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First-principles study of electron-phonon interactions and transport in anatase TiO2
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Electron transport in anatase TiO2, which has important applications in oxide electronics and photocatalysis,
is still poorly understood. We investigate the electron mobility in anatase TiO2 by performing first-principles
calculations of electron and phonon spectra as well as electron-phonon coupling. The formation of large polarons
(quasiparticles formed by electrons interacting with phonons in a polar medium) leads to a renormalization of
the electronic band structure, which we address using many-body perturbation theory. We correlate the lowering
of the mobility of these quasiparticles to the renormalization of band velocities due to the electron-phonon
interaction. These results explain why the mobility decreases with increasing temperature, as observed in
experiments.
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The anatase phase of titanium dioxide (TiO2) has attracted
a lot of attention due to its rich physics and important applica-
tions. As a transparent conductor it can be used in solar energy
harvesting and flat-panel displays [1]; n-type-doped TiO2 is
highly transparent and has shown electrical conductivity com-
parable to that of Sn-doped In2O3 (ITO), which is the most
widely used transparent conductor [1,2]. In addition, TiO2

is known to have excellent photocatalytic capabilities [3].
Recent studies show that the electrical transport is important
for the overall efficiency of catalysis: The better performance
of anatase compared to rutile (another polymorph of TiO2)
was attributed to the difference in mobility between the two
phases [4].

Despite the evident importance of the electronic conductiv-
ity, the dominant carrier transport mechanism in anatase TiO2

is still controversial—in particular, whether it is based on band
electrons or on small polarons. The conduction mechanism
has previously been investigated using density functional
theory (DFT). It was found that due to the strong electron-
phonon interaction excess electrons localize at Ti3+ sites,
forming small polarons [5–7]. Based on this result, hopping
was suggested as the main conduction mechanism. Small
polarons, however, turned out to be energetically unfavorable
compared to delocalized states in calculations where orbital-
dependent external potentials were added to obey Koopmans’
theorem [8]. Furthermore, transport measurements show that
the mobility exceeds 10 cm2/V s at room temperature; in
addition, the mobility decreases with increasing tempera-
ture for T > 50 K [9]. This experimental result contradicts
the small-polaron hopping mechanism, which gives rise to
much lower mobilities (�1 cm2/V s) and should show an
increase in mobility with increasing temperature (based on
the increased likelihood of overcoming the hopping barriers
at higher temperatures).
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While small-polaron hopping cannot provide a satisfactory
explanation of the experimental results, the strong electron-
phonon interaction is clearly of importance for the electrical
properties, as was demonstrated by angle-resolved photoemis-
sion spectroscopy (ARPES) on single crystals of TiO2 [10]. A
substantial renormalization of the conduction-band structure
was observed, resulting from the coupling of an electron with
a lattice distortion and leading to an increase in the effective
mass of the charge carriers. This provides evidence that the
charge carriers are no longer bare electrons, but behave as an
interacting quasiparticle called a large polaron, which is an
intermediate state between localized small polarons and free
electrons.

Electron transport calculations using first-principles meth-
ods are typically based on the DFT band structure and assume
that this noninteracting electronic structure is not affected by
the electron-phonon interaction. This might be a good approx-
imation for materials where the electron-phonon interaction is
weak, but the ARPES experiments indicate that in the case
of anatase TiO2 it is necessary to include the impact of the
electron-phonon interaction on the band structure.

In the present Rapid Communication, we investigate the
electron-phonon interaction and transport in anatase TiO2

using first-principles calculations combined with many-body
perturbation theory. This approach allows us to examine the
effect of band-structure renormalization on the electron mo-
bility and thus go beyond the typical assumption of a rigid
band structure. The renormalization of the band structure
leads to slower velocities of large polarons compared to bare
electrons. Subsequent mobility calculations using Boltzmann
transport theory show a striking impact on transport: The
renormalization of velocities leads to a reduction in mobility
by up to 54% compared to the “bare” mobility. The resulting
mobility also decreases substantially with temperature.

