Route to Air and Moisture Stable β-Difluoroboryl Acrylamides

Russell G. Fritzemeier,[†] Eric J. Medici,[†] Connor Szwetkowski, Laura G. Wonilowicz, Christopher D. Sibley, Carla Slebodnick, and Webster L. Santos*

Department of Chemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, VA 24061 (USA) Supporting Information Placeholder

ABSTRACT: A method for the preparation of air stable difluoroboryl acrylamides is reported. In contrast to the ubiquitous organotrifluoroborate salts, difluoroboryl acrylamides are relatively nonpolar and are readily purified by silica chromatography. Difluoroboryl acrylamides serve as efficient substrates in cross-coupling reactions to afford the corresponding trisubstituted acrylamides in good to excellent yields. The utility of the difluoroboryl group in various chemical transformations is presented.

Boron containing compounds are commonplace in organic synthesis. Transformations involving organoboron substrates are fundamental in any organic chemist's toolkit. Specifically, the Suzuki-Miyaura cross-coupling reaction has become a "household" name in organic chemistry and continues to demonstrate the usefulness of organoboron substrates as synthetic intermediates. 1 Such cross-coupling reactions are ubiquitous and allow for the construction of otherwise difficult C-C bonds. In recent years, a large fraction of synthesis in the pharmaceutical industry consists of such cross-coupling reactions.² To meet the needs of increasingly complex and niche syntheses as well as practicality and commercial accessibility, a balance of stability and reactivity in organoboron substrates is necessary. For example, disubstituted acrylamides can be assembled via cross-coupling reactions from organoboron building blocks, which can be subsequently cyclized to 2-quinolones (Figure 1).³ Quinolone tipifarnib is a the farnesyltransferase inhibitor that is currently in phase II clinical trials.4

Among the prevalent organoboron ancillary motifs, potassium trifluoroborate salts have received much attention due to their air and moisture stability. These compounds efficiently undergo cross-coupling reactions, 5 which has led to the

Figure 1. Diaryl substituted acrylamides derived from boronic acid derivatives as synthetic building blocks.

Figure 2. Fluorescent difluoroborates used in sensing and imaging.

widespread commercial availability of trifluoroborate salts. Exhaustive work by Molander and co-workers demonstrates the utility of organotrifluoroborates in the synthesis of important commodity materials. 1b Fortunately, access to trifluoroborates is relatively straightforward as fluoride sources such as potassium fluoride or potassium bifluoride readily produce the tetravalent borate salts. 5a, 5b While the polar nature of these compounds endows themselves air and moisture stability, their purification is limited to crystallization procedures that is often contaminated by the fluoride source or through tedious Soxhlet extraction. In contrast, the complementary difluoroborate counterparts have received far less attention in synthesis. In biology, however, BF2-containing dyes such as BODIPY, curcumin-BF₂, and other related structures have been extensively explored primarily for their use as dyes, chelators, and imaging tools (Figure 2).6 For example, BODIPY 2 recently reported by Yang and co-workers demonstrates high quantum yield, cell permeability, and utility in live cell imaging (Figure 2).7 Additionally, organodifluoroborates have served as efficient catalysts in conjugate addition reactions⁸ and as frustrated Lewis pair catalysts in C-H activation borylations. Unfortunately, these difluoroborates often share the same polarity and purification burdens as trifluoroborate salts. While organic difluoroborates are typically generated in situ due to stability, handling, and the

Scheme 1. Previous Work

propensity of boron to form trifluoroborate salts, ¹⁰ intramolecular Lewis acid-base pair formation often affords stable ad-

Seminal work by Florio and co-workers reported the synthesis of aryl tetra-coordinated difluoroborates and demonstrated their reactivity towards cross-coupling reactions (Scheme 1a). Recently, Harrity and co-workers disclosed a benzannulation reaction mediated by difluoroborates generated *in situ* that afforded difluoroboryl benzamides in good yield (Scheme 1b). Intramolecular Lewis acid-base interactions with an amide or N-heterocycle directing group mediated the transformation and stabilized the resulting difluoroborate complex. In follow-up work, an aza-Diels-Alder cycloaddition reaction between 1,2,4-triazines and alknyldifluoroboranes afforded

