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Abstract: Visual characteristics of urban environments influence human perception and behavior,
including choices for living, recreation and modes of transportation. Although geospatial
visualizations hold great potential to better inform urban planning and design, computational
methods are lacking to realistically measure and model urban and parkland viewscapes at sufficiently
fine-scale resolution. In this study, we develop and evaluate an integrative approach to measuring
and modeling fine-scale viewscape characteristics of a mixed-use urban environment, a city park.
Our viewscape approach improves the integration of geospatial and perception elicitation techniques
by combining high-resolution lidar-based digital surface models, visual obstruction, and photorealistic
immersive virtual environments (IVEs). We assessed the realism of our viewscape models by
comparing metrics of viewscape composition and configuration to human subject evaluations of IVEs
across multiple landscape settings. We found strongly significant correlations between viewscape
metrics and participants’ perceptions of viewscape openness and naturalness, and moderately strong
correlations with landscape complexity. These results suggest that lidar-enhanced viewscape models
can adequately represent visual characteristics of fine-scale urban environments. Findings also indicate
the existence of relationships between human perception and landscape pattern. Our approach allows
urban planners and designers to model and virtually evaluate high-resolution viewscapes of urban
parks and natural landscapes with fine-scale details never before demonstrated.

Keywords: landscape; lidar; viewshed; urban design; urban planning; geospatial; perception;
virtual reality

1. Introduction

The visual characteristics of landscapes, such as complexity, openness, and naturalness,
are known to be linked to people’s perceptions and behaviors [1–6]. These characteristics—expressed,
e.g., by quantity and variety of visible landcover or by variations in surface elevation—have been
previously analyzed from landscape photographs [3–6] providing reliable, detailed information
about the local survey sites [7]. The effort to extend the analysis over larger areas has led to GIS

ISPRS Int. J. Geo-Inf. 2020, 9, 445; doi:10.3390/ijgi9070445 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-5755-8027
https://orcid.org/0000-0002-5120-5538
https://orcid.org/0000-0001-6477-6551
https://orcid.org/0000-0002-6906-3398
https://orcid.org/0000-0002-1247-6212
http://www.mdpi.com/2220-9964/9/7/445?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi9070445
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2020, 9, 445 2 of 21

approaches that are easy to automate, but may be viewed as less realistic [8–14]. For example,
viewshed analyses of areas visible from a given vantage point [10–12] have been used as a way to link
mapping with the visible landscape [9,13,14]. Conceptualized as viewscape modeling, researchers are
beginning to characterize visible landscape content, such as land use or surface greenness, to better
understand visual connections between people and their surroundings [15,16]. Analysis of viewscape
composition can be extended by computing the spatial configuration of visible landscapes (e.g., pattern
diversity [17], shape complexity [18], terrain ruggedness [19]) using landscape metrics from the field
of landscape ecology. Viewscapes based on digital surface models (DSM), rather than previously
used digital terrain models (DTMs), include vertical structures, such as buildings and vegetation
and are less likely to overestimate viewscape area [16]. Where horizontal visibility is important,
such as in urban settings, they may still incompletely represent the visible area and its associated
characteristics (e.g., Reference [20]). Application of viewscape models to understand the visual
characteristics of finer-scale features in urban environments remains largely unexplored. In contrast to
more commonly studied biomes, such as pasture and forest, that can include large vistas and fairly
homogenous landcover (e.g., References [21–23]), urban landscapes involve a variety of view ranges
and spatial conditions—shaped through the interaction of granular landforms and heterogeneous
built environments.

Limitations of spatial scale exist for both DSM and landcover data that are integral to the realistic
estimation of visible content (e.g., number of visible trees and buildings), as well as for the accuracy
of landscape metric analysis (reviewed in References [24,25]). Publicly available landcover data are
often coarse (10–30 m) and do not represent features smaller than their pixel size (e.g., buildings,
sidewalks, single trees). Although advanced methods, such as object-based classification or pattern
recognition, exist to generate highly detailed landcover data from satellite imagery, incorporation of
such data in viewscape models has been rare [11]. Difficulties in the accessibility of lidar data—the
most common DSM data source—have caused most current viewscape models to use low-resolution
DSMs or DTMs [18]. This is in spite of the well-documented influence of spatial data resolution on
the accuracy of visibility analysis [9,16,26]. Coarser DSMs tend to overestimate visibility compared
to fine-grained lidar DSMs, especially in smaller viewsheds [26]. However, lidar-sourced DSMs may
still struggle to realistically represent non-surface vegetation (Figure 1). Specifically, raster-based
DSMs represent trees as solid protrusions that entirely obscure the under-canopy and through canopy
visibility [27,28]. This is a major source of error for visibility estimations, particularly within the
dense canopy (parks and greenways), or in leaf-off season when visibility through deciduous trees
is computed. Several techniques have been proposed to overcome this issue, such as the visual
permeability concept that accounts for the probability of viewing a region as determined by the spatial
density and position of tree models [29], or trunk obstruction modeling that replaces the trees with
an approximated trunk model [28]. While improvements in resolution of spatial data and vegetation
obstruction modeling have separately shown promise in enhancing the accuracy of visibility analysis,
to our knowledge, they have not been used together in a single study to generate a high fidelity
viewscape model.

Evaluating the extent to which a viewscape model can predict perceived visual characteristics
requires a comparison of the model output with human subjects’ evaluations of landscape, which could
be done either in situ or through landscape photography and 3D simulations. Because in situ
measurements are often time-consuming, labor-intensive and involve several confounding factors
(e.g., changing weather), research has widely resorted to online or desktop surveys using photographs
and 3D simulations [18]. However, the use of digital stimuli is increasingly contested for their
representation validity, with the least realism reported for photographs of heterogeneous landscapes
and mixed-use urban environments [7]. Another obstacle for verification of viewscape models is
the discrepancy of view coverage between perspective photographs and visibility analysis in GIS.
Perspective photographs have a limited field of view (FOV), while viewshed algorithms use 360◦
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virtual environments (IVEs) that immerse the observer in a virtual environment (VE) can potentially
minimize the gap between modeled viewscape and in situ experience of the urban landscape. In contrast
to desktop displays where FOVs are limited, immersive displays (CAVE or head-mounted displays,
HMD) provide continuous visual feedback linked to the user’s head and body orientation allowing
them to freely explore the entire viewshed area. Thanks to the ability of IVEs to elicit a higher sense of
immersion [30], presence [31], and improved spatial perceptions (e.g., distance, depth) [32]. IVEs have
been widely adopted in geospatial sciences and urban planning applications, such as 3D visualization
of open map data [33], real-time 3D visualization of ecological simulations [34], and geodesign [35].
However, to our knowledge, IVE has not been used for human verification of visibility simulations,
particularly viewscape modeling.
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a comparison of the model output with human subjects’ evaluations of landscape, which could be done 

Figure 1. Representation of deciduous trees in lidar derived digital surface models (DSM) (a) and
bird-view imagery (b) in leaf-off season.