We perform DFT calculations using the QUANTUM

ESPRESSO package [11] with the local density approximation
(LDA) exchange-correlation functional [12], and ultrasoft
pseudopotentials [13] in which the Ti semicore 3s and 3p
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FIG. 1. Conduction-band structure of anatase TiO2 calculated
using LDA (dashed red line) and LDA +U (solid blue line), based
on the optimized geometry obtained with LDA, and plotted along
high-symmetry lines of the BZ for the primitive cell. The conduction-
band minimum is used as the energy reference in both cases. The
inset shows the conventional cell of anatase TiO2; large blue spheres
are Ti atoms, small red spheres O atoms.

states are treated as valence electrons. The plane-wave ba-
sis has a cutoff of 50 Ry and we use a 6 × 6 × 6 special
k-point grid. The phonon spectrum is calculated using density
functional perturbation theory (DFPT) [14] on a 4 × 4 × 4
q-point grid, and interpolated along symmetry lines of the
Brillouin zone (BZ).

DFT-LDA provides good structural properties, including
phonon dispersion curves (as we will show below), but
for the electronic structure a better description of Ti-d-
derived conduction-band states is needed. We therefore per-
form LDA +U calculations, with the on-site Coulomb energy
U = 3.3 eV obtained self-consistently using a linear-response
approach [15].

Anatase TiO2 is a band insulator with a tetragonal crys-
tal structure and the I41/amd space group as shown in
the inset of Fig. 1. The calculated lattice parameter of the
primitive cell is 5.42 Å, in good agreement with the exper-
imental value of 5.45 Å [16]. Each Ti atom is surrounded
by a slightly distorted oxygen octahedron. The crystal field
of these distorted octahedra lifts the degeneracy of the t2g
states. As a consequence, the lowest conduction band is
derived mainly from dxy states, leading to a highly anisotropic
band structure: Dispersion is much stronger along �-X than
along �-Z (Fig. 1). The next-higher conduction-band states
have mainly dyz and dzx character. Figure 1 also shows that
the conduction bands obtained with LDA +U show less
dispersion than those obtained with LDA. The quality of
the LDA +U band structure is confirmed by the agree-
ment of the electron effective mass obtained with LDA +U
(0.44me for the in-plane direction) with a value calculated
using a hybrid functional (0.42me) [17]. The LDA value
is 0.37me.

Anatase TiO2 has 6 atoms in the primitive cell, lead-
ing to 18 phonon modes (3 acoustic + 15 optical modes).
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FIG. 2. Calculated phonon band structure of anatase TiO2 using
the LDA functional.

Among them, three pairs of polar optical modes consisting of
transverse (TO) and longitudinal (LO) modes can be identified
by group theory. Lattice vibrations corresponding to polar LO
modes generate a macroscopic electric field at long wave-
lengths. This causes the splitting of the polar LO and TO
modes at the zone center as shown in Fig. 2; in Eu modes
ions oscillate in the (a-b) plane, while in the A2u mode they
oscillate along the c axis. LO-TO splitting for Eu modes
therefore occurs only for phonon wave vectors q with nonzero
x or y components (e.g., along the �-X direction), and for
A2u modes the LO-TO splitting only occurs for q with a
nonzero z component (e.g., along the�-Z line). The calculated
frequencies of the optical modes at � are in good agreement
with experiment, as shown in Table I [18,19].

The coupling of an electron to lattice vibrations can lead
to different types of polaron states in solids. An electron
placed in a continuous polarizable medium can form a large
polaron via coupling to polar LO modes. In contrast to a
small polaron, in which an electron is localized on a few
atomic sites accompanied by a significant lattice distortion, a
large polaron is spread over many lattice sites with a much

TABLE I. Zone-center optical phonon frequencies (in cm−1)
for anatase TiO2 calculated using DFT-LDA and compared with
experiment.

Modes LDA Expt. [18] Expt. [19]

Eg 160 144
Eg 166 197
Eu(TO) 253 262
Eu(LO) 343 366
A2u(TO) 351 367
B1g 388 399
Eu(TO) 454 435
B1g 501 519
A1g 524 513
B2u 551
Eg 647 639
A2u(LO) 728 755
Eu(LO) 874 876
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smaller lattice distortion. The atomic displacement due to
polar LO modes follows the polaronic motion, effectively
dressing the electron. Hence, large polarons move through the
lattice similar to free electrons but with a heavier effective
mass.