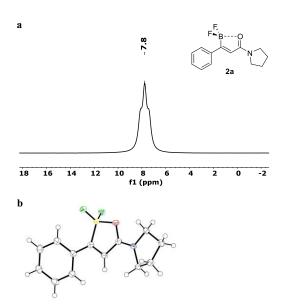
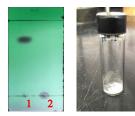
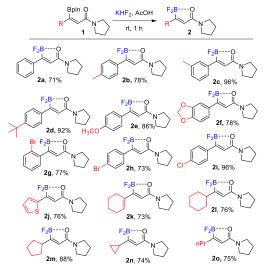




Figure 3. 11 B NMR (a) and X-ray Crystal Structure (b) for 2a (CDC 1948315).

Figure 4. (a) Thin layer chromatography of 2a (lane 1) and methyl (E)-3-phenyl-3-(trifluoroboryl)acrylate (lane 2) (b) Representative difluoroborate after months of storage under room air on the benchtop.

Scheme 2. Synthesis of Difluoroboryl Acrylamides^a

 a Reaction conditions: 1 (0.2 mmol) and KHF₂ (0.6 mmol) were dissolved in acetic acid (2 mL) at room temperature for 0.5-1 h. Isolated yields are shown.

similar difluoroboryl picolinamide complexes (Scheme 1c).¹³ In both examples, the resulting difluoroborate complexes served as effective substrates in subsequent cross-coupling reactions as the boron moiety is attached to the aryl ring.

Inspired by these previous studies and our work in conjugate borvlation reactions with α.β-unsaturated carbonvls. 14 we were interested in stable vinyl boron derivatives and their potential application in organic synthesis. As such, we attempted to synthesize trifluoroborate salts from (E)- β -boryl acrylamides (1) and KHF₂ (Scheme 1d). To our surprise, the expected trifluoroborate salt 2a' was not formed; instead a significantly less polar product was observed by thin layer chromatography. Isolation and extensive characterization of the product revealed difluoroboryl acrylamide (2a) (Scheme 1d). 11B NMR indicated a strong amide O-B coordination as suggested by a single peak at 7.8 ppm, which is indicative of a tetrahedral geometry on boron (Figure 3a). We note that the corresponding fully saturated β-boryl amides reported in the literature demonstrate no intramolecular coordination at least on the ¹¹B NMR time scale (peak at 28 ppm indicates trigonal boron center) and readily form trifluoroborate salts; 15 however, recently reported (E)-βboryl acrylamides exhibit intramolecular coordination and a tetrahedral boron center as determined by ¹¹B NMR. ¹⁶ This suggests that internal coordination of the carbonyl oxygen must be sufficiently stable to replace one of the fluorine atom in a trifluoroborate, which is also entropically driven because of the increase in effective molarity of the Lewis base. To demonstrate

necessity of the (Z)-configuration for difluoroborate synthesis, (Z)-1a was prepared. 14a Upon treatment of (Z)-1a with KHF₂ in acetic acid, the corresponding difluoroboryl acrylamide was not observed. An X-ray crystal structure of 2a unequivocally identified the difluoroboryl structure and revealed a B-O coordinate bond length of 1.535 Å (Figure 3b). In contrast to the expected trifluoroborate or difluoroborate salts, 2a was relatively nonpolar relative to the boronate ester starting material and was readily purified by silica gel chromatography. Thin layer chromatography highlighted the stark contrast in polarity between 2a and potassium trifluoroborates as well as the well-delineated migration of 2a on silica (Figure 4a). Furthermore, we observed that these difluoroboryl acrylamides could be stored as a dry white solid at room temperature without special storage conditions as no physical changes or degradation products were observed during the course of this study (at least 18 months, see Figure 4b). From our observations, these difluoroboryl acrylamides share the desirable stability and reactivity (vide infra) as trifluoroborate salts but with the added advantage of ease of handling and purification.

