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Spatio-temporal simulations are becoming essential tools for decision makers when forecasting future conditions
and evaluating effectiveness of alternative decision scenarios. However, lack of interactive steering capabilities
limits the value of advanced stochastic simulations for research and practice. To address this gap we identified
conceptual challenges associated with steering stochastic, spatio-temporal simulations and developed solutions
that better represent the realities of decision-making by allowing both reactive and proactive, spatially-explicit
interventions. We present our approach, in a participatory modeling case study engaging stakeholders in
developing strategies to contain the spread of a tree disease in Oregon, USA. Using intuitive interfaces, imple-
mented through web-based and tangible platforms, stakeholders explored management options as the simulation
progressed. Spatio-temporal steering allowed them to combine currently used management practices into novel
adaptive management strategies, which were previously difficult to test and assess, demonstrating the utility of

interactive simulations for decision-making.

1. Introduction

Spatio-temporal simulations provide a powerful way to study com-
plex spatial phenomena, develop spatial theories, and even forecast the
future, especially when traditional experimental methods to reveal
patterns and processes are difficult or impossible to implement (Sullivan
and Perry, 2013). Accordingly, substantial research efforts have been
devoted to developing dynamic, spatio-temporal models of large-scale,
socio-ecological phenomena, such as biological invasions (Meente-
meyer et al., 2011; Miller et al., 2017) or sustainable urban growth
(Meentemeyer et al., 2013). These models are particularly useful for
simulating the efficacy of interventions—such as strategies to curb the
spread of invasive species—which may have delayed impacts, cost too
much, or become controversial (Garner and Hamilton, 2011).

Given the complexity of socio-environmental problems, researchers
increasingly use participatory methods to incorporate diverse stake-
holder perspectives into problem-solving. Participatory modeling has
been shown to help researchers develop relevant questions, construct
better models, and generate solutions that can be easily translated into
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decisions (Voinov and Bousquet, 2010). Spatio-temporal simulations
have proven effective in participatory modeling studies dealing with
land use (Lagabrielle et al., 2010), flood hazards (Becu et al., 2017), and
disease spread (Hossard et al., 2013; Gaydos et al., 2019), but there is
still a need to better integrate these models into the decision-making
process (Vukomanovic et al., 2019; Gaydos et al., 2019). Decision sup-
port poses a new challenge to modelers, requiring them to make models
more interactive and reflective of the realities of decision-making. Most
spatio-temporal simulations are not interactive, i.e., they are initialized
with a set of inputs that cannot be adjusted while the simulation is
running. Such a non-interactive workflow pairs well with Monte Carlo
techniques that allow researchers to capture uncertainties associated
with stochastic models and model ensembles, and to run calibration or
sensitivity analyses by simulating large numbers of model realizations
(Yang, 2011; Rubinstein and Kroese, 2016). However, a non-interactive
simulation can obscure cause-effect relationships and is impossible to
adjust in response to new information or to its own intermediate results.
Moreover, most spatio-temporal models do not have interactive, visual
interfaces, which are known to facilitate communication of results and
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their uncertainties, as well as help elicit user input (Voinov et al., 2016).
Given decision-makers’ need to quickly explore interventions and their
consequences across space and time, these model limitations can exac-
erbate the knowledge-practice gap, a common challenge in modeling
wherein model insights do not directly inform actionable on-the-ground
decisions (Voinov et al., 2016; Cunniffe et al., 2015).

Outside of a participatory modeling context, interactive modeling
has been studied in computer science and related disciplines for several
decades (McCormick et al., 1987). Computational steering refers to a
mechanism for interactively controlling the variables of a simulation as
the computation is in progress, and is often used to better understand
parameter space and simulation behavior (Mulder et al., 1999; Matkovic
et al., 2008). In addition to efficiency, computational steering also im-
proves communication and discussion by providing immediate visual
representation of the model and results (Van Wijk et al., 1997).
Computational steering has been used to advance research in a variety of
fields, including atmospheric and weather science, physics, and medical
research dynamics (Jean et al., 1995; Walker et al., 2007; Johnson and
Parker, 1995) and has proved especially important in computational
fluid dynamics simulations (Marshall et al., 1990; Wright and Har-
greaves, 2013). Additionally, certain agent-based modeling frameworks
provide a form of computational steering for model exploration (Ros-
siter, 2015; Cordasco et al., 2013) or simulation coupling (Jaxa-Rozen
et al., 2019).

Steering can open up new possibilities to explore geospatial “what
if?” questions collaboratively with stakeholders. Although the term
“steering” can be used in participatory modeling literature to mean
interactive adjustments of key input model variables (Nino-Ruiz et al.,
2013; Voinov et al., 2016), we are specifically concerned here with
spatio-temporal steering, i.e., allowing users to spatially intervene at any
step of the simulation. This type of steering can be critical for strate-
gizing the management of dynamic systems. Computational steering is
one of several possible implementations of spatio-temporal steering.
Some researchers have demonstrated how, with the help of interactive
environments, computational steering can help explore complex
spatio-temporal decision-space; the prime example is World Lines
(Waser et al., 2010; Ribicic et al., 2013), which combines computational
steering of a flooding simulation with versatile, interactive scenario
visualization. Waser et al. (2010) demonstrated the approach with a
levee-breach scenario, exploring possible methods for closing the breach
by simulating the strategic positioning of sandbags in different spatial
configurations. Another example of what-if scenario modeling was
presented by Afzal et al. (2011) in the context of infectious disease
modeling. These authors developed a decision-support environment on
top of a mathematical, epidemiological spread model to interactively
evaluate scenarios with different mitigating measures Afzal et al.
(2011).