Fröhlich examined the effective mass of a large polaron
for an isotropic system with a parabolic band structure and
a single LO phonon mode [20]. He derived the dependence
of the polaron mass on the electron-phonon coupling strength
using perturbation theory. In TiO2, however, the physical
properties are anisotropic and there are multiple LO phonon
modes and therefore the Fröhlich approach is inadequate [21].
Here, we use the following Fröhlich-like Hamiltonian as a
starting point,

H =
∑
k

εkĉ
†
kĉk +

∑
q

∑
ν

h̄ωqν (â
†
qν âqν + 1/2)

+ 1√
Vcell

∑
k

∑
q

∑
ν

gν (q)ĉ
†
k+qĉk(â

†
−qν + âqν ), (1)

where εk is the energy of an electron in the conduction band
with momentum k, ĉ†k and ĉk are the electron creation and
annihilation operators, ωqν is the LO phonon frequency for
the νth polar LO phonon mode with momentum q, â†qν and
âqν are the phonon creation and annihilation operators, and
Vcell is the volume of the unit cell. We do not assume a
single parabolic conduction band but explicitly consider the
full band structure obtained from first-principles calculations.
The matrix element gν (q) measures the strength of electron-
phonon coupling and has units of energy. Note that this
Hamiltonian only describes polar LO modes, but these modes
have the largest electron-phonon coupling compared to the
other modes in TiO2 [22,23].

In the Vogl model [21,24] the electron-phonon matrix
element for coupling to long-wavelength LO phonons is

gν (q) = i
e2

Vcellε0

∑
j

√
h̄

2Mjωqν

q · Z j · e jν (q)
q · ε∞ · q , (2)

where e is the electron charge, ε0 the vacuum permittivity, and

Mj the atomic mass of atom j. Z j is the Born effective charge
tensor and e jν the normalized atomic displacement of the jth
atom. The electric field created by the polar LO phonons with

momentum q is proportional to q · Z j · e jν (q). The electron-
phonon matrix element in Eq. (2) has a 1/|q| dependence due
to its long-range nature. As a result, its magnitude around �

is very large, and therefore the scattering due to polar LO
modes dominates the electron transport properties of polar
materials compared to those of other types of electron-phonon
interactions [25]. It is inversely proportional to ε∞, the high-
frequency dielectric tensor, which screens the Coulomb inter-
action. Equation (2) assumes that the Bloch wave functions
change smoothly as a function of the electronic wave vector,
so that there is no k dependence.

We include the renormalization of electronic band structure
due to the electron-phonon interaction via many-body pertur-
bation theory [26]. The electron-phonon self-energy�k(ω,T )

is computed within the Fan approximation [27],

�k(ω,T ) =
∑

ν

∫
dq
�BZ

|gν (q)|2
[

nqν + 1 − fk+q

h̄ω − εk+q − h̄ωqν − iη

+ nqν + fk+q

h̄ω − εk+q + h̄ωqν − iη

]
, (3)

where T is the temperature, �BZ the volume of the BZ,
nqν the Bose-Einstein distribution, and fk the Fermi-Dirac
function. The complex shift in the denominator is added to
prevent Eq. (3) from diverging, with η taken to be 0.2 eV. As
noted above, the initial electronic band structure is taken from
an LDA +U calculation. The BZ integration is performed
on a very fine grid of 60 × 60 × 60 q points. For purposes
of comparing with experimental transport measurements the
electron and phonon occupation factors are obtained for T =
300 K and an electron concentration of 1018 cm−3.

Assuming the electronic wave functions are not signifi-
cantly changed due to the electron-phonon coupling, i.e., the
off-diagonal elements of the self-energy are negligible, the
renormalized band structure can be calculated as

ε
p
k = εk + Re�k

(
ε
p
k

)
, (4)

where ε
p
k is the energy of a polaron state and Re�k the

real part of the self-energy. Equation (4) has to be solved
self-consistently. Combining Eqs. (3) and (4) is equivalent
to second-order Brillouin-Wigner perturbation theory for
electron-phonon coupling [28]. Here, we introduce a simple
and effective approach to solve such an equation. If we
assume that the polaron energies are close to the bare elec-
tronic energies, the self-energy can be expanded to first order
around the bare energy and the solution of Eq. (4) can be
approximated as

