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Abstract
Speech enhancement is an essential component in robust au-
tomatic speech recognition (ASR) systems. Most speech en-
hancement methods are nowadays based on neural networks
that use feature-mapping or mask-learning. This paper pro-
poses a novel speech enhancement method that integrates time-
domain feature mapping and mask learning into a unified frame-
work using a Generative Adversarial Network (GAN). The pro-
posed framework processes the received waveform and decou-
ples speech and noise signals, which are fed into two short-
time Fourier transform (STFT) convolution 1-D layers that map
the waveforms to spectrograms in the complex domain. These
speech and noise spectrograms are then used to compute the
speech mask loss. The proposed method is evaluated using the
TIMIT data set for seen and unseen signal-to-noise ratio con-
ditions. It is shown that the proposed method outperforms the
speech enhancement methods that use Deep Neural Network
(DNN) based speech enhancement or a Speech Enhancement
Generative Adversarial Network (SEGAN).
Index Terms: speech enhancement, generative adversarial net-
work, automatic speech recognition

1. Introduction
Speech enhancement is widely used in communication sys-
tems, and it plays a key role in Automatic Speech Recogni-
tion (ASR) systems. A wide variety of speech enhancement
methods have been developed and refined during the last sev-
eral decades to improve the quality and intelligibility of the de-
graded speech signal, including spectral-subtraction algorithms,
statistical model-based methods that use maximum-likelihood
(ML) estimators, Bayesian estimators, minimum mean squared
error (MMSE) methods, subspace algorithms based on single
value decomposition and noise-estimation algorithms [1].

More recently, deep-learning techniques have been applied
to speech enhancement. In [2], a deep auto-encoder was used
for denoising, as well as greedy layered pre-training with a fine-
tuning strategy. In [3], a deep neural network (DNN) is used. In
the training phase, a DNN-based regression model was trained
using the log-power spectral features from pairs of noisy and
clean speech data. In [4], a smoothed ideal ratio mask (IRM)
was estimated in the Mel frequency domain using deep neu-
ral networks. In [5], several training targets were investigated
for speech separation. Recent research results show that one
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can effectively suppress noise using generative adversarial net-
works (GAN) [6]. In [7], an auto-encoder is leveraged as a gen-
erator within the GAN framework to process the received raw
speech waveform, which is trained in an end-to-end fashion.
In [8], a relativistic GAN is proposed that optimizes the rela-
tivistic cost function at its discriminator with a gradient penalty
to improve time-domain speech enhancement. In [9], a cycle-
consistent speech enhancement (CSE) was introduced that uses
an additional inverse mapping network to reconstruct the noisy
features from the enhanced ones. In [10, 11], GAN-based al-
gorithms were proposed to operate on spectral features instead
of time-domain waveforms. In [12], a time-frequency (T-F)
masking-based enhancement framework is introduced, which
learns the mask implicitly using a GAN while predicting the
clean T-F representation. MetricGAN, which was introduced
in [13], optimizes the generator with respect to one or multiple
speech enhancement evaluation metrics.

The above-mentioned methods can generally be classified
as feature-mapping and mask-learning methods, which are two
commonly used deep-learning approaches for single-channel
speech enhancement methods for stereo data. Feature map-
ping approaches [2, 3, 8, 11, 14] enhance the noisy features us-
ing a mapping network that minimizes the mean square errors
between the enhanced and clean features. Mask-learning ap-
proaches [4, 5, 12] estimate the ideal ratio mask or the ideal
binary mask, and then use this mask to filter noisy speech sig-
nals and reconstruct the clean speech signals. Even though the
scale of the masked signal is in the same range as the target sig-
nal, one typically sees faster convergence because of the con-
strained dynamic range. Mask-learning methods usually out-
perform feature mapping approaches with respect to speech
quality [15, 16].