The purpose of this study is to develop and evaluate a high-resolution approach to measuring
and modeling fine-scale viewscape characteristics of mixed-use urban environments through a novel
integration of geospatial and perception elicitation techniques using photorealistic IVEs. We use
high-resolution DSM and landcover data derived from lidar to account for the fine-grained structure
and heterogeneous patterns of urban environments, and we improve the vegetation visibility of the
DSM using trunk obstruction modeling. With these improved spatial data, we compute viewscape
composition and configuration using automated GIS procedures. We uniquely evaluate the realism of
the resultant viewscape model by quantifying its capacity to predict perceived visual characteristics.
For this, we conduct a perception survey using IVE images captured from a set of locations across the
study area. Then we compare the metrics of viewscape composition and configuration derived from
the viewscape model with human subject evaluations of IVEs.

We specifically focus on three visual characteristics, namely, visual access, complexity,
and naturalness that have been widely used to objectively measure visual landscape quality and
have shown to be strongly linked with human psychological responses to environments [1,36–41].
By bridging the gap between objective and subjective analysis of visual characteristics,
our high-resolution viewscape modeling allows landscape designers and planners to realistically
simulate aesthetic and restorative qualities of a viewscape in a spatially explicit manner.

2. Methods

2.1. Study area

Dorothea Dix urban park covers 306 acres (125 ha) in Raleigh, North Carolina (35’46◦ N, 78’39◦ W;
Figure 2). The landscape is characterized by undulating topography and heterogeneous landcover.
Vegetation cover ranges from grassy meadows, herbaceous perennials, Eastern and Loblolly pines,
Willow and Red Eastern oaks, and a variety of landscaping trees and shrubs. As a past psychiatric
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hospital campus, the site includes numerous buildings, including closed hospital, administrative
and maintenance buildings and derelict employee housing, as well as a network of paved roads
(dixpark.org). Some buildings are currently being used by the NC Department of Health and Human
Services. The combination of varied landscape types and spatial characteristics provides a wide range
of conditions of openness, complexity, and naturalness, making the selected site well-suited for the
purposes of this study.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 4 of 22 
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Figure 2. Study area: Dorothea Dix Park.

2.2. Viewscape Modeling

To model urban viewscapes, we first develop DSM and a high-resolution landcover map.
Then, we improve the visibility of viewscapes calculated from DSM using enhanced vegetation
modeling accounting for visibility under the deciduous tree crowns. Finally, we represent fine-scale
visual characteristics of features in a mixed-use urban environment by measuring the composition and
configuration of viewscapes.

2.2.1. Digital Surface Model (DSM) and Landcover

To develop the DSM and landcover map, we used three geospatial datasets, including airborne
lidar, multi-spectral orthoimagery of vegetation and road and building vector data. The multiple
return lidar data were acquired on 11 January 2015 (leaf-off) with an average density of 2 points/m2

and fundamental vertical accuracy (FVA) of 18.2 cm (Phase 3–2015 NC QL2 lidar, https://sdd.nc.gov/).
The lidar point cloud was classified by data provider into several classes, including ground and low,
medium, and high vegetation. Two sets of orthoimagery were used: a 30 cm resolution orthoimagery
captured in early 2015 in leaf-off condition (WMS, 2015), and a 1 m resolution four-band imagery
captured in summer 2014 in leaf-on condition (NAIP, USDA Farm Services Agency, 2014).

DSM was developed by interpolating first-return lidar points at half-meter resolution. We used a
regularized spline with tension algorithm implemented in GRASS GIS [42] to balance the smoothness
and approximation accuracy of the surface. The landcover was developed by combining the three
layers (Figure 3):

1. Canopy height model (CHM) was, obtained through filtering and interpolating lidar vegetation
points and subtracting their elevation from ground elevation (Figure 3a). We applied a supervised

dixpark.org
https://sdd.nc.gov/
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classification method [43] to strata of infrared imagery (NAIP), lidar vegetation maximum values,
and orthoimagery to classify the CHM into the mixed forest, evergreen and deciduous landcovers
(Figure 3b).

2. The ground cover layer consists of grasslands, herbaceous, and unpaved surfaces, which were
manually digitized in the 30 cm resolution orthoimagery.

3. Buildings and paved surfaces (e.g., streets, parking surface), which were rasterized from the
vector line and polygon data (Figure 3c; data retrieved from City of Raleigh GIS datasets; Raleigh,
NC, US Open Data server, https://data-ral.opendata.arcgis.com/).
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Figure 3. Landcover fusion layers include (a) tree canopies derived from lidar points, (b) ground cover
digitized over high-resolution imagery and (c) roads and buildings rasterized from official vector data
which are combined to generate the (d) half meter resolution landcover. Data sources: (a) Phase 3
NC QL2 lidar (2015); (b) NAIP, USDA Farm Services Agency, 2014; (c) City of Raleigh GIS datasets;
Raleigh Open Data server.

2.2.2. Trunk Obstruction Modeling

To delineate vegetation structures that affect visibility, we visually inspected lidar points and field
images and identified three main structures (Figure 4): (a) Dense evergreen patches (mainly Loblolly
pines) with dense understory (mainly woody shrubs and vines), (b) evergreen over-story mixed with
deciduous midstory (mainly red maple and sweetgum) and understory, and (c) dispersed deciduous
species consisting of large willow and Northern red oaks, maples and landscaping trees. While the
former two structures were mostly or entirely impenetrable, the third structure had substantial
under-canopy and through-canopy visibility in the leaf-off condition.

