10

Data compression for turbulence databases using spatio-temporal sub-sampling and

local re-simulation

Zhao Wu,! Tamer A. Zaki,! and Charles Meneveau!
Department of Mechanical Engineering, Johns Hopkins University, Baltimore,

MD 21218, USA
(Dated: November 30, 2020)

Motivated by specific data and accuracy requirements for building numerical
databases of turbulent flows, data compression using spatio-temporal sub-sampling
and local re-simulation is proposed. Numerical re-simulation experiments for de-
caying isotropic turbulence based on sub-sampled data are undertaken. The results
and error analyses are used to establish parameter choices for sufficiently accurate

sub-sampling and sub-domain re-simulation.

Keywords: data compression; sub-domain re-simulation; spatio-temporal sub-sampling;

Navier-Stokes

15

20

25

30

35

40

45

I. INTRODUCTION

In the field of computational fluid dynamics, the study of turbulent flows based on data
generated using Direct Numerical Simulations (DNS) has occupied a prominent place in the

literature over the past several decades' ™.

DNS provides spatial and temporal resolution
down to the smallest and fastest eddies of a turbulent flow. Therefore, the Reynolds number
achievable by DNS is limited by computing power and memory, and has been growing
roughly at the rate expected from Moore’s law. The amount of data generated by DNS is

6710 For instance, a simulation of turbulent flow outputting four field

growing accordingly
variables (e.g. the three velocity components and pressure) on 2000® spatial grid points
and integrated over, say, 5 x 10* time-steps, will generate several Petabytes (PB) of data.
Researchers thus store only a few selected snapshots of the low during the simulations, and
primarily rely on run-time analysis tools that are decided prior to the computation if time
resolved phenomena are to be studied. As a result, when new questions and concepts arise,
massive simulations must be performed over and over. Moreover, when storing snapshot
data for later analysis, the traditional means of sharing available data after DNS, e.g. del

1

Alamo and Jimenez!!, assumes that the data are downloaded as flat files and consequently

a user has to worry about formats and provide the computational resources for analysis.

As a means to address these problems that challenge further growth of DNS and ac-
cessibility of data, modern database technologies have begun to be applied to DNS-based
turbulence research. For instance, the Johns Hopkins Turbulence Database (JHTDB, http:
//turbulence.pha. jhu.edu)'®!¥ has been constructed and has been in operation for about
a decade, as an open public numerical laboratory. The system hosts about 1/2 petabyte
(PB) DNS data including 5 space-time resolved data sets and several others with a few
snapshots available. Users have Web-service facilitated access to the data, among others
using a “virtual sensors” approach in which a user specifies the position and time at which
data are requested and the system returns properly interpolated field data. Other derived

4 are also available, typically delivered

quantities such as gradients!® and fluid trajectories
to within single-precision machine accuracy. A hallmark of the system is the ability of users
to access very small targeted subsets of the data without having to download the entirety
of the data. The system has been successful at democratizing access to some of the world’s

largest high-fidelity DNS of canonical turbulent flows. JHTDB data have been used in over

50

55

60

65

70

75

160 peer-reviewed journal articles since its inception, about 40 in 2019 alone.

In recent years, the scale of DNS data has continued to grow further. The largest sim-
ulations now generate data on about O(10%) grid points in each of the three directions,
so storing multiple time steps to capture time evolution becomes very challenging, even in
efficiently built databases. For example, storing even only one large-scale turnover time of
the 81923 isotropic turbulence data set® would require storing about 80 PB. Over the next
several years, it can be anticipated that even larger scale DNS will be performed, generat-
ing exabytes of data, far out of reach of anticipated facilities and the approaches on which
JHTDB is currently based.

It is therefore necessary to explore innovative tools for compressing simulation data for
use in conjunction with databases. Most of the general-purpose data compression algorithms
are based on analyzing the data representation, and can generally be classified as lossless

15,16 " while lossy data

or lossy. Lossless data compression utilizes the statistical redundancy
compression is to remove unnecessary data, e.g., JPEG!T and MP3'8. Lossless data com-
pression tools are promising but for turbulence data where the flow’s small-scale structures
contain non-trivial information at each grid point, the compression ratios can be expected to
be somewhat limited. While we continue current efforts along this direction and can expect
further improvements, more aggressive tools will be required for the very large data sets
envisioned in the near future. Regarding lossy compression, it is certainly appropriate for
visualization and other applications where less fidelity is acceptable. However, if one wishes,
e.g. to capture accurately velocity gradients, lossy compression algorithms in which the
accuracy of primary variables is degraded, say, at the fourth decimal point, will already lead
to significant errors in gradients and will thus be insufficient for the purposes of turbulence
research.

It bears recalling that JHTDB enables users to receive interpolated data between spatial
and temporal grid points, using polynomial functions (Lagrange, spline, Hermite). Far more
aggressive data compression could be achieved if data could be stored more sparsely in both
space and time. However, when a user requests localized pieces of data that fall between
coarsely stored positions and/or times, one would need to revert to the dynamical equations
(i.e. Navier-Stokes) to perform a physics-based rather than a polynomial based interpolation.

In this paper we explore and establish requirements for such a data compression method,

named “Spatio-Temporal Sub-sampling and sub-domain Re-simulation” (STSR). The method

80

85

90

95

100

105

aims at enabling users to recover data at close to machine accuracy (single-precision), based
on very coarsely stored data. While the method can greatly compress the amount of data
to be stored, such savings have to be balanced by the additional cost of processor (CPU or

GPU) expense needed later on to accommodate user queries.

Initial efforts attempting to reproduce DNS data using local re-simulation (technical
details to be provided below) have shown a surprisingly narrow and stringent range of con-
ditions under which re-simulation in a sub-domain can generate data at the desired accuracy.
That is to say, re-simulation that reproduces DNS at close to single-precision machine accu-
racy, the desired baseline accuracy level, is more difficult to achieve than one may expect.
Any small deviations from the conditions to be developed can be shown to lead to significant
errors. It will be observed that the errors do not arise due to chaotic dynamics as we do not
observe exponential divergence of state-space trajectories or exponential growth of errors
over time. The absence of chaotic divergence of dynamics may be due to the strong con-
straints introduced by boundary conditions prescribed around closed sub-domains i.e. that
the ratio of sub-domain size to viscous length scale is sufficiently small for synchronization
of chaos'®?° to occur in the cases tested. Instead, errors are introduced due to small details
of numerical implementation, discretization, and order of operations that at first glance may

appear small and trivial but that can cause rather significant differences in results.

Therefore, the present paper aims to document the technical methodologies and tests
performed with considerable attention to detail. Section II introduces the basic idea of
data compression for turbulence databases using STSR. The desire to enable re-simulations
over localized spatial domains precludes the use of spectral methods based on global basis
functions. In this work, we explore the use of one of the most common discretization
tools in CFD: second order finite differencing. The numerical scheme adopted in the present
computations is described in Section III. The methodology is tested in the decaying isotropic
turbulence, a well-understood and relatively simple flow described in Section III B. In Section
IV, the influence of the boundary conditions on reproducibility of the simulations, up to the
desired level of machine precision, is examined. The re-simulation errors are studied in
Section V in more detail, and their dependence on artificially introduced noise in boundary
conditions is established in order to better understand requirements for reaching desired
levels of accuracy, which are slightly relaxed from machine accuracy down to relative errors

at the order of ~ 107° based on practical considerations. Section VI showcases an application

110

115

120

125

130

135

using the recommended parameters. Finally, conclusions are presented in Section VII. The
paper is limited to an account of the findings regarding methodology and requirements in the
context of a simple flow at moderate computational scale. Construction of a large turbulence

database system using the proposed STSR querying method is left as a future task.

II. SUB-SAMPLING AND LOCAL RE-SIMULATION

In this section, the basic concept of the proposed STSR approach is explained, together
with an estimate of the data compression that can be achieved. Figure 1 is a two-domensional
schematic of a DNS domain and the storage scheme of the data to enable later re-simulation.
The flow domain inside the box in Figure 1(a) represents the entire, or global, domain
of the original simulation, e.g. from a simulation of isotropic turbulence, channel flow,
boundary layer, etc. The global domain consists of a large number of grid points; in 3D,
say, N> = N,N,N,. By enforcing initial and boundary conditions on the global domain
boundaries, the simulation is advanced forward in time, at a time-step dt. The objective
is to store a limited amount of data at each time-step in order to enable re-simulation of a
sub-region of the global domain. For this purpose, the global domain is divided into small
sub-volumes marked by the blue boundaries (Figure 1(b)) corresponding to planes in a 3D
domain. For simplicity, the sub-volumes here have the same shape and dimensions but
the discussion and general results to be presented can be considered quite general. While
the main simulation is performed, the state vector (i.e. velocity and pressure fields for
incompressible flow) is stored on these planes. If the size of an individual re-simulation
sub-domain is M, in 3D there will be 3(N/Mj) such planes, each of size N2.

