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Abstract—We investigate synthesis of a large effective aperture
using a sparse array of subarrays. We employ a multi-objective
optimization framework for placement of subarrays within a
prescribed area dictated by form factor constraints, trading off
the smaller beam width obtained by spacing out the subarrays
against the grating and side lobes created by sparse placement.
We assess the performance of our designs for the fundamental
problem of bearing estimation for one or more sources, compar-
ing performance against estimation-theoretic bounds. Our tiled
architecture is motivated by recent progress in low-cost hardware
realizations of moderately sized antenna arrays (which play the
role of subarrays) in the millimeter wave band, and our numerical
examples are based on 16-element (4 × 4) subarrays in the 60
GHz unlicensed band.

Index Terms—Millimeter Wave Radar, Estimation Bounds,
Compressive Estimation, Gridless Super-Resolution, Sparse Sub-
array Design, Multi-objective Optimization.

I. INTRODUCTION

Many sensing and situational awareness applications (e.g.,
radar imaging for vehicles and drones) require highly direc-
tional, electronically steerable beams. Reducing beam width
requires expansion of antenna aperture. This is typically
accomplished by filling the aperture with antenna elements
spaced at half the carrier wavelength or less, in order to avoid
grating lobes. However, this approach does not scale well with
aperture size since the cost, power consumption and design
complexity increases with number of antenna elements.

In this paper, we investigate the problem of synthesizing
narrow beams using a tiled architecture, with a sparse set of
subarrays spread over a large physical aperture. Each subarray
is a relatively compact antenna array with a moderate number
of elements at sub-wavelength spacing. This is a modular
design, in which each subarray can be controlled by a radio
frequency integrated circuit (RFIC) of moderate complexity,
with multiple RFICs tiled to build up large aperture arrays with
a much larger number of elements compared to that of a single
subarray. The resulting array is “sparse” because, while the
total number of antenna elements summed across subarrays is
large, this number is far smaller than that for a classical design
with antennas at sub-wavelength spacing spanning the entire
physical aperture. The sidelobes and grating lobes resulting
from such spatial undersampling must therefore be controlled
in order for our proposed “array of subarrays” to be useful.
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Our goal here is to determine the placement of a given number
of subarrays over a physical aperture in order to optimize
multiple beam attributes, including beam width, maximum
sidelobe level, and directivity.

While our framework is general, the design of millimeter
wave arrays is of particular interest to us, because the small
carrier wavelength enables synthesis of narrow beams using
relatively compact apertures. As a running example throughout
this paper, we consider the design of a 60 GHz array of
subarrays created by placing 8 subarrays over an aperture size
of 10 cm by 10 cm (20λ × 20λ for wavelength λ = 0.5
cm), where each subarray has 4 × 4 elements arranged in
uniform rectangular grid with 0.5λ horizontal spacing and
0.6λ vertical spacing. The total number of antenna elements
in such designs is 128, which is an order of magnitude smaller
than the 1600 elements required to cover the entire aperture
at half-wavelength spacing. In addition to optimizing beam
characteristics, our design framework also accounts for practi-
cal placement constraints consistent with existing prototype
subarrays. For example, the subarrays need to be aligned
along their axes, assuming that all elements have unidirectional
linear polarization. Also, each subarray tile occupies extra
physical area on the plane, which must be accounted for in
the placement procedure.

A. Contributions

Our contributions are summarized as follows:
• We formulate the problem of subarray placement as multi-
objective optimization of key performance measures such as
beam width (BW), maximum sidelobe level (MSLL), eccentric-
ity (ecc) and directivity (GD),

Minimize BW(C,w), MSLL(C,w), ecc(C,w)

Maximize GD(C,w)

subject to AOS(C)

(1)

where C is Ns × 2 Subarray center position matrix, w is
N × 1 beamsteering weight vector and AOS(C) are physical
constraints to avoid overlapping subarrays. Note that orien-
tation of subarrays is not an optimization variable in this
architecture, since the polarization of the elements has to
be aligned for beamforming. We consider minimization of a
weighted linear combination of the objectives, focusing mainly
on beamwidth BW and maximum sidelobe level MSLL. The
configuration C that we optimize over is characterized by a set
of discrete-valued variables, and the number of possible values
for these variables is combinatorially explosive. Furthermore,
we do not have closed form expressions for the performance
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measures as a function of C, hence significant computation is
required to evaluate the cost function for each configuration. In
order to control the complexity, we use geometric heuristics
to eliminate similar configurations in the first stage of our
algorithm, and then employ a second stage of refinement
using small perturbations around the first stage solution. We
numerically explore the Pareto front for (1) by sweeping
through the weights, and illustrate how the beam attributes
depend on the weights.
• We evaluate our designs using estimation-theoretic bench-
marks for two-dimensional (2D) direction of arrival (DoA)
estimation. At low signal-to-noise ratio (SNR), large sidelobes
can lead to large errors in the DoA estimate. At high SNR, on
the other hand, the DoA estimation error is governed by beam
width. We derive a Ziv-Zakai bound (ZZB), which captures
the effect of both large and small estimation errors, for DoA
estimation for specular paths. The ZZB exhibits a distinct
transition in its behavior from low to high SNR, tending at
high SNR to the Cramer-Rao bound (CRB), which captures the
effect of small errors around the true parameter value. Thus,
we use the ZZB transition SNR as a measure of efficacy of
sidelobe reduction, and the CRB as a measure of efficacy of
beam width reduction.
• We report in detail on two array designs, A1 with pri-
mary emphasis on reducing beamwidth and A2 based on
joint optimization of beamwidth and maximum sidelobe level.
These designs are compared against two benchmark arrays.
The first is termed a “compact array,” with subarrays packed
closely together: this is expected to have worse beam width
but smaller sidelobes than our sparse designs. The second
is termed a “naive array,” obtained by placing subarrays in
diamond pattern to obtain beamwidth equivalent to that of
sparse array A2. Some illustrative numerical results for our
running example are as follows. The sparse design A1 is 11
dB better than the compact array in terms of CRB, while
degrading less than 1 dB in terms of ZZB threshold. The
sparse design A2 is 4 dB better in terms of CRB than the
“naive array,” while also having a better ZZB threshold.
• We investigate DoA estimation performance numerically
using a state of the art algorithm for off-grid estimation. The
impact of the higher sidelobes due to sparse placement, and
hence that of our optimization procedure, is more evident when
estimating DoA in the presence of multiple interfering targets.
We show that, depending on the strength of interferers, our
optimized arrays achieve better estimation accuracy than the
“compact” and “naive” benchmark arrays at moderate to high
SNR due to a combination of sharper beamwidth and lower
sidelobes. We also show that the efficacy of DoA estimation
using our sparse designs, and the associated benchmarks, is
maintained when we employ compressive measurements.

B. Related Work

There is a rich body of work on sparsifying linear arrays,
including minimum redundancy arrays [1], genetic optimiza-
tion [2], joint Cramér Rao Bound and sidelobe level optimiza-
tion [3], and simulated annealing [4]. Most popular design
strategies try to find an element pattern which minimizes

beamwidth, along with some notion of DoA ambiguities
such as sidelobe level or probability of DoA outlier. Recent
approaches like Nested 2D arrays [5] and H-arrays [6] utilize
the idea of “difference co-array” to reduce the number of
redundant spacings and maximize the randomness of element
positions, so that the number of spatial frequencies being
sampled by the array is maximized.