Despite general agreement about the advantages of computationally
steering simulations, this methodology is still the exception rather than
the rule, especially outside of computer science (Pickles et al., 2005),
because there are several barriers to its broader usage. One is the
increased technological complexity of model implementation, leading to
high code maintenance costs and possibly more error-prone code.
Another is a lack of user-friendly interfaces that facilitate steering for
users with different technical backgrounds. Furthermore,
high-performance computing platforms typically associated with
computational steering often lack the necessary visualization capabil-
ities and interactivity. Technological advances, such as GPU computing,
allowed researchers to make many simulations more interactive and
accessible through desktop interfaces (Linxweiler et al., 2010; Afzal
et al., 2011; Ko et al., 2014). However, the increased need to provide
simulation steering capabilities to analysts and stakeholders has neces-
sitated the use of web-based solutions (Deodhar et al., 2014; Sha-
shidharan et al., 2017) and alternative interfaces offering more natural
user interactions (e.g., virtual reality environments (Mulder et al., 1998;
Wenisch et al., 2005) or touch-table and tangible interfaces (Mittelstadt
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et al., 2013; Tonini et al., 2017)).

Spatio-temporal steering also poses conceptual challenges when
dealing with stochastic models. Given that there are multiple re-
alizations of a simulation running at the same time for a stochastic
model, it is not obvious which realization to use to make steering de-
cisions. Visualizing several stochastic runs using an aggregate repre-
sentation—such as a probability or an average of model results (Ribicic
et al., 2013)—can inform users about the potential range of outcomes.
However, real-world decisions are based on observations best repre-
sented as a single stochastic run. Applying steering to stochastic
spatio-temporal simulations is therefore challenging to inform strategies
used in adaptive management, which bases decisions on evaluation of
past actions, current observations, and future forecasting.

We encountered these challenges when designing a participatory
modeling workshop focused on the spread of an invasive forest disease,
sudden oak death (SOD), in Oregon. SOD spread poses serious envi-
ronmental and economic risks, but because treatments are costly at large
scales, decision-makers must strategically target treatments across time
and space (Cunniffe et al., 2016). During a prior participatory modeling
workshop we conducted (Gaydos et al., 2019), stakeholders expressed
the need to explore yearly treatment interventions, which led us to
incorporate spatio-temporal steering into our modeling framework. In
this paper, we detail how we overcame several challenges associated
with steering a stochastic simulation and identify three conceptual ap-
proaches to spatio-temporal steering in a participatory modeling
context. We present a novel adaptive management approach that better
represents the realities of decision-making by allowing both reactive and
proactive spatially-explicit interventions. We also suggest simpler,
alternative ways to design steerable simulations that do not require the
implementation of computational steering, to reduce associated tech-
nological complexity.

The paper is structured as follows: Section 2 identifies several con-
ceptual and implementation challenges associated with steering of
spatio-temporal simulations and develops methods to address them. In
Section 3 we apply the methods in an epidemiological simulation and
describe our steering implementation and interfaces developed for our
participatory modeling case study. Using this case study, Section 4
demonstrates how workshop participants applied the novel adaptive
management approach to interact with the simulation and develop
relevant management scenarios. Sections 5 and 6 highlight the impor-
tance of using the adaptive management approach during the workshop
and discuss the limitations and future work.

2. Methods
2.1. Steering stochastic simulations

Representational and conceptual challenges accompany any attempt
to steer many stochastic model realizations or a model ensemble. To
condense the spatial information from all independent runs, aggregate
aggregated using an aggregation operator, returning a single value for
each spatial unit, such as mean, minimum, maximum, standard devia-
tion, or count. In this way, modelers can obtain, for example, a proba-
bility map of infection or maximum height of flooding. Such aggregate
views, however, are not always suitable, as they tend to hide the patterns
and behavior of an individual simulation run. For example, an infection
or fire can jump over the unaffected areas of a landscape, but such rare
events may not be captured in the aggregate. Similarly, an urban growth
simulation can create patches of new development with distinct sizes
and shapes that are not represented in the aggregate. In these cases, the
aggregate view can confound understanding of results and even distort
expectations of future events (Fig. 1).

