral-subtraction loss factors, which can be written
as

LG =
1

2
Ez∼pz(z),s∼pdata(s)[(D(G(z, s), s)− 1)2] (6)

+ λEz∼pz(z),s̃,s∼pdata
||G(z, s)− s̃||1

+ αLmargin + βLreduction

where α and β denote coefficients that control the strength of
each auxiliary loss function.

3. Experimental Setup
The performance of the proposed S-ForkGAN method is evalu-
ated using extensive simulations.

Data Setup. The data set for the experiments is generated
from two sources: the DARPA TIMIT corpus [18] is used for
clean speech references, whereas the noise is extracted from
the NOISEX-92 corpus [21]. The TIMIT corpus includes eight
major American-English dialects recorded from 630 speakers,
each reading ten phonetically rich sentences, and this corpus
is partitioned into test and training subsets. The training set in-
cludes 4620 sentences; 192 sentences are selected for the testing
set. The NOISEX-92 corpus includes 15 different noise types,
ranging from machinery noise to machine gun noise. For the
training set, a randomly-selected noise sound from NOISEX-92

is added to every silenced-added segment with a signal-to-noise
ratio (SNR) of -5 dB, 0 dB, 5 dB and 10 dB. The test set was
generated by adding noise from the NOISEX-92 corpus, using
the same settings as the training set.

S-ForkGAN Setup. The proposed technique and architec-
ture can be summarized as follows: the model is trained for
20 epochs with the RMSprop [22] method. It operates directly
on spectral domain features, LPS, instead of on raw audio, and
it aims to learn a mapping from the LPS feature input to the
LPS feature output. The input and target LPS features are nor-
malized by using zero mean and unit variance, respectively. The
input feature contains a context window of 11 frames (+−5), thus
it is a 2827-to-257 mapping relation. Further experiments with
ForkGAN use exactly the same settings [17]. In S-ForkGAN,
the shared encoder consists of 11 one-dimensional strided con-
volutional layers of filter width-31 and stride length 2. The
number of filters per convolutional layer increases so that the
depth increases as the width gets shorter. The resulting dimen-
sions per layer in terms of the number of samples times the
number of feature maps is 2827 × 1, 1414 × 16, 707 × 32,
354× 32, 177× 64, 89× 64, 45× 128, 23× 128, 12× 256,
6× 256, 3× 512 and 2× 1024. A flattening operation is used
for converting a 2× 1024 vector to two length-2048 vectors via
fully-connected layers. After that two encoded latent variables
are obtained, which are used for speech and noise respectively.
Also, the margin-based loss is calculated by these two vectors.
The two encoded latent vectors are concatenated with two noise
samples, which are from an a prior 2 × 1024-dimensional nor-
mal distribution N (0, I). The concatenated vectors are the in-
put of each decoder. The network parameters of the decoder
are symmetric to the encoder. The discriminator also utilizes a
one-dimensional convolution similar to the generator’s encod-
ing stage and is adapted to behave as a classification network.

Baseline Setup. Several GAN-based method with different
enhancement networks are used as baseline systems, e.g., a
DNN and long short-term memory (LSTM). Note that GAN-
DNN and GAN-LSTM were originally used for speech de-
reverberation; they are adjusted here for speech enhancement.
The setup is similar to [15]. If the generator is an auto-encoder,
the suffix AE is used.

GAN-DNN. The feed-forward DNN includes four hidden lay-
ers, each of which contains 1024 ReLU neurons. The input
feature consists of a stacked 11-frame LPS feature. The mode
is trained for 20 epochs using the learning rate 0.001 with a
mini-batch size of length-8. Batch normalization is performed
for this model.

GAN-LSTM. Instead of using a plain-vanilla LSTM, an LSTM
with recurrent projection layer (LSTMP) [23] was adopted here.
The LSTM includes four LSTMP layers followed by a linear
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output layer. Each LSTMP layer has 760 memory cells and 257
projection units and the input to the LSTM is a single acoustic
frame with 257-dimensional LPS features. The learning rate
was set to 3.0 · 10−4 and the model was trained with eight full-
length utterances parallel processing.

GAN-AE. The setup for GAN-AE is similar to S-ForkGAN.
The only difference is that the generator is an auto-encoder ar-
chitecture with the same configuration as the proposed method,
using one decoder to generate clean speech.