Moreover, in order to limit the CPU cost of re-simulation, after a number of time-steps,
the state vector data are stored at every grid point in the global domain. This occurs every
M, time steps, i.e. after a time equal to M, ot (see Figure 1(c)). In the rest of this paper,
t, = ndt represents the physical time, while n represents the time step of the DNS. For a
simulation lasting a total time 7', the total number of full 3D fields to be stored is thus equal
to ~ T'/(M;ot).

After the direct simulation in the global domain has been completed and the sub-sampled
data stored, data at a specific spatial and temporal location (x,t) may be required, for

example to examine local flow states in particularly interesting sub-regions of the flow or to

140

145

150

(d)

B
””” Queried grid point

B A A simlilation of this small

........................ region will be performed.

C
()Storingentiredomain J J

ty to+ 8t to+28t to+38t . to+ Mt to+ (M + 1)t to+ (Mg +2)6t .. Time

Storing planes J J J J J J J

Figure 1. Schematic of STSR. (a) Entire DNS domain containing a large (N?) number of grid
points. (b) The entire DNS domain are divided into small cube regions by the blue lines. (c)
The storage scheme of the spatio-temporal subsampling for re-simulation. The data in the entire
domain are stored at every M, time step. The data on the planes (blue lines) and on the outer
planes (black lines), are stored at every time step. (d) When data are required on grid points and
time steps that are not stored in the database, a re-simulation of a small region which includes the

queried grid point is performed to obtain the data.

track particles through the flow. In general these locations do not correspond to stored data,
and the data must be evaluated by re-evaluating the flow evolution in the host sub-volume

and time interval (Figure 1(d)).

Similar to the global domain, the flow in the re-simulation sub-domain is governed by
the continuity and Navier-Stokes equations. The numerical solution requires the initial
and boundary conditions. Suppose there exists an integer n such that (o + nMdqns < t <
to+(n+1)M;dtqys), i.e. the time at which data are sought ¢ lies between two instances where
the entire global domain was stored. The data stored at (t9 + nM;dqns) can then be used
as the initial condition, and the plane data on the sub-domain boundary that was stored at
every time step between times (to + nM;dqns) and ¢ provide the boundary conditions needed
for re-simulation. Unless otherwise stated, the original simulation and its re-simulation will

adopt the same time step for forward integration of the governing equations.

To fix notation, in the rest of this work the “global domain” refers to the domain of the

original simulation (the black enclosing box in Figure 1(d)); a “sub-domain” refers to the

155

160

165

170

175

180

much smaller region containing a queried point or sets of points (the yellow region in Figure
1(d)); and “re-simulation” refers to numerical solution of the governing equation in this sub-
domain using initial and boundary conditions extracted during the original computation and
stored in the STSR database.

With the proposed approach, only a small fraction of data is stored and the fields can
be re-constructed on demand from simulations within the small sub-regions. The data

compression (inverse) ratio ¢ can be estimated as

o NP BNAN/M) (M, —1) 1 (1 Bk) 3 Q)

N2 M, M, M) T
where N is the number of grid points in each direction in the entire domain.

Hence, if for example M, = 128 is used, and we store only every M; = 200 full 3D fields,
the total storage requirement is about 2.8% of the original data. Performing the re-simulation
in the M3 sub-domain is certainly much faster than doing a re-simulation in the original
full 3D volume: the CPU cost of re-simulation is approximately M;(12M32 + M2 log, My).
Depending on the ratio of cost of storage and computation, as well as depending on patterns
of data queries and usage, the optimal values of M, and M, could vary significantly. For
now we simply observe that the 81923 grid database with ~ 10* time steps mentioned in the
introduction requiring over 80 PB of storage, would require only about 2.2 PB if stored using
sub-sampling with M, = 128 and M, = 200, and the computational cost of the re-simulation
is only O(1079) of the cost of the full simulation.

The approach becomes particularly attractive in studies where only small sub-regions of
the flow need to be interrogated later on. For example, in particle tracking studies, one only
needs velocities in the immediate vicinity of particles to be used for interpolation. In other
studies, researchers may want to zoom into areas where extreme events such as core of vor-
tices or high dissipation take place. Or, one may wish to obtain a one-dimensional spectrum
along some representative lines through the flow requiring data only along those lines rather
than the entire domain. In such scenarios, storing the entire data or having to perform
re-simulation in the entire domain would be unnecessary and waste computational /storage
resources.

One might consider the present methodology is similar to data assimilation!®2122

or
“nudging”?® to deal with incorporation of incomplete and/or imperfect (noisy) data. In

nudging, a penalization term is included in the Navier-Stokes equations, so that the re-

185

190

195

simulation result would be pulled towards the original (observation) data. In this case,
deviation in initial condition is allowed, and the re-simulation result will match the original
data after several time steps, depending on initial condition, the penalization term, flow
condition etc. However, the number of time steps needed for the re-simulation to catch up to
the original data is difficult to assess without using the correct initial condition. Therefore,
for the purpose of reusing the DNS data, providing correct initial condition becomes a

necessary condition in this study.

IIT. NUMERICAL SCHEME AND FLOW CONFIGURATION

Incompressible flow of a Newtonian fluid satisfies the continuity and Navier-Stokes equa-

tions written here in skew-symmetric form,

V-u=0, (2)

%—?%(v(u@umumu) = =Vp+vViu,)

where u = (u,v,w)” is the velocity vector, ¢ is time, and v is the fluid kinematic viscosity.
The three velocity components u, v and w correspond to the x, y and z directions, respec-
tively, and p is pressure divided by density. The advection term in equation (3) is expressed

4

in the skew-symmetric form which conserves kinetic energy and reduces aliasing errors®:.

However, other forms of the advection term can also be adopted.

A. Temporal and spatial discretization

A ép-form prediction-correction algorithm?> 27 is used to decouple the velocity and pres-
sure:
ut — ,u’(nfl)
50 = — Conv. 4 Diff. — G(p"), (4)
Du*

DG¢™ =— 5

u™ =u* — 5tGo™, (6)

™ =p=1 4) (7)

where dt is the time step, superscript (-)” denotes the n-th step. Conv. is the discretized

convective term, Diff. is the discretized diffusive term, G is the discretized gradient operator,

200

205

210

215

220

225

D is the discretized divergence operator, and ¢ is the pressure difference between two time
steps. The advection term can be advanced in time explicitly using explicit Euler or second-
order Adams-Bashforth (AB2) scheme; the viscous term can be advanced using Euler, AB2
or implicit Crank-Nicolson (CN) scheme.

A variant of the projection method referred to as the p-form?®%

ignores the pressure
gradient term in the prediction step (4), and therefore ¢™ in the Poisson equation (5) is
an approximation of the full pressure at the new time step, i.e.p™ = ¢(™. An notable
difference between the herein adopted dp and the p forms is in the boundary conditions:
(i) the boundary condition of the elliptic pressure equation is the pressure difference in the
dp-form, and the pressure in the p-form; (ii) in terms of the velocity, in order to ensure
second-order accuracy, one should enforce u* = ur on the boundary of the computational
domain I' in the dp-form, but u* = ur + ot Gp(rn_l) in the p-form. In the present study, the
op-form is adopted throughout. Although not presented here, use of the p-form does not
affect our results nor conclusions.

A staggered grid®® is used in order to avoid checkerboard pressure oscillations. The
spatial derivatives are approximated with second-order central finite differences. In light of
the computational cost of the pressure equation (5), it is important to ensure that the re-
simulation does not compromise any of the efficiency of the global solver. For instance, if the
global domain is triply periodic, Fourier transform can be adopted in all three dimensions and
the solution of (5) is inexpensive. The re-simulation sub-domain is, however, not periodic; we
nonetheless adopt a fast Poisson solver using discrete sine and cosine transforms®'. Details

on the pressure Poisson solver used in re-simulations are provided in Appendix A.

B. Flow configuration: decaying isotropic turbulence

The flow adopted in this work as an example application of STSR is decaying isotropic
turbulence in 3D. The global domain has dimensions 27 x 27 x 27, and is discretized uniformly
using 2562 grid points (N = 256); the grid spacing is h = Az = 0.02454. The domain is
periodic in all three spatial directions. Time integration of the viscous and convective
terms starts with one Euler step at the initial condition, and is subsequently evolved using
AB2. A snapshot from an 10243 isotropic turbulence data set (https://doi.org/10.7281/
T1KK98XB) in JHTDB is used as the initial condition, sub-sampled every 4 grid points. After

Time RMS vel. Dissipation Re-number Kolmogorov scale CFL

t u € R, n WOt/ AT Umax0t/Ax
0 0.6024 0.0770 113.24 0.01795 0.0982 0.4013
2 0.5185 0.0645 91.67 0.01876 0.0845 0.3699

Table I. Statistics of decaying isotropic turbulence in the global domain (256). The statistics are
the same to within four digits for the five different time steps used, except for the quoted CFL

numbers which are based on the case §t = 4 x 1073.

