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Motivated by specific data and accuracy requirements for building numerical

databases of turbulent flows, data compression using spatio-temporal sub-sampling

and local re-simulation is proposed. Numerical re-simulation experiments for de-

caying isotropic turbulence based on sub-sampled data are undertaken. The results10

and error analyses are used to establish parameter choices for sufficiently accurate

sub-sampling and sub-domain re-simulation.
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I. INTRODUCTION15

In the field of computational fluid dynamics, the study of turbulent flows based on data

generated using Direct Numerical Simulations (DNS) has occupied a prominent place in the

literature over the past several decades1–5. DNS provides spatial and temporal resolution

down to the smallest and fastest eddies of a turbulent flow. Therefore, the Reynolds number

achievable by DNS is limited by computing power and memory, and has been growing20

roughly at the rate expected from Moore’s law. The amount of data generated by DNS is

growing accordingly6–10. For instance, a simulation of turbulent flow outputting four field

variables (e.g. the three velocity components and pressure) on 20003 spatial grid points

and integrated over, say, 5 ⇥ 104 time-steps, will generate several Petabytes (PB) of data.

Researchers thus store only a few selected snapshots of the flow during the simulations, and25

primarily rely on run-time analysis tools that are decided prior to the computation if time

resolved phenomena are to be studied. As a result, when new questions and concepts arise,

massive simulations must be performed over and over. Moreover, when storing snapshot

data for later analysis, the traditional means of sharing available data after DNS, e.g. del

Alamo and Jimenez 11 , assumes that the data are downloaded as flat files and consequently30

a user has to worry about formats and provide the computational resources for analysis.

As a means to address these problems that challenge further growth of DNS and ac-

cessibility of data, modern database technologies have begun to be applied to DNS-based

turbulence research. For instance, the Johns Hopkins Turbulence Database (JHTDB, http:

//turbulence.pha.jhu.edu)12,13, has been constructed and has been in operation for about35

a decade, as an open public numerical laboratory. The system hosts about 1/2 petabyte

(PB) DNS data including 5 space-time resolved data sets and several others with a few

snapshots available. Users have Web-service facilitated access to the data, among others

using a “virtual sensors” approach in which a user specifies the position and time at which

data are requested and the system returns properly interpolated field data. Other derived40

quantities such as gradients13 and fluid trajectories14 are also available, typically delivered

to within single-precision machine accuracy. A hallmark of the system is the ability of users

to access very small targeted subsets of the data without having to download the entirety

of the data. The system has been successful at democratizing access to some of the world’s

largest high-fidelity DNS of canonical turbulent flows. JHTDB data have been used in over45



160 peer-reviewed journal articles since its inception, about 40 in 2019 alone.

In recent years, the scale of DNS data has continued to grow further. The largest sim-

ulations now generate data on about O(104) grid points in each of the three directions,

so storing multiple time steps to capture time evolution becomes very challenging, even in

efficiently built databases. For example, storing even only one large-scale turnover time of50

the 81923 isotropic turbulence data set6 would require storing about 80 PB. Over the next

several years, it can be anticipated that even larger scale DNS will be performed, generat-

ing exabytes of data, far out of reach of anticipated facilities and the approaches on which

JHTDB is currently based.

It is therefore necessary to explore innovative tools for compressing simulation data for55

use in conjunction with databases. Most of the general-purpose data compression algorithms

are based on analyzing the data representation, and can generally be classified as lossless

or lossy. Lossless data compression utilizes the statistical redundancy15,16, while lossy data

compression is to remove unnecessary data, e.g., JPEG17 and MP318. Lossless data com-

pression tools are promising but for turbulence data where the flow’s small-scale structures60

contain non-trivial information at each grid point, the compression ratios can be expected to

be somewhat limited. While we continue current e↵orts along this direction and can expect

further improvements, more aggressive tools will be required for the very large data sets

envisioned in the near future. Regarding lossy compression, it is certainly appropriate for

visualization and other applications where less fidelity is acceptable. However, if one wishes,65

e.g. to capture accurately velocity gradients, lossy compression algorithms in which the

accuracy of primary variables is degraded, say, at the fourth decimal point, will already lead

to significant errors in gradients and will thus be insufficient for the purposes of turbulence

research.

It bears recalling that JHTDB enables users to receive interpolated data between spatial70

and temporal grid points, using polynomial functions (Lagrange, spline, Hermite). Far more

aggressive data compression could be achieved if data could be stored more sparsely in both

space and time. However, when a user requests localized pieces of data that fall between

coarsely stored positions and/or times, one would need to revert to the dynamical equations

(i.e. Navier-Stokes) to perform a physics-based rather than a polynomial based interpolation.75

In this paper we explore and establish requirements for such a data compression method,

named “Spatio-Temporal Sub-sampling and sub-domain Re-simulation” (STSR). The method



aims at enabling users to recover data at close to machine accuracy (single-precision), based

on very coarsely stored data. While the method can greatly compress the amount of data

to be stored, such savings have to be balanced by the additional cost of processor (CPU or80

GPU) expense needed later on to accommodate user queries.

Initial e↵orts attempting to reproduce DNS data using local re-simulation (technical

details to be provided below) have shown a surprisingly narrow and stringent range of con-

ditions under which re-simulation in a sub-domain can generate data at the desired accuracy.

That is to say, re-simulation that reproduces DNS at close to single-precision machine accu-85

racy, the desired baseline accuracy level, is more difficult to achieve than one may expect.

Any small deviations from the conditions to be developed can be shown to lead to significant

errors. It will be observed that the errors do not arise due to chaotic dynamics as we do not

observe exponential divergence of state-space trajectories or exponential growth of errors

over time. The absence of chaotic divergence of dynamics may be due to the strong con-90

straints introduced by boundary conditions prescribed around closed sub-domains i.e. that

the ratio of sub-domain size to viscous length scale is sufficiently small for synchronization

of chaos19,20 to occur in the cases tested. Instead, errors are introduced due to small details

of numerical implementation, discretization, and order of operations that at first glance may

appear small and trivial but that can cause rather significant di↵erences in results.95

Therefore, the present paper aims to document the technical methodologies and tests

performed with considerable attention to detail. Section II introduces the basic idea of

data compression for turbulence databases using STSR. The desire to enable re-simulations

over localized spatial domains precludes the use of spectral methods based on global basis

functions. In this work, we explore the use of one of the most common discretization100

tools in CFD: second order finite di↵erencing. The numerical scheme adopted in the present

computations is described in Section III. The methodology is tested in the decaying isotropic

turbulence, a well-understood and relatively simple flow described in Section III B. In Section

IV, the influence of the boundary conditions on reproducibility of the simulations, up to the

desired level of machine precision, is examined. The re-simulation errors are studied in105

Section V in more detail, and their dependence on artificially introduced noise in boundary

conditions is established in order to better understand requirements for reaching desired

levels of accuracy, which are slightly relaxed from machine accuracy down to relative errors

at the order of⇠ 10−5 based on practical considerations. Section VI showcases an application



using the recommended parameters. Finally, conclusions are presented in Section VII. The110

paper is limited to an account of the findings regarding methodology and requirements in the

context of a simple flow at moderate computational scale. Construction of a large turbulence

database system using the proposed STSR querying method is left as a future task.

II. SUB-SAMPLING AND LOCAL RE-SIMULATION

In this section, the basic concept of the proposed STSR approach is explained, together115

with an estimate of the data compression that can be achieved. Figure 1 is a two-domensional

schematic of a DNS domain and the storage scheme of the data to enable later re-simulation.