To determine the nature and reactivity of these compounds, we investigated whether a variety of pinacol protected substrates can be readily transformed to difluoroboryl acrylamides (Scheme 2). Using previously reported methods to access the (E)-β-boryl acrylamide starting material, 16a difluoroboryl acrylamides 2a-20 were efficiently synthesized under mild conditions using potassium bifluoride in acetic acid (Scheme 2). Difluoroboryl acrylamides containing alkyl groups (2a-2d) and electron donating groups such as methoxy (2e) and methylenedioxy (2f) on the phenyl ring were synthesized from their corresponding pinacol boronate acrylamides in good to excellent yields with no significant bias with respect to electronics or sterics observed. Difluoroboryl acrylamide products bearing halides such as bromine (2g, 2h) and chlorine (2i) were also synthesized in excellent yield. Heterocycle such as thiophene derivative (1i) was also effectively transformed to the diborylacrylamide product (2j) in good yield. Dienamide (1k) served as an efficient substrate to afford 2k in good yield. Cyclohexyl (11), cyclopentyl (1m) or cyclopropyl (1n) substituted vinyl boronic acid derivatives were readily converted to the corresponding difluoroborates (21-2n). Furthermore, linear alkanes were likewise tolerated generating compound 20. These results suggest the wide substrate tolerance of the reaction.

Scheme 3. Synthesis of Difluoroboryl Acrylamides^a

^aGeneral procedure: **1** (0.2 mmol) and KHF₂ (0.6 mmol) were dissolved in acetic acid (2 mL) at room temperature for 0.5-1 h. Isolated yields are shown.

Next, we found it prudent to determine whether substitutions on nitrogen affect the ability of the amide oxygen to form an internally coordinated boron center. As such, (E)- β -boryl acrylamides 3a-3i were prepared and converted to the corresponding difluoroboryl acrylamides (Scheme 3). The tertiary dimethyl amide difluoroborate (4a) was synthesized in excellent yield. Secondary amides bearing a methyl (4b) or isopropyl (4c) groups were synthesized from their corresponding substrates in good yield, albeit at slightly lower yields. Further, an allyl substituted amide (3d) very efficiently afforded the product 4d in excellent yield. Morpholinamide (3e) was also a competent substrate for the reaction to afford 4e. In the case of a TBS-protected alcohol (3f), fluorination proceeded with conversion to the difluoroborate with concurrent cleavage of the silyl protecting group to generate the corresponding alcohol 4f. In the presence of dimethylphenylsilyl containing substrates 3g-3i, ¹⁷ 4g-4i were isolated in moderate to good yields. To our delight, the dimethylphenylsilyl group was well tolerated. We also found that the reaction was compatible with other protecting groups such as Boc as the Boc-protected piperazine 4j was isolated in good yield.

Next we turned our attention to the reactivity of the difluoroboryl acrylamides in cross-coupling reactions. To our delight, difluoboryl acrylamides served as efficient substrates under standard Suzuki-Miyaura cross-coupling conditions (Scheme 4). ^{15f} For example, difluoroboryl acrylamide **2a** effectively underwent the cross-coupling reaction against a variety of electron rich and electron deficient aryl bromides to afford the corresponding trisubstituted acrylamides **5a-5e**. Napthalene as well as other heteroaromatics such as benzofu-

Scheme 4. Suzuki-Miyaura Cross-Coupling of Difluoroboryl Acrlyamides^a

^aGeneral procedure: **2a** (0.2 mmol), aryl bromide (0.22 mmol), Pd(OAc)₂ (0.02 mmol), XPhos (0.04 mmol), and K₂CO₃ (0.6 mmol) in CPME:H₂O (1 mL:0.4 mL) at 90 °C for 5-16 h. Isolated yields are shown. CPME: cyclopentyl methyl ether.