(a)

10
10° 10° 102 102 10” 10°
Figure 2. Radial (a) kinetic energy and (b) dissipation spectra at the start of the simulation ¢ = 0

and the end of the simulation ¢ = 2. The black straight line in (a) has a slope of -5/3.

20 a transient of a few hundred time steps, the entire velocity and pressure fields are stored
and designated as the initial condition (t = 0, n = 0) of our set of numerical experiments.
The kinematic viscosity is set to v = 2 x 1072 in order to provide appropriate res-
olution of the viscous scale at the initial time. Five different time steps will be used,
6t = {4,2,1,0.5,0.25} x 1073. Simulations are advanced from ¢t = 0 to t = 2. Some
235 basic statistics of the simulation of this decaying isotropic turbulence are listed in Table I.
These were verified to be accurate to within four digits for the various choices of the time
step; the reported CFL values are based on the largest 6t = 4 x 1073, The kinetic energy
and dissipation spectra are shown in Figure 2. The dissipation spectra are displayed in
Kolmogorov units, showing that the simulation is very well resolved in space (note that the
20 spatial resolution is much better than than in the JHTDB original data even if using less
points since here we simulate a much lower Reynolds number with a much higher v).
While performing the simulation in the global domain, data are stored at every time
step to be used for later analysis and comparison with re-simulation results. For the sample

re-simulations and numerical experiments to be described in the next section, a sub-domain

245

255

260

265

270

consisting of 32% grid points is selected (i.e. M, = 32) located at a random location within
the global domain. To compare results from re-simulation to the original global domain

simulation, a normalized local error is defined according to

|9008(x7y727t) B 907"8<x7y727t)‘
€¢($,y,2,t) = I'IHS(go)) (8)

where ¢ could be any quantities, such as u, v, w, p or vorticity components w;, rms(+) is the
root-mean-square (r.m.s) value within the sub-domain, “os” refers to the original simulation,

7 refers to the re-simulation. We focus on the L errors evaluated as function of

and “rs
time within the sub-domain, €, »(t), which is a stringent upper bound on the re-simulation

CITorsS.

IV. PRELIMINARY RESULTS

As a first test we consider a re-simulation starting from the initial condition at t = 0.
One can use the velocity and pressure fields at n = 0 as the re-simulation initial condition.
The boundary conditions at time step n are 'u,gi)r = ufg)r for velocity and (89251(];) /8n)r -
<8qb(o7§) / (9n>F for pressure increment. Above, n denotes the outward pointing normal unit
vector to the boundary T" (distinct from time step n).

Using these initial and boundary conditions, the re-simulation is integrated in time be-
tween ¢t = 0 all the way to t = 2 (i.e. for 500 time-steps for the case 6t = 4 x 1073).
Figure 3(a) shows a comparison of the pressure distribution on a representative plane and
time. While overall the agreement may appear good, there are some noticeable differences
especially near the lower left and upper right boundaries.

More quantitatively, the maximum error (L) and r.m.s error over the sub-domain are
shown as functions of time in Figures 3(b-d). The error is large already at the first re-
simulation time-step and then remains at similar order of magnitude. The L* and r.m.s
errors of velocity and pressure are of order 1073, and vorticity errors are about one order
of magnitude higher and could reach near 10%; these errors are too large compared to our
stated desired level of accuracy. (We have found the vorticity errors are typically one order
of magnitude higher than velocity, so we only show vorticity results towards the end when
showing results of acceptable levels of errors.)

An interesting observation is that the errors do not grow exponentially, suggesting that

280

285

(a) % (@) T
25 /\\ / RRSS
20 . ’// \f“\\// Ws
- .
15 S v wi/
2
5 10
0 0.5 1 1.5 2

Figure 3. (a) Contour plot of pressure distribution on a randomly selected slice in the 323 sub-
domain re-simulation at a randomly selected, representative, time step. The dash contour lines are
the original simulation, while the solid contour lines are the re-simulation. (b)e, o as function of
time ¢. (c) r.m.s error €, ms as function of time ¢. In the re-simulation, the velocity boundary
conditions are u and the pressure boundary condition is Neumann type. (d) L vorticity errors

as a function of time. All plots are for the case 6t = 4 x 1073.

the observed errors are not caused by chaotic dynamics as one may have initially suspected
based on the non-linear character of the governing equations. The reason might be that
the sub-domain size is relatively small so that even if there are differences between the
two fields, the re-simulation dynamics are slaved to the original dynamics by the imposed
boundary conditions. Naturally we anticipate that if the sub-domain was large enough,
simply providing boundary conditions would not guarantee that the two trajectories would
not diverge eventually in time due to chaotic dynamics in the domain interior. Regardless of
the origin of the observed errors, we have experimented with a number of parameters such
as the time step and spatial resolution, and the basic conclusion remains that the errors are
significant and far from the desired accuracy for our database application. Aiming to reduce
these errors, we analyze the source of the discrepancy and identify the appropriate choice of

implementing initial and boundary conditions in order to greatly reduce these errors.

A. Re-simulation boundary conditions: u versus u*

Consider the re-simulation procedure from the initial condition n = 0 to the first time

step n = 1. At time step n = 0, the initial conditions are based on u((,g) and pgg) of the

global computation, and therefore the re-simulation matches that state exactly. Since ul?

and p,(f? match the global simulation, the convective, diffusive and pressure gradient terms

290

295

300

305

*

:*
<
<
N

@ 1121122244 (O ()

A 14 4 4 4 4 L4 41 4

4 4L 4L 4H 45 5 5 3 R o o/ o0 |0 0@
e

- > = = > > - = @ | © | o | o | 0o | 0o | @
e

- b b b > > > = .oloooo.
e

[T e s s i i @ | | o | o | 0| e | 0o
e

- > > > = > > P ® | ®© | o | o | o | o | o
et

- > > > > > > = @ | | o | e | 0| e | o
e

- > > = > D> > = 2tﬁﬁfﬁﬁﬁf e o 6| 6 o o o

Figure 4. Comparisons of (a) u*, (b) v* and (c) V-u* between the re-simulation and the original sim-
ulation. Blue (thin) and red (thick) symbols denote the quantities in re-simulation match/mismatch

to the original simulation data.

inside the re-simulation sub-domain are correct. Because the momentum equations are both
integrated with an Euler method in the original simulation and the re-simulation to the first
time step n = 1, u* inside the sub-domain is the same as in the original simulation (blue
thin arrows in Figure 4(a,b)). Meanwhile, ul) on T are applied as the velocity boundary
conditions. However, the data on and outside the sub-domain boundary are also u* in the
original simulation, since they lie within the global domain. Thus, the re-simulation does
not match the original computation on and outside the sub-domain boundary (red thick

arrows in Figure 4(a,b)). The source term of the Poisson equation is then computed, and

the comparison with the original simulation is shown in Figure 4(c). Considering two grid

*
rs?

points as examples, the source term at point 1 is calculated from surrounding values of u
all of which are identical to the original simulation. Thus the source term is correct (blue
small dots). However, at point 2, the values of u* at left and v* above are different from
the original simulation, thus the source term at this grid point differs from the global solver
(red big dots). The Poisson equation with perturbed source term is solved and wu,s and ¢,

therefore contain errors.

The above discussion shows that the choice of velocity boundary conditions leads to errors
in the re-simulation outcome, as reported in Figure 3. The remedy is to adopt u, as the
velocity boundary condition in the re-simulation procedure.

*

. at the boundaries of the sub-domains

Thus switching procedure, now the values of u

were stored during the global simulation. These were subsequently used for boundary con-

310

315

320

325

13 -13
(a) 10 .1 (b) 10
— — v
w
10714 0 1014
8 0 . Wz 8
S8 J&/:;fﬁmww‘.mw% ‘,A\(r‘f: '%"’f»‘i“ (R wy \U§
o S B bt w; 10°15
w
10716 10716 : p
0 0.5 1 1.5 2 0 0.5 1 1.5 2
t t

Figure 5. Errors e, o as function of time (for the case 6t = 4 x 1073). In the re-simulation, the
velocity boundary conditions are u*, and the pressure boundary condition is (a) Neumann type

and (b) Dirichlet type.

ditions in the local re-simulation procedure. The resulting L> errors are reported in Figure
5(a). Indeed the re-simulation velocities and pressure agree with the global computation
results exactly, to within machine precision.