This paper introduces a novel speech enhancement ap-
proach that integrates the mask-learning and time-domain
feature-mapping methods into one unified framework to take
advantage of both approaches. The proposed framework uses a
forked GAN structure [11] to extract both speech and noise sig-
nals. The generated speech and noise signals are fed into two
separate short-time Fourier transform (STFT) convolution 1-D
layers to generate the speech and noise spectrograms, which
are used to calculate the speech mask. The feature mapping
component can preserve the phase information, which is useful
to improve the speech quality [17]. The proposed speech en-
hancement system is shown to perform better than DNN-based
and GAN-based speech enhancement systems.
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Figure 1: Proposed architecture.

2. GAN-based Speech Enhancement
A generalized adversarial network (GAN) consists of a genera-
tor network (G) and a discriminator network (D), which uses
a alternative mini-max training scheme. Recent studies have
shown the potential of exploiting a GAN for speech technology-
related applications that aim to learn a suitable mapping func-
tion and to accurately reconstruct the enhanced speech while
preserving the speech quality and intelligibility.

Consider a noisy speech signal x = x̂ + v, where x̂ is
the clean signal and v is the noise signal. Speech enhancement
methods aim to reconstruct x̂ from x. Methods that use GAN-
based speech enhancement usually train generator G to map a
noisy speech signal x to its corresponding clean speech signal
x̂ by minimizing the loss function LG, which is given by [7]

LG =
1

2
Ez∼pz(z),x∼pdata(x)[(D(G(z,x),x)− 1)2]

+ λEz∼pz(z),x̂,x∼pdata‖G(z,x)− x̂‖1. (1)

The discriminator network D seeks to distinguish real data from
generated data (1 for real, 0 for fake) by minimizing the loss
function LD, which is given by

LD =
1

2
Ex,x̃∼pdata(x,x̂)[(D(x̂,x)− 1)2]

+
1

2
Ez∼pz(z),x∼pdata [D(G(z,x),x)2]. (2)

3. Time-Domain GAN with Mask-Learning
The proposed time-domain GAN with mask-learning method
uses a convolution encoder and two parallel de-convolution de-
coders for speech and noise extraction as illustrated in Fig. 1.
It takes a raw waveform as input, and the output of the encoder
Φ(x) is fed into two separate fully-connected layers that gen-
erate the speech latent representation c1 and the noise latent
representation c2, respectively. Each decoder input concate-
nates an encoder-latent representation with a random vector z
that is sampled from a normal distributionN (0, I), and outputs
the predicted time-domain speech signals x̃ = Ψx([c1, z1])
and noise signals ṽ = Ψv([c2, z2]), where Ψ(·) denotes the
decoding operation. The generator network also includes skip
connections among encoder layers and its homologous decod-
ing layer to avoid losing many low-level details.

Two STFT convolution 1-D layers are used to map the gen-
erated speech and noise waveforms to complex spectrograms
that include both magnitude and phase components. The mag-
nitude component will be used only. Given a window func-
tion ω of length N , the speech complex spectrogram X̃t,f and

the noise complex spectrogram Ṽ t,f obtained by STFT can be
written as

x̃
STFT−−−→ X̃t,f =

N−1∑
n=0

x̃ω [n− t] exp
(
−i2πn

N
f

)
(3)

ṽ
STFT−−−→ Ṽ t,f =

N−1∑
n=0

ṽω [n− t] exp
(
−i2πn

N
f

)
. (4)

After having obtained the T-F representation of the en-
hanced speech and noise, the ideal ratio mask (IRM) and a mod-
ified signal approximation (SA) are calculated using

IRM =

√
X̃(t, f)2

X̃(t, f)2 + Ṽ (t, f)2
, (5)

where X̃(t, f)2 and Ṽ (t, f)2 represent the generated speech
energy and noise energy with a T-F unit, respectively. Then a
signal approximation method is used to train a ratio mask esti-
mator that minimizes the difference between the spectral mag-
nitude of the clean speech and the estimated speech. The mask
loss Lmask is defined as

Lmask = Ex∼pdata‖IRM�X − X̂‖2, (6)

where X and X̂ are noisy speech and clean speech magnitudes,
respectively.

