
Environmental Modelling and Software 133 (2020) 104801

Available online 10 August 2020
1364-8152/© 2020 Elsevier Ltd. All rights reserved.

Geospatial simulation steering for adaptive management 

Anna Petrasova a,*, Devon A. Gaydos b, Vaclav Petras a, Chris M. Jones a, Helena Mitasova a,c, 
Ross K. Meentemeyer a,d 

a Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27695, USA 
b United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Science and 
Technology (S&T), 4700 River Road, Riverdale, MD, 20737, USA 
c Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695, USA 
d Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA   

A R T I C L E  I N F O   

Keywords: 
Stochastic 
Participatory modeling 
Adaptive management 
Computational steering 
Forecasting 
Disease spread modeling 

A B S T R A C T   

Spatio-temporal simulations are becoming essential tools for decision makers when forecasting future conditions 
and evaluating effectiveness of alternative decision scenarios. However, lack of interactive steering capabilities 
limits the value of advanced stochastic simulations for research and practice. To address this gap we identified 
conceptual challenges associated with steering stochastic, spatio-temporal simulations and developed solutions 
that better represent the realities of decision-making by allowing both reactive and proactive, spatially-explicit 
interventions. We present our approach, in a participatory modeling case study engaging stakeholders in 
developing strategies to contain the spread of a tree disease in Oregon, USA. Using intuitive interfaces, imple
mented through web-based and tangible platforms, stakeholders explored management options as the simulation 
progressed. Spatio-temporal steering allowed them to combine currently used management practices into novel 
adaptive management strategies, which were previously difficult to test and assess, demonstrating the utility of 
interactive simulations for decision-making.   

1. Introduction 

Spatio-temporal simulations provide a powerful way to study com
plex spatial phenomena, develop spatial theories, and even forecast the 
future, especially when traditional experimental methods to reveal 
patterns and processes are difficult or impossible to implement (Sullivan 
and Perry, 2013). Accordingly, substantial research efforts have been 
devoted to developing dynamic, spatio-temporal models of large-scale, 
socio-ecological phenomena, such as biological invasions (Meente
meyer et al., 2011; Miller et al., 2017) or sustainable urban growth 
(Meentemeyer et al., 2013). These models are particularly useful for 
simulating the efficacy of interventions—such as strategies to curb the 
spread of invasive species—which may have delayed impacts, cost too 
much, or become controversial (Garner and Hamilton, 2011). 

Given the complexity of socio-environmental problems, researchers 
increasingly use participatory methods to incorporate diverse stake
holder perspectives into problem-solving. Participatory modeling has 
been shown to help researchers develop relevant questions, construct 
better models, and generate solutions that can be easily translated into 

decisions (Voinov and Bousquet, 2010). Spatio-temporal simulations 
have proven effective in participatory modeling studies dealing with 
land use (Lagabrielle et al., 2010), flood hazards (Becu et al., 2017), and 
disease spread (Hossard et al., 2013; Gaydos et al., 2019), but there is 
still a need to better integrate these models into the decision-making 
process (Vukomanovic et al., 2019; Gaydos et al., 2019). Decision sup
port poses a new challenge to modelers, requiring them to make models 
more interactive and reflective of the realities of decision-making. Most 
spatio-temporal simulations are not interactive, i.e., they are initialized 
with a set of inputs that cannot be adjusted while the simulation is 
running. Such a non-interactive workflow pairs well with Monte Carlo 
techniques that allow researchers to capture uncertainties associated 
with stochastic models and model ensembles, and to run calibration or 
sensitivity analyses by simulating large numbers of model realizations 
(Yang, 2011; Rubinstein and Kroese, 2016). However, a non-interactive 
simulation can obscure cause-effect relationships and is impossible to 
adjust in response to new information or to its own intermediate results. 
Moreover, most spatio-temporal models do not have interactive, visual 
interfaces, which are known to facilitate communication of results and 
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their uncertainties, as well as help elicit user input (Voinov et al., 2016). 
Given decision-makers’ need to quickly explore interventions and their 
consequences across space and time, these model limitations can exac
erbate the knowledge-practice gap, a common challenge in modeling 
wherein model insights do not directly inform actionable on-the-ground 
decisions (Voinov et al., 2016; Cunniffe et al., 2015). 

Outside of a participatory modeling context, interactive modeling 
has been studied in computer science and related disciplines for several 
decades (McCormick et al., 1987). Computational steering refers to a 
mechanism for interactively controlling the variables of a simulation as 
the computation is in progress, and is often used to better understand 
parameter space and simulation behavior (Mulder et al., 1999; Matkovic 
et al., 2008). In addition to efficiency, computational steering also im
proves communication and discussion by providing immediate visual 
representation of the model and results (Van Wijk et al., 1997). 
Computational steering has been used to advance research in a variety of 
fields, including atmospheric and weather science, physics, and medical 
research dynamics (Jean et al., 1995; Walker et al., 2007; Johnson and 
Parker, 1995) and has proved especially important in computational 
fluid dynamics simulations (Marshall et al., 1990; Wright and Har
greaves, 2013). Additionally, certain agent-based modeling frameworks 
provide a form of computational steering for model exploration (Ros
siter, 2015; Cordasco et al., 2013) or simulation coupling (Jaxa-Rozen 
et al., 2019). 