Gresho and Sani®? and Abdallah and Dreyer®® showed that Dirichlet and Neumann
pressure boundary conditions are equivalent, to within a constant. We confirmed the same
behavior for the re-simulations by performing a test with pressure Dirichlet boundary con-
ditions ¢,s = ¢,s on the sub-domain boundary I'. The re-simulation errors, shown in Figure
5(b), are still at machine accuracy, the same as those in the re-simulations with the pressure

Neumann boundary conditions (note that in both cases u’, = u?, is enforced on I').

B. Crank-Nicolson scheme

In simulations of non-homogeneous flows such as wall-bounded turbulent flows, the vis-
cous term may limit the time step due to the stability restriction. Therefore, this term is
often discretized in time using Crank-Nicolson (CN) scheme in order to mitigate the stability
restriction. Using CN, equation (4) is approximated with the alternating direction implicit

(ADI) method according to,
1
(1 - Ax)(l - Ay)(l — Az)u* = 525[—C0nv. + §yL(u(”_1)) _ G(p(”—l))] + u(n—l)’ (9)

where A, = LvotL,, A, = tvstL,, A, = LvétL,, Conv. = a,C(u" V) + 8,C(u""?) is the
integrated advection term, L is the discretized Laplacian operator, and L,, L, and L, are

the discretized Laplacian operators in the x, y and z directions. The procedure for solving

330

335

340

345

() 10" (b) o (©)

1071° 1078 1078
0 0.5 1 15 2 0 0.5 1 15 2 0 05 1 15 2

Figure 6. Re-simulations errors with different velocity boundary conditions, which are (a) u*!, u*?

3

and u*3 in the corresponding directions, (b) w in all directions and (c) w* = w*3 in all directions.

In all plots, At = 4 x 1073, See Figure 5 for legend.

the above equation consists of evaluating u* in each of the three directions successively: (i)
solve for w*! in the direction, where (1 — A,)u*! =right hand side of equation (9) with z
boundary conditions; (ii) solve for u*? in the y direction, where (1 — A,)u** = w*! with y

*3 ’U,*2

boundary conditions; (iii) solve for u* = u*? in the z direction, where (1 — A,)u
with z boundary conditions. In Section IV A, it was demonstrated that w* should be the
velocity boundary condition if both the original and re-simulation algorithms are explicit
Euler/AB2. When CN/ADI is adopted however, different intermediate velocity boundary
conditions are required. Specifically, u*! should be applied on the boundaries during the
inversion of the z-diffusion term, u*? should be applied on the boundaries during the solution
in the y direction, and u* = u*? should be applied on the boundaries in the final z direction.

We demonstrate this requirement by performing the original/global simulation and the
re-simulation using the CN scheme as described above, and compare the results with cases
in which some of the specific directional requirements for u* are relaxed. The re-simulation
errors with the correct boundary condition implementation are shown in Figure 6(a). The
re-simulation errors remain near 10~* for all velocities and pressure. As comparison, the

re-simulations with either uw or u* = u*® (the last step of the ADI) velocity boundary

conditions are also performed. Both produce significant error levels, between 1072 and 1072

(Figure 6(b,c)).

V. ANALYSIS OF DOMINANT SOURCES OF ERRORS

In Section IV A, the correct velocity boundary conditions for re-simulation was shown

to be w*. It was shown that using u* on the boundaries based on surface data stored at

350

355

360

365

370

375

every DNS time step, and replicating the precise time advancement scheme at every time
step between the original DNS and the re-simulation, yielded machine-accuracy from re-
simulation. However, in practical applications of STSR, one may wish to relax some of
these requirements. For example, one may wish to store the boundary values not at every
time-step and use moderate sub-sampling (e.g. snapshots of the 1024? isotropic turbulence
data set in JHTDB are stored only every 10 simulation steps, and temporal polynomial
interpolation is used to find data between stored time steps). Or, one may wish to use
a different time-advancement scheme during the initial time stepping of the re-simulation.
Each of these approaches will induce some additional error and prevent the re-simulation
to reach machine precision. In order to establish a clear understanding of these errors, it is

useful to quantify the amplification of errors by the re-simulation procedures.

In order to lay the foundation for the subsequent discussions, we intentionally add noise

to the boundary condition values u*.

We use zero-mean Gaussian white noise and define
the contaminated boundary condition on the boundary I', for example for the u-component,

as

ul, = u*(1+oN(0,1)), (10)

where o represents the r.m.s. of the added noise as multiple of the original signal. Moreover,
N(0,1) is the standard normal distribution with zero mean and unit variance. Similar noise
perturbations are added to the two other components v* and w*, and pressure increment ¢,

at all time steps n > 0.

Re-simulation experiments are performed for four different levels of o (107*—1071?) using
u; and d¢,/0n as boundary conditions. The re-simulation errors ¢, o, are shown in Figure
7(a) as a function of ¢ with different noise levels o; only u errors are plotted for clarity.
Although the noise levels are different, the errors are qualitatively similar at different values
of o and only differ in magnitude. Figure 7(b) shows the scaling of max;[e,, o] with . The
results clearly show that re-simulation errors grow linearly with the magnitude of the added
noise level in the boundary conditions.

It should be noted that, in the above analysis, the noise is added to the boundary con-
ditions at all time steps after the initial condition, i.e.n > 1, and the re-simulation errors
are proportional to the input errors. If the noise is added at the initial condition across the

entire re-simulation domain at n = 0, similar results are obtained (not shown here).

380

385

390

395

=107 [] 10°
(a) 100 = (b)
10
~— 10° | — ~H
- 10—10 g A
g e — 0 408 -
S 10 <! Ay
g # o
\"
A B w
 c~— ~ +
10710 : ‘ 10710 -
0 0.5 1 1.5 2 10710 10®
t o

Figure 7. Re-simulations with different levels of noises added to the velocity boundary conditions
u*. (a) Re-simulation errors e, against ¢ . Only u errors are plotted for clarity. It has been
checked that v, w and p errors behave similarly. (b) maxe, (¢ > 0)] as function of . The dashed

line has a slope of 1. In both plots, 6t = 4 x 1073.

A. Re-examination of u boundary condition errors

We have seen that the re-simulation errors are proportional to the input errors. We now
revisit the errors discussed in Section IV A, where we first naively applied u as the velocity
boundary conditions, to explain the observed errors based on the findings that errors are
linearly proportional to boundary condition errors.

From equation (6), one can easily show that the difference between u(™ and u* is second
order in time,

u™ —u = —5tVe™ = —5tV(p™ — pn V) ~ —(6t)? V(%). (11)

Based on the results in Figure 7, one would then expect that applying w as boundary
conditions in the re-simulation would lead to second order errors in d¢. This expectation was
tested by performing the global and re-simulations with different values of 6t and prescribing
u as the velocity boundary condition in the re-simulations. The resulting re-simulation
errors are plotted in Figure 8(a,b). Same as in Figure 7(a), €, o, behave qualitatively similar
for different values of 6¢. The maximum errors, max;[e, |, are reported in Figure 8(c).
Surprisingly, the pressure errors are only first order in dt, while the velocity errors are
second order, as expected. In addition, we find that the pressure errors recover second order
accuracy at n > 1 (Figure 8(d)). In fact, figures 8(c) and (d) show that the maximum
pressure errors are first order in 6t for n > 1, but second order for n > 1. This observation
suggests that the pressure errors are of first order at n = 1 but second order afterwards.

The insert of Figure 8(b) shows the pressure errors near n = 0, while Figure 9 shows the u

-2 . 0 r -
O p—R U T
a
/10'4!1
i L~ 0 002 004 |
8 3 172V S

wi 10-4 /\\/—A—\/ S

-4]
/\ A 10 f—m_’_’/__
— H~VyY
10® : : : 10 : : :
0 0.5 1 15 2 0 0.5 1 1.5 2
t t
(¢) 10° (d) 100
Ay
o+ oo
—_ _+ —_
8 e —+ o 8 w -
& A+ B o top 3
5 s z ye
g 4)9/ g <é1/
&7 &
105 A 10°° A&
1074 1073 1072 10 1078 102
St 5t

Figure 8. Re-simulations with u as the velocity boundary conditions using different time steps. (a)
U €ITOrS £, o0 as function of time, ¢ . (b) Pressure errors €, o, as function of time ¢. The insert is a
zoom near t = 0. In (a) and (b), lines from top to bottom represent simulations with §¢ = 4 x 1073,
2x 1073, 1x 1073, 5 x 107% and 2.5 x 1074 respectively. (c) max[e, oo(n > 1)] as function of §t.
(d) max[e, o(n > 1)] as function of d¢. In (c) and (d), the dashed line has a slope of 1 and the

dashed-dotted line has a slope of 2.

x107° 103
® 5 -
(a)
ot D
I
_5-
n=1
,,,,, n—2
2 10t
5 10 15 20 25 30 5 10 15 20 25 30
' 7

Figure 9. Relative errors of (a) w and (b) p along a line in the center of the sub-domain at the

first (solid) and second (dashed) time step in the 6t = 4 x 1073 case.

and p errors along a line in the centre of the sub-domain.