A closely related sparse array design methodology is the
sensor selection problem, wherein a smaller subset of indi-
vidual antenna positions is to be chosen from a predefined
grid. By employing certain surrogate measures, near-optimal
arrays can be obtained in polynomial time using standard
convex relaxation methods [7], [8]. Array thinning methods
such as these are well known to avoid complicated nonlinear
optimizations for linear case [9].

Most existing techniques, however, assume that antenna
elements can be placed freely. Hence, they do not apply
in our setting, where element placement within subarrays
is constrained. The prior work most similar to our is [10],
which investigates design of linear arrays with two and three
subarrays. However, the focus there is on performance criteria
for comparing a number of sensible designs in a far smaller
design space, rather than searching over a large space of
possibilities as we do here.

Our performance evaluation requires implementation of
DoA estimation algorithms. Classical subspace-based algo-
rithms such as MUSIC [11] and ESPRIT [12], as well as their
extensions to arrays of subarrays such as [13]–[16], rely on
regular array geometries for efficient computation. Recently
developed super-resolution algorithms such as Basis Pursuit
Denoising (BPDN) [17] and Newtonized Orthogonal Matching
Pursuit (NOMP) [18] are both more general and have better
performance. It is worth noting that [19] shows that, for
large arrays, BPDN and other sparse estimation techniques
with compressive measurements outperform subspace-based
methods. In this paper, we employ NOMP in our numer-
ical experiments, since we have found it to provide better
performance than BPDN at lower complexity. We also show
that the performance trends are unchanged under compressive
measurements, consistent with recent general theory [20].

C. Outline
We first describe the beam attributes to be optimized while

designing the sparse arrays and discuss constraints for the
optimization in Section II. The geometric heuristics and design
approach are described in detail in Section III. We then provide
a brief review of estimation bounds for 2D bearing estimation
and discuss their utility for analyzing the sparse arrays in
Section IV. Numerical results are provided in Section V.
These include exploration of the Pareto front, and comparison
of example designs against benchmarks in terms of both
beam characteristics and DoA estimation. We show in Section
VI that the performance trends hold for compressive DoA
estimation, and conclude in Section VII.

II. SPARSE SUBARRAY DESIGN

We formulate the array design problem in terms of jointly
optimizing multiple beam parameters that are expected to
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affect DoA estimation performance.
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Fig. 1. (a) 2D Array Geometry and Spherical coordinate system. (b) ROI:
Uniform distribution of 2D-DoA u in spherical cap with half angle θmax

A. Beam Pattern Basics

We use the directional cosines

u = sin(θ) cos(φ), v = sin(θ) sin(φ) (2)

to represent the DoA of target. The elevation θ and azimuth
φ angles are measured from the broadside direction (per-
pendicular to the baseline array plane). The 2D beampattern
R(u, v) in direction (u, v) when the beam is steered towards
the broadside is given by

R(u, v) =
1

N2

∣∣∣∣∣
N∑
i=1

ejk(ud
x
i +vdyi )

∣∣∣∣∣
2

(3)

where N is the number of array elements; [dxi , d
y
i ]T , di

are the 2D co-ordinates of arrays elements and k = 2π
λ is

the wavenumber. We assume isotropic antenna elements with
ideal steering weights and far-field sources with normalized
response. The term “subarray” refers to the subset of elements
with uniform half-wavelength spacing, while “super-array”
refers to the placement of these subarrays, which is described
by the subarray centers. Since the elements in a subarray are
fixed, the array element locations,D can be expressed in terms
of the subarray centers,C, asD = C⊗1Ne+De⊗1Ns , where
De is the fixed 2×Ne matrix containing the subarray element
coordinates with respect to its center, Ns is the number of
subarrays, Ne is number of elements in individual subarrays,
1n is an n × 1 column vector of ones, and ⊗ denotes the
Kronecker product.

When beamforming in a general direction (u0, v0) (broad-
side corresponds to (u0, v0) = (0, 0)), the beam pattern is
given by

R(u0,v0)(u, v) = R(u− u0, v − v0) (4)

For Direction of Arrival (DoA) estimation, the ideal beam
should have small beamwidth with minimal sidelobes and high
directivity. We consider the following beam attributes, some
of which depend on the steering direction (u0, v0), as key
performance metrics to be optimized:

• 2D beamwidth (BW): Although the main beam of non-
uniform array has non-trivial shape in 2D, we approxi-
mate it as an ellipse to define beamwidth. We evaluate
the 2D beamwidth in terms of the 3-dB beamwidths
along the major and minor axes of this ellipse, de-
noted by BWmax and BWmin, respectively. The mean
squared error of DoA estimation depends on the sum
of these beamwidths (see Appendix A), hence we define
beamwidth as BWDoA =

√
BW2

max + BW2
min.

• Maximum sidelobe level (MSLL): is the relative level of
the strongest sidelobe in the beampattern with respect to
the main lobe, MSLL = 10 log (Rmax/Rmsl). Thus, Rmax

and Rmsl are the largest and second largest magnitude
local maximas of beampattern R(u, v) given by

Rmax(u0, v0) = max
u,v

Ru0,v0(u, v)

=Ru0,v0(u0, v0) = R(0, 0)

Rmsl = max
u∗,v∗

Ru0,v0(u∗, v∗)

s.t. (u∗, v∗) 6= (u0, v0),

Ru0,v0(u∗, v∗) ≥ Ru0,v0(Dε(u
∗, v∗))

where Dε(u
∗, v∗) = {(u, v) : |u− u∗| < ε, |v − v∗| < ε}

denotes ε-neighborhood. Note that Rmax does not depend
on steering direction (u0, v0), but Rmsl might.

• Directivity (GD): The directivity is the ratio of main
lobe power to average power, GD = 10 log

(
Rmax

Ravg

)
The

average power does not have a closed form expression for
general planar arrays, and is evaluated in (u, v) domain
by the integral [21]:

Ravg =
2

4π

∫ 1

−1

∫ √1−v2

−
√

1−v2

Ru0,v0(u, v)√
1− u2 − v2

dudv

• Eccentricity (ecc): is a measure of the asymmetry of
the main beam. We add this additional parameter to
suppress the trivial linear placement solution, ecc =√

1− (BWmin/BWmax)
2

For non-uniform planar arrays, none of these beam parameters
have a closed form expression [22], hence they must be
computed numerically. In our simulations, we compute these
beam attributes using a beampattern over a 512× 512 grid in
UV space as shown in Figure 2.

B. Problem Formulation

In order to develop geometric heuristics for optimization, we
first analyze the effect of increasing aperture width, keeping
the number of antenna elements fixed, for linear and planar ar-
rays, with uniform and subarray-based architectures as shown
in the rightmost section of Figure 3. In the plots of beam
attributes in Figure 3, the dashed line represents the aperture
width for half-wavelength inter-element spacing, when the
uniform and subarray-based configurations match.
• The MSLL for the array of subarrays increases much

faster than for a uniform configuration due to a grating
lobe appearing close to main beam. This attribute is sensi-
tive to the element distribution and behaves unpredictably
for non-uniform arrays.
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Fig. 2. Beam Attributes from array Beampattern.