Steering can open up new possibilities to explore geospatial ”what 
if?” questions collaboratively with stakeholders. Although the term 
“steering” can be used in participatory modeling literature to mean 
interactive adjustments of key input model variables (Niño-Ruiz et al., 
2013; Voinov et al., 2016), we are specifically concerned here with 
spatio-temporal steering, i.e., allowing users to spatially intervene at any 
step of the simulation. This type of steering can be critical for strate
gizing the management of dynamic systems. Computational steering is 
one of several possible implementations of spatio-temporal steering. 
Some researchers have demonstrated how, with the help of interactive 
environments, computational steering can help explore complex 
spatio-temporal decision-space; the prime example is World Lines 
(Waser et al., 2010; Ribičić et al., 2013), which combines computational 
steering of a flooding simulation with versatile, interactive scenario 
visualization. Waser et al. (2010) demonstrated the approach with a 
levee-breach scenario, exploring possible methods for closing the breach 
by simulating the strategic positioning of sandbags in different spatial 
configurations. Another example of what-if scenario modeling was 
presented by Afzal et al. (2011) in the context of infectious disease 
modeling. These authors developed a decision-support environment on 
top of a mathematical, epidemiological spread model to interactively 
evaluate scenarios with different mitigating measures Afzal et al. 
(2011). 

Despite general agreement about the advantages of computationally 
steering simulations, this methodology is still the exception rather than 
the rule, especially outside of computer science (Pickles et al., 2005), 
because there are several barriers to its broader usage. One is the 
increased technological complexity of model implementation, leading to 
high code maintenance costs and possibly more error-prone code. 
Another is a lack of user-friendly interfaces that facilitate steering for 
users with different technical backgrounds. Furthermore, 
high-performance computing platforms typically associated with 
computational steering often lack the necessary visualization capabil
ities and interactivity. Technological advances, such as GPU computing, 
allowed researchers to make many simulations more interactive and 
accessible through desktop interfaces (Linxweiler et al., 2010; Afzal 
et al., 2011; Ko et al., 2014). However, the increased need to provide 
simulation steering capabilities to analysts and stakeholders has neces
sitated the use of web-based solutions (Deodhar et al., 2014; Sha
shidharan et al., 2017) and alternative interfaces offering more natural 
user interactions (e.g., virtual reality environments (Mulder et al., 1998; 
Wenisch et al., 2005) or touch-table and tangible interfaces (Mittelstädt 

et al., 2013; Tonini et al., 2017)). 
Spatio-temporal steering also poses conceptual challenges when 

dealing with stochastic models. Given that there are multiple re
alizations of a simulation running at the same time for a stochastic 
model, it is not obvious which realization to use to make steering de
cisions. Visualizing several stochastic runs using an aggregate repre
sentation—such as a probability or an average of model results (Ribičić 
et al., 2013)—can inform users about the potential range of outcomes. 
However, real-world decisions are based on observations best repre
sented as a single stochastic run. Applying steering to stochastic 
spatio-temporal simulations is therefore challenging to inform strategies 
used in adaptive management, which bases decisions on evaluation of 
past actions, current observations, and future forecasting. 

We encountered these challenges when designing a participatory 
modeling workshop focused on the spread of an invasive forest disease, 
sudden oak death (SOD), in Oregon. SOD spread poses serious envi
ronmental and economic risks, but because treatments are costly at large 
scales, decision-makers must strategically target treatments across time 
and space (Cunniffe et al., 2016). During a prior participatory modeling 
workshop we conducted (Gaydos et al., 2019), stakeholders expressed 
the need to explore yearly treatment interventions, which led us to 
incorporate spatio-temporal steering into our modeling framework. In 
this paper, we detail how we overcame several challenges associated 
with steering a stochastic simulation and identify three conceptual ap
proaches to spatio-temporal steering in a participatory modeling 
context. We present a novel adaptive management approach that better 
represents the realities of decision-making by allowing both reactive and 
proactive spatially-explicit interventions. We also suggest simpler, 
alternative ways to design steerable simulations that do not require the 
implementation of computational steering, to reduce associated tech
nological complexity. 

The paper is structured as follows: Section 2 identifies several con
ceptual and implementation challenges associated with steering of 
spatio-temporal simulations and develops methods to address them. In 
Section 3 we apply the methods in an epidemiological simulation and 
describe our steering implementation and interfaces developed for our 
participatory modeling case study. Using this case study, Section 4 
demonstrates how workshop participants applied the novel adaptive 
management approach to interact with the simulation and develop 
relevant management scenarios. Sections 5 and 6 highlight the impor
tance of using the adaptive management approach during the workshop 
and discuss the limitations and future work. 