To overcome the visibility error of the deciduous canopies, we used the trunk obstruction modeling
method suggested by Murgoitio [28] that has been shown to significantly improve short-range
visibility estimations. The method involves delineating individual trees from the lidar point cloud,
and substituting them in the DSM with approximate trunk width measures. To do this, we delineated
the individual treetops from the DSM using Geomorphons [44]—an algorithm that uses pattern
recognition principles to detect and classify landforms in an elevation model (Figure 5a). Geomorphons
can accurately detect treetops of deciduous and coniferous stands within complex forest structures [45].
We extracted the summits from the classified landform raster map (0.5 m resolution) to delineate treetop
polygons and used their centroids to designate the location and height of the tree trunk. We assumed
that the apex of the canopy corresponded with the trunk location on a straight vertical line to the
terrain. Based on field measurements and spatial resolution of the data, we used a diameter of 1 m for
larger species (oaks) and a 0.5 m diameter for smaller species. Finally, the deciduous canopies in the
DSM were replaced with the segmented trunks to create the improved surface model.

https://data-ral.opendata.arcgis.com/
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Figure 5. Procedure for computing binary viewshed map (a) for a single viewpoint, intersecting the
resulting map with landcover (b), DEM (d) and DSM) to obtain visible landcover map (c), horizontal
(f) and vertical (g) viewscape maps, and applying spatial analysis to quantify composition and
configuration metrics.

2.2.3. Computing Viewscape Metrics

To obtain the viewscape metrics, we measured the composition and configuration of viewscapes
computed from 342 viewpoints (centroids of a 30 m grid) across the study area. Thus, we assumed an
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observer every 30 m across the site to be able to represent the visual characteristics of the site. Viewsheds
were computed on the DSM at average human eye-level (1.65 m) and considered a maximum visibility
distance of 3000 m, based on viewing range estimated by a preliminary viewshed analysis. We used
the GRASS GIS viewshed function, which uses a computationally-efficient line-sweeping algorithm
suitable for performing viewshed computation on a high-resolution DSM [16,46]. The algorithm rotates
a sweep line around the observer cell and determines the visibility of each cell when the sweep line
passes over its center.

Computed viewscape metrics consisted of 19 landscape indicators that represent visual
characteristics and are previously shown to predict human perceptions and landscape preferences [18].
Composition metrics characterize the visual content of a viewscape and quantify what landscape
features an observer can see from a given vantage point [18,47]. To compute these metrics, we intersected
the binary (visible or nonvisible) viewshed map (Figure 5a) with landcover map (Figure 5b) to obtain
a visible landcover map (Figure 5c) from which we calculated the proportional presence of each
landcover in the viewscape.

Configuration metrics measure the spatial arrangement and relationship between different
landcover types. They included (1) total viewscape area (extent), (2) distance to the farthest visible
feature (depth), (3) elevation variability of the visible ground surface (relief), (4) elevation variability
of the visible above-ground features (skyline), (5) size of the visible ground surface (horizontal),
(6) variability of depth (VdepthVar), (7) number of patches (Nump), (8) complexity of patch shapes
(SI and ED), (9) size of patches (PS), (10) patches density (PD), and (11) land type diversity measured
as Shannon’s diversity index (SDI). Depth and extent were computed directly from the binary
viewshed map (Figure 5a). To compute horizontal, relief and skyline metrics, the viewshed map was
intersected with a bare-earth DEM (Figure 5d) and DSM (Figure 5e) to develop separate maps of
ground visibility (horizontal viewscape; Figure 5f) and aboveground visibility (vertical viewscape;
Figure 5g), respectively. The remaining metrics (Nump, SI, ED, PS, PD, and SDI) were derived from
visible landcover map (Figure 5c) and measured using landscape metrics analysis [48]. The definition
of the variables and calculation formulas are described below.

Shannon diversity index (SDI) is a measure of pattern diversity by considering the number of
land cover classes and the proportion of distribution. Higher SDI values indicate an increase in the
number of classes or even distribution, or both. It can be computed as follows, where i is patch type,
m is the number of different patch types and pi is the proportional abundance of patch type i:

SDI = −
m∑

i=1

pi ln(pi ) (1)

Shape index (SI) characterizes visible patchiness based on perimeter-to-area ratio where E is
sum of all patch edges, and A is sum of all patch areas. Lower shape complexity indicates more
coherent views.

SI =
0.25E
√

A
(2)

Edge density (ED) provides a measurement of the length of the edge segments per hectare and is
dependent on both patchiness and patch shape. A high value would indicate a low degree of variation
between the largest and smallest patch. E is the sum of the lengths of all edge segments, and A is total
landscape area:

ED =
E
A
(10, 000) (3)

The number of patches (Nump) describes the number of patches in the landscape and explains
the extent to which the landscape is fragmented or not. Higher values of Nump indicate a more
fragmented arrangement. Patch size (PS) is the average size of patches over the entire viewscape
area with a lower value indicating a more granular composition of a view. Patch density (PD) is the
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number of patches per area. A higher value indicates greater heterogeneity and decreased coherence
of landscape.

The entire GIS analysis and automation workflow (Figure 5), was performed via a python script
in GRASS GIS (can be found in Supplementary Materials).

2.3. Immersive Virtual Environment (IVE) Survey of Perceived Visual Characteristics

To verify the realism of the viewscape model and evaluate its capacity to predict perceived visual
characteristics, we conduct a survey of perceived visual characteristics using IVE stimuli representing a
range of urban viewscapes in the study area. Below, we describe the process for selection of viewpoint
locations and the procedure for creating IVE scenes from photographs collected from these viewpoints,
and then explain the details of the survey procedure.

2.3.1. IVE Stimuli

To select viewpoints for model verification we assessed the viewscape metrics using two criteria:
(1) The visual attributes of the selected viewpoints should approximately represent the range of values
of the 342 viewpoints; and (2) viewpoints should be at least two grid cells (60 m) apart to ensure that
the entire study area is represented. A sample of 24 points satisfied these criteria, and was considered
for acquiring photographs (Figure 6).