The flow domain inside the box in Figure 1(a) represents the entire, or global, domain

of the original simulation, e.g. from a simulation of isotropic turbulence, channel flow,

boundary layer, etc. The global domain consists of a large number of grid points; in 3D,120

say, N3 = NxNyNz. By enforcing initial and boundary conditions on the global domain

boundaries, the simulation is advanced forward in time, at a time-step δt. The objective

is to store a limited amount of data at each time-step in order to enable re-simulation of a

sub-region of the global domain. For this purpose, the global domain is divided into small

sub-volumes marked by the blue boundaries (Figure 1(b)) corresponding to planes in a 3D125

domain. For simplicity, the sub-volumes here have the same shape and dimensions but

the discussion and general results to be presented can be considered quite general. While

the main simulation is performed, the state vector (i.e. velocity and pressure fields for

incompressible flow) is stored on these planes. If the size of an individual re-simulation

sub-domain is Ms, in 3D there will be 3(N/Ms) such planes, each of size N
2.130

Moreover, in order to limit the CPU cost of re-simulation, after a number of time-steps,

the state vector data are stored at every grid point in the global domain. This occurs every

Mt time steps, i.e. after a time equal to Mt δt (see Figure 1(c)). In the rest of this paper,

tn = n δt represents the physical time, while n represents the time step of the DNS. For a

simulation lasting a total time T , the total number of full 3D fields to be stored is thus equal135

to ⇠ T/(Mtδt).

After the direct simulation in the global domain has been completed and the sub-sampled

data stored, data at a specific spatial and temporal location (x, t) may be required, for

example to examine local flow states in particularly interesting sub-regions of the flow or to
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Figure 1. Schematic of STSR. (a) Entire DNS domain containing a large (N3) number of grid

points. (b) The entire DNS domain are divided into small cube regions by the blue lines. (c)

The storage scheme of the spatio-temporal subsampling for re-simulation. The data in the entire

domain are stored at every Mt time step. The data on the planes (blue lines) and on the outer

planes (black lines), are stored at every time step. (d) When data are required on grid points and

time steps that are not stored in the database, a re-simulation of a small region which includes the

queried grid point is performed to obtain the data.

track particles through the flow. In general these locations do not correspond to stored data,140

and the data must be evaluated by re-evaluating the flow evolution in the host sub-volume

and time interval (Figure 1(d)).

Similar to the global domain, the flow in the re-simulation sub-domain is governed by

the continuity and Navier-Stokes equations. The numerical solution requires the initial

and boundary conditions. Suppose there exists an integer n such that (t0 + nMtδdns < t <145

t0+(n+1)Mtδtdns), i.e. the time at which data are sought t lies between two instances where

the entire global domain was stored. The data stored at (t0 + nMtδdns) can then be used

as the initial condition, and the plane data on the sub-domain boundary that was stored at

every time step between times (t0+nMtδdns) and t provide the boundary conditions needed

for re-simulation. Unless otherwise stated, the original simulation and its re-simulation will150

adopt the same time step for forward integration of the governing equations.

To fix notation, in the rest of this work the “global domain” refers to the domain of the

original simulation (the black enclosing box in Figure 1(d)); a “sub-domain” refers to the



much smaller region containing a queried point or sets of points (the yellow region in Figure

1(d)); and “re-simulation” refers to numerical solution of the governing equation in this sub-155

domain using initial and boundary conditions extracted during the original computation and

stored in the STSR database.

With the proposed approach, only a small fraction of data is stored and the fields can

be re-constructed on demand from simulations within the small sub-regions. The data

compression (inverse) ratio c can be estimated as160

c ⇡
N

3 + 3N2(N/Ms)(Mt − 1)

N3Mt

=
1

Mt

✓
1−

3

Ms

◆
+

3

Ms

, (1)

where N is the number of grid points in each direction in the entire domain.

Hence, if for example Ms = 128 is used, and we store only every Mt = 200 full 3D fields,

the total storage requirement is about 2.8% of the original data. Performing the re-simulation

in the M
3
s sub-domain is certainly much faster than doing a re-simulation in the original

full 3D volume: the CPU cost of re-simulation is approximately Mt(12M
3
s + M

3
s log2 Ms).165

Depending on the ratio of cost of storage and computation, as well as depending on patterns

of data queries and usage, the optimal values of Ms and Mt could vary significantly. For

now we simply observe that the 81923 grid database with ⇠ 104 time steps mentioned in the

introduction requiring over 80 PB of storage, would require only about 2.2 PB if stored using

sub-sampling with Ms = 128 and Mt = 200, and the computational cost of the re-simulation170

is only O(10−6) of the cost of the full simulation.

The approach becomes particularly attractive in studies where only small sub-regions of

the flow need to be interrogated later on. For example, in particle tracking studies, one only

needs velocities in the immediate vicinity of particles to be used for interpolation. In other

studies, researchers may want to zoom into areas where extreme events such as core of vor-175

tices or high dissipation take place. Or, one may wish to obtain a one-dimensional spectrum

along some representative lines through the flow requiring data only along those lines rather

than the entire domain. In such scenarios, storing the entire data or having to perform

re-simulation in the entire domain would be unnecessary and waste computational/storage

resources.180

One might consider the present methodology is similar to data assimilation19,21,22 or

“nudging”23 to deal with incorporation of incomplete and/or imperfect (noisy) data. In

nudging, a penalization term is included in the Navier-Stokes equations, so that the re-



simulation result would be pulled towards the original (observation) data. In this case,

deviation in initial condition is allowed, and the re-simulation result will match the original185

data after several time steps, depending on initial condition, the penalization term, flow

condition etc. However, the number of time steps needed for the re-simulation to catch up to

the original data is difficult to assess without using the correct initial condition. Therefore,

for the purpose of reusing the DNS data, providing correct initial condition becomes a

necessary condition in this study.190

III. NUMERICAL SCHEME AND FLOW CONFIGURATION

Incompressible flow of a Newtonian fluid satisfies the continuity and Navier-Stokes equa-

tions written here in skew-symmetric form,

r · u = 0, (2)

@u

@t
+

1

2
(r · (u⌦ u) + (u · r)u) = −rp+ ⌫r

2u, (3)

where u = (u, v, w)T is the velocity vector, t is time, and ⌫ is the fluid kinematic viscosity.

The three velocity components u, v and w correspond to the x, y and z directions, respec-

tively, and p is pressure divided by density. The advection term in equation (3) is expressed

in the skew-symmetric form which conserves kinetic energy and reduces aliasing errors24.195

However, other forms of the advection term can also be adopted.

A. Temporal and spatial discretization

A δp-form prediction-correction algorithm25–27 is used to decouple the velocity and pres-

sure:

u⇤
− u(n−1)

δt
=− Conv.+Di↵.−G(p(n−1)), (4)

DGφ
(n) =

Du⇤

δt
, (5)

u(n) =u⇤
− δtGφ

(n)
, (6)

p
(n) =p

(n−1) + φ
(n)

, (7)

where δt is the time step, superscript (·)n denotes the n-th step. Conv. is the discretized

convective term, Di↵. is the discretized di↵usive term, G is the discretized gradient operator,



D is the discretized divergence operator, and φ is the pressure di↵erence between two time200

steps. The advection term can be advanced in time explicitly using explicit Euler or second-

order Adams-Bashforth (AB2) scheme; the viscous term can be advanced using Euler, AB2

or implicit Crank-Nicolson (CN) scheme.