2. Methods 

2.1. Steering stochastic simulations 

Representational and conceptual challenges accompany any attempt 
to steer many stochastic model realizations or a model ensemble. To 
condense the spatial information from all independent runs, aggregate 
renderings are typically used (Ribičić et al., 2013). Spatial results are 
aggregated using an aggregation operator, returning a single value for 
each spatial unit, such as mean, minimum, maximum, standard devia
tion, or count. In this way, modelers can obtain, for example, a proba
bility map of infection or maximum height of flooding. Such aggregate 
views, however, are not always suitable, as they tend to hide the patterns 
and behavior of an individual simulation run. For example, an infection 
or fire can jump over the unaffected areas of a landscape, but such rare 
events may not be captured in the aggregate. Similarly, an urban growth 
simulation can create patches of new development with distinct sizes 
and shapes that are not represented in the aggregate. In these cases, the 
aggregate view can confound understanding of results and even distort 
expectations of future events (Fig. 1). 

Another challenge of steering stochastic simulations involves 
selecting the run(s) to use when exploring scenarios for real-world de
cision-making. Although each steering decision acts on all of the parallel 
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stochastic runs in the same way, it can result in vastly different conse
quences, depending on the run. For example, in the case of a spread 
simulation (disease, fire, etc.), performing a spatial intervention on a 

landscape (e.g., treating infected areas or creating firebreaks) might be 
effective only for certain stochastic runs and not have any effect on the 
rest of the runs. 

Fig. 1. Comparison of an aggregate representation 
(a) and an individual stochastic realization (b) of 
disease occurrence: (a) shows the modeled probabil
ity of disease occurrence based on 1000 stochastic 
runs. Although a large area has non-zero probability 
of disease occurrence, the probability is very low 
(90% of the area has a probability lower than 10%) 
and could lead to overestimation of risk based on 
visual inspection. Moreover, the probability does not 
reveal the pattern of the disease spread as simulated 
in (b) using a single stochastic run.   

Fig. 2. Schema of different approaches to steering a stochastic simulation, with managing a plant disease as an example: a) In the single-realization approach, we 
compute the disease spread for five steps without any interventions and then decide to treat with 50% efficacy in simulation step 1. A selected run shows there is still 
one infection in the following step. We therefore decide to treat in step 3, at which point a new set of stochastic runs is launched, and the run with the most average 
characteristics from the set is selected. Alternatively, we can simply compute only a single stochastic run. b) In the aggregation approach, we can see the initial 
infection in simulation step 1 and the probability of infection in subsequent steps. We apply a treatment in the first simulation step and then another treatment 
focused on the areas with highest probability of infection in step 3. This treatment did not affect certain runs, resulting in low probability of wide-spread infection in 
step 5. c) In the adaptive management approach, we can see initial infection in step 1 and the probability of infection in the future if untreated. We then apply 
treatment with a certain level of efficacy, leading to a reduced probability of infection (action 2). In action 3, we move two simulation steps forward to find out that 5 
cells were infected, then we decide to treat part of the infection in action 4. However, it results in limited success. In actions 5 and 6, we decide a better strategy 
would be to go back one step to treat earlier and apply a larger treatment to prevent he spread; this choice indeed results in a low spread probability in action 6. In 
action 7, we move one year forward to find out that we completely eradicated the disease. 
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Based on the different questions one can answer by steering sto
chastic spatio-temporal simulations, we distinguish three different ap
proaches to steering: a) the single-realization approach, b) the 
aggregation approach, and c) the adaptive management approach 
(Fig. 2). 

2.1.1. Single-realization approach 
The single-realization approach is very similar to steering a deter

ministic model with no uncertainty in initial conditions, as the user in
teracts with only one stochastic run. The run can be selected from a pool 
of stochastic runs based on certain criteria, e.g., average characteristics 
of the modeled phenomena. Once an intervention is made, a new set of 
stochastic runs branches out of the current state, while the runs that 
were not selected do not continue (Fig. 2a). This approach enables ex
amination of model behavior and patterns without obscuring them by 
aggregation (Fig. 1a). At the same time, it allows users to avoid runs with 
extreme or atypical characteristics that could confuse and hinder un
derstanding of cause-and-effect relationships. Conversely, it allows a 
user to purposefully select an extreme run, to better understand worst 
case scenarios. The limitation of run selection is that it needs to be done 
early during the simulation, when all runs are very similar. Alterna
tively, one stochastic run can be selected randomly, while the rest of the 
runs are still computed and aggregated to provide statistical summaries 
of all the runs. 

2.1.2. Aggregation approach 
With the aggregation approach, the simulation starts from initial 

conditions, and steering is performed based on aggregated views of 
simulation steps. Typically, a probability map would be used to show the 
frequency of the modeled phenomenon across multiple stochastic runs, 
but other statistically derived values could be used as well. An inter
vention is applied at a selected simulation step to all stochastic runs. This 
approach helps to identify how a set of interventions impacts the 
probabilistic distribution of a modeled phenomenon (Fig. 2b). 

However, as mentioned earlier, certain, typically spatial, in
terventions might not affect some of the individual simulation runs, and 
therefore do not reflect real-world decisions. For example, in the case of 
forecasting disease spread several years in the future, a treatment 
applied in a later year of the simulation, and selected based on the 
probability surface, would not spatially overlap with the infected areas 
simulated by a portion of the stochastic runs. Real management de
cisions always take into account the latest available information about 
the observed infections, and so the aggregate approach may not be 
helpful. On the other hand, this approach is suitable for making more 
immediate decisions about future interventions, because it allows 
exploring which spatio-temporal configurations of interventions are 
likely to be most effective given current data and known uncertainties. 
For example, in the context of urban planning, one can ask questions 
such as: Which land should a rapidly growing city prioritize purchasing 
in order to build future park infrastructure, given projected develop
ment patterns and a limited annual budget? Ultimately, one needs to 
recognize the limitations of this approach for adaptive management and 
be cautious when applying it and interpreting the results. 