ε
p
k = εk + Zk Re�k(εk ), (5)

where Zk is the renormalization factor defined by

Zk =
[
1 −

(
∂ Re�k(ω)

h̄∂ω

)
h̄ω=εk

]−1

. (6)

The procedure is illustrated in Fig. 3 for k = 0.
As Fröhlich demonstrated, the strong electron-phonon in-

teraction in polar materials increases the mass of the charge
carriers, so that polarons will have lower velocities than bare
electrons. To evaluate this effect, we calculate the group ve-
locity of polarons [vp

k = 1/h̄(∂ε
p
k/∂k)] and of bare electrons

[vk = 1/h̄(∂εk/∂k)] and plot the ratio |vp
k/vk| in Fig. 4 for

states near the conduction-band edge. The results clearly
show that the velocities of polaron states are decreased, with
values ranging between 75% and 80% of the velocities of
bare electrons. The velocity renormalization depends on the
energy of the electronic states. However, there is also a strong
dependence on the direction of momentum in k space due
to the anisotropy of the anatase structure, which explains the
multiple data points shown for the same energy in Fig. 4.

The reduction in carrier velocity impacts the mobility. The
electrical conductivity tensor σαβ , where α and β denote
Cartesian indices, can be calculated using the Boltzmann
transport equation within the relaxation time approximation
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FIG. 3. Real part of the frequency-dependent self-energy for the
bottom of the conduction band (k = 0). The x = y line gives the
amount of the eigenvalue renormalization at the intersection with
Re�k, and the blue dotted line is the linearized self-energy at
h̄ω = εk, which approximates the renormalized eigenvalue near the
intersection with the x = y line.

as [29]

σαβ = 2e2

Vcell

∑
k

wkτk

(
− ∂ fk

∂Ek

)
Vk,αVk,β , (7)

where wk is the k-point weight, Ek the energy of the electron
carriers, and Vk the band velocity. We use Ek and Vk as
placeholders for either the bare or renormalized (polaron)
energies or velocities. τk is the carrier lifetime arising due
to electron-phonon interactions, which in polar materials is
dominated by the coupling with LO-phonon modes and can
be calculated as follows,

τ−1
k = 2π

h̄

∑
ν

∑
q

wq|gν (k,q)|2

×{(nqν + fk+q)δ(Ek+q − Ek − h̄ωqν )

+(1 + nqν − fk+q)δ(Ek+q − Ek + h̄ωqν )}. (8)
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FIG. 4. Energy-dependent velocity renormalization for states
near the conduction-band edge.

TABLE II. Calculated mobilities at room temperature for n =
1018 cm−3. The conduction band is described either at the LDA or the
LDA+U level, or taking renormalization due to the electron-phonon
interaction into account (with the LDA+U results as the starting
point).

LDA LDA+U Renormalized

μ⊥ μ‖ μ⊥ μ‖ μ⊥ μ‖

75 7 56 6 26 2

This expression for the lifetime can be derived from the imag-
inary part of the self-energy of the polarons [28]. Equation (8)
can also be derived from Fermi’s golden rule. Note that we do
not simply assume the carrier lifetime to be constant, which
is a frequently used approximation. Equation (8) explicitly
includes the k-point dependence of τk, which is important
to accurately describe mobilities [25,30]. The mobility tensor
μαβ is obtained from μαβ = σαβ/ne, where n is the carrier
density. We employ a 60 × 60 × 60 k- and q-point grid to
calculate Eqs. (7) and (8). Further increasing the grid size
to 100 × 100 × 100 leads to changes in the mobility smaller
than 5%. The grid size used here to obtain converged results
is smaller than what was found necessary for GaAs and Si
[31–34]. This difference in grid size can be attributed to the
dispersion of the band structure of the materials investigated;
more dispersive bands need finer meshes. For SrTiO3, which
has masses comparable to TiO2, Ref. [35] used a denser grid
but did not report convergence tests, while Ref. [36] used a
grid comparable to our current grid. The delta function in
Eq. (8) is replaced by a Gaussian with a width of 0.05 eV.
In Eq. (8) we do not include the factor (1 − V̂k · V̂k+q) that
is associated with the effect of directionality in the scattering.
Our tests showed that its inclusion changes the mobility by
only ∼1%. Such a minor impact of the velocity factor on the
mobility was previously reported for SrTiO3 [36].