• The 3dB Beamwidth (BWmax for planar array) for both
array types reduces congruently, confirming that it is
inversely proportional to aperture width independent of
the distribution of elements.

• Directivity increases as we increase the inter-element
spacing, but only up to a certain limit, and then becomes
constant [23]. This generalizes well to planar arrays as
shown in the Figure 3. As one can see the directiv-
ity for subarrayed configurations remains approximately
constant with increasing aperture width beyond standard
spacing. We therefore do not include this metric in our
cost function.

The objectives that we wish to trade off against each other
do not have the same units: for example, MSLL is measured in
dB relative to the maximum for the main lobe, whereas BW is
measured in deg. We therefore normalize each raw objective
value, oraw by its range as follows:

o(C) =
oraw(C)−min

∀C′
{oraw(C ′)}

max
∀C′
{oraw(C ′)} −min

∀C′
{oraw(C ′)}

The range of each objective is computed numerically while
constructing the dictionary of all configurations, C ∈ C,
described later in III-A.

The constrained multi-objective optimization can now be
formulated as follows:

C∗,w∗ =arg min
∀C,w

f(C,w)

subject to AOS(C)
(5)

where

f(C,w) = αBW(C,w) + βMSLL(C,w) + γecc(C,w) (6)

is the weighted cost function in terms of the normalized
objective functions and [α, β, γ] are weights that can be used
to sweep through the optimal surface for this optimization. We
show some example arrays obtained for different choices of
weights in Table I.

Since the cost function f(C,w) is evaluated numerically
from its beampattern for specific values of (C,w), exploring
the entire solution space is computationally infeasible. This

discrete-valued nature of the optimization variables leads to
a combinatorial problem without closed form objectives and
constraints. Furthermore, beam characteristics in general de-
pend on the steering weights w, which in turn depend on
the direction (u0, v0) in which we are steering. We therefore
employ two key simplifications:
• We remove the dependence of the cost function on

beamforming direction, and hence on steering weights,
by computing the objectives based on an expanded beam
pattern, as discussed in Section II-C.

• We employ geometric heuristics to cut down the solution
space to a reasonable size, as described in Section III.

C. Invariance to Beamforming Direction

The cost function in (6) is evaluated using the beampattern
R(u−u0, v−v0), which depends on the beamsteering direction
(u0, v0). It would be prohibitively expensive to evaluate the
beam attributes over all such beampatterns for finding the op-
timal (C,w). However, for arrays with isotropic elements, we
can define an Expanded Beam pattern (EBP) which subsumes
beampatterns of all steering direction in a Region of Interest
(ROI) [24]. Suppose that our maximum steering angle in the
ROI is θmax. From (2), we see that (u0, v0) lies within a circle
of radius sin θmax. On the other hand, sidelobes can appear
at any (u, v) within a circle of radius 1. It is easy to see,
therefore, that (u − u0, v − v0) is guaranteed to lie within a
circle of radius 1 + sin θmax. We can therefore compute beam
attributes using the following EBP:

Rρ(ũ, ṽ) =
1

N2

∣∣∣∣∣
N∑
i=1

ejkρ(ũd
x
i +ṽdyi )

∣∣∣∣∣
2

ρ = 1 + sin(θmax)

(7)

Figure 4 shows the EBP, R1.5(ũ, ṽ) for ROI with θmax =
30◦, and the beampattern for the steering angle ((u0, v0) =
(0.3, 0.4)). The shape of the main beam is preserved under
the transformation (7), hence beam width and eccentricity can
be directly evaluated from (7). The MSLL evaluated from EBP
is a worst-case value, corresponding to an argument ρ(ũ, ṽ)
which, in principle, might not correspond to a feasible value of
(u−u0, v−v0) in (4). However, the maximum sidelobe always
lies within the main lobe of the subarray beam pattern, so that
physically implausible values of ρ(ũ, ṽ) do not correspond to
large local maxima of the EBP.

With the introduction of the EBP, we can, without loss of
generality, assume that the main beam is being steered towards
broadside, setting w = 1N . Our problem now reduces to
finding the optimal configuration C∗ as follows,

C∗ = arg min
C

f(C,1N ) subject to AoS(C) (8)

III. PLACEMENT OPTIMIZATION

In order to optimize the placement, we need to evaluate
the cost function over all array configurations. The number
of configurations depends on the allowed form factor, and the
size of the subarray module, and an exhaustive search over all
configurations is computationally infeasible: for example, the
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Fig. 3. Comparison of beam attributes of subarrayed and uniform architecture with increasing aperture width.

Fig. 4. Expanded Beampattern for ROI (θmax < 30◦)

number of configurations for a discrete grid of size 20× 20 is
of the order 1020. We therefore propose a two-stage approach,
first performing a combinatorial search on a reduced search
space, and then obtaining the final solution by searching over
perturbations around the solution from the first stage.

A. Combinatorial search

We reduce the solution space by removing geometrically
“similar” arrays. We employ the covariance of the element po-
sitions, and pairwise element separations, as measures of sim-
ilarity. The choice of covariance of element positions Σ(C)
as similarity metric is motivated by its inverse proportionality
to Cramér Rao Bound on accuracy of DoA estimation (see
Section IV-A1). However, array configurations with similar
array covariance but diverse beam attributes also exist: Figure
5 shows an example of two array configurations with different
shapes but the same covariance. The arrays have similar
beamwidth but their MSLL levels are different. We observe that
the variance of pairwise element distances ψ(C) is different
for these arrays, and use it as an indicator for these large scale
deviations. This allows us to reduce the dimensionality of the
solution space from 2×Ns down to 3 array shape parameters:
the eigenvalues (λ1, λ2) of Σ(C) and ψ(C).

1) Subarray Placement Algorithm: We construct a prefix
tree dictionary to find feasible solutions using a breadth first

-10 -5 0 5 10

-5

0

5

ψ(C1)=6.6
ψ(C2)=5.2
MSLL1=-5.2 dB
MSLL2=-1.6 dB

C1 array

C2 array

C1 covariance

C2 covariance

Fig. 5. Super-arrays with equal covariance but different beam attributes.

search based enumeration technique. The element position co-
variance for an array of subarray can be uniquely represented
by the covariance of its subarray centers, ΣD = ΣC + ΣDe .
Hence the super-array center covariance can be used instead of
that of the full array in the Dictionary search algorithm. Each
node in the tree stores a subarray center position, and the path
from root to a node at the nth layer of prefix tree represents a
unique configuration of n subarrays. The subarray centers are
constrained to lie on a fixed set of discrete grid points G. The

Algorithm 1 Prefix Tree Dictionary Search

1: INITIALIZE: C1 =
{
C

(n=1)
i

}
; i ∈ [1, Ninit] ;n = 1

2: while n < Ns do
3: LIST all vacant Gridpoints Vi = TG(Cn

i ); i ∈ [1, |Cn|]
4: APPEND subarray at vacancies Vi,

Ĉn+1 =
|Cn|⋃
i=1

Cn
i × Vi

5: PRUNE: Cn+1 ← Prune
(
Ĉn+1

)
6: n = n+ 1
7: end while
8: Return CNs

algorithm is described in Algorithm 1. We briefly discuss the
key steps below.
• INITIALIZE: In order to allow for sufficient exploration,
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we employ multiple random initializations C1
i of the root

node being placed on Ninit different locations on the grid.
(For example, circular configurations cannot be obtained
if the root subarray is fixed at the center.)