2.1.3. Adaptive management approach 
The adaptive management approach combines the previous two 

approaches to make simulation steering more closely model real-world 
decision-making, Adaptive management iteratively takes into account 
past actions and future probabilities, introducing the concept of past 
observations and future estimates to the modeling. In an adaptive 
management approach, we can pause the simulation at any time step 
and go back to a previous step, representing our “past” visualized as a 
single stochastic realization, or go forward into our “future” visualized 
as an aggregate of multiple runs based on the “present” conditions. As 
we move forward in the simulation, a single run representing the current 
reality is selected from the multiple runs representing the future. The 

single run can be selected randomly or specifically chosen to represent 
average characteristics among the set of all runs. Going back to add or 
change an intervention makes a previous step become the current re
ality, and subsequent steps represent future estimates that take the new 
interventions into account (Fig. 2c). 

Rather than pinpoint the best time and location of future in
terventions, the adaptive management approach allows testing different 
strategies. For example, in the context of plant disease spread, one can 
answer questions such as: Are we able to eradicate or slow down a 
disease with a given yearly budget? Would front-loading our budget (i. 
e., spending a majority of the budget in the first year) lead to eradica
tion? Is it better to focus on disease hotspots or isolated outbreaks? Do 
we need to treat the same places every year? What type of interventions 
would be most effective? 

2.2. Steering implementation approaches 

Instrumenting a simulation to enable computational steering can be 
a challenging task, often leading to separate implementations of that 
simulation for batch processing and for steering. Typically, the structure 
of the code needs to be adjusted to allow stopping and starting the 
simulation at any step. Additionally, the simulation needs to understand 
a certain communication protocol that controls the progress and has to 
maintain consistency in internal data structures throughout the simu
lation. As simulations are rarely developed with those needs in mind, the 
necessary restructuring of the simulation code can be difficult and can 
introduce errors to previously well-tested code. Moreover, the techno
logical complexity can increase when simulations need to be deployed 
into cloud environments. Due to these challenges, we suggest consid
ering alternative approaches to computational steering (Fig. 3a). These 
approaches are less complex to implement but come at a cost of reduced 
computational efficiency. 

One such alternative to computational steering is an approach in 
which the simulation can save its complete state, terminate, and restart 
from the same step initialized with the saved state. An intervention is 
then incorporated by terminating the simulation, modifying the saved 
state, and restarting the simulation from the same step using the 
modified state (Fig. 3b). In this way, already computed steps are not 
repeated, but the user can still step back providing all of the simulations 
states are kept. The advantage of this approach is that reading and 
writing data are usually already part of a simulation and are possible to 
implement for any additional variables. Moreover, the structure of the 
code can remain intact. The downside is that the simulation needs to 
repeatedly read data, possibly large spatial data, allocate resources, and 
write outputs, which can take significant time. It can be particularly 
relevant for this approach to require a steering step be longer than a 
simulation step, i.e., the simulation can be steered only every n simu
lation steps. Practically, that reduces the necessary read and write op
erations, and it can simplify the user interaction as long as the steering 
step is carefully selected to reflect user’s needs for intervention. 

In cases when the simulation state is defined by many variables or 
complex structures but still runs fast enough, another alternative 
approach is to provide as input to the starting simulation a time-series of 
interventions and the corresponding time steps (Fig. 3c). When a 
steering intervention happens, the simulation is restarted from the 
beginning with different input, while acting as if the simulation just 
continued from the intervention. The obvious drawback is the need to 
recompute everything from the start. Despite the inefficient use of 
computational resources, this approach can be practical when the 
number of steering steps is small. 

2.2.1. Steering manager 
To accommodate the variability in models’ steering implementations 

and interfaces, we employed a generalized steering architecture based 
on a client-server model, in which a steering interface communicates 
with the simulation indirectly, through a steering manager. The purpose 
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of the steering manager—a server—is to relay instructions and data 
between a steering interface client and a simulation client, without the 
interface or the simulation knowing any specific details about each 
other. The advantage of this approach is reduced complexity of the 
interface and simulation code and greater flexibility in combining 
different components. For example, the steering manager can instruct 
multiple simulations at the same time, each simulating a certain aspect 
of a modeled phenomenon. Alternatively, a simulation can be steered by 
multiple interfaces, e.g., steered through a tangible interface in a 
participatory workshop setting and at the same time through a web- 
based interface by remote workshop participants (Fig. 4). Addition
ally, this architecture allows for the alternative steering implementa
tions described above. The steering manager can hide the particular 
implementation approach so that the steering interface works the same 

way regardless of the steering implementation. 