A brief explanation follows: assume the initial field of the re-simulation matches the

wo original global computation. In the first time step, if ull) is used as the velocity boundary

405

410

415

420

.. . 1 . . .
condition, i.e., up = u(()s), sub-domain now contain O(dt?) errors at the boundaries,

o uV) — = (575)2%(%”“:1 = 0t?(,—1 on the boundaries
e(u*) = , o (12)

0 inside the sub-domain
where ¢ = %(%). From the right hand side of equation (5) and Figure 4, the source term
of the Poisson equation will therefore have O(dt) errors due to the errors at the sub-domain

boundaries,

* 0t2¢,—1/hét = 6t(,—1/h on the boundaries
DGe(qu(l)) _ De(u*) _ Cn=1/ Co=1/ . (13)

ot 0 inside the sub-domain

Even though the non-zero source terms only exist at the boundary nodes in equation (13), the
errors in ¢ contaminate the entire sub-domain due to the ellipticity of the Poisson operator.
Thus ¢ errors, as well as p errors, are hot(,—1 = O(dt) at n = 1. It is important to note
here that e(¢(") is linearly distributed in the sub-domain (can be verified analytically to be
a solution of equation (13) , or refer to Figure 9(b)). As a result, the gradient of ¢(¢™M) is
uniform in the correction step, leading to a uniform §t2¢,—; error in the velocity within the
sub-domain:
e(u') = e(u*) — 0tGe(¢p*) = dt*Cey = O(6t?). (14)
At the second time step n = 2, w* have uniform O(6¢?) errors both inside the sub-domain
and on the boundaries: the errors inside the sub-domain, §t2¢,,—;, come from u) (see above),
while the errors on the boundaries, §t2¢,—s, come from the new velocity boundary conditions.
The leading O(dt?) errors of u* are cancelled out during the calculation of the divergence
of u*,

0t2Cpg — 012y = St3%1,_1 on the boundaries
PR L BT

02 Gt — 0ty = O(0t?) inside the sub-domain
leading to second order errors in the source term of the Poisson equation, also in the pressure

field at n = 2. In addition, the velocity errors remain at second order,
e(u?) = e(u*) — 5tGe(p?) = O(6t?) — 5tO(5t%) = O(5t2). (16)
The preceding analysis thus demonstrates that the observed errors when using w instead
of u* as boundary conditions for re-simulation scale in expected ways with the size of time-

step. If one wanted to use w instead of u* for re-simulation, however, the required time

steps would be too small to be practical for purposes of the STSR.

425

430

435

440

445

B. Errors from mismatch in temporal discretization

The above results all assumed that the re-simulation starts from an Euler scheme, same
as the original computation which at n = 0 also began using an Euler step. This ensures that
the re-simulation could calculate the intermediate velocity inside the sub-domain correctly
as seen in Figure 4, and reproduce the original simulation data precisely, when using the

u’, boundary conditions.

However, in applications of STSR, the re-simulation will typically start at any of the
stored original simulation time steps, i.e. when n equals any integer multiple of M;0t. Recall
that the original simulation used AB2 time-stepping at those times, not Euler. As a result,
for the re-simulation to reproduce the original computation, it must adopt an AB2 scheme
from its start. However, this requirement can only be met if two consecutive time steps are
stored to be used as initial condition. Otherwise, with a single field, the re-simulation must

adopt a first Euler step and will therefore deviate from the original AB2-based computation.

In order to demonstrate the errors incurred by an initial Euler step, we perform the
following experiment: The data on the entire domain is stored at ¢ = 1, meaning the initial
condition for the re-simulation is now u,, and p,s at ¢ = 1. The re-simulation starts there

with a single Euler scheme and then continues with AB2.

At the first time step after the initial condition, the Euler scheme will introduce local
truncation errors of O(dt?) into the re-simulation. The re-simulation errors are shown in
Figure 10. Similar to the case which uses u as the velocity boundary condition (Section
V A), the p errors are first order in 6t at the first time step, but second order afterwards.

On the other hand, velocity errors are always second order.

In addition, we considered another case to explore errors incurred if the time stepping
scheme used in the re-simulation is always different from that in the original one. We
performed re-simulation with Euler scheme from ¢t = 1 and for all time steps, rather than
for the first step only. In this case, the Euler scheme has global errors of O(dt) compared
to AB2. The errors are shown in Figure 11. The w errors increase over t. This is due to
the cumulative effect of the local truncation errors committed in each step from the Euler
scheme. As a result, the velocity errors grow from second order to first order (see Figure
11(c-d)). On the other hand, the p errors are already first order at the first time step, and

retain that scaling, consistent with Euler’s global truncation errors O(dt).

460

- N B LV_,__\’\,//_\
S~ T SN -
108 : : : : 10 - : ——
1 12 14 16 18 2 1 12 14 16 1.8 2
i t
() 10 (d) 10
g ey T4 1072 B -
> —= + g~ S é/ /+
0, + A A A
g A el g 4 N B
= B- £ 107 A BT ooy
g B+ w
G/ + + p
10°° = 106
1074 1073 1072 10 1078 1072
5t 5t

Figure 10. Re-simulation error evolution when using an Euler scheme at the first time step and
then continuing with AB2 (1 <t < 2). The original simulation used the AB2 scheme. (a) u error
Euco against t. (b) p error e, o against t. In (a) and (b), lines from above to bottom represent
simulations with 0t = {4,2,1,0.5,0.25} x 1073 respectively. (c) £,00 against 6t at the first time
step. (d) max[e, o] against 0t after the first time step. In (c) and (d), the dashed line has a slope

of 1 and the dashed-dotted line has a slope of 2.
C. Errors from temporal sub-stepping

In the previous section, it was shown that the re-simulation has O(dt?) errors if started
with an Euler scheme at an arbitrary time. These errors are too large for reproducing a DNS
database using realistic values of 6¢. For example, when 0t = 4 x 1073, even if we discard
the results at the first time step, the relative errors between the original and re-simulation
are approximately 10721072 in subsequent time steps. Using an initial Euler step in the
re-simulation compared to AB2 in the original computation results in an initial error that
persists in time—consistent to the behaviour when artificial errors were included in the
initial conditions. Although one could store an extra snapshot so that the re-simulation
starts with AB2 and obtain error-free data, this approach would appreciably increase the
storage requirements.

Rather than storing two time steps, we examine a different approach that does not in-

crease the required storage but only increases CPU cost during re-simulation: temporal

470

475

480

8 g
9. S
W, N, A
<! A ! e Ay
g 10 5" g 102 8 o v
A w
+ p
10® 1078
1074 1073 1072 10 1078 1072
St 5t

Figure 11. Re-simulations using and Euler time advancement throughout (1 < ¢ < 2). The original
simulation always uses the AB2 scheme. (a) u error, €, «, against t. (b) p error, £, ~, against ¢. In
(a) and (b), lines from above to bottom represent simulations with 6t = {4,2,1,0.5,0.25} x 1073
respectively. (c) €,,00 against 6t at the first time step. (d) max[e, o against 0t after the first time

step. In (c) and (d), the dashed line has a slope of 1 and the dashed-dotted line has a slope of 2.

sub-stepping. This idea aims to minimize the error between the original single AB2 step

and many smaller steps the first of which is Euler followed by AB2.

Consider integration from ¢ to ¢ + dt. The analytic integration could be approximated
by an AB2 scheme or an Euler scheme both with a time-step size §t. We have already
seen in the previous section that the differences between AB2 and Euler schemes lead to
re-simulation errors. Usually, an AB2 scheme produces smaller errors than Euler compared
with analytic (true) values. On the other hand, the time step from ¢ to ¢ 4 6t could also be
divided into, say, k sub-time steps: the size of each sub-time step is thus 6t/k (see Figure 12
for an example with k£ = 4). Integration from ¢ to ¢+t would then be computed using Euler
in the first sub-time step, then AB2 in the remaining (k — 1) sub-time steps. The numerical
integration results will approach the true value with increasing number of sub-steps k. The
single full-time-step Euler integration is the special case with k& = 1. Thus, one could expect
that the errors between the single full-time-step AB2 integration and the integration with

temporal sub-stepping would decrease first, then increase, and finally reach an asymptotic

490

495

500

505

Original simulation —AB2 -AB2- /'ABZ ~ /"ABZ'—\
to

Temporal sub-stepping

Figure 12. Schematic of temporal sub-stepping with four sub-time steps.

value as the number of time sub-steps k increases: the asymptotic value is the errors of
the AB2 scheme itself. Ideally, there will be a k& with which the re-simulation errors are
minimized, even though this optimized k, if it exists, would be different from one simulation

to another.