During the training phase, the goal is to minimize the dif-
ference between the estimated signal pair (x̃, ṽ) and the ground
truth signal pair (x̂,v) by optimizing the encoder and decoder
functions. Similar to SEGAN, the training procedure combines
adversarial learning regularized with regression loss. We feed
the noisy speech x, the clean speech x̂, and the additive noise
signal v into the proposed framework. In adversarial learning,
x̂ and v are also used as ground truth for regression in the gener-
ator. As such, the generator loss LG is the weighted sum of the
mask loss, L1 regular loss and original adversarial loss, which
can be written as

LG =
1

2
Ez∼pz(z),x∼pdata(x)

[
(D(G(z,x),x)− 1)2

]
(7)

+ λEz∼pz(z),x̂,x∼pdata
‖G(z,x)− x̂‖1

+ α · Lmask

where α denotes the coefficient that controls the contribution
of the mask loss function. When α = 0, the proposed model
is similar to ForkGAN [11], but in the time domain and with-
out noise reduction loss and margin loss. When α is large, the
proposed model becomes similar to mask-learning.
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Two separate discriminators are adopted in the proposed
framework to distinguish between real and fake speech and
noise, respectively. During the training process, we sample two
pairs of the speech signal: 1) the real pair of samples, which
consists of a clean signal x̂ and additive noise v̂; 2) the fake
pair of samples, which consists of the enhanced clean speech x̃
and the predicted noise signal ṽ. Both signals are conditioned
on the noisy speech x. Two separate discriminator loss terms
are then computed using (2) to update the parameters of the
generator.

4. Experiments
Data Sets. The data sets used for the experiments are the
TIMIT corpus [18] and the NOISE-100 corpus [19]. The TIMIT
corpus is used for clean speech references, and it includes eight
major dialects of American-English recorded from 630 speak-
ers, each reading ten phonetically-rich sentences, and parti-
tioned into test and training subsets. The NOISE-100 corpus
includes 100 different noise sounds, e.g., animal sounds, and
the sound of water. For the training set, a randomly selected
noise sound from the NOISE-100 corpus was attached to ev-
ery silence-added segment with signal-to-noise ratios (SNRs):
-3, 0, 3, 6, 9, 12 and 15 dB. In total, this yields 32,340 training
samples. We selected 50 sentences from the TIMIT core test
and mixed the noise from the NOISE-100 corpus with five SNR
conditions (250 sentences in total). For the unseen scenario, we
use five unseen SNR conditions at -5, -2, 1, 4, and 7 dB. Note
that both seen and unseen conditions were mixed with the same
noise from the NOISE-100 corpus.

Baseline Setup. The proposed method is compared with
the DNN-based speech enhancement [3], SEGAN [7], and
SEGAN+ 1.

DNN-based speech enhancement. Log-spectral features were
applied for DNN-based speech enhancement spliced in time by
taking a context size of seven frames. In the training stage, a
regression DNN model using the mean absolute error (MAE)
loss function is trained. The full network topology consists of
three hidden layers and 2048 hidden units. The network was
trained for 100 epochs using the Adam optimizer with a mini-
batch size of 500 and a 20% drop-out in the hidden layers.

SEGAN and SEGAN+. The default parameter settings of the
original SEGAN experiments are used, except for the batch
size, which is set to 32. Both SEGAN and SEGAN+ take a
raw 16,384-sample waveform as input. In SEGAN, G is com-
posed of 22 1-D strided convolutional layers with filter-width
31 and stride 2. For SEGAN+, this is replaced by a generator
comprising 10 1-D convolutional layers and stride 4. The vir-
tual batch-norm (VBN) [20] that is used in SEGAN is replaced
by a normal batch normalization in the discriminator.

Setup for the Proposed Method. The proposed model is
trained for 100 epochs using an Adam optimizer [21] and a
batch size of 32. The proposed approach operates directly on
raw audio, which uses a 1-second sliding window with a 50-
percent overlap to extract chunks of noisy speech waveforms
of 16,384 samples each. A high-frequency pre-emphasis filter
with a filter coefficient 0.95 is applied to all input samples dur-
ing the training and test stages. The generator comprises one en-
coder and two decoders. Both the encoder and the two decoders
consist of five 1-D convolutional layers as shown in Table 1.