• LIST: Define the operator TG : G|C
n
i | → G|Vi| which

maps the set of subarrays centers Cn
i ∈ Cn to the set

of |Vi| vacant gridpoints in G available for placement
of next subarray which are not blocked by the subarrays
already placed at Cn

i . This operator also accounts for
additional surface area occupied by the subarray module
apart from the physical antenna elements (see Appendix
C for details).

• APPEND: The (n + 1)th subarray configuration is con-
structed from the vacancies, Cn

i × Vi where × denotes
cartesian product of sets. A temporary dictionary Ĉn+1 is
formed by inserting |Vi| = κ child nodes for each node
in the nth layer.

• PRUNE: Nodes corresponding to “similar” configurations
are deleted based on the array shape parameters

1) Find eigenvalues (λ1, λ2) of the subarray center
covariance matrix, Σ(C) and variance of array
separations, ψ(C) = E

[
(lij − E[lij ])

2
]
, where, lij

denotes the distances betweeen ith and jth ele-
ments.

2) Enumerate unique configurations by binning the
(λ1, λ2, ψ) triplets over a 3-D grid with resolution τ
and randomly picking one configuration from each
bin (see Appendix D for criteria to choose τ ).

This procedure is repeated until the number of dictionary
atoms reach the desired number of subarrays, n = NS . All
arrays in the dictionary C obtained from this algorithm satisfy
the AOS(C) constraint by construction. This simplifies the
constrained multi-objective optimization in (5) to

C∗ = argmin
C∈C

f(C,1N ) (9)

B. Iterative Placement Refinement

In the second stage, we try to improve the cost function (9)
by applying small local perturbations (within a bin of the grid
G) to the subarray positions obtained from the combinatorial
search in the first stage, as described in Algorithm 2.

Algorithm 2 Local Refinements
1: INITIALIZE: C = Cinit; B = oversampled bin.
2: while n < Nref do
3: for i = 1 to Ns do
4: LIST Find positions available for adjustment, Vi =

TB(C \ Ci)
5: CORRECT: Select position with least cost Ci ←

minb∈Vi
f ({(C \ Ci), b} ,1)

6: end for
7: n = n+ 1
8: end while
9: Return C

Figure 6 shows a sample of how costs are minimized using
sequential refinement over Ns = 8 subarrays. After running
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Fig. 6. Objective costs variation over iterative refinements.

few iterations, the final array has 0.8 dB lower MSLL, while
keeping other beam attributes relatively unchanged.

C. Computational Complexity

The complexity of this approach is dominated by the
construction of the prefix tree dictionary C in the first stage.
Our algorithm progresses by growing leaf nodes of the tree
in a breadth first fashion until a tree depth of Ns is reached.
In each step, the key bottleneck lies in pruning the temporary
dictionary Ĉn which lists all possible vacancies for every leaf
node of existing tree. The number of operations and space can
be upper bounded as follows (see Appendix E for details):

TAlgorithm1 =

Ns−1∑
n=1

|Ĉn+1| ≤
Ns−1∑
n=1

|G||Cnmax| ∼ O
(
|G|4N4

s

)
SAlgorithm1 = max

n∈[1,Ns]
|Cn| ≤ |Cnmax| ∼ O

(
|G|3N3

s

)
The resulting dictionary is independent of cost function
weights [α, β, γ], and represents a thinned version of the entire
design space. Thus, optimized arrays for different weights can
be evaluated by solving (9). The solution of (9) has O(|C|)
time complexity, assuming that cost evaluation for each array
configuration takes constant time. The second stage of the
algorithm requires cost evaluation of fine perturbations over
an oversampled bin of size |B| around each subarray, repeated
Nref times. This stage requires TAlgorithm2 = |B|NrefNs
operations using constant space, which is significantly lower
compared to first stage. Hence, the overall algorithm complex-
ity is O(|G|4N4

s ) in time and O(|G|3N3
s ) in space.

We note that the polynomial complexity of proposed algo-
rithm is significantly better compared to exhaustive search,
which exhibits exponential complexity O(|G|Ns). For our
running example, the proposed algorithm’s complexity is
TAlgorithm1 = (400×8)4 ≈ 1014 compared to the complexity
of exhaustive search, TExhaustive = (400)8 > 1020.

IV. ESTIMATION-THEORETIC BENCHMARKS

We now seek to evaluate the efficacy of our sparse de-
signs for the canonical application of 2D DoA estimation.
We compare different array designs in terms of estimation-
theoretic bounds as well as simulated performance using a
super-resolution algorithm. For clarity in exposition, from here
onwards we overload u , [u, v] to denote the DoA.
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A. Signal Model

We model the received signal from K sources in the scene
with distinct DoAs Θ = [u1, u2, · · ·, uk] as

x =
K∑
j=1

αjs(uj) + z (10)

where s(uj) =
[
ejku

T
j d1 , . . . , ejku

T
j dN

]T
is the array re-

sponse, z = [z1, . . . , zN ]T is complex white noise such that
E(zzH) = σ2IN , and {α}Kj=1 are complex gains which are
unknown deterministic constants. The joint probability density
of received signal conditioned on (Θ, {α}Kj=1) is given by,

p(x|Θ,α) =
∏
uj∈Θ

1

πNσ2
exp

(
−‖x− αjs(uj)‖

2

σ2

)
(11)

For any DoA estimator Θ̂, the covariance of estimation error
is defined as,

Rε(Θ̂) = E

[
K∑
i=1

(u− ûi)(u− ûi)T
]

Rε can be geometrically interpreted by its trace
√
tr(Rε)

which represents the expected overall Root mean square error
(RMSE) in DoA estimation (see Appendix A). We use this
measure to compare the performance of array designs in
Section V. For single source case (K = 1), the joint maximum
likelihood estimator of u and α yields a noncoherent estimator
for u as follows:

ûML = argmax
u

∣∣s(u)Hx
∣∣2 (12)

For this case, we derive the Cramer Rao (CRB) and Ziv-Zakai
(ZZB) bounds on Rε to assess the best possible estimation
accuracy of different designs. Although derived for single
source case, we use these bounds for multiple source case
as well to compare DoA estimation performance.

1) Cramér Rao Bound : The Bayesian Cramér Rao Bound
for this signal model is given by [24]:

CRB(Rε) = (JF + JP )−1 (13)

where JF , JP denote the Fisher Information Matrix (FIM)
contributions from the observation and the prior distribution
of DoA respectively.