A variant of the projection method referred to as the p-form28,29 ignores the pressure

gradient term in the prediction step (4), and therefore φ
(n) in the Poisson equation (5) is205

an approximation of the full pressure at the new time step, i.e. p(n) = φ
(n). An notable

di↵erence between the herein adopted δp and the p forms is in the boundary conditions:

(i) the boundary condition of the elliptic pressure equation is the pressure di↵erence in the

δp-form, and the pressure in the p-form; (ii) in terms of the velocity, in order to ensure

second-order accuracy, one should enforce u⇤ = u� on the boundary of the computational210

domain Γ in the δp-form, but u⇤ = u� + δtGp
(n−1)
� in the p-form. In the present study, the

δp-form is adopted throughout. Although not presented here, use of the p-form does not

a↵ect our results nor conclusions.

A staggered grid30 is used in order to avoid checkerboard pressure oscillations. The

spatial derivatives are approximated with second-order central finite di↵erences. In light of215

the computational cost of the pressure equation (5), it is important to ensure that the re-

simulation does not compromise any of the efficiency of the global solver. For instance, if the

global domain is triply periodic, Fourier transform can be adopted in all three dimensions and

the solution of (5) is inexpensive. The re-simulation sub-domain is, however, not periodic; we

nonetheless adopt a fast Poisson solver using discrete sine and cosine transforms31. Details220

on the pressure Poisson solver used in re-simulations are provided in Appendix A.

B. Flow configuration: decaying isotropic turbulence

The flow adopted in this work as an example application of STSR is decaying isotropic

turbulence in 3D. The global domain has dimensions 2⇡⇥2⇡⇥2⇡, and is discretized uniformly

using 2563 grid points (N = 256); the grid spacing is h = ∆x = 0.02454. The domain is225

periodic in all three spatial directions. Time integration of the viscous and convective

terms starts with one Euler step at the initial condition, and is subsequently evolved using

AB2. A snapshot from an 10243 isotropic turbulence data set (https://doi.org/10.7281/

T1KK98XB) in JHTDB is used as the initial condition, sub-sampled every 4 grid points. After



Time RMS vel. Dissipation Re-number Kolmogorov scale CFL

t u0 " Rλ ⌘ u0δt/∆x umaxδt/∆x

0 0.6024 0.0770 113.24 0.01795 0.0982 0.4013

2 0.5185 0.0645 91.67 0.01876 0.0845 0.3699

Table I. Statistics of decaying isotropic turbulence in the global domain (2563). The statistics are

the same to within four digits for the five di↵erent time steps used, except for the quoted CFL

numbers which are based on the case δt = 4⇥ 10−3.

(a) (b)

Figure 2. Radial (a) kinetic energy and (b) dissipation spectra at the start of the simulation t = 0

and the end of the simulation t = 2. The black straight line in (a) has a slope of -5/3.

a transient of a few hundred time steps, the entire velocity and pressure fields are stored230

and designated as the initial condition (t = 0, n = 0) of our set of numerical experiments.

The kinematic viscosity is set to ⌫ = 2 ⇥ 10−3 in order to provide appropriate res-

olution of the viscous scale at the initial time. Five di↵erent time steps will be used,

δt = {4, 2, 1, 0.5, 0.25} ⇥ 10−3. Simulations are advanced from t = 0 to t = 2. Some

basic statistics of the simulation of this decaying isotropic turbulence are listed in Table I.235

These were verified to be accurate to within four digits for the various choices of the time

step; the reported CFL values are based on the largest δt = 4 ⇥ 10−3. The kinetic energy

and dissipation spectra are shown in Figure 2. The dissipation spectra are displayed in

Kolmogorov units, showing that the simulation is very well resolved in space (note that the

spatial resolution is much better than than in the JHTDB original data even if using less240

points since here we simulate a much lower Reynolds number with a much higher ⌫).

While performing the simulation in the global domain, data are stored at every time

step to be used for later analysis and comparison with re-simulation results. For the sample

re-simulations and numerical experiments to be described in the next section, a sub-domain



consisting of 323 grid points is selected (i.e. Ms = 32) located at a random location within245

the global domain. To compare results from re-simulation to the original global domain

simulation, a normalized local error is defined according to

✏'(x, y, z, t) =
|'os(x, y, z, t)− 'rs(x, y, z, t)|

rms('os)
, (8)

where ' could be any quantities, such as u, v, w, p or vorticity components !i, rms(·) is the

root-mean-square (r.m.s) value within the sub-domain, “os” refers to the original simulation,

and “rs” refers to the re-simulation. We focus on the L
1 errors evaluated as function of250

time within the sub-domain, ✏',1(t), which is a stringent upper bound on the re-simulation

errors.

IV. PRELIMINARY RESULTS

As a first test we consider a re-simulation starting from the initial condition at t = 0.

One can use the velocity and pressure fields at n = 0 as the re-simulation initial condition.255

The boundary conditions at time step n are u
(n)
rs,� = u

(n)
os,� for velocity and

⇣
@φ

(n)
rs /@n

⌘

�
=

⇣
@φ

(n)
os /@n

⌘

�
for pressure increment. Above, n denotes the outward pointing normal unit

vector to the boundary Γ (distinct from time step n).

Using these initial and boundary conditions, the re-simulation is integrated in time be-

tween t = 0 all the way to t = 2 (i.e. for 500 time-steps for the case δt = 4 ⇥ 10−3).260

Figure 3(a) shows a comparison of the pressure distribution on a representative plane and

time. While overall the agreement may appear good, there are some noticeable di↵erences

especially near the lower left and upper right boundaries.

More quantitatively, the maximum error (L1) and r.m.s error over the sub-domain are

shown as functions of time in Figures 3(b-d). The error is large already at the first re-265

simulation time-step and then remains at similar order of magnitude. The L
1 and r.m.s

errors of velocity and pressure are of order 10−3, and vorticity errors are about one order

of magnitude higher and could reach near 10%; these errors are too large compared to our

stated desired level of accuracy. (We have found the vorticity errors are typically one order

of magnitude higher than velocity, so we only show vorticity results towards the end when270

showing results of acceptable levels of errors.)

An interesting observation is that the errors do not grow exponentially, suggesting that



Figure 3. (a) Contour plot of pressure distribution on a randomly selected slice in the 323 sub-

domain re-simulation at a randomly selected, representative, time step. The dash contour lines are

the original simulation, while the solid contour lines are the re-simulation. (b)"',1 as function of

time t. (c) r.m.s error "',rms as function of time t. In the re-simulation, the velocity boundary

conditions are u and the pressure boundary condition is Neumann type. (d) L1 vorticity errors

as a function of time. All plots are for the case δt = 4⇥ 10−3.

the observed errors are not caused by chaotic dynamics as one may have initially suspected

based on the non-linear character of the governing equations. The reason might be that

the sub-domain size is relatively small so that even if there are di↵erences between the275

two fields, the re-simulation dynamics are slaved to the original dynamics by the imposed

boundary conditions. Naturally we anticipate that if the sub-domain was large enough,

simply providing boundary conditions would not guarantee that the two trajectories would

not diverge eventually in time due to chaotic dynamics in the domain interior. Regardless of

the origin of the observed errors, we have experimented with a number of parameters such280

as the time step and spatial resolution, and the basic conclusion remains that the errors are

significant and far from the desired accuracy for our database application. Aiming to reduce

these errors, we analyze the source of the discrepancy and identify the appropriate choice of

implementing initial and boundary conditions in order to greatly reduce these errors.