Viewpoints were located using a handheld GPS device (Trimble Geo5t). At each location, we took
an array of 54 (9 × 6) photographs, at eye-level (1.65 m), using a Canon Eos 70D camera fixed on
a robotic mount (Gigapan Epic Pro; Figure 7). We stitched the images to acquire a 25 Megapixel
panoramic image with a spherical projection, i.e., equirectangular image (Figure 7b). Then, through a
process known as cube mapping [49], each equirectangular image was unfolded into six cube faces
(Figure 7c). In a virtual reality set-up, these faces are wrapped as a cubic environment around the
viewer (Figure 7d). Photographs were taken over four days in February 2017, in similar weather and
lighting conditions.

2.3.2. Survey Procedure

In total, 100 undergraduate students at a university in the southeastern United States participated
in this study. The mean age among the participants was 19.56 years (SD = 3.17); 51% were male
(n = 51) and 70% were white (n = 70). Participants’ study background varied; 47% were from parks
recreation and tourism management, 25% from sports management and 28% from natural and social
sciences. Participation in the study was voluntary, and those who volunteered were entered in a
random drawing for one of the ten $25 gift cards to an online merchant. The study protocol was
approved by the university’s Institutional Review Board.

To measure perceived visual characteristics, we selected three items that have shown strong
links with human psychological responses. Perceived visual access (also called visual scale), broadly
defined as size, shape, diversity, and degree of openness of the landscape, is shown to have links
with perceived safety [36] and preference [41]. It was measured using one question without explicit
reference to openness: “How well can you see all parts of this environment without having your
view blocked or interfered with?” [46]. The response options ranged from 0 = not at all to 10 = very
easy. Perceived naturalness, defined as the extent to which landscape is close to a perceived natural
state [40,50], which correlates with perceived restoration [37] and stress recovery [38]. It was measured
by a single question “How natural do you perceive this environment?” using an 11-point scale with
0 = not natural, 10 = very natural [51]. For perceived complexity—important in the formation of
visual preference [1,39,52]—participants responded to the statement “How complex you perceive this
environment? “using an 11-point scale, 0 = not at all, 10 = very complex [53].
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The IVE survey was carried out in a controlled lab environment. Upon participants’ arrival,
a researcher assisted them to don and adjust head-mounted display (HMD) (Oculus CV1), practice
rotating around, and interacting with the joystick controller. To familiarize participants with experience
of immersion and respond to an on-screen survey, they experienced two mockup IVE scenes depicting
an urban plaza and a park. For each scene, they responded to three statements measuring perceived
realism and presence in the virtual environment.

After the warmup phase, each respondent experienced 24 randomly displayed IVEs with a 2-min
recess after the 12th scene. Each of the IVE scenes was to be rated on only one of the response variables
(perceived visual access, perceived complexity, and perceived naturalness) and the variable for the
rating was randomly selected by the VR application at the start of the study. Final sample sizes were
32 for ‘visual access,’ 34 for ‘naturalness’, and 34 for ‘complexity.’ Administering all three questions
to participants would have increased our statistical power, but our pilot study (n = 11) showed
that responding to multiple questions for each IVE can lead to participants’ fatigue and confusion.
By doing so, we also avoided the carryover bias, that is the possible impact of previous questions on
the subsequent ones [54].

Participants experienced each scene for 25 s, after which, a semi-transparent dialogue box
containing the survey item was displayed on the HMD. There was no time limitation in the response
phase allowing respondents to freely explore the immersive environment and rate the statement (using
the joystick controller) as they continued to experience the scene. The entire experiment procedure
was developed as a python script and executed in World Vizard VR development software (WorldViz
Inc, Version 5.4).

Following the experimental session, participants filled-out a brief pen-and-paper survey,
including questions about age, race, gender, and field of study. The total duration of each session was
on average 40 min (range 37–46). Data were collected over four weeks in March 2017.

2.4. Viewscape Model Assessment

We used multiple linear regression analyses to assess how the viewscape model represented by 19
viewscape metrics predicts three perceived visual characteristics, namely, perception of visual access,
perception of complexity, and perception of naturalness. Our study had a within-subjects design,
meaning that each participant experienced all 24 scenes (or plots) and responded only to one of the
three dependent variables. As such, the unit of analysis was the participant’s rating of a scene. Three
separate stepwise variable selection models based on the minimization of the Akaïke Information
Criterion (AIC) were applied to fit the best predictive model for each dependent variable. For each of
the regression models, we diagnosed collinearity using the variance inflation factor (VIF) to include
variables with a tolerance of larger than 0.1 and VIF smaller than 10, as suggested by Hair et al. [55].
The prediction power of regression models are reported using adjusted coefficients of determination
(R2

adj), and the relative contribution of each variable to the model is reported using standardized
regression coefficients.
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3. Results

3.1. Viewscape Modeling

The resulting landcover map (Figure 8) developed by combining CHM, digitized high-resolution
orthoimagery and official datasets of roads and building footprints had a 0.5 m resolution and
included eight landcover classes categorized based on the National Landcover Dataset (NLCD)
classification. By applying Geomorphons algorithm (Figure 9a) on the interpolated high-resolution
DSM, we successfully identified treetops (Figure 9b) and based on the landcover substituted the
deciduous trees in the DSM with their trunks. Figure 9c,d demonstrate the improvement of short-range
visibility estimations by comparing the modeled viewscape before and after trunk obstruction modeling.
We computed 19 viewscape metrics from 342 viewpoints distributed on a 30m grid across the study
area. From these viewpoints we selected 24 locations that approximately represent the range of values
of all the viewpoints with the condition to be distributed at least 60 m apart to represent the entire
study area. Table 1 shows the computed values of both composition and configuration viewscape
metrics for those 24 selected viewpoints.

3.2. Immersive Virtual Environment Survey

The mean values of perceived visual access of IVEs varied between 1.85 and 10.62 (Table 2).
Very high values were assigned to viewscapes with long vistas and large viewshed areas (scenes
21, 14), and viewscapes enclosed by forests, hills, and buildings (scenes 1, 10, 13) obtained the
lowest values. The selected regression model for perceived visual access included 11 variables and
produced an adjusted coefficient of determination (R2

adj) of 0.65, p < .001 (Table 3). Extent had the
strongest positive contribution to the model, followed by Viewdepth_var and Depth. Skyline and
Relief, respectively, had a negative correlation with perceived visual access. From the compositional
metrics, Building had a strong negative impact on perceived visual access, whereas Deciduous and
Paved positively contributed to the model. Among configuration metrics, ED (edge density) had the
strongest negative contribution to the model, while Nump (number of patches) was positively related
to perceived visual access.
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Table 1. Computed viewscape metrics for the 24 IVE scenes used in the study.