Another challenge of steering stochastic simulations involves
selecting the run(s) to use when exploring scenarios for real-world de-
cision-making. Although each steering decision acts on all of the parallel
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Fig. 1. Comparison of an aggregate representation
(a) and an individual stochastic realization (b) of
disease occurrence: (a) shows the modeled probabil-
ity of disease occurrence based on 1000 stochastic
runs. Although a large area has non-zero probability
of disease occurrence, the probability is very low
(90% of the area has a probability lower than 10%)
and could lead to overestimation of risk based on
visual inspection. Moreover, the probability does not
reveal the pattern of the disease spread as simulated

in (b) using a single stochastic run.
Probability
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B occurrence

stochastic runs in the same way, it can result in vastly different conse- landscape (e.g., treating infected areas or creating firebreaks) might be
quences, depending on the run. For example, in the case of a spread effective only for certain stochastic runs and not have any effect on the
simulation (disease, fire, etc.), performing a spatial intervention on a rest of the runs.
a) single-realization approach c) adaptive management approach
Step 1 2 3 4 5 Step 1 2 3 4 5
User ” : T T User T T
action T T action iE T
1 1 1
11T
TTTTT
2 2 H
INEENi
-l 1T TTTTTTTT
TTTTTT TTTTTTT
T 1
3 3 inmmnmnans las H H
11T # - _IIIIIII _IIIIIIII
TT1TT
T
TTTT 11T
a 11T H H HH
b) aggregation approach #
Step 1 2 3 4 5
User TTTIIT T T H I H
. TTTTTT T —
action T O 5 T 0 O
1 T u 0 A
= i Rk E
11T 11T I TTTTT 1 ITTTTTT
TTTTT .
il |
] il |
2 - 6 H probability
u HH u = IE: H TI of infection
TIT TT HHHH PHHHH T s | HH HH HH m infection
g O current year
f i H u H = [ treatment
3 aE N ] - :‘3 H 7 —= aggregated runs
__III H IIIII_ III\II_ — selected run
11T 11T T TT TTTTT TTTTTT

- discontinued run

Fig. 2. Schema of different approaches to steering a stochastic simulation, with managing a plant disease as an example: a) In the single-realization approach, we
compute the disease spread for five steps without any interventions and then decide to treat with 50% efficacy in simulation step 1. A selected run shows there is still
one infection in the following step. We therefore decide to treat in step 3, at which point a new set of stochastic runs is launched, and the run with the most average
characteristics from the set is selected. Alternatively, we can simply compute only a single stochastic run. b) In the aggregation approach, we can see the initial
infection in simulation step 1 and the probability of infection in subsequent steps. We apply a treatment in the first simulation step and then another treatment
focused on the areas with highest probability of infection in step 3. This treatment did not affect certain runs, resulting in low probability of wide-spread infection in
step 5. ¢) In the adaptive management approach, we can see initial infection in step 1 and the probability of infection in the future if untreated. We then apply
treatment with a certain level of efficacy, leading to a reduced probability of infection (action 2). In action 3, we move two simulation steps forward to find out that 5
cells were infected, then we decide to treat part of the infection in action 4. However, it results in limited success. In actions 5 and 6, we decide a better strategy
would be to go back one step to treat earlier and apply a larger treatment to prevent he spread; this choice indeed results in a low spread probability in action 6. In
action 7, we move one year forward to find out that we completely eradicated the disease.
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Based on the different questions one can answer by steering sto-
chastic spatio-temporal simulations, we distinguish three different ap-
proaches to steering: a) the single-realization approach, b) the
aggregation approach, and c) the adaptive management approach
(Fig. 2).

2.1.1. Single-realization approach

The single-realization approach is very similar to steering a deter-
ministic model with no uncertainty in initial conditions, as the user in-
teracts with only one stochastic run. The run can be selected from a pool
of stochastic runs based on certain criteria, e.g., average characteristics
of the modeled phenomena. Once an intervention is made, a new set of
stochastic runs branches out of the current state, while the runs that
were not selected do not continue (Fig. 2a). This approach enables ex-
amination of model behavior and patterns without obscuring them by
aggregation (Fig. 1a). At the same time, it allows users to avoid runs with
extreme or atypical characteristics that could confuse and hinder un-
derstanding of cause-and-effect relationships. Conversely, it allows a
user to purposefully select an extreme run, to better understand worst
case scenarios. The limitation of run selection is that it needs to be done
early during the simulation, when all runs are very similar. Alterna-
tively, one stochastic run can be selected randomly, while the rest of the
runs are still computed and aggregated to provide statistical summaries
of all the runs.

2.1.2. Aggregation approach

With the aggregation approach, the simulation starts from initial
conditions, and steering is performed based on aggregated views of
simulation steps. Typically, a probability map would be used to show the
frequency of the modeled phenomenon across multiple stochastic runs,
but other statistically derived values could be used as well. An inter-
vention is applied at a selected simulation step to all stochastic runs. This
approach helps to identify how a set of interventions impacts the
probabilistic distribution of a modeled phenomenon (Fig. 2b).