Scheme 5. Transformations of Difluoroboryl Acrylamides

ran, benzothiophene, benzothiazole, quinoline and pyridine substituents served as excellent substrates generating 5f-5k in good to excellent yields. Furthermore, vinyl bromide was productively cross-coupled to yield the conjugated dieneamide 5l.

In addition to cross-coupling reactions, we investigated the versatility of the organoboron derivative toward other transformations. Recent interest in benzoxaboroles as pharmacophores in medicinal chemistry¹⁸ such as in the FDA approved drugs Crisaborole (Eucrisa)¹⁹ and Tavaborole (Kerydin)²⁰ are increasing. Thus, synthetic methods towards these important class of compounds are important. Fortunately, we found that treating 2a with sodium borohydride in ethanol afforded 3-phenyl oxaborole 6 in 65% yield (Scheme 5a). We previously demonstrated the similar transformation using the corresponding ester^{16a} but this is the first example of the conversion from an amide. In contrast, attempts to reduce the corresponding pinacol protected version of 2a under similar conditions were unsuccessful.

Because the boron center in difluoroboryl acrylamides are tetrahedral in nature, we hypothesized that they will likewise serve a dual purpose of acting as protecting group. For example, secondary amide 4b was subjected to simple alkylation with sodium hydride and methyl iodide to produce tertiary amide 4a in 80% yield (Scheme 5b). Under these basic conditions, we did not observe any protodeboration. Furthermore, the difluoroboryl group remained intact during the hydrogen chloride-mediated Boc-deprotection of 4j affording the HCl salt 7 in excellent yield (Scheme 5c). Stability under oxidative condition was also explored using allyl substituted amide 4d (Scheme 5d). Oxidization with mCPBA proceeded in excellent yield affording epoxide 8. This chemoselectivity demonstrates the utility of difluoroboryl group in modern synthetic chemistry.

In conclusion, we have discovered a class of readily accessible difluoroboryl compounds with excellent potential towards further transformation. A notable property of these molecules is their stability and nonpolar nature affording the capacity to purification using silica gel column chromatography. The versatility of these substrates was demonstrated not only in their ability to undergo Suzuki-Miyaura cross-coupling reaction but also as carbon protecting groups in oxidation as well as other reactions. The potential application of these compounds is currently under investigation in our labs and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental details and characterization data for all new compounds.

Accession Codes

CCDC 1948315 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing da-ta_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.).

AUTHOR INFORMATION

Corresponding Author

*E-mail: santosw@vt.edu ORCID: 0000-0002-4731-8548

Author Contributions

[†]These authors contributed equally to this work.

ACKNOWLEDGMENT

We acknowledge the financial support by the National Science Foundation (CHE-1414458) and under (CHE-1726077) for X-ray crystallography experiments. We also thank the Virginia Tech graduate school for fellowship funding for Russell G. Fritzemeier.