1https://github.com/santi-pdp/segan pytorch

The speech decoder and the noise decoder have the same struc-
ture. Note that the decoder has the skip connections from the
encoder part. Two separate fully-connected layers are used for
generating speech and noise latent representations. For a short
time Fourier transform (STFT) setting, we use a 20 ms Hann
window, a 20 ms filter length and a 10 ms hop size. Thus, the
input size of STFT is 16,384 and the output is 161× 103. For
the weight ofLmask, we consider three settings, α ∈ {0, 30, 50},
where α = 0 means no Lmask for the training. Two discrimina-
tors are used to distinguish fake and real speech and noise, re-
spectively. They both have the same model architecture, which
is similar with the encoder in G. We use instance normaliza-
tion (IN) [22] instead of batch normalization (BN) [23] in the
discriminator as we found that IN is slightly better than BN.
After convolutional layers, there are three fully connected lay-
ers (hidden layer size 256,128,1) with PReLU [24] for binary
classification.

Table 1: Model Structures of the Proposed Method

layer type output size

input layer 1 × 16384

Encoder

conv-1-D 64 × 4096

conv-1-D 128 × 1024

conv-1-D 256 × 256

conv-1-D 512 × 64

conv-1-D 1024 × 16

Fully connected layer 8192

Fully connected layer 16384

Decoders

deconv-1-D 2048 × 16

deconv-1-D 1024 × 64

deconv-1-D 512 × 256

deconv-1-D 256 × 1024

deconv-1-D 128 × 4096

deconv-1-D 1 × 16384

STFT conv-1-D 161 × 103

5. Experimental Results
Evaluation Metrics. Speech enhancement is commonly mea-
sured in terms of the perceptual evaluation of speech quality
(PESQ) score, see [25, 26], and the Short-Time Objective In-
telligibility (STOI) score, see [27]. The PESQ score has a high
correlation with subjective evaluation scores, and is mostly used
as a compressive objective measure. The PESQ score is com-
puted by comparing the enhanced speech with the clean refer-
ence speech, and it ranges from −0.5 to 4.5. The STOI score
is highly relevant to human speech intelligibility and the score
ranges from 0 to 1.

Performance Results. Measurements were performed using
the TIMIT corpus and NOISE-100 corpus to compare the pro-
posed methods with α ∈ {0, 30, 50} and the baseline methods,
i.e., the DNN-based method, SEGAN, and SEGAN+. The ex-
perimental results are detailed in Table 2. It is shown that the
proposed method, with α = 30, consistently outperforms the
baseline methods for both seen and unseen conditions. The best
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Table 2: Performance of three baseline models and the proposed model. The best values in each column are printed in boldface.

Metrics w/o SE DNN SEGAN SEGAN+ Proposed method
α = 0 α = 30 α = 50

PESQ

seen

-3 dB 1.50± 0.33 2.27± 0.47 2.15± 0.48 2.52± 0.38 2.47± 0.36 2.67± 0.33 2.55± 0.33
0 dB 1.69± 0.32 2.47± 0.41 2.37± 0.43 2.70± 0.38 2.66± 0.35 2.83± 0.34 2.73± 0.34
3 dB 1.89± 0.31 2.64± 0.36 2.56± 0.40 2.86± 0.38 2.80± 0.37 2.97± 0.36 2.89± 0.35
6 dB 2.11± 0.30 2.80± 0.31 2.75± 0.37 3.00± 0.38 2.94± 0.37 3.09± 0.40 3.01± 0.37
9 dB 2.32± 0.29 2.94± 0.28 2.93± 0.33 3.12± 0.36 3.06± 0.38 3.17± 0.46 3.11± 0.38
average 1.902 2.624 2.552 2.840 2.786 2.946 2.858