A. Re-simulation boundary conditions: u versus u⇤
285

Consider the re-simulation procedure from the initial condition n = 0 to the first time

step n = 1. At time step n = 0, the initial conditions are based on u
(0)
os and p

(0)
os of the

global computation, and therefore the re-simulation matches that state exactly. Since u
(0)
rs

and p
(0)
rs match the global simulation, the convective, di↵usive and pressure gradient terms
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(a) (b) (c)

Figure 4. Comparisons of (a) u⇤, (b) v⇤ and (c)r·u⇤ between the re-simulation and the original sim-

ulation. Blue (thin) and red (thick) symbols denote the quantities in re-simulation match/mismatch

to the original simulation data.

inside the re-simulation sub-domain are correct. Because the momentum equations are both290

integrated with an Euler method in the original simulation and the re-simulation to the first

time step n = 1, u⇤
inside the sub-domain is the same as in the original simulation (blue

thin arrows in Figure 4(a,b)). Meanwhile, u
(1)
os on Γ are applied as the velocity boundary

conditions. However, the data on and outside the sub-domain boundary are also u⇤ in the

original simulation, since they lie within the global domain. Thus, the re-simulation does295

not match the original computation on and outside the sub-domain boundary (red thick

arrows in Figure 4(a,b)). The source term of the Poisson equation is then computed, and

the comparison with the original simulation is shown in Figure 4(c). Considering two grid

points as examples, the source term at point 1 is calculated from surrounding values of u⇤
rs,

all of which are identical to the original simulation. Thus the source term is correct (blue300

small dots). However, at point 2, the values of u⇤ at left and v
⇤ above are di↵erent from

the original simulation, thus the source term at this grid point di↵ers from the global solver

(red big dots). The Poisson equation with perturbed source term is solved and urs and φrs

therefore contain errors.

The above discussion shows that the choice of velocity boundary conditions leads to errors305

in the re-simulation outcome, as reported in Figure 3. The remedy is to adopt u⇤
os as the

velocity boundary condition in the re-simulation procedure.

Thus switching procedure, now the values of u⇤
os at the boundaries of the sub-domains

were stored during the global simulation. These were subsequently used for boundary con-



(a) (b)

Figure 5. Errors "',1 as function of time (for the case δt = 4 ⇥ 10−3). In the re-simulation, the

velocity boundary conditions are u⇤, and the pressure boundary condition is (a) Neumann type

and (b) Dirichlet type.

ditions in the local re-simulation procedure. The resulting L
1 errors are reported in Figure310

5(a). Indeed the re-simulation velocities and pressure agree with the global computation

results exactly, to within machine precision.

Gresho and Sani 32 and Abdallah and Dreyer 33 showed that Dirichlet and Neumann

pressure boundary conditions are equivalent, to within a constant. We confirmed the same

behavior for the re-simulations by performing a test with pressure Dirichlet boundary con-315

ditions φrs = φos on the sub-domain boundary Γ. The re-simulation errors, shown in Figure

5(b), are still at machine accuracy, the same as those in the re-simulations with the pressure

Neumann boundary conditions (note that in both cases u⇤
rs = u⇤

os is enforced on Γ).

B. Crank-Nicolson scheme

In simulations of non-homogeneous flows such as wall-bounded turbulent flows, the vis-320

cous term may limit the time step due to the stability restriction. Therefore, this term is

often discretized in time using Crank-Nicolson (CN) scheme in order to mitigate the stability

restriction. Using CN, equation (4) is approximated with the alternating direction implicit

(ADI) method according to,

(1− Ax)(1− Ay)(1− Az)u
⇤ = δt[−Conv.+

1

2
⌫L(u(n−1))−G(p(n−1))] + u(n−1)

, (9)

where Ax = 1
2
⌫δtLx, Ay =

1
2
⌫δtLy, Az =

1
2
⌫δtLz, Conv. = ↵cC(u(n−1)) + βcC(u(n−2)) is the325

integrated advection term, L is the discretized Laplacian operator, and Lx, Ly and Lz are

the discretized Laplacian operators in the x, y and z directions. The procedure for solving



(a) (b) (c)

Figure 6. Re-simulations errors with di↵erent velocity boundary conditions, which are (a) u⇤1, u⇤2

and u⇤3 in the corresponding directions, (b) u in all directions and (c) u⇤ = u⇤3 in all directions.

In all plots, ∆t = 4⇥ 10−3. See Figure 5 for legend.

the above equation consists of evaluating u⇤ in each of the three directions successively: (i)

solve for u⇤1 in the x direction, where (1− Ax)u
⇤1 =right hand side of equation (9) with x

boundary conditions; (ii) solve for u⇤2 in the y direction, where (1 − Ay)u
⇤2 = u⇤1 with y330

boundary conditions; (iii) solve for u⇤ = u⇤3 in the z direction, where (1 − Az)u
⇤3 = u⇤2

with z boundary conditions. In Section IVA, it was demonstrated that u⇤ should be the

velocity boundary condition if both the original and re-simulation algorithms are explicit

Euler/AB2. When CN/ADI is adopted however, di↵erent intermediate velocity boundary

conditions are required. Specifically, u⇤1 should be applied on the boundaries during the335

inversion of the x-di↵usion term, u⇤2 should be applied on the boundaries during the solution

in the y direction, and u⇤ = u⇤3 should be applied on the boundaries in the final z direction.

We demonstrate this requirement by performing the original/global simulation and the

re-simulation using the CN scheme as described above, and compare the results with cases

in which some of the specific directional requirements for u⇤ are relaxed. The re-simulation340

errors with the correct boundary condition implementation are shown in Figure 6(a). The

re-simulation errors remain near 10−14 for all velocities and pressure. As comparison, the

re-simulations with either u or u⇤ = u⇤3 (the last step of the ADI) velocity boundary

conditions are also performed. Both produce significant error levels, between 10−3 and 10−2

(Figure 6(b,c)).345

V. ANALYSIS OF DOMINANT SOURCES OF ERRORS

In Section IVA, the correct velocity boundary conditions for re-simulation was shown

to be u⇤. It was shown that using u⇤ on the boundaries based on surface data stored at



every DNS time step, and replicating the precise time advancement scheme at every time

step between the original DNS and the re-simulation, yielded machine-accuracy from re-350

simulation. However, in practical applications of STSR, one may wish to relax some of

these requirements. For example, one may wish to store the boundary values not at every

time-step and use moderate sub-sampling (e.g. snapshots of the 10243 isotropic turbulence

data set in JHTDB are stored only every 10 simulation steps, and temporal polynomial

interpolation is used to find data between stored time steps). Or, one may wish to use355

a di↵erent time-advancement scheme during the initial time stepping of the re-simulation.

Each of these approaches will induce some additional error and prevent the re-simulation

to reach machine precision. In order to establish a clear understanding of these errors, it is

useful to quantify the amplification of errors by the re-simulation procedures.

In order to lay the foundation for the subsequent discussions, we intentionally add noise360

to the boundary condition values u⇤. We use zero-mean Gaussian white noise and define

the contaminated boundary condition on the boundary Γ, for example for the u-component,

as

u
⇤
σ = u

⇤(1 + σN (0, 1)), (10)

where σ represents the r.m.s. of the added noise as multiple of the original signal. Moreover,

N (0, 1) is the standard normal distribution with zero mean and unit variance. Similar noise365

perturbations are added to the two other components v⇤ and w
⇤, and pressure increment φ,

at all time steps n > 0.