3. Application for epidemiological simulation 

We developed and applied the steering concepts described above by 
augmenting an existing epidemiological model for forecasting the 
spread of plant diseases. Based on stakeholders’ feedback from a 
participatory workshop, we implemented the adaptive management 
approach, allowing them to steer the simulation by managing the dis
ease yearly instead of only at the beginning of the simulation. We 
adapted an existing tangible user interface and a web interface to allow 
users to test realistic management strategies. The following sections 
describe the epidemiological simulation and the interfaces, including 
relevant technical details of the steering implementation. 

3.1. Epidemiological simulation 

We used the Pest or Pathogen Spread (PoPS) simulation (Jones et al., 
2019) to forecast SOD dispersal in Oregon (Gaydos et al., 2019). PoPS is 
a stochastic, spatially explicit, susceptible-infected simulation that uses 
host distribution, seasonality, and weather patterns to project the spread 
of biological invasions. Stochastic components include pest reproduc
tion, dispersal, and invasion probability. The open-source PoPS librar
y—written in modern C++ language—has both R and GRASS GIS 
interfaces (Jones et al., 2019) and can run several stochastic simulations 
in parallel to leverage current computing infrastructures. 

In close collaboration with stakeholders, we configured the PoPS 
model to reflect observed epidemiological processes and historical pat
terns of SOD spread in Oregon (Gaydos et al., 2019; Gaydos, 2020). 
Spread is simulated weekly and aggregated to yearly visual outputs 
representing a single stochastic iteration (Fig. 1b) and the probability of 
infection over multiple iterations (Fig. 1a). Users develop management 
scenarios by specifying spatial treatment polygons that alter the density 
or susceptibility of hosts. Treatments are designated yearly to match the 

Fig. 3. Implementation of computational steering and alternative approaches to simulation steering: a) computational steering, b) steering by writing a complete 
simulation state after each steering step and reading a state modified by interventions before each step, c) steering by restarting the simulation with input modified by 
interventions. This example shows a situation in which we first intervene after step 1, and then after step 3 we decide to go back one step and run step 3 with a new 
intervention. 

Fig. 4. Steering architecture: a steering manager allows receiving input from 
multiple interfaces and can control multiple simulations simultaneously. 
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timescale of decision-making. 

3.2. Steering interfaces 

We developed two steering interfaces to facilitate stakeholder use of 
the PoPS simulation: a web-based interface (PoPS Forecasting Platform) 
and a tangible interface (PoPS Tangible Landscape). Both interfaces 
allow users to intuitively run the forecast, visualize disease outcomes 
(both spatially and as summary statistics), and apply yearly in
terventions while effectively hiding the technical complexities of steer
ing. However, differences in system architecture require different 
steering implementations, as described in Sec. 3.3. We present these two 
alternatives to demonstrate how steering approaches can be tailored to 
different system requirements while providing similar adaptive man
agement capabilities for end-users. 

The PoPS Forecasting Platform (Fig. 5) is an online interface that 
leverages cloud-computing to streamline plant pest risk assessments 
(Jones et al., 2020). On the backend, a Django framework links a 
centralized database with a dockerized cloud environment running the 
PoPS simulation using the R interface. This framework allows the 
simulation to access new data inputs, such as user-generated in
terventions, and store the resulting disease outcomes into the database 
from where they can be accessed and visualized via the Forecasting 
Platform front-end. In this way the Forecasting Platform also serves as a 
repository of scenarios to allow easy comparison of simulation outcomes 
using dynamic spread maps and summary charts. 

The PoPS Tangible Landscape interface (Fig. 6) was designed with 
similar interactive capabilities, but a substantially different system ar
chitecture. Tangible Landscape is a type of tangible interface that uses 
physical objects to interact with a simulation (Petrasova et al., 2018). It 
is thought that tangible platforms may be more intuitive for less 
tech-savvy users and for group exploration of simulations (Gaydos et al., 
2019; Gaydos, 2020). The main components of the system include the 
physical setup, projection-augmented physical model, interaction con
trols, and a steering dashboard (Fig. 6). The physical setup consists of a 

projector, an RGB-D scanner, and a computer with PoPS Tangible 
Landscape software built around GRASS GIS, an open-source geospatial 
analysis and modeling platform. Here, the communication between the 
Python-based tangible interface and the C++ GRASS GIS interface to 
PoPS simulation is controlled by the steering manager component 
written in Python. 

Despite differences, the PoPS Forecasting Platform and PoPS 
Tangible Landscape interfaces provide complementary functionality for 
stakeholders. The display year toggle in the Forecasting Platform and 
the clicker in Tangible Landscape allow users to step through simulation 
years to visualize disease projections and select when to apply treat
ments. Users design intervention strategies by arranging treatment 
polygons (either free-form or predefined shapes) on the landscape. In 
Tangible Landscape, these treatments are applied by placing felt in
dicators on the 3D projection-augmented physical model (Fig. 6), while 
in the Forecasting Platform, this same functionality is achieved by 
drawing treatment polygons on the dynamic web map (Fig. 5). As 
treatments are placed, users are given instant-feedback on cost and area 
of management to help plan their strategies. Control buttons (physical 
USB buttons in Tangible Landscape or widget buttons in the Forecasting 
Platform) allow users to start and progress through the simulation. 
Tangible Landscape is linked to Forecasting Platform in order to store 
the scenarios created with the tangible interface, and compare them 
using different metrics. 