However, as mentioned earlier, certain, typically spatial, in-
terventions might not affect some of the individual simulation runs, and
therefore do not reflect real-world decisions. For example, in the case of
forecasting disease spread several years in the future, a treatment
applied in a later year of the simulation, and selected based on the
probability surface, would not spatially overlap with the infected areas
simulated by a portion of the stochastic runs. Real management de-
cisions always take into account the latest available information about
the observed infections, and so the aggregate approach may not be
helpful. On the other hand, this approach is suitable for making more
immediate decisions about future interventions, because it allows
exploring which spatio-temporal configurations of interventions are
likely to be most effective given current data and known uncertainties.
For example, in the context of urban planning, one can ask questions
such as: Which land should a rapidly growing city prioritize purchasing
in order to build future park infrastructure, given projected develop-
ment patterns and a limited annual budget? Ultimately, one needs to
recognize the limitations of this approach for adaptive management and
be cautious when applying it and interpreting the results.

2.1.3. Adaptive management approach

The adaptive management approach combines the previous two
approaches to make simulation steering more closely model real-world
decision-making, Adaptive management iteratively takes into account
past actions and future probabilities, introducing the concept of past
observations and future estimates to the modeling. In an adaptive
management approach, we can pause the simulation at any time step
and go back to a previous step, representing our “past” visualized as a
single stochastic realization, or go forward into our “future” visualized
as an aggregate of multiple runs based on the “present” conditions. As
we move forward in the simulation, a single run representing the current
reality is selected from the multiple runs representing the future. The
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single run can be selected randomly or specifically chosen to represent
average characteristics among the set of all runs. Going back to add or
change an intervention makes a previous step become the current re-
ality, and subsequent steps represent future estimates that take the new
interventions into account (Fig. 2c).

Rather than pinpoint the best time and location of future in-
terventions, the adaptive management approach allows testing different
strategies. For example, in the context of plant disease spread, one can
answer questions such as: Are we able to eradicate or slow down a
disease with a given yearly budget? Would front-loading our budget (i.
e., spending a majority of the budget in the first year) lead to eradica-
tion? Is it better to focus on disease hotspots or isolated outbreaks? Do
we need to treat the same places every year? What type of interventions
would be most effective?

2.2. Steering implementation approaches

Instrumenting a simulation to enable computational steering can be
a challenging task, often leading to separate implementations of that
simulation for batch processing and for steering. Typically, the structure
of the code needs to be adjusted to allow stopping and starting the
simulation at any step. Additionally, the simulation needs to understand
a certain communication protocol that controls the progress and has to
maintain consistency in internal data structures throughout the simu-
lation. As simulations are rarely developed with those needs in mind, the
necessary restructuring of the simulation code can be difficult and can
introduce errors to previously well-tested code. Moreover, the techno-
logical complexity can increase when simulations need to be deployed
into cloud environments. Due to these challenges, we suggest consid-
ering alternative approaches to computational steering (Fig. 3a). These
approaches are less complex to implement but come at a cost of reduced
computational efficiency.

One such alternative to computational steering is an approach in
which the simulation can save its complete state, terminate, and restart
from the same step initialized with the saved state. An intervention is
then incorporated by terminating the simulation, modifying the saved
state, and restarting the simulation from the same step using the
modified state (Fig. 3b). In this way, already computed steps are not
repeated, but the user can still step back providing all of the simulations
states are kept. The advantage of this approach is that reading and
writing data are usually already part of a simulation and are possible to
implement for any additional variables. Moreover, the structure of the
code can remain intact. The downside is that the simulation needs to
repeatedly read data, possibly large spatial data, allocate resources, and
write outputs, which can take significant time. It can be particularly
relevant for this approach to require a steering step be longer than a
simulation step, i.e., the simulation can be steered only every n simu-
lation steps. Practically, that reduces the necessary read and write op-
erations, and it can simplify the user interaction as long as the steering
step is carefully selected to reflect user’s needs for intervention.

In cases when the simulation state is defined by many variables or
complex structures but still runs fast enough, another alternative
approach is to provide as input to the starting simulation a time-series of
interventions and the corresponding time steps (Fig. 3c). When a
steering intervention happens, the simulation is restarted from the
beginning with different input, while acting as if the simulation just
continued from the intervention. The obvious drawback is the need to
recompute everything from the start. Despite the inefficient use of
computational resources, this approach can be practical when the
number of steering steps is small.

2.2.1. Steering manager

To accommodate the variability in models’ steering implementations
and interfaces, we employed a generalized steering architecture based
on a client-server model, in which a steering interface communicates
with the simulation indirectly, through a steering manager. The purpose
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Fig. 3. Implementation of computational steering and alternative approaches to simulation steering: a) computational steering, b) steering by writing a complete
simulation state after each steering step and reading a state modified by interventions before each step, c) steering by restarting the simulation with input modified by
interventions. This example shows a situation in which we first intervene after step 1, and then after step 3 we decide to go back one step and run step 3 with a new

intervention.

of the steering manager—a server—is to relay instructions and data
between a steering interface client and a simulation client, without the
interface or the simulation knowing any specific details about each
other. The advantage of this approach is reduced complexity of the
interface and simulation code and greater flexibility in combining
different components. For example, the steering manager can instruct
multiple simulations at the same time, each simulating a certain aspect
of a modeled phenomenon. Alternatively, a simulation can be steered by
multiple interfaces, e.g., steered through a tangible interface in a
participatory workshop setting and at the same time through a web-
based interface by remote workshop participants (Fig. 4). Addition-
ally, this architecture allows for the alternative steering implementa-
tions described above. The steering manager can hide the particular
implementation approach so that the steering interface works the same