Beyond t + 6t, the re-simulation can proceed with AB2 using the original time step dt.
For example, the solution at t + 20t can be computed from information at ¢ and ¢ + dt;

similarly the solution at ¢ + 3t can use the information at ¢ 4+ dt and ¢ + 26t and so on.

The boundary conditions on I" at the sub-time steps can be approximated from temporal
interpolation of w’, from the original simulation data. For instance, in the example below,
the boundary conditions between ¢ and t + dt are obtained by applying piecewise cubic
Hermite interpolating polynomial (PCHIP) on stored boundary conditions (plane data) at
t — 8t t, t+ 6t and t + 20t

For demonstration, we perform a re-simulation of the original computation with 6t =
4 x 1073, starting from ¢ = 1 and advancing the simulation until ¢ = 2. Re-simulations
with different numbers of temporal sub-steps k, as well as the original AB2 scheme, are
compared. Just a reminder, k = 1 is equivalent to the re-simulation performing the entire
first step with Euler scheme. In this example, the results from a re-simulation with k£ = 1000
sub-time steps are used as the reference data to approximate the “true, exact” values which
are unknown. We discard the first few 6t to avoid including the pressure jump as seen in

the previous examples.

Figure 13(a) shows the maximum relative errors compared with the reference data for
1 <t < 2. The symbols denote the errors between the re-simulation and the reference data,
which decrease as k increases. In fact, the errors are proportional to k=2, or the square of the
size of the time sub-step (d¢/k)?, since the temporal scheme is AB2 in the re-simulation. The
horizontal lines represent the errors between the original AB2 simulation and the reference
data. The errors of the AB2 scheme itself are about 107°~10~*. Also from Figure 13(a), it

is clear that the errors between the re-simulations (symbols) and the original DNS (lines)

510

515

520

—~
&
S~—
—
=3
S~—

£ 3
) =R
7] =] A A u 8 10 2 A A u
4 +> 8 A O v 2 hN u}
- ~BAa 2 e N

+ XA w . w
= lo J%¥ 3k A
B O + P 3; 107 N BAA + p
ke RENG %
» w8 AN
g 10 LA 2,4 *, D:“_‘.‘— A A4
g + ~H g‘ 10 *. 0 (w O dl
© ~. A Q -k+
n + "\ H 3] b3
&a { = +_‘:*_
g 3 + + 4
B g0 102 LA 10?

number of sub-time step & number of sub-time step k

Figure 13. (a) The L* relative errors compared with the reference re-simulation (k = 1000). The
symbols represent the re-simulations with sub-time steps, while the lines represent the original
simulation with the AB2 scheme. The colours of the horizontal lines represent the same variables
as the symbols. (b) Re-simulation errors compared with the original simulation data, €, . In

both plots, the dash-dot line has a slope of 2.

decrease and then increase as k increases. However, it should be noted that the differences
between the symbols and lines do not equal to the actual errors between the re-simulations
and the original DNS, €, .

The re-simulation errors €, o, shown in Figure 13(b), decrease at a rate of second order
in k before about k£ = 6, and then become nearly constant. Although an optimal £ is not
observed, the drop of the errors is about two orders of magnitude in the current example.
The asymptotic values of €, « are also the AB2 errors shown in Figure 13(a). This example
shows that the re-simulation errors could decrease by two orders of magnitude with only 10
additional time sub-steps within the first 6t from the initial condition, and the minimum

errors are bound by those of the AB2 integration scheme in the original simulation.

D. Temporal sub-sampling for the boundary conditions

In all previous examples, the re-simulations adopted boundary conditions data that were
stored at every time step during the original DNS . This may not be necessary or feasible.
As mentioned before, the snapshots of the 10242 isotropic turbulence data set in JHTDB are
stored only every 10 simulation steps. When data is queried between the two stored time
steps, they are obtained with temporal interpolation and the errors are approximately 10~°

(we could not determine whether the interpolation errors are lower than 1075, because the

525

530

535

540

x10™ (b) 10°

—
o
~—
—

u
— — —v — — —v

" 1" AR
0.5 P : P M

8
-5
M 10 b,

WA FUA A
R R R U AVAVAINN YAV

Interpolation errors of
boundary conditions

1 1.05 1.1 1.15 1.2 1 1.05 1.1 1.15 1.2
t t

Figure 14. (a) The interpolation errors of boundary conditions. (b) €, o with interpolated bound-
ary conditions. The re-simulation is from ¢ = 1 to 2, but only ¢ = [1,1.2] is plotted here to more
clearly display the oscillations of the errors. The re-simulation starts with the AB2 scheme using

an extra snapshot provided. The time step size is 6t = 2 x 1073,

data on JHTDB are stored in single precision). Here we examine the impact of temporal

interpolation of temporally sub-sampled boundary data for re-simulation.

We have seen that the re-simulation errors are proportional to the errors in the boundary
conditions. Thus, if the boundary conditions are stored every few (M) time steps and
temporal interpolation is used during re-simulation, the errors in the re-simulation will be
directly proportional to the interpolation errors. Figure 14 shows an example: the time
step of the simulation is ¢t = 2 x 1073. The boundary data are stored at every Mipe =5
time steps, actually close to the time step requirement based on CFL (based on maximum
velocity) equaling to unity. Cubic spline interpolation with three points before and after the
query point is used for temporal interpolation. The L* relative errors of the interpolated
boundary condition fields on the I' planes are shown in Figure 14(a). The oscillations of
the errors are apparent, vanishing at each of the 50t time instants in which boundary data
are known exactly. The re-simulation starts at ¢ = 1 using the AB2 scheme with an extra
snapshot provided, and runs until £ = 2. As a result, no other errors are introduced in the
re-simulation, except those due to the temporal interpolation of the boundary conditions.
The maximum interpolation errors over time for {u, v, w, p} are {1.47, 1.54, 1.64, 9.66} x 107>
(Figure 14(a)). The re-simulation errors €, o, (Figure 14(b)) for {u,v,w, p} are {2.66, 2.08,
2.30, 24.2}x107°: all are only slightly higher than the interpolation errors. The oscillations
of the re-simulation errors are caused by the oscillatory errors of the temporal interpolation

of the boundary conditions.

545

550

555

560

565

570

VI. SUMMARY: RECOMMENDED CHOICES FOR STSR

The previous section has documented separately errors to be expected from various pa-
rameter choices for STSR. Here we now combine the various choices that may be expected
in an actual implementation of STSR: we use u* on the boundaries stored at every M, ;. = 5
DNS time steps, use £ = 10 for the initial temporal sub-sampling during the first time-step
of re-simulation, use cubic polynomial temporal interpolation of the stored w* and p bound-
ary values to interpolate to the re-simulation time-step dt, and integrate between ¢ = 1 and

=2.

Figure 15 compares two fields at t = 2 from the re-simulation to the original simulation:
(a) u-velocity and (b) z—component vorticity w, (computed using centered finite differenc-
ing). The contour lines of re-simulation fields and the original ones are on top of each
other.

Figure 15(c) shows the corresponding evolution of the L> errors. The vorticity errors are
about one order of magnitude higher than velocity errors and is about 10~*. This level of
difference between re-simulation and original DNS is acceptable and falls within the desired

guidelines.

VII. CONCLUSIONS

In the present paper, we propose an idea of data compression for numerical simulation
results of incompressible fluid flow. The entire simulation domain of the original simulation
is divided into multiple small sub-regions by planes. The data in the entire domain are
stored, say, at every few hundred or thousand time steps, while data on the dividing planes
are stored at every time step, or sub-sampled every few time steps. Once data at an arbitrary
position and time is needed, a re-simulation of the small cube region (sub-domain) which
includes that point is performed. The data stored in the entire domain are used as the initial
condition, while the planar data surrounding the sub-domain are used as the boundary
conditions.

It is found that if the numerical scheme in the re-simulation matches the original sim-
ulation exactly, the re-simulation will produce error-free results. On the other hand, any

mismatch between the re-simulation and the original one can produce significant errors,

575

580

585

Figure 15. (a) Contour plot of u on a randomly selected slice. (b) Contour plot of z-component
vorticity on a randomly selected slice. In (a) and (b), colour contours are the original simulation,
while the black dash contour lines are the re-simulation. (c¢) L™ errors of u and z— component

vorticity.

exceeding the minimum error levels one would like to enforce for a database that contains

spatially and temporally sub-sampled data.