Composition Metrics Configuration Metrics

Viewscape Deciduous Mixed Evergreen Herbaceous Grass Building Paved extent depth relief skyline horizontal VdepthVar Nump SI ED PS PD SDI

(%) (%) (%) (%) (%) (%) (%) (m2) (m) (m) (m) (m2)

1 4.40 28.60 0.40 66.10 0.00 0.40 0.00 6921 99 4.29 8.04 6904 4.13 3 18.31 6955 0.09 58,756 0.82
2 13.40 42.00 2.80 31.00 30.00 2.60 0.30 21,214 2130 6.78 1.86 2089 36.99 2 73.48 14,373 0.01 127,130 1.56
3 4.40 28.60 0.40 4.30 37.90 0.30 1.60 3140 506 11.10 4.65 1273 24.73 1 39.53 11,462 0.07 91,617 0.95
4 27.40 3.90 4.00 0.00 56.50 4.90 3.30 42,582 325 3.14 8.28 40,666 10.10 20 26.09 4186 0.04 33,455 1.22
5 7.30 8.10 7.10 6.30 56.50 3.30 2.80 98,618 812 4.44 10.55 79,819 18.28 82 47.52 4964 0.04 30,744 1.75
6 8.50 14.00 3.70 0.00 63.20 5.20 1.90 91,891 1972 5.91 9.38 61,032 16.85 21 49.44 5294 0.04 31,170 1.45
7 12.80 12.10 2.30 0.00 60.00 4.20 7.70 97,852 2132 5.97 11.20 68,717 18.67 27 48.02 5075 0.04 30,504 1.41
8 5.30 18.50 5.40 5.30 59.50 1.90 0.90 103,798 1789 3.40 9.58 55,347 14.99 73 54.37 5463 0.05 33,642 1.53
9 19.80 5.10 3.40 0.00 54.40 6.70 10.50 91,018 1074 5.37 11.37 60,146 29.40 73 53.24 5917 0.04 34,626 1.37

10 0.00 60.80 0.00 0.00 39.20 0.00 0.00 80 150 0.26 6.09 79 2.24 2 5.60 14,168 0.05 102,955 0.67
11 24.90 14.10 4.80 0.00 35.90 10.00 10.30 5593 366 2.37 10.08 5457 6.16 22 20.21 7676 0.09 56,625 1.68
12 10.80 16.20 7.70 0.00 43.80 10.70 8.60 36,353 982 3.17 9.28 22,770 19.82 18 49.59 7839 0.08 50,237 1.76
13 32.50 0.40 4.80 0.00 28.20 23.00 11.00 1712 210 2.22 10.20 1564 6.10 8 14.14 10,021 0.13 87,406 1.62
14 13.30 3.50 7.10 0.90 62.50 4.50 8.10 106,496 891 5.36 11.33 96,335 17.88 36 39.73 4081 0.03 21,146 1.27
15 25.60 25.20 2.80 0.00 34.40 5.20 6.80 19,282 461 5.36 10.71 16,813 11.50 19 42.10 8806 0.11 69,296 1.53
16 13.90 4.10 7.40 2.40 59.80 4.50 22.00 104,086 843 5.89 10.37 81,323 25.46 50 48.48 5098 0.04 30,592 1.37
17 22.30 5.80 0.20 0.00 16.70 22.70 32.40 8605 311 1.36 6.34 6409 7.37 17 18.63 5752 0.05 35,191 1.51
18 32.70 5.70 3.20 0.00 52.70 2.00 3.80 28,459 305 5.31 12.59 25,200 16.61 32 32.72 6298 0.05 42,796 1.20
19 26.30 22.20 1.30 0.00 35.00 3.90 11.20 50,713 1293 4.76 12.04 34,196 26.99 42 63.49 8672 0.08 59,631 1.52
20 7.40 2.90 10.30 0.00 12.60 18.10 48.80 10,702 300 2.11 6.22 10,369 5.29 13 19.73 5642 0.06 40,294 1.45
21 10.40 3.50 5.00 0.70 69.90 3.80 6.40 185,289 538 7.12 11.20 167,052 17.30 44 39.15 3109 0.02 17,501 1.11
22 24.20 5.30 8.70 0.00 46.00 5.80 10.00 42,773 325 2.93 7.90 38,522 12.37 31 33.13 5093 0.04 32,375 1.50
23 9.30 0.40 0.20 0.00 25.90 23.00 41.20 6250 137 1.10 7.26 6059 4.96 12 15.35 5425 0.06 43,198 1.31
24 23.00 3.00 7.20 0.00 28.90 15.30 22.70 23,569 414 1.55 7.02 21,166 17.10 23 37.48 7370 0.08 55,496 1.61

Variables: VdepthVar = view depth variation, Nump = patch number, ED = edge density, SI = shape index, ED = edge density, PS = patch size, PD = patch density, SDI = Shannon’s
diversity index.
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Perceptions of naturalness ranged from 1.68 and 10.31 (Table 2). Viewscapes depicting herbaceous
landcover, mixed forests, and unpaved surfaces received highest ratings (scenes 1, 2, 3) and those
within highly built areas with little vegetation coverage received the lowest ratings (scenes 20, 23).
With a selection of nine variables, the regression model explained 62% of the variation in perceived
naturalness (R2

adj = 0.62, p < .001). The majority of variation was explained by compositional metrics.
Grass coverage had the highest positive correlation with perceived naturalness, followed by Mixed,
Herbaceous and Deciduous coverage. A significant inverse correlation was found for Building.
From the configuration metrics, Relief and Nump had positive contributions, and SI had a negative
contribution to the model.

Perceptions of complexity varied from 2.29 to 9.09 (Table 2). The lowest values were assigned
to viewscapes with lowest SDI (scenes 1, 10), whereas those with the highest SDI were perceived
as highly complex. With a selection of seven visual attributes, the model explained 42% percent of
the variation in perceived complexity (R2

adj = 0.42, p < 001). Most of the contribution came from
configuration variables (Table 3). Among those, Nump had the highest positive impact, followed
by SDI and ED. Relief and Skyline—measures of terrain and above-terrain vertical variability—both
positively affected perceived complexity, while Depth had a negative correlation. From the composition
metrics, relative Building coverage was the only and the most positively correlated variable with
perceived complexity.
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Table 2. Descriptive statistic of participants ratings of perceived visual access (n = 34),
perceived naturalness (n = 32) and perceived complexity (n = 34) for the 24 IVE scenes used in
the survey.