Re-simulation experiments are performed for four di↵erent levels of σ (10−4
−10−10) using

u⇤
σ and @φσ/@n as boundary conditions. The re-simulation errors "u,1 are shown in Figure

7(a) as a function of t with di↵erent noise levels σ; only u errors are plotted for clarity.370

Although the noise levels are di↵erent, the errors are qualitatively similar at di↵erent values

of σ and only di↵er in magnitude. Figure 7(b) shows the scaling of maxt["',1] with σ. The

results clearly show that re-simulation errors grow linearly with the magnitude of the added

noise level in the boundary conditions.

It should be noted that, in the above analysis, the noise is added to the boundary con-375

ditions at all time steps after the initial condition, i.e.n > 1, and the re-simulation errors

are proportional to the input errors. If the noise is added at the initial condition across the

entire re-simulation domain at n = 0, similar results are obtained (not shown here).



(a) (b)

Figure 7. Re-simulations with di↵erent levels of noises added to the velocity boundary conditions

u⇤. (a) Re-simulation errors "u,1 against t . Only u errors are plotted for clarity. It has been

checked that v, w and p errors behave similarly. (b) max["',1(t > 0)] as function of σ. The dashed

line has a slope of 1. In both plots, δt = 4⇥ 10−3.

A. Re-examination of u boundary condition errors

We have seen that the re-simulation errors are proportional to the input errors. We now380

revisit the errors discussed in Section IVA, where we first naively applied u as the velocity

boundary conditions, to explain the observed errors based on the findings that errors are

linearly proportional to boundary condition errors.

From equation (6), one can easily show that the di↵erence between u(n) and u⇤ is second

order in time,385

u(n)
− u⇤ = −δtrφ

(n) = −δtr(p(n) − p
(n−1)) ⇠ −(δt)2 r(

@p

@t
). (11)

Based on the results in Figure 7, one would then expect that applying u as boundary

conditions in the re-simulation would lead to second order errors in δt. This expectation was

tested by performing the global and re-simulations with di↵erent values of δt and prescribing

u as the velocity boundary condition in the re-simulations. The resulting re-simulation

errors are plotted in Figure 8(a,b). Same as in Figure 7(a), "',1 behave qualitatively similar390

for di↵erent values of δt. The maximum errors, maxt["',1], are reported in Figure 8(c).

Surprisingly, the pressure errors are only first order in δt, while the velocity errors are

second order, as expected. In addition, we find that the pressure errors recover second order

accuracy at n > 1 (Figure 8(d)). In fact, figures 8(c) and (d) show that the maximum

pressure errors are first order in δt for n > 1, but second order for n > 1. This observation395

suggests that the pressure errors are of first order at n = 1 but second order afterwards.

The insert of Figure 8(b) shows the pressure errors near n = 0, while Figure 9 shows the u



(a) (b)

(c) (d)

Figure 8. Re-simulations with u as the velocity boundary conditions using di↵erent time steps. (a)

u errors "u,1 as function of time, t . (b) Pressure errors "p,1 as function of time t. The insert is a

zoom near t = 0. In (a) and (b), lines from top to bottom represent simulations with δt = 4⇥10−3,

2 ⇥ 10−3, 1 ⇥ 10−3, 5 ⇥ 10−4 and 2.5 ⇥ 10−4 respectively. (c) max["',1(n > 1)] as function of δt.

(d) max["',1(n > 1)] as function of δt. In (c) and (d), the dashed line has a slope of 1 and the

dashed-dotted line has a slope of 2.

(a) (b)

Figure 9. Relative errors of (a) u and (b) p along a line in the center of the sub-domain at the

first (solid) and second (dashed) time step in the δt = 4⇥ 10−3 case.

and p errors along a line in the centre of the sub-domain.

A brief explanation follows: assume the initial field of the re-simulation matches the

original global computation. In the first time step, if u
(1)
os is used as the velocity boundary400



condition, i.e., u⇤
� = u

(1)
os , sub-domain now contain O(δt2) errors at the boundaries,

✏(u⇤) =

8
><

>:

u(1)
− u⇤ = (δt)2 @

@x
(@p
@t
)|n=1 = δt

2
⇣n=1 on the boundaries

0 inside the sub-domain
, (12)

where ⇣ = @
@x
(@p
@t
). From the right hand side of equation (5) and Figure 4, the source term

of the Poisson equation will therefore have O(δt) errors due to the errors at the sub-domain

boundaries,

DG✏(φ(1)) =
D✏(u⇤)

δt
=

8
><

>:

δt
2
⇣n=1/hδt = δt⇣n=1/h on the boundaries

0 inside the sub-domain
. (13)

Even though the non-zero source terms only exist at the boundary nodes in equation (13), the405

errors in φ contaminate the entire sub-domain due to the ellipticity of the Poisson operator.

Thus φ errors, as well as p errors, are hδt⇣n=1 = O(δt) at n = 1. It is important to note

here that ✏(φ(1)) is linearly distributed in the sub-domain (can be verified analytically to be

a solution of equation (13) , or refer to Figure 9(b)). As a result, the gradient of ✏(φ(1)) is

uniform in the correction step, leading to a uniform δt
2
⇣n=1 error in the velocity within the410

sub-domain:

✏(u1) = ✏(u⇤)− δtG✏(φ1) = δt
2
⇣n=1 = O(δt2). (14)

At the second time step n = 2, u⇤ have uniform O(δt2) errors both inside the sub-domain

and on the boundaries: the errors inside the sub-domain, δt2⇣n=1, come from u(1) (see above),

while the errors on the boundaries, δt2⇣n=2, come from the new velocity boundary conditions.

The leading O(δt2) errors of u⇤ are cancelled out during the calculation of the divergence415

of u⇤,

D✏(u⇤) =

8
><

>:

δt
2
⇣n=2 − δt

2
⇣n=1 = δt

3 @⇣
@t
|n=1 on the boundaries

δt
2
⇣n=1 − δt

2
⇣n=1 = O(δt3) inside the sub-domain

, (15)

leading to second order errors in the source term of the Poisson equation, also in the pressure

field at n = 2. In addition, the velocity errors remain at second order,

✏(u(2)) = ✏(u⇤)− δtG✏(φ(2)) = O(δt2)− δtO(δt2) = O(δt2). (16)

The preceding analysis thus demonstrates that the observed errors when using u instead

of u⇤ as boundary conditions for re-simulation scale in expected ways with the size of time-420

step. If one wanted to use u instead of u⇤ for re-simulation, however, the required time

steps would be too small to be practical for purposes of the STSR.



B. Errors from mismatch in temporal discretization

The above results all assumed that the re-simulation starts from an Euler scheme, same

as the original computation which at n = 0 also began using an Euler step. This ensures that425

the re-simulation could calculate the intermediate velocity inside the sub-domain correctly

as seen in Figure 4, and reproduce the original simulation data precisely, when using the

u⇤
os boundary conditions.