For example, it was found that re-simulation errors are too high when using velocity and
pressure differences (or pressure) for the boundary condition. It was shown that the correct
velocity boundary conditions for the re-simulation should be the intermediate velocity after
the projection step: this is because the boundaries of the sub-domain are still the internal

part of the entire domain of the original simulation.

Another example is that the re-simulation should use the same time integration scheme
as the original simulation. This poses a challenge if only one snapshot of the initial field is
provided: the re-simulation must start with an Euler scheme while the original simulation
has been advanced with an AB2 scheme. The challenge can be resolved by storing an extra
snapshots so that the re-simulation could start with the AB2 scheme as well, or could be

improved using Euler-AB2 integration with several sub-time steps to approximate the first

590

595

600

605

610

615

AB2 integration in the original simulation. We have shown the latter approach saves storage
space, and can also reduce the re-simulation errors by two orders of magnitude with only 10
sub-time steps added in the first original time step.

The findings also imply that if the original simulation contains source terms in the Navier-
Stokes equations, such as in forced isotropic flow these source terms must also be recorded
together with the original simulation and included in the re-simulation.

Tests using boundary data with added noise show that re-simulation errors remain lin-
early proportional to the errors in the boundary conditions. This observation helps explain
several trends in re-simulation errors. Also, it provides a guideline about how much temporal
sub-sampling of the boundary data may be used. The resulting errors in re-simulation will
be proportional to the errors caused by temporal interpolation on the boundary data. Ex-
periment shows the re-simulation error is similar to the interpolation errors of the boundary
conditions. Thus, in a real application, one could carefully control the interval of two stored
plane data and achieve further compression of the simulation data.

A sample application combining all of the recommended sub-sampling parameters and
re-simulation strategies shows that relative maximum errors in velocity on the order of 107°
to 107*, which is acceptable and leads to errors of less that 0.1% in velocity gradients.
These levels are acceptable for applications of building numerical turbulence databases like
JHTDB. It is worth reiterating that the errors in the numerical experiments performed
here did not reveal exponential growth in time, at least not over the tested time horizons.

19,2122 “gymchronization of chaos?® and nudging?® of

From the viewpoint of data assimilation
Navier-Stokes turbulence, the present results have implications on how effective the time-
evolving boundary conditions are at constraining and effectively synchronizing or nudging
the dynamics. In prior work!? it was shown that providing the correct large-scale Navier-
Stokes dynamics at all wavenumbers down to ~ 0.2k, (i.e. corresponding to grid spacings
of ~ 15n) leads to eventual slaving (synchronization) of the smaller scales, while coarser
truncations lead to chaotic divergence of trajectories at the small scales (similar results were
obtained later in??). Here we show something different: that domains of significantly larger
size (30n)® can still remain slaved to the dynamics at all scales provided the data at the
boundaries contain scales down to the smallest viscous scales (DNS resolution). A more

systematic analysis, such as testing how large the re-simulation sub-domain can be made

before the boundary information is no longer able to synchronize the dynamics in the core

620

625

630

635

640

645

of the sub-domain, is beyond the scope of the present study.

The sub-sampling and local re-simulation technique described in this paper could also
be applied on unstructured meshes, as long as the correct information is stored during
the original simulation and the resimulation uses exactly the same method as the original
simulation. If a spectral method is used in the original simulation (such as in several of the
existing JHTDB datasets), using local resimulation with (e.g.) finite differencing will lead to
significant errors. If the spectral method is used only in one or two directions, like channel
flow, good accuracy can be achieved if the resimulation domain consists of the entire 1D
“pencils” or 2D “slabs”. However, if the spectral method is used in all three directions, the
present technique cannot reproduce error-free data unless the resimulation is done on the

entire (large) domain, which is expected to be prohibitive.

We remark that alternative re-simulation methods e.g. based on machine learning tools
instead of grid-based CFD methods could be considered. For instance, one could apply
Physics Informed Neural Network (PINNs) methods®! to train an Artificial Neural Network
constrained by Navier-Stokes equations to predict field data at desired points and time using
similar types of initial and bounding surface data as used in the present method as inputs
(see also Ref.? for a recent example). The present results documenting errors to be expected
from Navier-Stokes based re-simulation can serve as useful reference or benchmark to which

to compare such alternative methodologies.

Finally, although this work is focused on turbulence in incompressible flows, extensions
of the basic idea and methodological requirements to other fields of computational physics
appear possible. Also, other compression tools can be applied on top of the present technique.
For example, one can use wavelet methods?® to further compress the planar and volumetric

data.

ACKNOWLEDGMENTS

The authors acknowledge funding from the National Science Foundation (grant # OCE-
1633124). Computations were made possible by the Maryland Advanced Research Com-
puting Center (MARCC) and the SciServer platform. Useful discussions and conversations

with Profs. A. Szalay, R. Burns, G. Eyink and Dr. C. Lalescu are gratefully appreciated.

650

655

660

665

670

APPENDIX A: FAST POISSON SOLVER FOR RE-SIMULATION

In this appendix, details about a spectral fast Poisson solver for equation (5) used in
re-simulations are described. Since the re-simulation sub-domain is in general not periodic,

31

a fast Poisson solver using discrete sine and cosine transforms®" is implemented.

Consider a one-dimension Poisson equation,
V) =b (17)

on a uniform grid x; = ih (i = 1,...,N), where h = Az is the constant grid spacing. The

Poisson equation discretized with second-order central finite differences is

Vi1 — 20 + P

12 = b;, i=1,...,m, (18)

and can be represented in Fourier space as
Ny =b;, j=1,...,N, (19)
where A = —k? is the eigenvalue and &’ is the modified wavenumber. Thus, the Poisson

equation can be solved in three steps: (i) calculate b; from the forward Fourier /sine/cosine
transform of b; (ii) find @@j = l;j/)\j from equation (19); (iii) calculate ¢ from the inverse
transform of ’(/A)j. The transforms used in (i,iii) and the eigenvalues A; depend on the boundary
conditions and are listed in tables II and III. In table II, “DFT” refers to the discrete Fourier
transform, “DST-II” to type-II discrete sine transform, and “DCT-II" to type-II discrete
cosine transform. For non-homogeneous boundary conditions, b; and b, can be modified in
order to absorb the values at the boundaries.

When A\, = 0, an additional equation is required, e.g. with the periodic or Neumann
boundary conditions in all directions one could simply set 1/31 = 0 leading to a zero-mean
solution. It should also be noted that this algorithm gives the least square solution for the
discretized Poisson equation if the compatibility condition) b; = 0 is not satisfied.

The discrete Fourier, sine and cosine transforms are included in various libraries, including
FFTW and FFTPACK. If a DST-II or DCT-II is not implemented, e.g.in the Intel Math
Kernel Library (MKL), it can be computed via a DCT-III combined with O(2n) pre- and
post-processing.

Extension of the algorithm to 3D is straightforward: (i) calculate I;jl j»js from the forward
transform of b; (i) find 0, jyis = b1 jais/Nirjaisr WHere Njinis = Ajy + Ajy, + Ajy; (iii) calculate

¥ from the backward transform of 1@-1 Jais-

675

680

685

Boundary conditions Forward Backward

Periodic (xg = Tm, Tmt1 = 1) DFT Inverse of DFT
Dirichlet on cell faces

DST-II Inverse of DST-II
(r14+20=0, Tpmy1 + xm =0)
Neumann on cell faces

DCT-II Inverse of DCT-II

(1 —20=0, Typy1 — Ty =0)

Table II. The transforms used in steps 1 and 3 in the fast Poisson solver.

Boundary conditions Eigenvalues
T 4 -2 (k—1)m
Periodic (zg = @, Tmy1 = 1) Ak = —733 sin %
Dirichlet on cell faces
A\ = —- sin? AT
k= Th2 2m
(CL‘l +20=0, Typy1 +Tm = 0)
Neumann on cell faces N\ = 4 g2 D
i U e

(fL‘l — X0 :O, Tm+1 — Tm :0)

Table III. The eigenvalues used in step 2 in the fast Poisson solver.

If the grid is non-uniform in only one direction, e.g. in channel or boundary-layer flows,
the spectral approach is adopted in all dimensions where the grid is uniform, and a tri-
diagonal solver is adopted in the direction of grid stretching (see Moin3", Section 6.2.1 for
an example). In fact, solving a tri-diagonal linear system is faster than Fourier transforms,
since the former has a computational cost O(N), which is less than that of fast Fourier
transform, O(N log N).