Visual Access Naturalness Complexity

IVE Scene Mean SD min max Mean SD min max Mean SD min max

1 2.21 1.51 1.00 9.00 10.31 1.03 6.00 11.00 2.29 1.22 1.00 4.00
2 4.76 0.89 4.00 7.00 9.48 1.52 3.00 11.00 3.82 1.38 2.00 6.00
3 3.53 1.66 2.00 9.00 9.38 1.64 3.00 11.00 4.71 1.95 2.00 11.00
4 7.88 2.33 4.00 11.00 8.06 2.22 3.00 11.00 4.35 1.91 1.00 10.00
5 8.65 1.79 3.00 10.00 7.24 2.12 3.00 11.00 8.03 1.22 6.00 10.00
6 8.59 1.91 4.00 11.00 7.72 1.17 4.00 9.00 7.18 2.68 1.00 11.00
7 8.94 2.04 3.00 11.00 7.78 1.95 4.00 11.00 6.74 2.31 2.00 10.00
8 9.12 2.24 3.00 11.00 9.22 1.07 6.00 11.00 6.09 2.39 1.00 10.00
9 8.88 1.04 5.00 10.00 7.09 1.99 4.00 11.00 9.09 2.68 1.00 11.00
10 1.85 1.13 1.00 7.00 9.50 1.24 6.00 11.00 2.41 2.27 0.00 10.00
11 3.53 1.56 2.00 8.00 6.91 2.10 3.00 11.00 8.71 1.75 2.00 11.00
12 7.32 1.97 4.00 11.00 6.36 2.04 3.00 11.00 8.56 1.60 6.00 11.00
13 2.38 1.61 1.00 9.00 4.03 0.93 3.00 6.00 7.85 1.13 6.00 10.00
14 9.53 1.78 2.00 11.00 6.06 2.76 1.00 11.00 6.03 2.28 1.00 10.00
15 8.18 1.64 4.00 11.00 7.91 2.05 4.00 11.00 7.15 1.28 5.00 9.00
16 8.35 1.81 5.00 11.00 7.24 1.97 3.00 11.00 7.68 1.34 6.00 10.00
17 5.62 2.53 2.00 11.00 3.97 1.23 2.00 9.00 8.85 2.34 4.00 11.00
18 7.74 2.06 1.00 11.00 8.91 1.96 2.00 11.00 4.06 1.59 2.00 9.00
19 8.29 1.64 6.00 11.00 8.09 1.67 5.00 11.00 7.71 2.36 2.00 11.00
20 5.29 2.52 1.00 11.00 1.68 1.14 1.00 6.00 5.47 2.98 1.00 11.00
21 10.62 0.49 10.00 11.00 8.65 1.33 3.00 10.00 4.44 1.42 2.00 7.00
22 7.09 1.82 4.00 11.00 6.48 2.27 2.00 11.00 6.41 2.40 1.00 10.00
23 3.00 0.85 2.00 4.00 2.32 1.25 1.00 7.00 9.00 2.13 4.00 11.00
24 7.12 2.25 2.00 11.00 3.32 1.05 2.00 7.00 8.74 1.19 7.00 11.00

Table 3. Multiple linear regression models for the three perceived visual characteristics, perceived visual
access, perceived naturalness, and perceived complexity on viewscape metrics.

Perceived Visual
Characteristic Viewscape Metric Coefficient Normalized

Coefficient Student t p Tolerance VIF

Perceived
Visual Access

(Intercept) 7.120 7.11 <.001 ***
Extent 0.000 0.390 6.74 <.001 *** 0.14 7.15
Depth 0.001 0.110 2.94 .003 ** 0.333 3

n = 32 Skyline −0.176 −0.143 −2.76 .006 ** 0.173 5.77
R2 adj = 0.65 Relief −0.158 −0.119 −2.85 .004 ** 0.27 3.7

p < .001 Vdepth_var 0.077 0.215 3.94 <.001 *** 0.157 6.36
Building −0.180 −0.414 −7.61 <.001 *** 0.159 6.28

Paved 0.026 0.106 2.21 .028 * 0.201 4.97
Deciduous 0.058 0.173 4.65 <.001 *** 0.338 2.96
Herbaceous −0.044 −0.20 −6.87 <.001 *** 0.551 1.82

Nump 19.200 0.164 3.17 .002 ** 0.175 5.72
ED 0.000 −0.390 −7.33 <.001 *** 0.163 6.12

Perceived
Naturalness (Intercept) 2.441 3.25 .001 **

Relief 0.157 0.128 3.88 <.001 *** 0.471 2.12
n = 34 Deciduous 0.057 0.187 6.30 <.001 *** 0.582 1.72

R2 adj = 0.62 Mixed 0.074 0.370 9.07 <.001 *** 0.311 3.21
p < .001 Evergreen −0.13 −0.133 −4.36 <.001 *** 0.537 1.86

Herbaceous 0.067 0.335 8.26 <.001 *** 0.315 3.18
Grass 0.066 0.407 7.25 <.001 *** 0.164 6.11

Building −0.12 −0.302 −5.42 <.001 *** 0.166 6.02
SI −0.017 −0.124 −3.19 .001 ** 0.549 1.82

Nump 7.026 0.102 2.08 .038 * 0.517 1.94
Perceived

Complexity (Intercept) −1.37 −3.47 <.001 ***
Relief 0.152 0.126 2.58 .008 ** 0.549 1.82

n = 34 Depth −0.001 −0.138 −2.95 .003 ** 0.328 3.05
R2 adj = 0.42 Skyline 0.06 0.072 1.59 .032 * 0.408 2.45

p < .001 Building 0.191 0.474 10.32 <.001 *** 0.344 2.91
SDI 2.74 0.305 7.88 <.001 *** 0.442 2.26
ED 0.001 0.142 3.36 <.001 *** 0.367 2.73

Nump 0.001 0.378 5.93 <.001 *** 0.123 8.1

Variables: Vdepth_var = view depth variation, NUMP = patch number, ED = edge density, SI = shape index,
SDI = Shannon’s diversity index. *** = p < .001; ** = p < .01; * p = < .05
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4. Discussion

The purpose of this study was to develop and evaluate a high-resolution approach to modeling
fine-scale viewscape characteristics of mixed-use urban environments. We utilized high-resolution
spatial data and improved vegetation modeling method to develop a viewscape model accounting for
granularity and heterogeneity of mixed-use urban environments. Using human subject’s evaluations
of IVEs taken from the study area, we assessed the capacity of the viewscape model to predict three
perceived visual characteristics, namely, visual access, naturalness, and complexity. Our results show
that with our proposed approach, viewscape models can reliably capture the visual characteristics of
the urban park environments. Findings also confirm the relationships between landscape configuration
and composition, and examined perceptions.