However, in applications of STSR, the re-simulation will typically start at any of the

stored original simulation time steps, i.e. when n equals any integer multiple of Mtδt. Recall430

that the original simulation used AB2 time-stepping at those times, not Euler. As a result,

for the re-simulation to reproduce the original computation, it must adopt an AB2 scheme

from its start. However, this requirement can only be met if two consecutive time steps are

stored to be used as initial condition. Otherwise, with a single field, the re-simulation must

adopt a first Euler step and will therefore deviate from the original AB2-based computation.435

In order to demonstrate the errors incurred by an initial Euler step, we perform the

following experiment: The data on the entire domain is stored at t = 1, meaning the initial

condition for the re-simulation is now uos and pos at t = 1. The re-simulation starts there

with a single Euler scheme and then continues with AB2.

At the first time step after the initial condition, the Euler scheme will introduce local440

truncation errors of O(δt2) into the re-simulation. The re-simulation errors are shown in

Figure 10. Similar to the case which uses u as the velocity boundary condition (Section

VA), the p errors are first order in δt at the first time step, but second order afterwards.

On the other hand, velocity errors are always second order.

In addition, we considered another case to explore errors incurred if the time stepping445

scheme used in the re-simulation is always di↵erent from that in the original one. We

performed re-simulation with Euler scheme from t = 1 and for all time steps, rather than

for the first step only. In this case, the Euler scheme has global errors of O(δt) compared

to AB2. The errors are shown in Figure 11. The u errors increase over t. This is due to

the cumulative e↵ect of the local truncation errors committed in each step from the Euler450

scheme. As a result, the velocity errors grow from second order to first order (see Figure

11(c-d)). On the other hand, the p errors are already first order at the first time step, and

retain that scaling, consistent with Euler’s global truncation errors O(δt).



(a) (b)

(c) (d)

Figure 10. Re-simulation error evolution when using an Euler scheme at the first time step and

then continuing with AB2 (1  t  2). The original simulation used the AB2 scheme. (a) u error

"u,1 against t. (b) p error "p,1 against t. In (a) and (b), lines from above to bottom represent

simulations with δt = {4, 2, 1, 0.5, 0.25} ⇥ 10−3 respectively. (c) "',1 against δt at the first time

step. (d) max["',1] against δt after the first time step. In (c) and (d), the dashed line has a slope

of 1 and the dashed-dotted line has a slope of 2.

C. Errors from temporal sub-stepping

In the previous section, it was shown that the re-simulation has O(δt2) errors if started455

with an Euler scheme at an arbitrary time. These errors are too large for reproducing a DNS

database using realistic values of δt. For example, when δt = 4 ⇥ 10−3, even if we discard

the results at the first time step, the relative errors between the original and re-simulation

are approximately 10−3 – 10−2 in subsequent time steps. Using an initial Euler step in the

re-simulation compared to AB2 in the original computation results in an initial error that460

persists in time—consistent to the behaviour when artificial errors were included in the

initial conditions. Although one could store an extra snapshot so that the re-simulation

starts with AB2 and obtain error-free data, this approach would appreciably increase the

storage requirements.

Rather than storing two time steps, we examine a di↵erent approach that does not in-465

crease the required storage but only increases CPU cost during re-simulation: temporal
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Figure 11. Re-simulations using and Euler time advancement throughout (1  t  2). The original

simulation always uses the AB2 scheme. (a) u error, "u,1, against t. (b) p error, "p,1, against t. In

(a) and (b), lines from above to bottom represent simulations with δt = {4, 2, 1, 0.5, 0.25} ⇥ 10−3

respectively. (c) "',1 against δt at the first time step. (d) max["',1] against δt after the first time

step. In (c) and (d), the dashed line has a slope of 1 and the dashed-dotted line has a slope of 2.

sub-stepping. This idea aims to minimize the error between the original single AB2 step

and many smaller steps the first of which is Euler followed by AB2.

Consider integration from t to t + δt. The analytic integration could be approximated

by an AB2 scheme or an Euler scheme both with a time-step size δt. We have already470

seen in the previous section that the di↵erences between AB2 and Euler schemes lead to

re-simulation errors. Usually, an AB2 scheme produces smaller errors than Euler compared

with analytic (true) values. On the other hand, the time step from t to t+ δt could also be

divided into, say, k sub-time steps: the size of each sub-time step is thus δt/k (see Figure 12

for an example with k = 4). Integration from t to t+δt would then be computed using Euler475

in the first sub-time step, then AB2 in the remaining (k− 1) sub-time steps. The numerical

integration results will approach the true value with increasing number of sub-steps k. The

single full-time-step Euler integration is the special case with k = 1. Thus, one could expect

that the errors between the single full-time-step AB2 integration and the integration with

temporal sub-stepping would decrease first, then increase, and finally reach an asymptotic480
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Figure 12. Schematic of temporal sub-stepping with four sub-time steps.

value as the number of time sub-steps k increases: the asymptotic value is the errors of

the AB2 scheme itself. Ideally, there will be a k with which the re-simulation errors are

minimized, even though this optimized k, if it exists, would be di↵erent from one simulation

to another.

Beyond t + δt, the re-simulation can proceed with AB2 using the original time step δt.485

For example, the solution at t + 2δt can be computed from information at t and t + δt;

similarly the solution at t+ 3δt can use the information at t+ δt and t+ 2δt and so on.

The boundary conditions on Γ at the sub-time steps can be approximated from temporal

interpolation of u⇤
os from the original simulation data. For instance, in the example below,

the boundary conditions between t and t + δt are obtained by applying piecewise cubic490

Hermite interpolating polynomial (PCHIP) on stored boundary conditions (plane data) at

t− δt, t, t+ δt and t+ 2δt.

For demonstration, we perform a re-simulation of the original computation with δt =

4 ⇥ 10−3, starting from t = 1 and advancing the simulation until t = 2. Re-simulations

with di↵erent numbers of temporal sub-steps k, as well as the original AB2 scheme, are495

compared. Just a reminder, k = 1 is equivalent to the re-simulation performing the entire

first step with Euler scheme. In this example, the results from a re-simulation with k = 1000

sub-time steps are used as the reference data to approximate the “true, exact” values which

are unknown. We discard the first few δt to avoid including the pressure jump as seen in

the previous examples.500

Figure 13(a) shows the maximum relative errors compared with the reference data for

1 < t < 2. The symbols denote the errors between the re-simulation and the reference data,

which decrease as k increases. In fact, the errors are proportional to k−2, or the square of the

size of the time sub-step (δt/k)2, since the temporal scheme is AB2 in the re-simulation. The

horizontal lines represent the errors between the original AB2 simulation and the reference505

data. The errors of the AB2 scheme itself are about 10−5 – 10−4. Also from Figure 13(a), it

is clear that the errors between the re-simulations (symbols) and the original DNS (lines)



(a) (b)

Figure 13. (a) The L1 relative errors compared with the reference re-simulation (k = 1000). The

symbols represent the re-simulations with sub-time steps, while the lines represent the original

simulation with the AB2 scheme. The colours of the horizontal lines represent the same variables

as the symbols. (b) Re-simulation errors compared with the original simulation data, "',1. In

both plots, the dash-dot line has a slope of 2.

decrease and then increase as k increases. However, it should be noted that the di↵erences

between the symbols and lines do not equal to the actual errors between the re-simulations

and the original DNS, "',1.510

The re-simulation errors "',1, shown in Figure 13(b), decrease at a rate of second order

in k before about k = 6, and then become nearly constant. Although an optimal k is not

observed, the drop of the errors is about two orders of magnitude in the current example.