REFERENCES

- (1) (a) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. *Chem. Rev.* 1995, 95, 2457-2483; (b) Molander, G. A.; Bernardi, C. R. Suzuki-Miyaura Cross-Coupling Reactions of Potassium Alkenyltrifluoroborates. *J. Org. Chem.* 2002, 67, 8424-8429; (c) Molander, G. A.; Sandrock, D. L. Potassium Trifluoroborate Salts as Convenient, Stable Reagents for Difficult Alkyl Transfers. *Curr. Opin. Drug Discov. Devel.* 2009, 12, 811-823; (d) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. *Angew. Chem. Int. Ed.* 2012, 51, 5062-5085.
- (2) (a) Brown, D. G.; Boström, J. Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? *J. Med. Chem.* **2016**, *59*, 4443-4458; (b) Suzuki, A. Cross-Coupling Reactions Of Organoboranes: An Easy Way To Construct C–C Bonds (Nobel Lecture). *Angew. Chem. Int. Ed.* **2011**, *50*, 6722-6737; (c) Boström, J.; Brown, D. G.; Young, R. J.; Keserü, G. M. Expanding the Medicinal Chemistry Synthetic Toolbox. *Nat. Rev. Drug Discov.* **2018**, *17*, 922.
- (3) (a) Moon, Y.; Jang, E.; Choi, S.; Hong, S. Visible-Light-Photocatalyzed Synthesis of Phenanthridinones and Quinolinones via Direct Oxidative C–H Amidation. *Org. Lett.* **2018**, *20*, 240-243; (b) Liu, L.; Zhang, T.; Yang, Y.-F.; Zhang-Negrerie, D.; Zhang, X.; Du, Y.; Wu, Y.-D.; Zhao, K. Metal-Free Synthesis of 3-Arylquinolin-2-ones from Acrylic Amides via a Highly Regioselective 1,2-Aryl Migration: An Experimental and Computational Study. *J. Org. Chem.* **2016**, *81*, 4058-4065; (c) Berrino, R.; Cacchi, S.; Fabrizi, G.; Goggiamani, A. 4-Aryl-2-quinolones from 3,3-Diarylacrylamides through Intramolecular Copper-Catalyzed C–H Functionalization/C–N Bond Formation. *J. Org. Chem.* **2012**, *77*, 2537-2542; (d) Inamoto, K.; Saito, T.; Hiroya, K.; Doi, T. Palladium-Catalyzed Intramolecular Amidation of C(sp²)–H Bonds: Synthesis of 4-Aryl-2-quinolinones. *J. Org. Chem.* **2010**, *75*, 3900-3903.