4.1. Predicting Perceived Visual Characteristics

Statistically, our viewscape models for perceived visual access, naturalness, and complexity
provide results with good explanatory power. Regression models explain almost 65% of the variance in
perceptions at best (naturalness, visual access) and as much as 45% at worst (complexity). These results
are comparable to those in a similar analysis by Schirpke et al. [14] and Sahraoui et al. [18] that estimated
perceptions of mountain regions and urban-rural fringes, respectively using viewscapes.

Regarding the metrics selected for the visual access model, the analysis shows that extent (viewshed
size) and depth had a strong positive impact on the perceived visual access. This finding is in line
with extant studies indicating that the observer’s distance between the obscuring elements (depth)
and the amount of visible space (extent) have a strong influence on perceived visual access [41,56,57].
Depth variation—the spatial variation of the view depth [18]—also showed a positive impact on
perceived access. This indicator is analogous with “number of perceptual rooms,” which is one of the
main determinants of visual access, as found by Tveit [57]. An interesting finding concerns the strong
negative role of buildings and the positive role of deciduous trees in perceived visual accessibility,
emphasizing the importance of permeability (porosity) of the obscuring elements. Indeed, in leaf-off

season deciduous forests allow for more visibility through the branches compared to evergreen and
mixed forests. Similarly, horizontal surfaces occupy a smaller proportion of the visible landscape,
unlike buildings whose vertical development leads to significant visual salience.

For perceived naturalness, we found a positive role played by green spaces and natural
groundcover, such as grasslands and herbaceous landcover, which is consistent with what is generally
reported in the literature. In contrast to previous studies that combined all forest typologies as a single
forest landcover, incorporation of fine-grained landcover enabled our model to discriminate between
forest types and revealed perception differences among them. Mixed forests consisting of more than
two stand types and abundantly covered by mosses and lichens, were perceived as more natural
than the deciduous and evergreen specimens, which parallels previous studies suggesting that less
maintained and varied representation of vegetation positively impact perceived naturalness [2,57].
Also, as expected, human-made elements, such as residential or administrative buildings, had a
negative effect on naturalness judgments. We also found a strong impact of Relief, indicating that
viewscapes with a higher vertical variation or rugged terrains were perceived as more natural. Although
several studies have confirmed positive contribution of Relief to aesthetic preferences, there is no prior
evidence regarding relationships with perceived naturalness as a basis for comparison.

Contrary to our expectations with regard to the literature on visual landscape characteristics [2],
shape index, and number of visible patches had a positive association with perceived naturalness. It is
generally suggested that a more varied patch shape may be perceived as more natural compared to a
straight edge [40,58], and landscapes consisting of small, fragmented patches may be interpreted as less
natural, compared to those with one large woodland patch. We speculate that in case of metrics, such as
shape and edge index, viewsheds introduce geometry artifacts. In other words, shape index (SI) may
be more indicative of the shape irregularity of the viewshed than that of landscape patches seen in the
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view, and respondents may not necessarily treat viewshed boundaries as being relevant to naturalness.
This is further exacerbated by the fragmented areas and “holes” produced by viewshed analysis.

Turning to the perceived complexity model, landcover heterogeneity (SDI), edge density (ED) and
number of visible patches ( Nump) had the strongest impact, confirming what is generally reported
in environmental psychology oriented work suggesting that number (richness) and/or diversity
(arrangement) of the visible landscape have a strong influence on perceived complexity and aesthetic
preferences [59,60]. Previous studies using landscape metrics to compute complexity, generally assumed
landscape as a planimetric surface and focused on horizontal (landcover) heterogeneity. We dissected
the viewscape into the surface and above surface elements to compute two vertical heterogeneity
factors, relief and skyline variability—features that play a key role in human perception and preferences.
Our results indicate a positive impact of relief on complexity, suggesting that participants perceived
rolling terrains more complex than flat ones. Skyline variability was omitted from all three visual
characteristic models, due to strong collinearity with relief. This variable deserves further exploration
as it reveals the complexity of horizon, such as its smoothness and the number of times the horizon is
broken, which are shown to impact perceived complexity.

The complexity of the view, as represented by elements distributed in a panoramic image, may not
be readily transferable to the spatial distribution of these elements across a landscape’s surface,
even less so as represented in 2D spatial data [8]. Information, such as the shape and color of buildings,
presence of cars and people, and even the fractal dimension of tree branches can influence the perceived
complexity of images—but are not captured in spatial data. To supplement this study, it would be
instructive to further test the validity of viewscape models by using image-based analysis complexity,
such as attention-based entropy measures (e.g., Reference [61]), object counts (e.g., References [62,63]),
image compression algorithms [64], landscape metrics analysis [60], and fractal dimension [60,65,66].
We should also note that a single survey item for complexity might have not reliably captured
the perception of complexity. Complexity is an intricate and multi-faceted notion, and different
participants may have interpreted it differently [67]. Recommendation for future analysis include using
multiple-item survey, or if not applicable, briefing participants with a distinct definition of complexity
to acquire a more homogenous baseline understanding of the concept.