Our calculated values for mobilities at room temperature
are listed in Table II. From the analysis of mode-resolved
scattering rate, the highest optical mode turns out to dominate
the scattering rate. We find that the mobility is ∼10 times
larger in the direction perpendicular to the c axis (μ⊥) than
in the parallel direction (μ‖). This strong anisotropy arises
from the large differences in dispersion of the conduction
band in different directions (see Fig. 1). Table II also shows
that the calculated mobility depends strongly on the approach
used for computing Ek. We list values obtained with LDA,
LDA +U , and including renormalization due to electron-
phonon interactions.

Our results show that the accuracy of conduction-band
states affects the mobilities. A proper description of d states,
as accomplished in LDA +U , reduces the mobility by as
much as 25% compared to the LDA values. If in addition
band-structure renormalization is taken into account, the mo-
bility is further reduced by 54%. This reduction is mainly
due to the velocity renormalization; indeed, the scattering
rates for band-edge states are increased by only ∼20% as
a consequence of the band renormalization. We note that
the conductivity in Eq. (7) depends on the square of the
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group velocity. Thus, the velocity renormalization modifies
the mobility more significantly than the scattering rate.

The mobility, including the band renormalization effect,
decreases with increasing temperature, from 70 cm2/V s at
200 K to 26 cm2/V s at 300 K for the in-plane direction, con-
sistent with experimental observations [1,9]. We can attribute
the decrease to the enhanced LO-phonon scattering at higher
temperatures.

Experimentally measured room-temperature values of μ⊥
range from 17 to 30 cm2/V s for n = 1018–1020 cm−3 [1,9].
These values could in principle contain contributions from
scattering mechanisms other than LO-phonon scattering.
Since the transport measurements were performed on single
crystals [9] or epitaxial films [1], we expect the impact of
extended defects such as dislocations or grain boundaries to be
small. Regarding ionized impurity scattering, we can estimate
its contribution based on the experimental data. In Ref. [1]
the mobility of an epitaxial sample with n ∼ 1020 cm−3 was
measured to be about 100 cm2/V s at T < 100 K. In a doped
semiconductor the mobility at low temperatures is typically
dominated by ionized impurity scattering [37]. Thus it is
reasonable to assume that the low-temperature mobility of
100 cm2/V s mainly arises from ionized impurity scattering.
In addition, it is known that the impact of this scattering
mechanism decreases as the temperature increases [37]. Ac-
cordingly, the mobility limited by only the ionized impurity
scattering at room temperature is likely to be higher than
100 cm2/V s. We can therefore conclude that, even at these
high dopant concentrations, ionized impurity scattering does
not contribute significantly to the mobility at room tempera-
ture, and that LO-phonon scattering will be the main mech-
anism limiting the mobility. Our results in Table II indicate
that it is essential to take renormalization of the band structure
into account to accurately describe LO-phonon scattering at
room temperature, and this indeed produces values within the
experimentally observed range.

Other titanates, such as SrTiO3 and rutile TiO2, also ex-
hibit mobilities that decrease with increasing temperature
[38,39]. Given that these materials also have strong electron-
LO-phonon interactions, we expect that large polarons and
the resulting band-structure renormalization also play an im-
portant role in the transport properties of these materials.
The effect may be even larger than in anatase, given that
the experimental mobility at room temperature is less than
10 cm2/V s. A recent study investigated the transport prop-
erties of SrTiO3 using the Kubo formula in which the spectral
functions of electrons interacting with phonons are considered
[40]. The results also show that the change in the band
structure due to the strong electron-phonon coupling reduces
the mobility (by a factor of 8) compared to that of the bare
electron.

In conclusion, we have investigated the mobility of large
polarons in anatase TiO2 using first-principles calculations
and the Boltzmann transport equation. We explicitly included
the band renormalization due to the electron-phonon coupling
within many-body perturbation theory. While the scattering
time is modified by 20%, the main effect on mobility stems
from velocity renormalization. The large polaron has a 54%
lower mobility than the mobility of bare electrons. Our results
show that the formation of large polarons plays a crucial role
in the electron mobility of anatase TiO2.
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