- (4) Yam, C.; Murthy, R. K.; Valero, V.; Szklaruk, J.; Shroff, G. S.; Stalzer, C. J.; Buzdar, A. U.; Murray, J. L.; Yang, W.; Hortobagyi, G. N.; Moulder, S. L.; Arun, B. A Phase II Study of Tipifarnib and Gemcitabine in Metastatic Breast Cancer. *Invest. New Drug.* **2018**, *36*, 299-306.
- (5) (a) Darses, S.; Genet, J.-P. Potassium Organotrifluoroborates: New Perspectives in Organic Synthesis. *Chem. Rev.* **2008**, *108*, 288-325; (b) Molander, G. A. Organotrifluoroborates: Another Branch of the Mighty Oak. *J. Org. Chem.* **2015**, *80*, 7837-7848; (c) Molander, G. A.; Ellis, N. Organotrifluoroborates: Protected Boronic Acids That Expand the Versatility of the Suzuki Coupling Reaction. *Acc. Chem. Res.* **2007**, *40*, 275-286.
- (6) (a) Loudet, A.; Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891-4932; (b) Zhang, G.; St. Clair, T. L.; Fraser, C. L. Synthesis and Fluorescent Properties of Difluoroboron Dibenzoylmethane Polycaprolactone. Macromolecules 2009, 42, 3092-3097; (c) Bellinger, S.; Hatamimoslehabadi, M.; Borg, R. E.; La, J.; Catsoulis, P.; Mithila, F.; Yelleswarapu, C.; Rochford, J. Characterization of a NIR absorbing thienyl curcumin contrast agent for photoacoustic imaging. Chem. Commun. 2018, 54, 6352-6355; (d) Mi, W.; Qu, Z.; Sun, J.; Zhang, F.; Zhai, L.; Zhao, J.; Ye, K. Pyrimidine-Containing β-Iminoenolate Difluoroboron Complexes Acting as Non-Traditional π -Gelators and Mechanofluorochromic Dyes. New J. Chem. 2018, 42, 12882-12890; (e) Kowada, T.; Maeda, H.; Kikuchi, K. BODIPY-Based Probes for the Fluorescence Imaging of Biomolecules in Living Cells. Chem. Soc. Rev. 2015, 44, 4953-4972; (f) Boens, N.; Leen, V.; Dehaen, W. Fluorescent Indicators Based on BODIPY. Chem. Soc. Rev. 2012, 41, 1130-1172.
- (7) Yang, J.; Fan, Y.; Cai, F.; Xu, X.; Fu, B.; Wang, S.; Shen, Z.; Tian, J.; Xu, H. BODIPY Derivatives Bearing Borneol Moieties: Enhancing Cell Membrane Permeability for Living Cell Imaging. *Dyes Pigments* **2019**, *164*, 105-111.
- (8) So, S. S.; Burkett, J. A.; Mattson, A. E. Internal Lewis Acid Assisted Hydrogen Bond Donor Catalysis. *Org. Lett.* **2011**, *13*, 716-719.
- (9) Légaré, M.-A.; Rochette, É.; Légaré Lavergne, J.; Bouchard, N.; Fontaine, F.-G. Bench-Stable Frustrated Lewis Pair Chemistry: Fluoroborate Salts as Precatalysts for the C-H Borylation of Heteroarenes. *Chem. Commun.* **2016**, *52*, 5387-5390.
- (10) Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. Conversion of Arylboronic Acids into Potassium Aryltrifluoroborates: Convenient Precursors of Arylboron Difluoride Lewis Acids. *J. Org. Chem.* **1995**, *60*, 3020-3027.
- (11) Luisi, R.; Giovine, A.; Florio, S. New Arylaziridinyldifluoroborates: Useful Suzuki–Miyaura Reagents. *Chem. Eur. J.* **2010,** *16*, 2683-2687.
- (12) (a) Kirkham, J. D.; Butlin, R. J.; Harrity, J. P. A. A Mild Benzannulation through Directed Cycloaddition Reactions. *Angew. Chem. Int. Ed.* **2012**, *51*, 6402-6405; (b) Crépin, D. F. P.; Harrity, J. P. A.; Jiang, J.; Meijer, A. J. H. M.; Nassoy, A.-C. M. A.; Raubo, P. A Mechanistic Study of the Lewis Base-Directed Cycloaddition of 2-Pyrones and Alkynylboranes. *J. Am. Chem. Soc.* **2014**, *136*, 8642-8653.
- (13) Bachollet, S. P. J. T.; Vivat, J. F.; Cocker, D. C.; Adams, H.; Harrity, J. P. A. Development of a Mild and Versatile Directed Cycloaddition Approach to Pyridines. *Chem. Eur. J.* **2014**, *20*, 12889-12893.
- (14) (a) Nelson, A. K.; Peck, C. L.; Rafferty, S. M.; Santos, W. L. Chemo-, Regio-, and Stereoselective Copper(II)-Catalyzed Boron Addition to Acetylenic Esters and Amides in Aqueous Media. *J. Org. Chem.* **2016**, *81*, 4269-4279; (b) Thorpe, S. B.; Calderone, J. A.; Santos, W. L. Unexpected Copper(II) Catalysis: Catalytic Amine Base Promoted β-Borylation of α,β-Unsaturated Carbonyl Compounds in Water. *Org. Lett.* **2012**, *14*, 1918-1921; (c) Gao, M.; Thorpe, S. B.; Kleeberg, C.; Slebodnick, C.; Marder, T. B.; Santos, W. L. Structure and Reactivity of a Preactivated sp²-sp³ Diboron Reagent: Catalytic Regioselective Boration of α,β-Unsaturated Conjugated Compounds. *J. Org. Chem.* **2011**, *76*, 3997-4007; (d) Peck, C. L.; Calderone, J. A.; Santos, W. L. Copper(II)-Catalyzed β-Borylation of Acetylenic Esters in Water. *Synthesis* **2015**, *47*, 2242-2248.
- (15) (a) Smith, S. M.; Uteuliyev, M.; Takacs, J. M. Catalytic Asymmetric Hydroboration of β,γ-Unsaturated Weinreb Amides:

- Striking Influence of the Borane. Chem. Commun. 2011, 47, 7812-7814; (b) Molander, G. A.; McKee, S. A. Copper-Catalyzed β-Boration of α,β-Unsaturated Carbonyl Compounds with Tetrahydroxydiborane. Org. Lett. 2011, 13, 4684-4687; (c) Molander, G. A.; Shin, I.; Jean-Gérard, L. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Enantiomerically Enriched Reactions of Potassium Trifluoroboratoamides with Various Aryl- and Hetaryl Chlorides. Org. Lett. 2010, 12, 4384-4387; (d) Liu, Z.; Li, X.; Zeng, T.; Engle, K. M. Palladium(II)-Catalyzed Enantioselective Carboboration of Alkenyl Carbonyl Compounds. ACS Catal. 2019, 9, 3260-3265; (e) Molander, G. A.; Petrillo, D. E. Suzuki-Miyaura Cross-Coupling of Potassium Trifluoroboratohomoenolates. Org. Lett. 2008, 10, 1795-1798; (f) Sandrock, D. L.; Jean-Gérard, L.; Chen, C.-y.; Dreher, S. D.; Molander, G. A. Stereospecific Cross-Coupling of Secondary Alkyl β-Trifluoroboratoamides. J. Am. Chem. Soc. 2010, 132, 17108-17110; (g) Lee, J. C. H.; McDonald, R.; Hall, D. G. Enantioselective Preparation and Chemoselective Cross-Coupling of 1,1-Diboron Compounds. Nat. Chem. 2011, 3, 894; (h) Lee, J. C. H.; Sun, H.-Y.: Hall, D. G. Optimization of Reaction and Substrate Activation in the Stereoselective Cross-Coupling of Chiral 3,3-Diboronyl Amides. J. Org. Chem. 2015, 80, 7134-7143.
- (16) (a) Fritzemeier, R.; Gates, A.; Guo, X.; Lin, Z.; Santos, W. L. Transition Metal-Free Trans Hydroboration of Alkynoic Acid Derivatives: Experimental and Theoretical Studies. *J. Org. Chem.* **2018**, *83*, 10436-10444; (b) Nagao, K.; Yamazaki, A.; Ohmiya, H.; Sawamura, M. Phosphine-Catalyzed Anti-Hydroboration of Internal Alkynes. *Org. Lett.* **2018**, *20*, 1861-1865; (c) Nogami, M.; Hirano, K.; Morimoto, K.; Tanioka, M.; Miyamoto, K.; Muranaka, A.; Uchiyama, M. Alkynylboration Reaction Leading to Boron-Containing π-Extended cis-Stilbenes as a Highly Tunable Fluorophore. *Org. Lett.* **2019**, *21*, 3392-3395.
- (17) Fritzemeier, R.; Santos, W. L. Brønsted Base-Mediated Regioand Stereoselective trans-Silaboration of Propargylamides: Access to 1,2-Vinylborasilanes. *Chem. Eur. J.* **2017**, *23*, 15534-15537.
- (18) Adamczyk-Woźniak, A.; Borys, K. M.; Sporzyński, A. Recent Developments in the Chemistry and Biological Applications of Benzoxaboroles. *Chem. Rev.* **2015**, *115*, 5224-5247.
- (19) Akama, T.; Baker, S. J.; Zhang, Y.-K.; Hernandez, V.; Zhou, H.; Sanders, V.; Freund, Y.; Kimura, R.; Maples, K. R.; Plattner, J. J. Discovery and Structure—Activity Study of a Novel Benzoxaborole Anti-Inflammatory Agent (AN2728) for the Potential Topical Treatment of Psoriasis and Atopic Dermatitis. *Bioorg. Med. Chem. Lett.* 2009, 19, 2129-2132.
- (20) Baker, S. J.; Zhang, Y.-K.; Akama, T.; Lau, A.; Zhou, H.; Hernandez, V.; Mao, W.; Alley, M. R. K.; Sanders, V.; Plattner, J. J. Discovery of a New Boron-Containing Antifungal Agent, 5-Fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), for the Potential Treatment of Onychomycosis. *J. Med. Chem.* **2006**, *49*, 4447-4450.