Geospatial simulation steering

Interfaces Simulations

“'\\

2

Steering
manager

L

o
N
2

Fig. 4. Steering architecture: a steering manager allows receiving input from
multiple interfaces and can control multiple simulations simultaneously.

way regardless of the steering implementation.
3. Application for epidemiological simulation

We developed and applied the steering concepts described above by
augmenting an existing epidemiological model for forecasting the
spread of plant diseases. Based on stakeholders’ feedback from a
participatory workshop, we implemented the adaptive management
approach, allowing them to steer the simulation by managing the dis-
ease yearly instead of only at the beginning of the simulation. We
adapted an existing tangible user interface and a web interface to allow
users to test realistic management strategies. The following sections
describe the epidemiological simulation and the interfaces, including
relevant technical details of the steering implementation.

3.1. Epidemiological simulation

We used the Pest or Pathogen Spread (PoPS) simulation (Jones et al.,
2019) to forecast SOD dispersal in Oregon (Gaydos et al., 2019). PoPS is
a stochastic, spatially explicit, susceptible-infected simulation that uses
host distribution, seasonality, and weather patterns to project the spread
of biological invasions. Stochastic components include pest reproduc-
tion, dispersal, and invasion probability. The open-source PoPS librar-
y—written in modern C++ language—has both R and GRASS GIS
interfaces (Jones et al., 2019) and can run several stochastic simulations
in parallel to leverage current computing infrastructures.

In close collaboration with stakeholders, we configured the PoPS
model to reflect observed epidemiological processes and historical pat-
terns of SOD spread in Oregon (Gaydos et al., 2019; Gaydos, 2020).
Spread is simulated weekly and aggregated to yearly visual outputs
representing a single stochastic iteration (Fig. 1b) and the probability of
infection over multiple iterations (Fig. 1a). Users develop management
scenarios by specifying spatial treatment polygons that alter the density
or susceptibility of hosts. Treatments are designated yearly to match the
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timescale of decision-making.

3.2. Steering interfaces

We developed two steering interfaces to facilitate stakeholder use of
the PoPS simulation: a web-based interface (PoPS Forecasting Platform)
and a tangible interface (PoPS Tangible Landscape). Both interfaces
allow users to intuitively run the forecast, visualize disease outcomes
(both spatially and as summary statistics), and apply yearly in-
terventions while effectively hiding the technical complexities of steer-
ing. However, differences in system architecture require different
steering implementations, as described in Sec. 3.3. We present these two
alternatives to demonstrate how steering approaches can be tailored to
different system requirements while providing similar adaptive man-
agement capabilities for end-users.

The PoPS Forecasting Platform (Fig. 5) is an online interface that
leverages cloud-computing to streamline plant pest risk assessments
(Jones et al., 2020). On the backend, a Django framework links a
centralized database with a dockerized cloud environment running the
PoPS simulation using the R interface. This framework allows the
simulation to access new data inputs, such as user-generated in-
terventions, and store the resulting disease outcomes into the database
from where they can be accessed and visualized via the Forecasting
Platform front-end. In this way the Forecasting Platform also serves as a
repository of scenarios to allow easy comparison of simulation outcomes
using dynamic spread maps and summary charts.

The PoPS Tangible Landscape interface (Fig. 6) was designed with
similar interactive capabilities, but a substantially different system ar-
chitecture. Tangible Landscape is a type of tangible interface that uses
physical objects to interact with a simulation (Petrasova et al., 2018). It
is thought that tangible platforms may be more intuitive for less
tech-savvy users and for group exploration of simulations (Gaydos et al.,
2019; Gaydos, 2020). The main components of the system include the
physical setup, projection-augmented physical model, interaction con-
trols, and a steering dashboard (Fig. 6). The physical setup consists of a
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projector, an RGB-D scanner, and a computer with PoPS Tangible
Landscape software built around GRASS GIS, an open-source geospatial
analysis and modeling platform. Here, the communication between the
Python-based tangible interface and the C++ GRASS GIS interface to
PoPS simulation is controlled by the steering manager component
written in Python.

Despite differences, the PoPS Forecasting Platform and PoPS
Tangible Landscape interfaces provide complementary functionality for
stakeholders. The display year toggle in the Forecasting Platform and
the clicker in Tangible Landscape allow users to step through simulation
years to visualize disease projections and select when to apply treat-
ments. Users design intervention strategies by arranging treatment
polygons (either free-form or predefined shapes) on the landscape. In
Tangible Landscape, these treatments are applied by placing felt in-
dicators on the 3D projection-augmented physical model (Fig. 6), while
in the Forecasting Platform, this same functionality is achieved by
drawing treatment polygons on the dynamic web map (Fig. 5). As
treatments are placed, users are given instant-feedback on cost and area
of management to help plan their strategies. Control buttons (physical
USB buttons in Tangible Landscape or widget buttons in the Forecasting
Platform) allow users to start and progress through the simulation.
Tangible Landscape is linked to Forecasting Platform in order to store
the scenarios created with the tangible interface, and compare them
using different metrics.