The current fast Poisson solver is faster in time and saves the memory compared with
a Poisson solver implementing sparse matrix solver. Table IV compares the time spent
in solving the discrete Poisson equation using sparse matrix LU decomposition, FFT and
DST/DCT. When the gird comprises 128% points, the LU decomposition requires exten-
sive memory and in our tests using limited resources (as one would like to use during re-
simulation), it runs out of memory. The solution using DST/DCT requires approximately

twice the time of the DFT, and only one-dimensional DST/DCT are available in the major-

Grid points LU decomposition

DFT DST/DCT

323
483
643
963

1283

0.0082 s

0.0357 s

0.1137 s

0.5451 s

<107%s <1073s
<1073 s 0.0016 s
0.0019 s 0.0035 s
0.0052s 0.0101 s

0.0109 s 0.0234 s

Table IV. Time spent in solving the discrete Poisson equation with a sparse matrix solver, FFT
or DST/DCT. The timing has a resolution of 1072 s, and is averaged over 100 runs. In the LU
decomposition method, only the solution phase (i.e.
the LU decomposition) is timed. The hardware is Intel Core i5-7500 (4 Cores, 3.4GHz) and
16GB memory. The code uses Intel Fortran compiler, Intel MKL and OpenMP in Windows. The
parallelization of the sparse matrix solver and the DFT is implemented in Intel MKL, while that

of DST/DCT is implemented by authors using OpenMP. In the 128 case, the LU decomposition

runs out of memory.

ity of numerical libraries. Nevertheless, DST/DCT outperforms the direct solver based on

forward and backward substitutions after

the sparse matrix LU decomposition, and its scalability is superior.

690

695

700

705

710

7

iy

5

720

REFERENCES

1J. Kim, P. Moin, and R. Moser, “Turbulence statistics in fully developed channel flow at
low Reynolds number,” Journal of Fluid Mechanics 177, 133-166 (1987).

2P. Moin and K. Mahesh, “DIRECT NUMERICAL SIMULATION: A Tool in Turbulence
Research,” Annual Review of Fluid Mechanics 30, 539-578 (1998).

3D. Livescu and J. R. Ristorcelli, “Variable-density mixing in buoyancy-driven turbulence,”
Journal of Fluid Mechanics 605, 145-180 (2008).

“P. K. Yeung, D. A. Donzis, and K. R. Sreenivasan, “Dissipation, enstrophy and pressure
statistics in turbulence simulations at high Reynolds numbers,” Journal of Fluid Mechanics
700, 5-15 (2012).

°I. Bermejo-Moreno, J. Bodart, J. Larsson, B. M. Barney, J. W. Nichols, and S. Jones,
“Solving the compressible Navier-Stokes equations on up to 1.97 million cores and 4.1
trillion grid points,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis on - SC 13 (ACM Press, New York, New
York, USA, 2013) pp. 1-10.

°P. K. Yeung, X. M. Zhai, and K. R. Sreenivasan, “Extreme events in computational
turbulence,” Proceedings of the National Academy of Sciences 112, 12633-12638 (2015).

™. Lee and R. D. Moser, “Direct numerical simulation of turbulent channel flow up to
Rer=5200," Journal of Fluid Mechanics 774, 395415 (2015), arXiv:1410.7809.

8J. Lee and T. A. Zaki, “Detection algorithm for turbulent interfaces and large-scale struc-
tures in intermittent flows,” Computers & Fluids 175, 142-158 (2018).

%Y. Yamamoto and Y. Tsuji, “Numerical evidence of logarithmic regions in channel flow at
R er=8000,” Physical Review Fluids 3, 012602 (2018).

103, You and T. A. Zaki, “Conditional statistics and flow structures in turbulent boundary
layers buffeted by free-stream disturbances,” Journal of Fluid Mechanics 866, 526-566
(2019).

7. C. del Alamo and J. Jimenez, “Spectra of the very large anisotropic scales in turbulent
channels,” Physics of Fluids 15, L41 (2003).

2E. Perlman, R. Burns, Y. Li, and C. Meneveau, “Data exploration of turbulence simu-
lations using a database cluster,” in Proceedings of the 2007 ACM/IEEE conference on
Supercomputing - SC "07 (ACM Press, New York, New York, USA, 2007) p. 1.

725

730

735

740

745

750

13Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, and
G. Eyink, “A public turbulence database cluster and applications to study Lagrangian
evolution of velocity increments in turbulence,” Journal of Turbulence 9, N31 (2008),
arXiv:0804.1703.

YH. Yu, K. Kanov, E. Perlman, J. Graham, E. Frederix, R. Burns, A. Szalay, G. Eyink,
and C. Meneveau, “Studying Lagrangian dynamics of turbulence using on-demand fluid
particle tracking in a public turbulence database,” Journal of Turbulence 13, N12 (2012).

15D, Huffman, “A Method for the Construction of Minimum-Redundancy Codes,” Proceed-
ings of the IRE 40, 1098-1101 (1952).

16J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on Information Theory 23, 337-343 (1977).

"ISO., “ISO/IEC 11172-3:1993 - Information technology — Coding of moving pictures and
associated audio for digital storage media at up to about 1,5 Mbit/s — Part 3: Audio,”
(1993).

181SO., “ISO/IEC 10918-1:1994 - Information technology — Digital compression and coding
of continuous-tone still images: Requirements and guidelines,” (1994).

YK. Yoshida, J. Yamaguchi, and Y. Kaneda, “Regeneration of small eddies by data assim-
ilation in turbulence,” Physical review letters 94, 014501 (2005).

20C. C. Lalescu, C. Meneveau, and G. L. Eyink, “Synchronization of chaos in fully developed
turbulence,” Physical review letters 110, 084102 (2013).

21C. Foias, C. F. Mondaini, and E. S. Titi, “A discrete data assimilation scheme for the so-
lutions of the two-dimensional navier—stokes equations and their statistics,” STAM Journal
on Applied Dynamical Systems 15, 2109-2142 (2016).

22J. L. Callaham, K. Maeda, and S. L. Brunton, “Robust flow reconstruction from limited
measurements via sparse representation,” Physical Review Fluids 4, 103907 (2019).

2P, C. Di Leoni, A. Mazzino, and L. Biferale, “Synchronization to big data: Nudging the
navier-stokes equations for data assimilation of turbulent flows,” Physical Review X 10,
011023 (2020).

24 A Kravchenko and P. Moin, “On the Effect of Numerical Errors in Large Eddy Simulations
of Turbulent Flows,” Journal of Computational Physics 131, 310-322 (1997).

2], van Kan, “A Second-Order Accurate Pressure-Correction Scheme for Viscous Incom-

pressible Flow,” STAM Journal on Scientific and Statistical Computing 7, 870-891 (1986).

755

760

765

770

775

780

26]. B. Bell, P. Colella, and H. M. Glaz, “A second-order projection method for the incom-
pressible navier-stokes equations,” Journal of Computational Physics 85, 257283 (1989).

27L. Nicolaou, S. Jung, and T. Zaki, “A robust direct-forcing immersed boundary method
with enhanced stability for moving body problems in curvilinear coordinates,” Computers
& Fluids 119, 101-114 (2015).

A J. Chorin, “Numerical solution of the Navier-Stokes equations,” Mathematics of Com-
putation 22, 745-745 (1968).

2], Kim and P. Moin, “Application of a fractional-step method to incompressible Navier-
Stokes equations,” Journal of Computational Physics 59, 308-323 (1985).

30F. H. Harlow and J. E. Welch, “Numerical Calculation of Time-Dependent Viscous In-
compressible Flow of Fluid with Free Surface,” Physics of Fluids 8, 2182 (1965).

31U. Schumann and R. A. Sweet, “Fast Fourier transforms for direct solution of poisson’s
equation with staggered boundary conditions,” Journal of Computational Physics 75, 123~
137 (1988).

32P. M. Gresho and R. L. Sani, “On pressure boundary conditions for the incompressible
Navier-Stokes equations,” International Journal for Numerical Methods in Fluids 7, 1111—
1145 (1987).

33S. Abdallah and J. Dreyer, “Dirichlet and Neumann boundary conditions for the pressure
poisson equation of incompressible flow,” International Journal for Numerical Methods in
Fluids 8, 1029-1036 (1988).

34M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations,” Journal of Computational Physics 378, 686-707 (2019).

35K. Fukami, K. Fukagata, and K. Taira, “Super-resolution reconstruction of turbulent flows
with machine learning,” Journal of Fluid Mechanics 870, 106-120 (2019).

36K. Schneider and O. V. Vasilyev, “Wavelet Methods in Computational Fluid Dynamics,”
Annual Review of Fluid Mechanics 42, 473-503 (2010).

37P. Moin, Fundamentals of Engineering Numerical Analysis, 2nd ed. (Cambridge University

Press, 2010) p. 256.