4.2. Methodological Considerations for Modeling Viewscapes

We used tree delineation and trunk modeling to leverage vegetation structural data (height
and stem position) derived from lidar as obstructions in the visibility analysis. The partial
vegetation treatment, to our knowledge, has not been previously incorporated into viewscape models.
However, this technique is most effective in leaf-off season where the canopy has a small impact on
visibility, whereas in leaf-on season it may lead to overestimation of visibility. It is worth mentioning
that we did not consider the height of the crown bottom in our assessment of visibility through trees.
To improve vegetation modeling, especially for areas with dispersed trees and elevated crown bottoms
(e.g., redwood forests), the height of the crown bottom should be factored in visibility assessment and
trunk modeling. Moreover, we assumed a binary occlusion system in which trees either completely
obstruct visibility or not at all, whereas in reality tree canopy may not be entirely opaque, depending
on the foliage type and density. Alternatively, more nuanced methods, such as the use of volumetric
(voxel-based) 3D visibility models [68] or calculating vision attenuation based on foliage density
and seasonal variation, may be preferred [27]. These techniques, however, may pose challenges,
due to prohibitive computing time and limited integration with GIS analysis [8]. Another point worth
mentioning is that we assumed similar trunk diameters for all the decimated trees given that the
majority of the deciduous trees in our study area are similar sizes. However, in areas with more varied
tree typology, this can potentially cause errors in the estimation of under-canopy visibility, especially
when the viewpoint is near the trunk. More precise estimation of the trunk can be achieved using tree
diameter at breast height (DBH) metric calculated from height (derived from lidar point) and species
growth coefficients [28].
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An additional contribution of this work includes a novel method for model assessment through IVE
technology. Employing IVE images allowed us to capture and display the entire FOV, thereby addressing
the concerns regarding the inconsistency of perspective photographs with viewshed coverage [8],
and correspondence with “in situ” experience [69]. However, photograph-based IVEs are static
and limit participant’s navigation (moving in the environments) and may include contents that are
not captured in the spatial data (e.g., people and cars). Alternatively, 3D simulations and game
environments that generate landscape views from geospatial data can be used to achieve higher
control over the scene content and implement enhanced interactions (e.g., allowing user-controlled
walk-throughs). However, it can be argued that photorealistic panoramas as a cost-effective and easy,
yet highly realistic method to capture viewscapes, runs up against the problem of low ecological
validity, and higher production effort of 3D simulations.

We should emphasize the need for consideration of more detailed and case-relevant landcover
classification. Existing classifications are overly broad and distinguish only between a few forest types
(deciduous, evergreen and mixed forest), ground cover, and building typologies (residential and public
administrative buildings). Indeed, landscapes are not reduced to their material characteristics alone.
People interpret landscape components semantically assigning meanings to them based on their use
and cultural, spiritual and historical significance [18,70]. Examples include the presence of attractive,
historic or landmark buildings, blooming trees, ornamental and exotic vegetation, and attributes,
such as maintained and unmaintained vegetation. These indicators are linked to aesthetic preferences or
important visual characteristics, such as imageability and stewardship [40]. Thus, a possible avenue to
improve the explanatory power of viewscape models can be using a more granular classification aligned
with indicators established in environmental psychology and visual landscape character literature.

We should note that unrestricted exploration of 360◦ viewscapes afforded by HMDs may come
at the cost of reduced control over the amount of visual information that participants receive from
a scene. The extent that participants explore the immersive scene, and thus, the information they
receive, may vary based on their level of engagement, comfortability and familiarity with the VR
equipment, and preference to certain elements and characteristics. Also, as opposed to the unique
perspective of still images, the unconstrained horizontal and vertical viewing generates a myriad
of perspectives and occlusions, which poses additional standardization challenges. Although we
tried to control for these biases by instructing participants to thoroughly explore each IVE scene and
base their response on the experience of the place as a “whole,” we cannot make strong inferences
of the relative contribution of scene element to perceptions and whether participants received the
same information from each scene. In this respect, it would be interesting to examine whether the
viewing patterns play a part in respondents’ perception of immersive scenes and explore the specific
contribution of certain perspectives or certain landscape elements on perceptions. This can be achieved
by leveraging the ability of modern HMDs that record the user’s head orientation and eye-movement
in real-time, allowing for establishing the links between viewing behavior, viewscape characteristics,
and perceptions.

Finally, the explanatory power of our models may have been affected by personal and socio-cultural
differences between participants, such as familiarity with the landscape and place they grew up [71,72],
level of expertise [18], and values that they ascribe to the landscape [73]. Nevertheless, since landscape
variations are reported to have much greater influence than the variations between observer’s
differences [17], we do not expect them to have a major influence on our results. In cases where
individual and cultural differences are of interest, pre-tests, such as nature connectedness ratings [74],
familiarity [72], and demographic information can be incorporated in our model to control for baseline
differences or as a way to model perceptions of different cohorts (e.g., experts vs. non-experts, local vs.
non-local), as shown by Sahraoui et al. [18].
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5. Conclusions

This study demonstrated that viewscape modeling based on high-resolution spatial data and
improved vegetation modeling can effectively quantify the composition and configuration of visible
landscape and predict perceived characteristics and qualities of urban park environments. We also
demonstrated that photorealistic IVEs could be used as a viable method to represent and gather human
perceptions of viewscapes, and thus, bridge the gaps between objective and subjective analysis of urban
landscapes. Several avenues to further improve prediction power of viewscape models are suggested,
including refining spatial metrics, using a more granular landcover, quantifying participants’ viewing
pattern of immersive scenes, and factoring individual differences into the model. While our results are
particular to a context of the urban park area, the workflow could be replicated in other urban and
landscape contexts with a step of calibration through conducting IVE survey. Our suggested method
can benefit several applications. First, landscape designers and planners can use viewscape model
as a way to develop spatially explicit maps of aesthetic and restorative qualities of a site, design a
scenic route with specific characteristics in mind (e.g., open, views to the lake), compare landscape
characteristic before and after a design intervention or landscape change. Second, research in cultural
ecosystem services can use our automation workflow to model viewscapes for millions of appreciated,
revered, or frequently visited locations harvested from social media datasets, such as images scraped
from Flickr and Panoramio, or comments scraped from Tripadvisor. Third, studies focused on visual
impact assessments of infrastructure (e.g., wind turbines and highways) will similarly benefit from
improved modeling of vegetation and built features. Finally, landscape perception research can
benefit from our approach to investigate subtle relationships between landscape elements and their
configuration, and specific psychological outcomes, such as attention restoration or stress-reduction.
As our understanding of relationships between urban environments and human psychological and
physiological well-being improves, high-resolution models of urban viewscapes will provide a valuable
tool to facilitate community engagement and decision-making in urban planning and design.
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