(JF )ij = −Ex,u
[
∂2l(x|u)

∂ui∂uj

]
, (JP )ij = −Eu

[
∂2l(u)

∂ui∂uj

]
where l(x|u) and l(u) are the conditional log likelihood and
prior log likelihoods, respectively. In addition, the following
regularity condition needs to be satisfied,

Ex,u
[
∂l(x|u)

∂u

]
= 0

Ex,u

[
jk

N∑
i=1

di

(
xie

jkuTdi − x∗i e−jku
Tdi

)]
= 0

jk

(
α

N∑
i=1

di − α∗
N∑
i=1

di

)
= jk(α− α∗)

N∑
i=1

di = 0

In order to always satisfy this condition, we enforce the array
element positions to be centered i.e.,

∑N
i=1 di = 0.

For a single source, the FIM is given by,

JF = − 1

σ2
E

[
∂s(u)

∂u

H
∂s(u)

∂u

]
(14)

= 2k2γDTD (15)

which depends only on the element positions, D and Signal
to Noise ratio (SNR) (γ = |α|2/σ2). Assuming the DoA prior
to be uniformly distributed in the ROI (θ ≤ 30◦), the prior
FIM simplifies to JP = 1.343I2.

2) Ziv-Zakai Bound: The CRB is a local bound, which
accounts for estimation performance dependent on mainbeam,
hence it is only useful at high SNR. In order to better
characterize the estimation performance of Sparse arrays at
low SNR, we calculate the Ziv-Zakai Bound (ZZB) which
incorporates the effect of sidelobes and predicts the threshold
behavior. For any directional vector a = [cos ξ, sin ξ]T , the
ZZB is given by [25]

aTRεa ≥
∫ ∞

0

V
{

max
δ:aT δ=h

∫
A(u, δ)Pe(u, δ)du

}
hdh

where, A(u, δ) = min {p(u), p(u+ δ)}, V(.) is the valley
filling function and Pe(u, δ) is error probability of the fol-
lowing vector parameter binary detection problem,

H0 : û = u; Pr(H0) =
1

2
,x ∼ p(x|uuu)

H1 : û = u+ δ; Pr(H1) =
1

2
,x ∼ p(x|u+ δu+ δu+ δ)

This error probability can be lower bounded by the minimum
probability of error of the following optimal non-coherent
detector:

Decide(u) =

{
u if ρ1 > ρ2

u+ δ if ρ1 < ρ2

where ρ1 = |xHs(u)| and ρ2 = |xHs(u + δ)|. Given
u = u0, ρ1, ρ2 are rician distributed with scale parameter
s = σ2/M and non-centrality parameter ν = |α|N, |αR(δ)|N
respectively where R(δ) = R(δx, δy) is the beampattern from
(3). The error probability is given by [26]

Pnc(u, δ) =
1

2
(Pr (ρ1 < ρ2|u) + Pr (ρ1 > ρ2|u+ δ))

= Pr (ρ1 < ρ2|u)

= Q1(a, b)− 1

2
e−

a2+b2

2 I0(ab) (16)

where,

a =

√
γN

2

(
1−

√
1− |R(δ)|2

)
b =

√
γN

2

(
1 +

√
1− |R(δ)|2

)
which is not a function of u. For ROI in our case, the
maximum error h(max) =

(
aT δ

)(max)
= 1. Note that for

a uniformly distributed DoA in spherical coordinates (θ, φ),
the distribution of u is not uniform. However for simplicity
of analysis, we make the assumption that u is uniformly
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distributed on a circular disc. Hence, the ZZB expression
simplifies to

aTRεa ≥
∫ 1

0

V
{

max
δ:aT δ=h

∫
A(u)duPnc(δ)

}
hdh

ZZB(aTRεa) =

∫ 1

0

V
{

max
δ:aT δ=h

Pnc(δ)

}
hdh (17)

The maximum error probability over all directions δ cannot
be expressed as closed form expression. However, due to
the monotonicity of Marcum’s Q function, Q1(.) and Bessel
function of 0th order, I0(.), the error probability in (16) is
maximized only when R(δ) is maximized. Therefore, for each
values of h, we compute the maxδ:aT δ=h |R(δ)| numerically
by searching over a discrete set of points on the line segment
aT δ = h and substitue in (17).

B. DoA estimation algorithm

Grid-based sparse estimation for a set of DoAs models the
the received signal (10) as follows:

x = S(Ψ)b+ z (18)

where S(Ψ) =
[
s(u1) · · · s(u|Ψ|)

]
contains the array re-

sponse at discretized set of DoAs ui ∈ Ψ as columns.
The nonzero entries in b point to presence of target in the
corresponding DoA in Ψ. The DoA and gain pair (ûi, α̂i)

K
i=1

can be estimated by jointly minimizing the residual power,

T (û, α̂) =

∥∥∥∥∥∥x−
K∑
j=1

α̂js(ûj)

∥∥∥∥∥∥
2

The NOMP algorithm summarized below provides a two stage
estimator:

1) Detection: Using precomputed S(Ψ), coarse estimates
of DoA and complex gain are obtained

û = argmax
u∈Ψ

|s(u)Hx|2

α̂ = s(u)Hx/N

2) Refinement: The estimates are refined using the Newton
method:

û′ = û− (H∇T (û, α̂))
−1∇T (û, α̂) (19)

α̂′ = s(û′)Hx/N (20)

where H∇T and ∇T denote the Hessian and gradient
of T (u, α) with respect to u at current estimate (û, α̂)
(see [27] for details).

The algorithm is repeated with the residual signal, r =
x − α̂′s(û′) to estimate other DoAs. The refinement steps
are repeated after each new detection for all DoAs in a cyclic
manner for few rounds to improve accuracy.

The algorithm yields Kest DoA estimates, with estimation
performance degrading when Kest does not match the true
number of DoAs, KDoA. Hence, in order to evaluate the arrays
independent of such errors, we implement both algorithm
where K = KDoA is known.

We also run extensive simulations with another state of
the art algorithm, BPDN [17], with default parameters and 5

refinement stages. The computational complexity of BPDN is
significantly higher than that of NOMP. The grid Ψ needs to be
adapted at each iteration for BPDN, depending on the DoAs,
whereas it remains fixed for NOMP S(Ψ), and can be pre-
computed, which makes it suitable for faster implementation in
large arrays. Since the NOMP algorithm also yields somewhat
better estimation accuracy than BPDN, we only present results
obtained with NOMP here.

V. NUMERICAL RESULTS

A. Design of arrays

Using the combinatorial search algorithm, we create a
search space of array configurations, C ∈ C of size |C| =
657, 000 for Nsub = 8 subarrays. Figure 7a shows the values
of two major objectives, MSLL, BW over this space. The
beamwidth is improved by spreading out the subarrays, but
this typically leads to a deterioriation in the MSLL. Figure 7a
clearly shows the Pareto front corresponding to the multiple
solutions of (9), corresponding to different relative weights,
trading off these opposing objectives. Figure 7b shows the
weighted cost function obtained for an example set of weights
(α = 0.1, β = 0.5, γ = 0.1) as a function of the eigenvalues
of the array covariance matrix. We observe that for a similar
set of eigenvalues, many of the solutions we explore (shown
in yellow) are substantially worse in terms of the weighted
cost than the solutions shown in blue from which we choose
our solutions, indicating the complexity of the optimization
landscape. Choosing one more variable, the variance of the
element locations ψ(C), for binning is therefore crucial for
exploring this landscape more thoroughly. Figure 7c shows
the array B obtained using the proposed algorithm, and its
beampattern. We mark the locations of B, and of two other
Pareto optimal designs, A1 and A2 (to be discussed shortly)
along the Pareto front in Figure 7a.