3.3. Steering implementation 

In order to enable dynamic implementation of treatments in different 
years of the simulation, we integrated spatio-temporal steering capa
bilities into our modeling platform. Given that different technologies are 
used in the back-end of the tangible and web-based interfaces, we 
implemented spatio-temporal steering using approaches best suited to 
each prototype. 

When customizing Tangible Landscape and the underlying GRASS 
GIS interface to PoPS library, we implemented the full computational 

Fig. 5. PoPS Forecasting Platform. Dynamic web map shows disease occurrences and estimated probability of infection in a selected year, given the designed 
treatments up to that year. Charts on the right summarize budget spent, disease occurrence area, intensity, and spread rate. With the results overview at the bottom of 
the page users can compare scenarios and select and visualize individual scenarios. 
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steering approach (Fig. 3a). In this case, the combination of program
ming languages used by Tangible Landscape, GRASS GIS and PoPS—C, 
C++, and Python—is well suited for computational steering imple
mentation. More specifically, we used Python and C implementation of 
sockets to build a custom communication protocol to control the prog
ress of the simulation, including pausing, resuming, going back, or 
running a single step of the simulation. Through this communication 
protocol, the simulation is also informed when new treatments need to 
be loaded into current data structures. Since disease treatments are 
conducted yearly, we selected the steering step—the step when in
terventions can be performed—to be one year and thus different from 
the shorter simulation step (one week). 

Another important aspect of instrumenting the model—a check
pointing mechanism—allows going back to previous steps of the simu
lation by saving the states of the simulation, similarly to how a person 
can go back and forward when navigating websites in a browser. Thanks 
to this mechanism, users can decide to go back in time in the simulation 
and test different treatments or the same ones at a different time. Finally, 
to simulate adaptive management as described in section 2.1.3, the 
simulation can synchronize the infected and susceptible host data 
among the multiple runs, so that after synchronization, all of the sto
chastic simulation runs start from the same state but progress individ
ually, each with different random number generator seed. The run to 
which all other runs are synchronized is the one with the median value 
of the sum of infected hosts. This selection ensures that extreme cases 
aren’t selected, but this criterion can be easily adjusted if more extreme 
scenarios are actually desirable. To maintain the sustainability of the 
model code, we have a single code base allowing us to use the model 
with or without computational steering. Without computational steer
ing, the treatments can still be provided for specific years and thus used 
for scenario modeling without the need for a special steering interface. 

Given the higher complexity of the web technologies used in PoPS 
Forecasting Platform, we chose a simpler steering approach that does 

not require direct communication with the simulation (described in 
Fig. 3b). After each step, we end the simulation, output the raster layers 
of infected and susceptible hosts, and restart the simulation for the 
following step with the input consisting of the output from the previous 
step and any treatments for the following step. This approach supports 
all of the steering mechanisms described above, including controlling 
the progress, checkpointing, and synchronization; they are simply 
implemented outside of the simulation. The disadvantage of this solu
tion is the extra time spent writing intermediate data to disk and loading 
it back to memory, as apparent from Fig. 3b. Although a part of this 
output data is used for visualization of the intermediate results, a large 
portion of it serves only to save the simulation steps and would not be 
exported in cases of computational steering. 

Given our need to compare the outcomes of different treatment 
strategies, we run the simulation with each new set of treatments until 
the end step of the simulation and then it is paused. Using the check
pointing mechanism we can then go back and resume the simulation 
from any point. Having such a tree structure of end results for all de
cisions allows us to easily compare the outcomes and better understand 
the effect of individual treatments. Additionally, users can see estimates 
of multiple alternative futures and use them to inform their decisions. 
All of the results are saved in PoPS Forecasting Platform database and 
can be reloaded on the dashboard to review them. 

4. Case study 

We applied our modeling framework with stakeholders in Oregon 
who must make decisions regarding the management of Sudden Oak 
Death (SOD), an emerging forest disease that has killed millions of trees 
in California and Oregon. Based on their feedback from a prior workshop 
(Gaydos et al., 2019), we extended our epidemiological model to enable 
them to spatio-temporally steer the simulation by managing the disease 
at yearly intervals, rather than managing only at the beginning of the 

Fig. 6. PoPS Tangible Landscape setup. The sensor (3D scanner) scans the physical model to capture the location and shape of felt patches representing interventions 
on the landscape. The projector projects GIS layers on the physical model and a steering dashboard next to it. USB buttons invoke a simulation, which takes into 
account current interventions; its results are projected on the physical model and logged and displayed on a summary dashboard. 
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simulation. During a full-day participatory workshop we introduced 
stakeholders to this novel adaptive management modeling approach 
using PoPS Tangible Landscape and PoPS Forecasting Platform (Fig. 7). 
Stakeholders were to work in groups to collaboratively develop man
agement strategies. To make the strategies relevant for stakeholders and 
their organizations’ funding cycles, we simulated the disease for 3 years, 
starting with known 2019 infections. To account for delays in detection 
and treatment of the disease, participants designed their treatments in 
the beginning of each year, but the treatments were not applied until the 
end of that year. We applied the adaptive management approach to 
steering (Sec. 2.1.3) and simulated 10 stochastic realizations, which 
were sufficient to communicate uncertainty while avoiding time delays. 
More details about the workshop itself can be found in Gaydos (2020). 