ASR Setup. A Deep Neural Network-Hidden Markov Model
(DNN-HMM) acoustic model is developed to evaluate the en-
hanced LPS features. A Gaussian Mixture Model-Hidden
Markov Model(GMM-HMM) is first trained to obtain senones
(tied tri-phone states) and the corresponding aligned frames for
DNN training. The input feature vectors that are used to train
the GMM-HMM contain 257-dimensional LPS and their first
and second derivatives. The splices of nine frames (four on each
side of the current frame) are projected down to 40-dimensional
vectors by linear discriminant analysis (LDA), together with
maximum likelihood linear transform (MLLT), and then used to
train the GMM-HMM using maximum likelihood estimation.

The LPS features take a context size of 11 frames (+−5), as
the input of the DNN. The DNN topology consists of six hidden
layers, and each layer contains 1, 024 nodes. Since TIMIT is a
small corpus, the DNN acoustic model was first initialized with
stacked restricted Boltzmann machines (RBMs) that were pre-
trained in a greedy layered fashion [24]. After pre-training, all
weights and biases were discriminator-trained by optimizing the
cross-entropy between the target probability, corresponding to
context-dependent HMM states, and the actual soft-max output
with the Back-Propagation (BP) algorithm [25]. The weights
are refined using sequence-discriminative training, state-level
minimum Bayes risk (sMBR).

4. Performance Results
Using the experimental set-up presented in the previous sec-
tion, the acoustic model was trained using clean data, and it
was determined that the phone error rate (PER) on the TIMIT
test set equals 18.0 %. The PER values were determined for
several existing GAN-based speech enhancement approaches.
It can be observed from Table 1 that all methods reduce the
noise and improve the ASR performance. It is shown that GAN-
LSTM achieves better results than GAN-DNN for all SNR val-
ues. For example, a GAN-LSTM reduces the PER from 32.6 %
to 29.4 %. This indicates that LSTMs ability to model long-term
contextual information is essential for speech enhancement.

Table 1: Phone error rate (as a percentage) for S-ForkGAN and
prior methods; the best results for each SNR value are bold-
faced.

SNR -5 dB 0 dB 5 dB 10 dB
LPS w/o SE 87.2 81.3 70.1 56.0

GAN-DNN (LPS) [15] 54.6 48.0 39.4 32.6
GAN-LSTM (LPS) [15] 51.7 42.5 34.8 29.4
GAN-AE (raw audio) [1] 48.6 44.9 35.2 34.4

GAN-AE (LPS) [1] 45.7 38.3 34.1 32.4
ForkGAN [17] 47.1 37.2 33.5 30.4

S-ForkGAN 45.1 37.8 30.5 26.8

The measurements show that GAN-AE with LPS inputs can
further improve the performance, especially for high SNR. In
contrast to GAN-LSTM, the PER drops from 51.7 % to 45.7 %

and from 42.5 % to 38.3 % for an SNR of -5 dB and 0 dB,
respectively. This means that the convolution layers in the
auto-encoder can also provide additional useful information for
speech enhancement. The proposed S-ForkGAN method with
LPS achieved the best performance, which shows the effective-
ness of the additional decoder and two auxiliary loss functions.

Given that S-ForkGAN and GAN-AE are auto-encoder-
based methods, the performance is determined for different in-
put features. The raw audio input is set to be the same as for the
original SEGAN [1], where each chunk of waveform was ex-
tracted with a sliding window of approximately one second of
speech (16,384 samples) every 500 ms. A high-frequency pre-
emphasis filter coefficient of 0.95 was applied to all input sam-
ples during the training and test stages. From Table 1, one can
see that both GAN-AE and S-ForkGAN with LPS features out-
perform systems with raw audio as input. The results show that
directly operating on LPS is more helpful for the ASR tasks.
Note that S-ForkGAN outperforms GAN-AE with respect to
these two features.

To visualize the performance of the GAN-based methods,
a single sentence was selected and mixed with destroyer noise
at 0 dB. The spectrograms for each method are shown in Fig. 2.
The S-ForkGAN and GAN-AE methods are clearly better than
the GAN-DNN and GAN-LSTM methods.

Figure 2: Spectrograms for GAN-DNN, GAN-LSTM, GAN-AE
and the proposed S-ForkGAN method for a sample input mix-
ture with destroyer noise and an SNR of 0 dB.

5. Conclusions
In this paper, a novel GAN-based speech enhancement mod-
ule is proposed, which consists of a dual GAN decoder to cap-
ture both speech and noise patterns. Speech signal extraction
is achieved using a spectral subtraction loss term and a margin-
based loss term to further improve the quality of the enhanced
speech signals. The experiments show that the proposed S-
ForkGAN method outperforms well-known GAN-based speech
enhancement techniques, including GAN-DNN, GAN-LSTM
and GAN-AE (SEGAN). Additional experiments show that
when raw waveforms and LPS were used as inputs, the per-
formance of LPS-based systems is better than waveform-based
systems and that fewer computations are required.
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