3.3. Steering implementation

In order to enable dynamic implementation of treatments in different
years of the simulation, we integrated spatio-temporal steering capa-
bilities into our modeling platform. Given that different technologies are
used in the back-end of the tangible and web-based interfaces, we
implemented spatio-temporal steering using approaches best suited to
each prototype.

When customizing Tangible Landscape and the underlying GRASS
GIS interface to PoPS library, we implemented the full computational

>

Run name: 1

million 4
spent on
management

© Mapbox & OpenStreethiap Improve this map

Fig. 5. PoPS Forecasting Platform. Dynamic web map shows disease occurrences and estimated probability of infection in a selected year, given the designed
treatments up to that year. Charts on the right summarize budget spent, disease occurrence area, intensity, and spread rate. With the results overview at the bottom of

the page users can compare scenarios and select and visualize individual scenarios.



A. Petrasova et al.

Projector

Environmental Modelling and Software 133 (2020) 104801

PoPS web platform \. ;

Physical model
USB buttons

C —

Clicker
Treatments (Felt)

Steering dashboard

[}

Fig. 6. PoPS Tangible Landscape setup. The sensor (3D scanner) scans the physical model to capture the location and shape of felt patches representing interventions
on the landscape. The projector projects GIS layers on the physical model and a steering dashboard next to it. USB buttons invoke a simulation, which takes into
account current interventions; its results are projected on the physical model and logged and displayed on a summary dashboard.

steering approach (Fig. 3a). In this case, the combination of program-
ming languages used by Tangible Landscape, GRASS GIS and PoPS—C,
C++, and Python—is well suited for computational steering imple-
mentation. More specifically, we used Python and C implementation of
sockets to build a custom communication protocol to control the prog-
ress of the simulation, including pausing, resuming, going back, or
running a single step of the simulation. Through this communication
protocol, the simulation is also informed when new treatments need to
be loaded into current data structures. Since disease treatments are
conducted yearly, we selected the steering step—the step when in-
terventions can be performed—to be one year and thus different from
the shorter simulation step (one week).

Another important aspect of instrumenting the model—a check-
pointing mechanism—allows going back to previous steps of the simu-
lation by saving the states of the simulation, similarly to how a person
can go back and forward when navigating websites in a browser. Thanks
to this mechanism, users can decide to go back in time in the simulation
and test different treatments or the same ones at a different time. Finally,
to simulate adaptive management as described in section 2.1.3, the
simulation can synchronize the infected and susceptible host data
among the multiple runs, so that after synchronization, all of the sto-
chastic simulation runs start from the same state but progress individ-
ually, each with different random number generator seed. The run to
which all other runs are synchronized is the one with the median value
of the sum of infected hosts. This selection ensures that extreme cases
aren’t selected, but this criterion can be easily adjusted if more extreme
scenarios are actually desirable. To maintain the sustainability of the
model code, we have a single code base allowing us to use the model
with or without computational steering. Without computational steer-
ing, the treatments can still be provided for specific years and thus used
for scenario modeling without the need for a special steering interface.

Given the higher complexity of the web technologies used in PoPS
Forecasting Platform, we chose a simpler steering approach that does

not require direct communication with the simulation (described in
Fig. 3b). After each step, we end the simulation, output the raster layers
of infected and susceptible hosts, and restart the simulation for the
following step with the input consisting of the output from the previous
step and any treatments for the following step. This approach supports
all of the steering mechanisms described above, including controlling
the progress, checkpointing, and synchronization; they are simply
implemented outside of the simulation. The disadvantage of this solu-
tion is the extra time spent writing intermediate data to disk and loading
it back to memory, as apparent from Fig. 3b. Although a part of this
output data is used for visualization of the intermediate results, a large
portion of it serves only to save the simulation steps and would not be
exported in cases of computational steering.

Given our need to compare the outcomes of different treatment
strategies, we run the simulation with each new set of treatments until
the end step of the simulation and then it is paused. Using the check-
pointing mechanism we can then go back and resume the simulation
from any point. Having such a tree structure of end results for all de-
cisions allows us to easily compare the outcomes and better understand
the effect of individual treatments. Additionally, users can see estimates
of multiple alternative futures and use them to inform their decisions.
All of the results are saved in PoPS Forecasting Platform database and
can be reloaded on the dashboard to review them.

4. Case study

We applied our modeling framework with stakeholders in Oregon
who must make decisions regarding the management of Sudden Oak
Death (SOD), an emerging forest disease that has killed millions of trees
in California and Oregon. Based on their feedback from a prior workshop
(Gaydos et al., 2019), we extended our epidemiological model to enable
them to spatio-temporally steer the simulation by managing the disease
at yearly intervals, rather than managing only at the beginning of the
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simulation. During a full-day participatory workshop we introduced
stakeholders to this novel adaptive management modeling approach
using PoPS Tangible Landscape and PoPS Forecasting Platform (Fig. 7).
Stakeholders were to work in groups to collaboratively develop man-
agement strategies. To make the strategies relevant for stakeholders and
their organizations’ funding cycles, we simulated the disease for 3 years,
starting with known 2019 infections. To account for delays in detection
and treatment of the disease, participants designed their treatments in
the beginning of each year, but the treatments were not applied until the
end of that year. We applied the adaptive management approach to
steering (Sec. 2.1.3) and simulated 10 stochastic realizations, which
were sufficient to communicate uncertainty while avoiding time delays.
More details about the workshop itself can be found in Gaydos (2020).