unseen

-5 dB 1.40± 0.53 2.25± 0.58 2.05± 0.50 2.44± 0.42 2.34± 0.41 2.54± 0.42 2.45± 0.39
-2 dB 1.62± 0.48 2.45± 0.50 2.26± 0.46 2.63± 0.40 2.55± 0.38 2.71± 0.41 2.64± 0.38
1 dB 1.82± 0.48 2.63± 0.42 2.46± 0.42 2.79± 0.40 2.73± 0.37 2.88± 0.39 2.81± 0.37
4 dB 2.02± 0.47 2.78± 0.36 2.64± 0.39 2.94± 0.38 2.87± 0.38 3.03± 0.37 2.95± 0.38
7 dB 2.22± 0.46 2.91± 0.32 2.82± 0.35 3.06± 0.36 3.00± 0.38 3.12± 0.38 3.06± 0.38
average 1.816 2.604 2.446 2.772 2.698 2.856 2.782

STOI

seen

-3 dB 0.7086 0.7576 0.8179 0.8791 0.8634 0.9056 0.8886
0 dB 0.7608 0.7883 0.8577 0.9062 0.8956 0.9287 0.9145
3 dB 0.8094 0.8132 0.8896 0.9261 0.9181 0.9447 0.9329
6 dB 0.8535 0.8331 0.9143 0.9407 0.9351 0.9549 0.9464
9 dB 0.8918 0.8482 0.9336 0.9519 0.947 0.9577 0.9559
average 0.8048 0.8081 0.8826 0.9208 0.9118 0.9383 0.9277

unseen

-5 dB 0.6653 0.7504 0.8037 0.8646 0.8492 0.8971 0.8757
-2 dB 0.7213 0.7845 0.8468 0.8967 0.8872 0.9235 0.9067
1 dB 0.7751 0.8103 0.8809 0.9198 0.9146 0.9418 0.9285
4 dB 0.8245 0.8301 0.9082 0.9367 0.9330 0.9534 0.9440
7 dB 0.8677 0.8450 0.9290 0.9484 0.9463 0.9605 0.9546
average 0.7708 0.8041 0.8737 0.9132 0.9061 0.9353 0.9219

baseline method is SEGAN+, and the DNN-based method out-
performs SEGAN when using the PESQ metric, and SEGAN
performs better than the DNN-based method when using the
STOI metric.

Table 2 clearly shows the improvements obtained when ap-
plying the mask Lmask with α = 30 relative to the situation
where the mask is not used, i.e., for α = 0. This shows that
the additional mask-based loss helps purify speech signal pre-
diction. For instance, the average PESQ and STOI scores were
improved from 2.698 to 2.856 and from 0.9061 to 0.9353 on un-
seen SNR conditions, respectively. Furthermore, the proposed
method outperforms all the baseline systems on both seen and
unseen SNR conditions. When compared with SEGAN+, the
proposed approach improves the average PESQ from 2.772 to
2.856, and the average STOI from 0.9132 to 0.9353 on unseen
SNR conditions. We also notice that if we use a large value
for α, corresponding to a strong contribution of Lmask, the per-
formance degrades slightly, because mask-based learning intro-
duces inaccurate information during training due to inaccura-
cies in the mask estimator. Thus, the loss of mask-based learn-
ing and time-domain feature mapping need to be calibrated.

6. Conclusions
In this paper, we propose a novel GAN-based speech en-
hancement method that integrates mask-learning and feature-
mapping. Experimental results with the TIMIT data set show
that the proposed approach achieves a better performance for
seen and unseen conditions with varying SNR when compared
with the baseline systems, i.e., DNN-based speech enhance-
ment, SEGAN and its improved version SEGAN+. We also
verified the effectiveness of the proposed mask-based loss. We
are currently investigating the use of different mask-based train-
ing targets within this framework.

a) Noisy speech (PESQ = 2.046) b) Clean target

c) DNN (PESQ = 2.627) d) SEGAN (PESQ = 2.395)

e) SEGAN+ (PESQ = 2.579) f) Proposed method (PESQ = 2.767)

Figure 2: Spectrograms of a sample input mixed with N21 noise,
where the SNR is equal to 1 dB.
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