As we change the relative values of weights α, β and γ
in exploring the Pareto front, we can make the following
observations regarding the corresponding subarray placements:
• For a larger relative value of α (more importance given

to beamwidth), the subarrays are widely distributed over
the available aperture area.

• When we increase the relative value of β to suppress
MSLL, the array becomes restricted to a smaller area.

• The relative weight of γ, which corresponds to the
objective of reducing eccentricity, affects both the shape
of the main lobe and the positions of the sidelobes.
For positive γ, the solution is not expected to lie on
the BW-MSLL Pareto front boundary. Indeed, Figure 7a
shows that the solutions from first stage dictionary search
lie slightly away from this boundary. However, the second
stage iterative refinement reduces this gap.

Based on these observations, we set the weights to obtain
following sample array configurations:

1) A1: Primary emphasis is given towards minimizing
beamwidth by setting α = 1, β, γ = 0.1.

2) A2: In this case, we emphasize all beam attributes by
setting all weights equal to 1.
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(a) Beam attributes of array dictionary C, Sample arrays on
Pareto optimal front obtained from first stage dictionary search
(�) and second stage iterative placement refinement (�).

(b) Weighted cost function f(C,1N ),C ∈ C for
weights (0.1, 0.5, 0.1) as a function of the eigenvalues
of the array covariance matrix Σ(C).

(c) Array configuration & beam-
pattern for solution B.

Fig. 7. Pareto-front exploration and multi-objective optimization.

Fig. 8. Beam patterns (Bottom row) for designed (Left half) & benchmarking (right half) arrays.

TABLE I
SAMPLE ARRAY CONFIGURATIONS

Shape α β γ MSLL BW ecc

A1 1 0.1 0.1 -8 dB 5.7◦ 0
A2 1 1 1 -10.2 dB 8◦ 0

Compact - - - -12.8 dB 12.1◦ 0.7
Naive - - - -7.6 dB 7.9◦ 0.0

We compare these array designs against two simple array
configurations, 1) a “compact” array where subarrays are
placed together such that overall element pattern becomes a

uniform rectangular array, 2) a “naive” array where subarrays
are spread along a diamond shape such that its resultant
beamwidth is equal to that of A2. Table I lists the weights
and resulting beam attributes of these arrays.

Figure 8 shows the array designs obtained using our opti-
mization approach and their beam patterns. The A2 array has
a sharp beamwidth and only 2.6 dB worse MSLL compared
to the compact array. On the other hand, a naive sparse array
with circular arrangement of subarrays yields 2.6 dB higher
MSLL compared to A2 for similar beamwidth. Our designs A1,
A2 exhibit several small sidelobes (the highest sidelobe for
A2 is -10.2 dB), whereas the naive array exhibits fewer but
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more pronounced sidelobes. Since large sidelobes and grating
lobes can cause large errors in DoA estimation, we expect our
designs to yield better estimation performance, which is borne
out by the results presented in the next section.

We note that the sidelobe levels and locations are primarily
dependent on the super-array (i.e., the location of subarray
centers C), while the subarray pattern mainly affects the large-
scale beampattern. Therefore, we obtain similar solutions, with
similar beam characteristics, using our optimization approach
with small variations in the subarray element patterns (e.g,
replacement of a rectangular pattern with a plus pattern). Such
results are not reported here due to space constraints.

B. Comparison of Estimation Performance

We evaluate the arrays based on their DoA estimation
accuracy at different SNRs for both single and multiple source
cases. We use the RMSE in estimating DoA for comparison
which is given by ε̄ =

√
E[|û− u0)|2] =

√
tr(Rε)/2.
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Fig. 9. Comparison of estimation theoretic bounds for arrays.

1) Estimation bounds: The Cramér Rao Bound is evaluated
using (13), CRB(ε̄) =

√
tr(CRB(Rε))/2 . The Ziv Zakai

Bound is evaluated using (17),

ZZB(ε̄) =
√
ZZB(aT1Rεa1) + ZZB(aT2Rεa2)

where a1, a2 denote the directions of maximum and minimum
beamwidths of the array. We also computed the ML estimation
(MLE) error by Monte Carlo simulation using (12) with an
overcomplete dictionary of array responses. Figure 9 shows
the CRB, ZZB and MLE curves for all the arrays. CRB
is proportional to beamwidth (see Appendix B for details).
The ZZB bound converges to CRB at the so-called “ZZB
threshold” SNR: when the SNR is below this threshold, far-
ambiguities in DoA estimation caused by large sidelobes
dominate the MSE. The tradeoff between beamwidth and
MSLL is thus expected to translate to one between CRB
(better with smaller beamwidth) and ZZB threshold (worse
with larger MSLL). Thus, as expected, “A1” array achieves
the lowest CRB, followed by “naive” and “A2” with equal

CRB, while “Compact” array has the largest beamwidth and
hence highest CRB. The trend in MSLL is weakly reflected in
the ZZB thresholds (for a single target, sidelobes do limited
damage): the degradation in ZZB threshold, relative to that of
the compact array for the optimized arrays (A1, A2) is less than
1 dB, while the gain in CRB due to smaller beamwidth is 4 dB
and 2 dB, respectively. The MLE error curve also agrees with
the threshold behavior predicted by ZZB. We see in the next
set of results, however, that the size of the sidelobes becomes
much more important when we consider multiple targets.

2) Estimation algorithm performance: We obtain DoA es-
timates using the NOMP algorithm [18], [27] with a known
number of sources to compare the best case performance of
these arrays. (The NOMP algorithm also performs as well as
the brute force MLE for a single target discussed earlier–
results omitted here.) The RMSE is evaluated across N =
1024 DoAs uniformly sampled over the ROI (spherical cap
of half angle 30◦). For evaluating the estimation performance
in presence of multiple targets, (K = 5) we compute the
RMS error in the DoA estimate for a primary target fixed at
broadside, while interfering targets are distributed uniformly
in ROI at separation of ∆u ≥ 0.16 or ∆θ ≥ 9.2◦ away from
primary target. This separation is imposed because the esti-
mation problem is ill-posed for DoAs in close proximity. For
uniform arrays, the minimum separation is typically defined
with respect to the DFT bin size (e.g. ∆DFT = 2π/L for an L-
element linear array). Since this quantity cannot be defined for
non-uniform planar arrays, we choose a minimum separation
halfway between the RMS beamwidths of the “compact” and
sparse arrays, to capture the effect of both local errors and far
ambiguity errors due to sidelobes.

In addition to RMSE vs SNR curves, we also analyze the
distribution of error magnitudes. The complementary cumu-
lative distribution (CCDF) of the estimation errors is used to
compare the “outage probability” corresponding to too large
an error, which captures the impact of large sidelobes.

• With multiple sources, the estimation accuracy is de-
graded by interference from other sources, and RMSE
does not converge to the single-target CRB. Figure 10
shows the estimation performance for strong and weak
interference.