4.1. Adaptive management workflow

To better convey how adaptive management was incorporated into
our participatory modeling exercise, we describe here the steering
workflow using one example of how workshop participants progressed
through the simulation (Fig. 8). This particular scenario was created by
participants using PoPS Tangible Landscape.

By switching among the displayed years, participants explored the
probability of infection, which would rapidly increase within three years
without any management (Fig. 8a). Using PoPS Forecasting Platform,
they then created a new scenario by specifying various settings,
including budget constraint or treatment efficiency. To reduce the
forecasted infection probability, participants decided to split their 2019
budget between treating outbreaks in northern parts of the landscape
and treating some of the core infected areas in the south (Fig. 8 b-2019).
They designated the treatments (Fig. 7) and adjusted them based on real-
time feedback on the treatments’ size and cost. When participants
pressed the USB button, the treatment was registered in the database
and the simulation ran from that year until the end year, 2021, taking
into consideration the new treatments.

At that point, the participants moved within the scenario to the
beginning of 2020 and a newly simulated infection layer representing
one stochastic realization for that year was displayed. Despite the
treatment of most 2019 infected areas, the disease escaped and spread
northward (Fig. 8 b-2020). This spread occurred due to the delay be-
tween the treatment decision at the beginning of 2019 and actual
management happening at the end of 2019, representing realistic delays
between detection and taking action. Taking into account the future
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probability of spread extent (Fig. 8 b-2021 and b-2022) and the inef-
fectiveness of small buffers to completely prevent outbreaks, as in 2019,
participants decided to treat the remaining infections and allocate half
of their 2020 budget to treat larger areas in the north that were likely to
become infected later (Fig. 8 c-2020).

At the beginning of 2021, all northward infection was successfully
eradicated and the remaining infection was greatly reduced (Fig. 8 c-
2021). In the last simulated year, participants were able to spend a much
smaller budget to treat the few remaining infections (Fig. 8 d-2021).
Although the beginning of year 2022—the end of the simulation—sh-
owed a few remaining infections (Fig. 8 d-2022), these could be easily
treated by future management efforts.

This example demonstrates that allowing participants to manage
throughout the simulation is essential for representing adaptive man-
agement decisions. Although a disease spread forecast based solely on
initial treatment (Fig. 8b) is useful in planning, there are limits to using
it to explore strategies. Without the option to treat in subsequent years,
participants would not be able to test realistic management strategies,
such as how much budget to allocate in different years, when and where
to treat given the spatial distribution of the infection, or whether it is
even possible to eradicate the disease given a realistic budget.

5. Discussion

Given the large uncertainties associated with forecasting social-
ecological phenomena, researchers have been advocating for manage-
ment “experiments” that could both develop scientific knowledge and
lead to improved management policies and practices (Serrouya et al.,
2019). Adaptive management has been shown to accomplish both
through continuous “learning-by-doing” that takes into account the
outcomes of previous strategies and models system behavior using
updated knowledge (Walters and Holling, 1990). Given that successful
implementation of this approach requires effective communication
across science, policy and management (Bosch et al., 2003), participa-
tory modeling has been used to engage stakeholders in learning, model
development and creating management strategies (Lynam et al., 2010;
Fujitani et al., 2017; Smith et al., 2007). However, participatory
modeling efforts have been lacking in methods that allow stakeholders
to explore how different spatially and temporally explicit interventions
may impact a complex social-ecological system. In our work, we
demonstrated how using simulation steering allows stakeholders to
explore more realistic decisions through adopting an adaptive

Fig. 7. Participants using PoPS Tangible Landscape to steer simulation by placing felt on top of infected areas. PoPS Forecasting Platform with results is in

the background.
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Fig. 8. An example of an adaptive management scenario developed by workshop participants demonstrating the steering workflow: a) no management scenario, b)

treatments introduced in 2019, c) followed up by treatments in 2020, and d) 2021.

management approach.

As aforementioned, this work was motivated by the needs of stake-
holders, voiced at an initial participatory modeling session (Gaydos
et al., 2019) at which stakeholders could manage the infection only in
the initial year of the simulation. That exercise helped them to learn
about disease spread behavior and strategies to reduce spread but also
revealed that the disease cannot be contained without continued yearly
interventions, leading us to integrate adaptive management capabilities

into the modeling framework. The new approach allowed stakeholders
to ask more questions about their ability to eradicate the disease, how
much of a yearly budget to allocate, and which areas should be treated
first. At the workshop described here, participants used the new
approach to, for example, experiment with front-loading the budget to
see whether that would be more effective to eradicate the disease
(Fig. 8). As an analysis of the workshop reports (Gaydos, 2020), the
adaptive management approach “empowered stakeholders to generate
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novel intervention scenarios”, and participants “combined several tac-
tics and changed their approaches through time, which may better
reflect the realistic-complexities of control.”