The asymptotic values of "',1 are also the AB2 errors shown in Figure 13(a). This example

shows that the re-simulation errors could decrease by two orders of magnitude with only 10515

additional time sub-steps within the first δt from the initial condition, and the minimum

errors are bound by those of the AB2 integration scheme in the original simulation.

D. Temporal sub-sampling for the boundary conditions

In all previous examples, the re-simulations adopted boundary conditions data that were

stored at every time step during the original DNS . This may not be necessary or feasible.520

As mentioned before, the snapshots of the 10243 isotropic turbulence data set in JHTDB are

stored only every 10 simulation steps. When data is queried between the two stored time

steps, they are obtained with temporal interpolation and the errors are approximately 10−6

(we could not determine whether the interpolation errors are lower than 10−6, because the
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Figure 14. (a) The interpolation errors of boundary conditions. (b) ✏',1 with interpolated bound-

ary conditions. The re-simulation is from t = 1 to 2, but only t = [1, 1.2] is plotted here to more

clearly display the oscillations of the errors. The re-simulation starts with the AB2 scheme using

an extra snapshot provided. The time step size is δt = 2⇥ 10−3.

data on JHTDB are stored in single precision). Here we examine the impact of temporal525

interpolation of temporally sub-sampled boundary data for re-simulation.

We have seen that the re-simulation errors are proportional to the errors in the boundary

conditions. Thus, if the boundary conditions are stored every few (Mt,bc) time steps and

temporal interpolation is used during re-simulation, the errors in the re-simulation will be

directly proportional to the interpolation errors. Figure 14 shows an example: the time530

step of the simulation is δt = 2 ⇥ 10−3. The boundary data are stored at every Mt,bc = 5

time steps, actually close to the time step requirement based on CFL (based on maximum

velocity) equaling to unity. Cubic spline interpolation with three points before and after the

query point is used for temporal interpolation. The L
1 relative errors of the interpolated

boundary condition fields on the Γ planes are shown in Figure 14(a). The oscillations of535

the errors are apparent, vanishing at each of the 5δt time instants in which boundary data

are known exactly. The re-simulation starts at t = 1 using the AB2 scheme with an extra

snapshot provided, and runs until t = 2. As a result, no other errors are introduced in the

re-simulation, except those due to the temporal interpolation of the boundary conditions.

The maximum interpolation errors over time for {u, v, w, p} are {1.47, 1.54, 1.64, 9.66}⇥10−5
540

(Figure 14(a)). The re-simulation errors ✏',1 (Figure 14(b)) for {u, v, w, p} are {2.66, 2.08,

2.30, 24.2}⇥10−5: all are only slightly higher than the interpolation errors. The oscillations

of the re-simulation errors are caused by the oscillatory errors of the temporal interpolation

of the boundary conditions.



VI. SUMMARY: RECOMMENDED CHOICES FOR STSR545

The previous section has documented separately errors to be expected from various pa-

rameter choices for STSR. Here we now combine the various choices that may be expected

in an actual implementation of STSR: we use u⇤ on the boundaries stored at every Mt,bc = 5

DNS time steps, use k = 10 for the initial temporal sub-sampling during the first time-step

of re-simulation, use cubic polynomial temporal interpolation of the stored u⇤ and p bound-550

ary values to interpolate to the re-simulation time-step δt, and integrate between t = 1 and

t = 2.

Figure 15 compares two fields at t = 2 from the re-simulation to the original simulation:

(a) u-velocity and (b) z−component vorticity !z (computed using centered finite di↵erenc-

ing). The contour lines of re-simulation fields and the original ones are on top of each555

other.

Figure 15(c) shows the corresponding evolution of the L1 errors. The vorticity errors are

about one order of magnitude higher than velocity errors and is about 10−4. This level of

di↵erence between re-simulation and original DNS is acceptable and falls within the desired

guidelines.560

VII. CONCLUSIONS

In the present paper, we propose an idea of data compression for numerical simulation

results of incompressible fluid flow. The entire simulation domain of the original simulation

is divided into multiple small sub-regions by planes. The data in the entire domain are

stored, say, at every few hundred or thousand time steps, while data on the dividing planes565

are stored at every time step, or sub-sampled every few time steps. Once data at an arbitrary

position and time is needed, a re-simulation of the small cube region (sub-domain) which

includes that point is performed. The data stored in the entire domain are used as the initial

condition, while the planar data surrounding the sub-domain are used as the boundary

conditions.570

It is found that if the numerical scheme in the re-simulation matches the original sim-

ulation exactly, the re-simulation will produce error-free results. On the other hand, any

mismatch between the re-simulation and the original one can produce significant errors,
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Figure 15. (a) Contour plot of u on a randomly selected slice. (b) Contour plot of z-component

vorticity on a randomly selected slice. In (a) and (b), colour contours are the original simulation,

while the black dash contour lines are the re-simulation. (c) L1 errors of u and z− component

vorticity.

exceeding the minimum error levels one would like to enforce for a database that contains

spatially and temporally sub-sampled data.575

For example, it was found that re-simulation errors are too high when using velocity and

pressure di↵erences (or pressure) for the boundary condition. It was shown that the correct

velocity boundary conditions for the re-simulation should be the intermediate velocity after

the projection step: this is because the boundaries of the sub-domain are still the internal

part of the entire domain of the original simulation.580

Another example is that the re-simulation should use the same time integration scheme

as the original simulation. This poses a challenge if only one snapshot of the initial field is

provided: the re-simulation must start with an Euler scheme while the original simulation

has been advanced with an AB2 scheme. The challenge can be resolved by storing an extra

snapshots so that the re-simulation could start with the AB2 scheme as well, or could be585

improved using Euler-AB2 integration with several sub-time steps to approximate the first



AB2 integration in the original simulation. We have shown the latter approach saves storage

space, and can also reduce the re-simulation errors by two orders of magnitude with only 10

sub-time steps added in the first original time step.

The findings also imply that if the original simulation contains source terms in the Navier-590

Stokes equations, such as in forced isotropic flow these source terms must also be recorded

together with the original simulation and included in the re-simulation.

Tests using boundary data with added noise show that re-simulation errors remain lin-

early proportional to the errors in the boundary conditions. This observation helps explain

several trends in re-simulation errors. Also, it provides a guideline about how much temporal595

sub-sampling of the boundary data may be used. The resulting errors in re-simulation will

be proportional to the errors caused by temporal interpolation on the boundary data. Ex-

periment shows the re-simulation error is similar to the interpolation errors of the boundary

conditions. Thus, in a real application, one could carefully control the interval of two stored

plane data and achieve further compression of the simulation data.600

A sample application combining all of the recommended sub-sampling parameters and

re-simulation strategies shows that relative maximum errors in velocity on the order of 10−5

to 10−4, which is acceptable and leads to errors of less that 0.1% in velocity gradients.

These levels are acceptable for applications of building numerical turbulence databases like

JHTDB. It is worth reiterating that the errors in the numerical experiments performed605

here did not reveal exponential growth in time, at least not over the tested time horizons.

From the viewpoint of data assimilation19,21,22, synchronization of chaos20 and nudging23 of

Navier-Stokes turbulence, the present results have implications on how e↵ective the time-

evolving boundary conditions are at constraining and e↵ectively synchronizing or nudging

the dynamics. In prior work19 it was shown that providing the correct large-scale Navier-610

Stokes dynamics at all wavenumbers down to ⇠ 0.2k⌘ (i.e. corresponding to grid spacings

of ⇠ 15⌘) leads to eventual slaving (synchronization) of the smaller scales, while coarser

truncations lead to chaotic divergence of trajectories at the small scales (similar results were

obtained later in20). Here we show something di↵erent: that domains of significantly larger

size (30⌘)3 can still remain slaved to the dynamics at all scales provided the data at the615

boundaries contain scales down to the smallest viscous scales (DNS resolution). A more

systematic analysis, such as testing how large the re-simulation sub-domain can be made

before the boundary information is no longer able to synchronize the dynamics in the core



of the sub-domain, is beyond the scope of the present study.