4.1. Adaptive management workflow 

To better convey how adaptive management was incorporated into 
our participatory modeling exercise, we describe here the steering 
workflow using one example of how workshop participants progressed 
through the simulation (Fig. 8). This particular scenario was created by 
participants using PoPS Tangible Landscape. 

By switching among the displayed years, participants explored the 
probability of infection, which would rapidly increase within three years 
without any management (Fig. 8a). Using PoPS Forecasting Platform, 
they then created a new scenario by specifying various settings, 
including budget constraint or treatment efficiency. To reduce the 
forecasted infection probability, participants decided to split their 2019 
budget between treating outbreaks in northern parts of the landscape 
and treating some of the core infected areas in the south (Fig. 8 b-2019). 
They designated the treatments (Fig. 7) and adjusted them based on real- 
time feedback on the treatments’ size and cost. When participants 
pressed the USB button, the treatment was registered in the database 
and the simulation ran from that year until the end year, 2021, taking 
into consideration the new treatments. 

At that point, the participants moved within the scenario to the 
beginning of 2020 and a newly simulated infection layer representing 
one stochastic realization for that year was displayed. Despite the 
treatment of most 2019 infected areas, the disease escaped and spread 
northward (Fig. 8 b-2020). This spread occurred due to the delay be
tween the treatment decision at the beginning of 2019 and actual 
management happening at the end of 2019, representing realistic delays 
between detection and taking action. Taking into account the future 

probability of spread extent (Fig. 8 b-2021 and b-2022) and the inef
fectiveness of small buffers to completely prevent outbreaks, as in 2019, 
participants decided to treat the remaining infections and allocate half 
of their 2020 budget to treat larger areas in the north that were likely to 
become infected later (Fig. 8 c-2020). 

At the beginning of 2021, all northward infection was successfully 
eradicated and the remaining infection was greatly reduced (Fig. 8 c- 
2021). In the last simulated year, participants were able to spend a much 
smaller budget to treat the few remaining infections (Fig. 8 d-2021). 
Although the beginning of year 2022—the end of the simulation—sh
owed a few remaining infections (Fig. 8 d-2022), these could be easily 
treated by future management efforts. 

This example demonstrates that allowing participants to manage 
throughout the simulation is essential for representing adaptive man
agement decisions. Although a disease spread forecast based solely on 
initial treatment (Fig. 8b) is useful in planning, there are limits to using 
it to explore strategies. Without the option to treat in subsequent years, 
participants would not be able to test realistic management strategies, 
such as how much budget to allocate in different years, when and where 
to treat given the spatial distribution of the infection, or whether it is 
even possible to eradicate the disease given a realistic budget. 

5. Discussion 

Given the large uncertainties associated with forecasting social- 
ecological phenomena, researchers have been advocating for manage
ment “experiments” that could both develop scientific knowledge and 
lead to improved management policies and practices (Serrouya et al., 
2019). Adaptive management has been shown to accomplish both 
through continuous “learning-by-doing” that takes into account the 
outcomes of previous strategies and models system behavior using 
updated knowledge (Walters and Holling, 1990). Given that successful 
implementation of this approach requires effective communication 
across science, policy and management (Bosch et al., 2003), participa
tory modeling has been used to engage stakeholders in learning, model 
development and creating management strategies (Lynam et al., 2010; 
Fujitani et al., 2017; Smith et al., 2007). However, participatory 
modeling efforts have been lacking in methods that allow stakeholders 
to explore how different spatially and temporally explicit interventions 
may impact a complex social-ecological system. In our work, we 
demonstrated how using simulation steering allows stakeholders to 
explore more realistic decisions through adopting an adaptive 

Fig. 7. Participants using PoPS Tangible Landscape to steer simulation by placing felt on top of infected areas. PoPS Forecasting Platform with results is in 
the background. 
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management approach. 
As aforementioned, this work was motivated by the needs of stake

holders, voiced at an initial participatory modeling session (Gaydos 
et al., 2019) at which stakeholders could manage the infection only in 
the initial year of the simulation. That exercise helped them to learn 
about disease spread behavior and strategies to reduce spread but also 
revealed that the disease cannot be contained without continued yearly 
interventions, leading us to integrate adaptive management capabilities 

into the modeling framework. The new approach allowed stakeholders 
to ask more questions about their ability to eradicate the disease, how 
much of a yearly budget to allocate, and which areas should be treated 
first. At the workshop described here, participants used the new 
approach to, for example, experiment with front-loading the budget to 
see whether that would be more effective to eradicate the disease 
(Fig. 8). As an analysis of the workshop reports (Gaydos, 2020), the 
adaptive management approach “empowered stakeholders to generate 

Fig. 8. An example of an adaptive management scenario developed by workshop participants demonstrating the steering workflow: a) no management scenario, b) 
treatments introduced in 2019, c) followed up by treatments in 2020, and d) 2021. 
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novel intervention scenarios”, and participants “combined several tac
tics and changed their approaches through time, which may better 
reflect the realistic-complexities of control.” 