1) Weak interference: When the interfering sources are
6 dB weaker than primary target, sparse arrays offer
more than 5 dB SNR gain compared to compact
arrays for SNR > −5 dB. Also, the difference
between A2, naive array widens to about 1 dB
in the threshold region indicating the benefit of
suppressing sidelobes.

2) Strong interference: When interfering sources have
same magnitude, RMSE severely degrades for both
arrays with high sidelobes (A1, Naive) as well as
arrays with high beamwidth (Compact). On the
other hand, A2 has lowest RMSE at SNR > −5
dB because of the dual benefit of small beamwidth
and lower sidelobes.

• The increase in estimation errors at high SNR is attributed
to ambiguity errors from sidelobes, hence the overall
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Fig. 10. Estimation accuracy with multiple targets.

sidelobe suppression for the arrays can be compared
using the distribution of these error magnitudes. Figure
11 shows the CCDF curves of all arrays at SNR=−5
dB. The initial curvature of these curves (RMSE upto
-22 dB) is expected to depend on local errors, hence
the rate of change follows same order as CRB which
is A1 > A2 = naive > compact. But the curvature
reverses order at higher RMSE indicating the tradeoff
with far-errors. We can see that A2 achieves lower outage
probability in both scenarios (e.g. for RMSE threshold set
to −15 dB) as it strikes a balance between near and far
errors. In contrast, both A1 and naive exhibit high outage
probability due to frequent far ambiguity errors caused
by higher sidelobes.

Therefore, depending on the expected magnitude of interferers
either one of the designed arrays with suitable sidelobe sup-
pression can be selected. For a desired beamwidth reduction
our design algorithm yields an array superior to a naively
designed sparse array.

VI. COMPRESSIVE ESTIMATION

We now evaluate the arrays for sparse estimation using
compressive measurements at each subarray given by:

y = Φx

where x is the full measurement from (18) and Φ =
diag(Φ1, · · · ,ΦNs

) is the M × N measurement matrix con-
sisting of the subarrays measurement matrices as its block
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Fig. 11. CCDF of estimation errors in multiple targets.

diagonals. Each subarray takes Mi compressive measure-
ments with an independent Φi ∈ CMi×Ne whoose elements
are chosen uniformly and independently from QPSK sam-
ples 1√

Mi
{±1,±j}. In addition, columns of Φi have unit

norm to preserve signal norm on average (E
[
||ΦS(u)||2

]
=

||S(u)||2) while scaling noise variance by N/M . The under-
lying DoA, u can be extracted by minimizing the ML cost:∥∥∥∥∥∥y − Φ

K∑
j=1

α̂js(ûj)

∥∥∥∥∥∥
2

The efficacy of compressive parameter estimation in AWGN
depends on preserving the geometric structure of the parame-
terized signals [20]. Specifically, if Φ satisfies the 2K isometry
property for discretized basis S(Ψ) [20],

C(1− ε) ≤ |ΦS(Ψ)b|2

|S(Ψ)b|2
≤ C(1 + ε) (21)

where C is a constant for any arbitrarily chosen 2K sparse
vector b, the performance of the compressive system follows
that for the original system, except for an SNR penalty of
M/N . Figure 12 shows the minimum and maximum values of
this ratio over 106 random realization of 8 sparse b for sparse
array. The ratio is within [−5, 3] dB for M > 32 signifying
that 32 compressive measurements are sufficient to estimate
K = 4 DoAs.

Figure 13 shows estimation performance with M = 32
compressive measurements collected across eight subarrays
(Mi = 4, i ∈ {1..8}). Comparing with Figure 9, we observe
that the estimation algorithms preserve the same characteristics



IEEE TRANSACTIONS ON SIGNAL PROCESSING 12

10 20 30 40 50 60

-8

-6

-4

-2

0

2

4

6

max
min

Fig. 12. Maximum and minimum values of ratio in (21) for sparse array.
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Fig. 13. Estimation performance with Compressive measurements.

as with full measurements with approximately 6 dB SNR
penalty as expected (N/M = 4).

VII. CONCLUSIONS

Our results demonstrate that trading off beam width ver-
sus side lobes when synthesizing a large effective aperture
does indeed produce performance gains in bearing estima-
tion. Compared to a compact placement of subarrays, an
optimized sparse placement produces smaller mean squared
error because of its smaller beam width. Compared to a naive
sparse placement, the control of side lobes via our optimized
placement produces the most significant gains when estimating
the bearing for multiple sources.

Exploring the application of our framework for communi-
cations, where transmit and receive beamforming gains are
fixed by the number of elements, but control of beam width
and sidelobes affects interference, is an interesting direction.
In the context of sensing, our work may be viewed as design
of an individual sensor which can be placed within a more
comprehensive architecture, such as a network of sensors for
localization and tracking.

In our tiled architecture, the locations of antenna elements
in a subarray are fixed once we specify the location of the
subarray center. This constraint makes it difficult to adapt
the extensive literature on sparse array optimization, which

typically considers elements that can be freely placed, for our
present purpose. The difficulty is compounded by the lack
of closed form expressions for beam attributes of interest.
However, since the objectives are only mildly dependent on
the configuration of elements within a subarray, it might be
possible to simplify the optimization problem, and possibly
adapt ideas from the literature on sparse array optimization.
This is an interesting direction for future research, especially
given the importance of tiled architectures in realizing a large
aperture leveraging low-cost hardware for subarrays with a
moderate number of elements.

APPENDIX A
MEAN SQUARE ERROR IN 2D DOA ESTIMATION

For 2D DoA estimation, the error along any given angle ξ is
given by aTRεa, where a = [cos ξ, sin ξ]T is the directional
cosine and Rε is the error covariance matrix. Assuming that
{νi, qi, i = 1, 2}, denote the eigenvalues and eigenvectors of
Rε, the MSE averaged over a (assume ξ uniform over [0, 2π])
is given by

MSE = Ea
[
aTRεa

]
= ν1Ea

[∣∣aT q1

∣∣2]+ ν2Ea
[∣∣aT q2

∣∣2]
= ν1

||q1||2

2
+ ν2

||q2||2

2
= (ν1 + ν2)/2 =

1

2
tr(Rε)

where we have used E[cos2 ξ] = E[sin2 ξ] = 1
2 .

APPENDIX B
2D BEAMWIDTH & CRB

We define 2D beamwidth using the Taylor series expansion
of beampattern Ruo(u) around mainlobe Ruo(0). Since the
beampattern around the main lobe. and hence the beamwidth,
is invariant to beamforming direction (see II-C), we assume
uo = 0 without loss of generality, and drop the subscript:
R0(u) , R(u). By taking the derivatives of (3), theTaylor
series expanision up to second order is obtained as

R(u) ≈ R(0)− k2

N
uTDTDu (22)

We define Half Power Beam Contour (HPBC) as the closed
contour around mainbeam with {u : R(u) = 0.5R(0)}, which
is approximated as an ellipse using (22) as follows:

uTDTDu =
N

2k2
R(0) (23)

Consider the eigendecomposition of DTD given by,

DTD = λ1p1p
T
1 + λ2p2p

T
2 (λ2 ≥ λ1)

The eigenvectors p2,p1 correspond to major and minor axis
of HPBC ellipse respectively, and depend only on the element
positions.