The sub-sampling and local re-simulation technique described in this paper could also620

be applied on unstructured meshes, as long as the correct information is stored during

the original simulation and the resimulation uses exactly the same method as the original

simulation. If a spectral method is used in the original simulation (such as in several of the

existing JHTDB datasets), using local resimulation with (e.g.) finite di↵erencing will lead to

significant errors. If the spectral method is used only in one or two directions, like channel625

flow, good accuracy can be achieved if the resimulation domain consists of the entire 1D

“pencils” or 2D “slabs”. However, if the spectral method is used in all three directions, the

present technique cannot reproduce error-free data unless the resimulation is done on the

entire (large) domain, which is expected to be prohibitive.

We remark that alternative re-simulation methods e.g. based on machine learning tools630

instead of grid-based CFD methods could be considered. For instance, one could apply

Physics Informed Neural Network (PINNs) methods34 to train an Artificial Neural Network

constrained by Navier-Stokes equations to predict field data at desired points and time using

similar types of initial and bounding surface data as used in the present method as inputs

(see also Ref.35 for a recent example). The present results documenting errors to be expected635

from Navier-Stokes based re-simulation can serve as useful reference or benchmark to which

to compare such alternative methodologies.

Finally, although this work is focused on turbulence in incompressible flows, extensions

of the basic idea and methodological requirements to other fields of computational physics

appear possible. Also, other compression tools can be applied on top of the present technique.640

For example, one can use wavelet methods36 to further compress the planar and volumetric

data.
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APPENDIX A: FAST POISSON SOLVER FOR RE-SIMULATION

In this appendix, details about a spectral fast Poisson solver for equation (5) used in

re-simulations are described. Since the re-simulation sub-domain is in general not periodic,650

a fast Poisson solver using discrete sine and cosine transforms31 is implemented.

Consider a one-dimension Poisson equation,

r
2
 = b (17)

on a uniform grid xi = ih (i = 1, . . . , N), where h = ∆x is the constant grid spacing. The

Poisson equation discretized with second-order central finite di↵erences is

 i−1 − 2 i +  i+1

h2
= bi, i = 1, . . . ,m, (18)

and can be represented in Fourier space as655

λj ̂j = b̂j, j = 1, . . . , N, (19)

where λ = −k
02 is the eigenvalue and k

0 is the modified wavenumber. Thus, the Poisson

equation can be solved in three steps: (i) calculate b̂j from the forward Fourier/sine/cosine

transform of b; (ii) find  ̂j = b̂j/λj from equation (19); (iii) calculate  from the inverse

transform of  ̂j. The transforms used in (i,iii) and the eigenvalues λj depend on the boundary

conditions and are listed in tables II and III. In table II, “DFT” refers to the discrete Fourier660

transform, “DST-II” to type-II discrete sine transform, and “DCT-II” to type-II discrete

cosine transform. For non-homogeneous boundary conditions, b1 and bn can be modified in

order to absorb the values at the boundaries.

When λ1 = 0, an additional equation is required, e.g. with the periodic or Neumann

boundary conditions in all directions one could simply set  ̂1 = 0 leading to a zero-mean665

solution. It should also be noted that this algorithm gives the least square solution for the

discretized Poisson equation if the compatibility condition
P

bi = 0 is not satisfied.

The discrete Fourier, sine and cosine transforms are included in various libraries, including

FFTW and FFTPACK. If a DST-II or DCT-II is not implemented, e.g. in the Intel Math

Kernel Library (MKL), it can be computed via a DCT-III combined with O(2n) pre- and670

post-processing.

Extension of the algorithm to 3D is straightforward: (i) calculate b̂j1j2j3 from the forward

transform of b; (ii) find  ̂j1j2j3 = b̂j1j2j3/λj1j2j3 , where λj1j2j3 = λj1 + λj2 + λj3 ; (iii) calculate

 from the backward transform of  ̂j1j2j3 .



Boundary conditions Forward Backward

Periodic (x0 = xm, xm+1 = x1) DFT Inverse of DFT

Dirichlet on cell faces

(x1 + x0 = 0, xm+1 + xm = 0)
DST-II Inverse of DST-II

Neumann on cell faces

(x1 − x0 = 0, xm+1 − xm = 0)
DCT-II Inverse of DCT-II

Table II. The transforms used in steps 1 and 3 in the fast Poisson solver.

Boundary conditions Eigenvalues

Periodic (x0 = xn, xm+1 = x1) λk = −
4
h2 sin

2 (k−1)⇡
m

Dirichlet on cell faces

(x1 + x0 = 0, xm+1 + xm = 0)
λk = −

4
h2 sin

2 k⇡
2m

Neumann on cell faces

(x1 − x0 = 0, xm+1 − xm = 0)
λk = −

4
h2 sin

2 (k−1)⇡
2m

Table III. The eigenvalues used in step 2 in the fast Poisson solver.

If the grid is non-uniform in only one direction, e.g. in channel or boundary-layer flows,675

the spectral approach is adopted in all dimensions where the grid is uniform, and a tri-

diagonal solver is adopted in the direction of grid stretching (see Moin 37, Section 6.2.1 for

an example). In fact, solving a tri-diagonal linear system is faster than Fourier transforms,

since the former has a computational cost O(N), which is less than that of fast Fourier

transform, O(N logN).680

The current fast Poisson solver is faster in time and saves the memory compared with

a Poisson solver implementing sparse matrix solver. Table IV compares the time spent

in solving the discrete Poisson equation using sparse matrix LU decomposition, FFT and

DST/DCT. When the gird comprises 1283 points, the LU decomposition requires exten-

sive memory and in our tests using limited resources (as one would like to use during re-685

simulation), it runs out of memory. The solution using DST/DCT requires approximately

twice the time of the DFT, and only one-dimensional DST/DCT are available in the major-



Grid points LU decomposition DFT DST/DCT

323 0.0082 s < 10−3 s < 10−3 s

483 0.0357 s < 10−3 s 0.0016 s

643 0.1137 s 0.0019 s 0.0035 s

963 0.5451 s 0.0052 s 0.0101 s

1283 - 0.0109 s 0.0234 s

Table IV. Time spent in solving the discrete Poisson equation with a sparse matrix solver, FFT

or DST/DCT. The timing has a resolution of 10−3 s, and is averaged over 100 runs. In the LU

decomposition method, only the solution phase (i.e. forward and backward substitutions after

the LU decomposition) is timed. The hardware is Intel Core i5-7500 (4 Cores, 3.4GHz) and

16GB memory. The code uses Intel Fortran compiler, Intel MKL and OpenMP in Windows. The

parallelization of the sparse matrix solver and the DFT is implemented in Intel MKL, while that

of DST/DCT is implemented by authors using OpenMP. In the 1283 case, the LU decomposition

runs out of memory.

ity of numerical libraries. Nevertheless, DST/DCT outperforms the direct solver based on

the sparse matrix LU decomposition, and its scalability is superior.
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