Workshop participants gave good usability scores to both inter
faces—PoPS Tangible Landscape and PoPS Forecasting Platform—and 
perceived them as useful for targeting treatment areas (Gaydos, 2020). 
These results show us that using sophisticated, realistic, steerable 
spatio-temporal simulations does not have to be difficult for stake
holders without modeling expertise. Indeed, studies developing inter
active visual interfaces affirm that complexities of the model and the 
steering implementation can be hidden behind intuitive, visual in
terfaces that expose only information and behavior that are meaningful 
and practical for the stakeholders (Afzal et al., 2011; Ribičić et al., 2013; 
Niño-Ruiz et al., 2017). In our case, both interfaces provided the 
stakeholders the same steering capabilities, despite featuring different 
implementations of steering due to the practicalities of their different 
(web vs. desktop) deployments. Although the behavior of the simulation 
is the same, PoPS Forecasting Platform currently requires more time to 
progress through each steering step. That is to be expected given the 
steering implementation (Fig. 3b), but we are currently working on 
minimizing the delay by using better web deployment strategies. 
Nevertheless, this delay did not negatively impact the workshop, as 
participants used that time for more discussion. To help stakeholders 
develop and evaluate more scenarios in the allotted time, we decided to 
limit their ability to go back in time and change past interventions. 
Although this prevented them from fine-tuning individual scenarios, 
they managed to test a wider range of strategies. The option to change 
past treatments to fine-tune approaches is likely more important for 
analysts working with PoPS Forecasting Platform to finalize treatment 
plans. 

Although considerable research has been devoted to overcoming the 
technological challenges of computational steering, the conceptual 
challenges of steering stochastic simulations have been overlooked. The 
common aggregation approach (Ribičić et al., 2013) (Fig. 1a) is limited 
in its ability to represent spatial structure and patterns explicitly 
modeled by many urban growth, disease, or wildfire simulations. 
Moreover, this approach is problematic when differences in the inter
mediate states of multiple stochastic realizations would result in 
significantly different steering decisions. The developed steering 
approaches—single-realization, aggregation, and adaptive management 
approach—provide a framework to address these challenges by better 
defining the role of each method in modeling and the associated im
plications for interpreting results. Since this work focused on the 
adaptive management approach, future work could further investigate 
the applicability and limitation of each of the developed methods for 
different spatio-temporal simulations (such as urban growth, flooding) 
based on their specific behavior and questions researchers and 
decision-makers are interested in answering. Additionally, a possible 
avenue to mitigate the limitation associated with using single stochastic 
realization in the adaptive management approach can be using a more 
sophisticated mechanism for selecting the single run. To mitigate any 
concerns about representing a likely reality, the run could be selected by 
weighing several of its characteristics, including e.g., its size, pattern, or 
value range, while at the same time the more extreme runs can be 
visualized alongside to provide a more complete picture of the stochastic 
variations. To facilitate further research, we envision developing a 
geospatial library with a simple steering interface that would streamline 
integrating spatio-temporal steering into current and new geospatial 
simulations (e.g., Peckham et al. (2013); Neteler and Mitasova (2008)). 
Such a library would encourage more interactive modeling in geospatial 
research, making the research process and results more accessible to 
domain experts and decision-makers. 

6. Conclusions 

In this study we addressed the often overlooked conceptual and 

implementation challenges of steering stochastic spatio-temporal sim
ulations. Our suggested approach—combining aggregate views of future 
estimates with a single realization representing the past—provides a 
novel solution to steering multiple stochastic realizations and one that is 
particularly applicable for testing adaptive management strategies. The 
adaptive management modeling approach—developed to help stake
holders design more realistic management scenarios—can better 
represent the realities of decision-making by allowing stakeholders to 
decide when and where they manage based on past actions, current 
observations, and future forecasting. The participatory modeling case 
study demonstrated that the stakeholders were able to ask better, more 
realistic questions about the feasibility of disease eradication, budget 
allocations, and management priorities. Given the large uncertainties 
typically associated with social-ecological phenomena, the adaptive 
management modeling approach focuses attention on developing stra
tegies that decision-makers can adopt based on the current, on-ground 
situation. Although our case study highlights the application and 
importance of spatio-temporal steering for disease management, the 
described approach is generally applicable and relevant for a variety of 
stochastic, geospatial models. 

7. Software and data availability 

This work is based on PoPS Forecasting and Control System, an open 
source project composed of several software components under GNU 
GPL v2 and later:  

• C++ library PoPS  
• R package rpops  
• C++ GRASS GIS addon r.pops.spread  
• PoPS Forecasting Platform based Django web framework 

Links to GitHub repositories are accessible from OSF project osf.io/ 
q32p9. Additionally, Tangible Landscape—tangible geospatial modeling 
and visualization system integrated with GRASS GIS licensed under GNU 
GPL v2 and later—was customized for steering and the code is available 
under a separate branch on GitHub (github.com/tangible-landscape/ 
grass-tangible-landscape/tree/pops-steering). Data used for SOD 
modeling are accessible from r.pops.spread tutorial page (grasswiki. 
osgeo.org/wiki/SOD_Spread_tutorial). 
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