Workshop participants gave good usability scores to both inter-
faces—PoPS Tangible Landscape and PoPS Forecasting Platform—and
perceived them as useful for targeting treatment areas (Gaydos, 2020).
These results show us that using sophisticated, realistic, steerable
spatio-temporal simulations does not have to be difficult for stake-
holders without modeling expertise. Indeed, studies developing inter-
active visual interfaces affirm that complexities of the model and the
steering implementation can be hidden behind intuitive, visual in-
terfaces that expose only information and behavior that are meaningful
and practical for the stakeholders (Afzal et al., 2011; Ribicic et al., 2013;
Nino-Ruiz et al., 2017). In our case, both interfaces provided the
stakeholders the same steering capabilities, despite featuring different
implementations of steering due to the practicalities of their different
(web vs. desktop) deployments. Although the behavior of the simulation
is the same, PoPS Forecasting Platform currently requires more time to
progress through each steering step. That is to be expected given the
steering implementation (Fig. 3b), but we are currently working on
minimizing the delay by using better web deployment strategies.
Nevertheless, this delay did not negatively impact the workshop, as
participants used that time for more discussion. To help stakeholders
develop and evaluate more scenarios in the allotted time, we decided to
limit their ability to go back in time and change past interventions.
Although this prevented them from fine-tuning individual scenarios,
they managed to test a wider range of strategies. The option to change
past treatments to fine-tune approaches is likely more important for
analysts working with PoPS Forecasting Platform to finalize treatment
plans.

Although considerable research has been devoted to overcoming the
technological challenges of computational steering, the conceptual
challenges of steering stochastic simulations have been overlooked. The
common aggregation approach (Ribicic et al., 2013) (Fig. 1a) is limited
in its ability to represent spatial structure and patterns explicitly
modeled by many urban growth, disease, or wildfire simulations.
Moreover, this approach is problematic when differences in the inter-
mediate states of multiple stochastic realizations would result in
significantly different steering decisions. The developed steering
approaches—single-realization, aggregation, and adaptive management
approach—provide a framework to address these challenges by better
defining the role of each method in modeling and the associated im-
plications for interpreting results. Since this work focused on the
adaptive management approach, future work could further investigate
the applicability and limitation of each of the developed methods for
different spatio-temporal simulations (such as urban growth, flooding)
based on their specific behavior and questions researchers and
decision-makers are interested in answering. Additionally, a possible
avenue to mitigate the limitation associated with using single stochastic
realization in the adaptive management approach can be using a more
sophisticated mechanism for selecting the single run. To mitigate any
concerns about representing a likely reality, the run could be selected by
weighing several of its characteristics, including e.g., its size, pattern, or
value range, while at the same time the more extreme runs can be
visualized alongside to provide a more complete picture of the stochastic
variations. To facilitate further research, we envision developing a
geospatial library with a simple steering interface that would streamline
integrating spatio-temporal steering into current and new geospatial
simulations (e.g., Peckham et al. (2013); Neteler and Mitasova (2008)).
Such a library would encourage more interactive modeling in geospatial
research, making the research process and results more accessible to
domain experts and decision-makers.

6. Conclusions

In this study we addressed the often overlooked conceptual and
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implementation challenges of steering stochastic spatio-temporal sim-
ulations. Our suggested approach—combining aggregate views of future
estimates with a single realization representing the past—provides a
novel solution to steering multiple stochastic realizations and one that is
particularly applicable for testing adaptive management strategies. The
adaptive management modeling approach—developed to help stake-
holders design more realistic management scenarios—can better
represent the realities of decision-making by allowing stakeholders to
decide when and where they manage based on past actions, current
observations, and future forecasting. The participatory modeling case
study demonstrated that the stakeholders were able to ask better, more
realistic questions about the feasibility of disease eradication, budget
allocations, and management priorities. Given the large uncertainties
typically associated with social-ecological phenomena, the adaptive
management modeling approach focuses attention on developing stra-
tegies that decision-makers can adopt based on the current, on-ground
situation. Although our case study highlights the application and
importance of spatio-temporal steering for disease management, the
described approach is generally applicable and relevant for a variety of
stochastic, geospatial models.

7. Software and data availability

This work is based on PoPS Forecasting and Control System, an open
source project composed of several software components under GNU
GPL v2 and later:

o C++ library PoPS

e R package rpops

e C+-+ GRASS GIS addon r.pops.spread

e PoPS Forecasting Platform based Django web framework

Links to GitHub repositories are accessible from OSF project osf.io/
q32p9. Additionally, Tangible Landscape—tangible geospatial modeling
and visualization system integrated with GRASS GIS licensed under GNU
GPL v2 and later—was customized for steering and the code is available
under a separate branch on GitHub (github.com/tangible-landscape/
grass-tangible-landscape/tree/pops-steering). Data used for SOD
modeling are accessible from r.pops.spread tutorial page (grasswiki.
osgeo.org/wiki/SOD_Spread_tutorial).
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