Figure 14 shows the mainlobe of a beam and the dotted
shaded region represents its HPBC ellipse. ǔo, ǔ1, ǔ2 corre-
spond to unit vectors in the direction of main beam, vertex
and co-vertex of the HPBC where, ǔ = [u, v,

√
1− u2 − v2]
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Fig. 14. 2D Beamwidth

is the unit vector towards directional cosine u = [u, v]. These
can be expressed as,

ǔo =

0
0
1

 , ǔ1 =

sinϑ cosφmax

sinϑ sinφmax

cosϑ

 , ǔ2 =

sinϕ cosφmin

sinϕ sinφmin

cosϕ


(24)

where φmax, φmin are perpendicular azimuthal angles and ϑ, ϕ
are the maximum and minimum beamwidth angles subtended
from the major and minor axis of this ellipse to the mainbeam.

BWmax = ϑ =

(
360

π

)
cos−1 (ǔoǔ1) (25)

BWmin = ϕ =

(
360

π

)
cos−1 (ǔo.ǔ2) (26)

Substituting the major and minor axis from (24) in (23), we
obtain

λ1 sin2 ϑ =
N

2k2
R(0) =⇒ sinϑ ≈ BWmax ∝ 1/

√
λ1

λ2 sin2 ϕ =
N

2k2
R(0) =⇒ sinϕ ≈ BWmin ∝ 1/

√
λ2

That is, the beamwidths along extremal directions are inversely
proportional to the square roots of the eigenvalues of DTD.

Relation to CRB: Using (14), the error covariance matrix
is lower bounded by

Rε ≥ CRB = J−1
F =

N

2k2γ

(
DTD

)−1

=
N

2k2γ

(
1

λ1
p1p

T
1 +

1

λ2
p2p

T
2

)
(using (λ2 ≥ λ1))

Using Appendix A, the MSE can be lowerbounded by

MSE ≥ CRB =
1

2
tr(J−1

F ) =
N

4k2γ

(
1

λ1
+

1

λ2

)
=

N

4k2γ

(
sin2(ϑ) + sin2(ϕ)

)
∝ (BWDoA)2

SNR

where BWDoA =
√

BW2
max + BW2

min =
√
ϑ2 + ϕ2 is de-

fined as MSE beamwidth (sin θ ≈ θ for small angles θ).

APPENDIX C
VACANCY SEARCH OPERATOR T

Our reference subarray module shown in Figure 15 occupies
space in addition to antenna elements. In order to keep element
polarizations aligned, these modules can be placed in either up
(0◦) or down (180◦) pose. We outline a procedure to list the
vacant gridpoints Vi = T(Cn

i ) where the new subarray can
be placed without overlapping with already placed dormant
subarrays at Cn

i . We define the subarray state as the center c
of the element pattern and its pose ν, since vacancies depend
on both parameters.

c̃ = {c, ν}∀c ∈ Cn
i , Vi

The pose variable ν ∈ {νu, νd, νf} denotes whether subarray
can be placed in up only(νu), down only(νd) or free pose (νf ,
either up or down) at the location c. For a given set of dormant
subarray states, C̃n

i we identify all vacant states Ṽi for placing
the new subarray. Once a new subarray is placed, the states
of all dormant subarrays are updated (e.g., a free pose may
switch to an up pose if the down pose becomes infeasible).

Fig. 15. The Subarray module and its two possible poses. Golden section are
copper patch antennas on the green colored chip.

APPENDIX D
PERTURBATION OF ARRAY

In order to design a bin size for pruning array configu-
rations, we analyze the effect of perturbing the location of a
single array element on the eigenvalues of the array covariance
matrix. Consider a small perturbation υ = [υx, υy] added to
ith array element position: d̄i = di + υ. The covariance for
the perturbed array is

ΣD̄ =
(
DTD + υTυ + 2dTi υ

)
/N = ΣD + G + 2H

where

G =
1

N

[
υ2
x υxυy

υxυy υ2
y

]
, H =

1

N

[
υxdxi υxdyi
υydxi υydyi

]
Using Weyl’s inequality [28] for real symmetric matrices,

the eigenvalue perturbation is bounded as

|λ̄i − λi| ≤ ‖G + 2H‖2 ≤ ‖G‖2 + 2 ‖H‖2
≤ ‖G‖F + 2 ‖H‖F

The frobenius norms of G,H are

‖G‖F =
(
υ2
x + υ2

y

)
/N

‖H‖F = Ri

√(
υ2
x + υ2

y

)
/N

where Ri =
√
d2
xi + d2

yi is the distance of the ith element
from the array center. Hence, the overall variation of eigen-
values with variation ∆e =

√(
υ2
xi + υ2

yi

)
of the ith element

is

|λ̄i − λi| ≤
(2Ri + ∆e)

N
∆e (27)
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Thus, the eigenvalues are more sensitive to perturbations in the
locations of elements further from the center. For perturbations
within one grid size used in our placement search algorithm,
the eigenvalue of the subarray center covariance can vary at
most by (2Ri+

√
2∆g)

Ns

√
2∆g , and we use this as a guideline for

discretizing the eigenvalues for removing geometrically similar
configurations.

APPENDIX E
ALGORITHM COMPLEXITY

The number of operations at the nth iteration of Algorithm
1 is given by

Tn = |Ĉn+1| =
Ns−1∑
n=1

|Cn|∑
i=1

|Vi| ≤ |G||Cn| (28)

where Cn denotes the set of leaf nodes at the nth level of
prefix tree, and |Vi| is the number of vacancies for the ith leaf
node. The vacancies are a subset of a grid with cardinality
|G| = ( 2Rmax

∆g
)2 where Rmax is the radius of the aperture and

∆g is the grid resolution.
The maximum number of array configurations (which cor-

respond to leaves of the prefix tree) in any given itera-
tion is bounded by the maximum number of unique triplets
(λ1, λ2, ψ), which can be expressed as follows:

|Cn| ≤ |Cnmax| =
λmax1

τmin

λmax2

τmin

ψmax

τmin
(29)

where λmax1 , λmax2 , ψmax represent the maximum value of
each parameter and τmin =

2∆2
g

Ns
is the minimum bin res-

olution (using (27)). The eigenvalues of the array covari-
ance are bounded by the maximum aperture radius λmax1 <
R2
max, λ

max
2 < R2

max and the array separation variance can
be bounded as

ψ = E
[
(lij − E[lij ])

2
]
≤ R2

max (∵ 0 ≤ lij ≤ 2Rmax)

Substituting these upper bounds in (29) and (28), we obtain

|Cnmax| ≤
(
R2
max

τmin

)3

= N3
s

(
R2
max

2∆2
g

)3

=
N3
s |G|3

29

Tn ≤ |G||Cnmax| ≤
N3
s |G|4

29

Note that the upper bound derived here is conservative, as
can be readily verified through simulations. Figure 16 shows
the time and space complexity bounds over Ns = 8 iterations
for a sample run of the algorithm with |G| = 1600 grid
points. We observe that in practice, computational complexity
increases up to Ns = 4 but starts reducing afterwards. The
latter is because of the reduction in the number of vacancies
in the aperture as the space occupied by the existing subarray
modules increases.
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