Environmental Research Letters

LETTER « OPEN ACCESS

A community nitrogen footprint analysis of Baltimore City, Maryland

To cite this article: Elizabeth S M Dukes et al 2020 Environ. Res. Lett. 15 075007

View the article online for updates and enhancements.

This content was downloaded from IP address 128.143.0.10 on 09/11/2020 at 14:40


https://doi.org/10.1088/1748-9326/ab76dc

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
27 February 2019

REVISED
14 February 2020

ACCEPTED FOR PUBLICATION
17 February 2020

PUBLISHED
2July 2020

Original content from this

work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Environ. Res. Lett. 15 (2020) 075007

Environmental Research Letters

LETTER

https://doi.org/10.1088/1748-9326/ab76dc

A community nitrogen footprint analysis of Baltimore City, Maryland

Elizabeth S M Dukes', James N Galloway' ®, Lawrence E Band', Lia R Cattaneo', Peter M Groffman’,

Allison M Leach’ and Elizabeth A Castner*

1

University of Virginia, Charlottesville, VA, United States of America

> City University of New York Advanced Science Research Center at the Graduate Center and Cary Institute of Ecosystem Studies, 85 Saint

Nicholas Terrace New York, NY 10031, United States of America

* University of New Hampshire, Durham, NH 03824, United States of America
* University of California Davis, 1 Shields Ave, Davis, CA 95616, United States of America

Keywords: nitrogen, nitrogen footprints, sustainability, diet, community

Supplementary material for this article is available online

Abstract

Anyfurther distributionof 1 D€ Nitrogen footprint tool (NFT) provides a novel way for communities to understand the
environmental impacts of their collective activities and consumption. Reactive nitrogen (Nr; all N
species except N,) is created by the Haber—Bosch process for food production and as a by-product of
fossil fuel combustion and two natural processes, biological nitrogen fixation and lightning. While it is
avital input for food production, too much Nr has a negative effect on the environment. Calculating
the amount of Nr released to the environment as a result of an entity’s resource consumption is the
first step in reducing those Nr losses. The nitrogen (N) footprint method has previously taken this
approach at the personal and institution scale. In this study, the approach is extended, for the first
time, to the spatial patterns of the community nitrogen footprint within a large city, through the
integration of diverse geographic information to calculate the N footprint distribution within the City
of Baltimore, Maryland, USA. The total N footprint of Baltimore City was ~19 000 MT N or 30 kg N
per capitain 2016, dominated by the food production sector (73%), followed by the energy and
transportation sectors (15% combined). There was geographic variability among census block groups’
per capita N footprint within Baltimore City; driven primarily by economic and development factors.
Several management scenarios were assessed to better understand what actions may reduce the
Baltimore N footprint at the city and community scale over time. The study explored the effect and
efficacy of reducing meat consumption based on differences in city consumption patterns, increasing
the use of renewable energy sources, and reducing electricity consumption on the city’s total N
footprint. The model for the Baltimore City N footprint calculation can be applied to other
communities in the United States at the spatial grain of the census block group or any country with
this level of data to provide an indicator of nitrogen sustainability.
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Introduction

Nitrogen (N) is essential for all life. While it is
abundant in the atmosphere as unreactive N,, for most
biological species it must first be converted to reactive
nitrogen (Nr) (e.g. NH3) to be used. In the natural
environment, the conversion of N, to Nr is done by
microbes that perform biological Nr fixation (BNF)
and by lightning. Humans create Nr in three ways: as
synthetic fertilizer and as an industrial feedstock via
the Haber—Bosch process, fossil fuel combustion, and

cultivation induced BNF (i.e. legumes). Thus, humans
add to the global Nr pool primarily through food and
energy production. Excess Nr additions can have
detrimental effects to the environment including smog
and haze, forest die-back, acidification of waterways,
eutrophication, climate change, and ozone depletion.
These effects are manifested as Nr molecules move
through and between earth systems in a nitrogen
‘cascade’ (Galloway et al 2003).

An N footprint is the amount of Nr released to the
environment as a result of an entity’s resource use

© 2020 The Author(s). Published by IOP Publishing Ltd
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(Leach et al 2012). These resource uses include food,
energy, transportation, and fertilizer. The entity could
be a person, institution, or—as in this case—a com-
munity. The N footprint includes all Nr losses related
to an entity’s resource consumption, regardless of
where those losses occur (e.g. upstream or down-
stream of the entity). The footprint model differs from
other indicators such as input output models (Hobbie
et al 2017) and Nr spatial indicators (NrSI) which esti-
mate Nr losses from food production and energy use
on a per area basis (Liang et al 2018). Nitrogen foot-
print tools (NFTs) have been developed at personal
(Leach et al 2012) and institutional (Leach et al 2013,
Castner et al 2017, Galloway et al 2014) scales and are
used for both tracking N footprints and setting reduc-
tion goals. The community NFT broadens the scope of
these existing tools to address the nitrogen dilemma
on a larger scale by developing methods adapting spa-
tial data processing to estimate geographic patterns of
both N footprint drivers and outcomes. A community
refers to a collection of people living in a certain region
and governed under a particular municipality. This
can include cities, counties, or other groups under a
common jurisdiction. The community NFT could be
used for the same objectives as the individual and
institution level footprints but needs to be modified as
a city or geographic region is a heterogeneous aggrega-
tion of individuals, neighborhoods, and public/pri-
vate institutions, and not a single entity as a person or
individual institution. A community N footprint
shows the spatial distribution of the N footprints
which allows stakeholders to use the tool to estimate
current patterns and target specific neighborhoods
within a community for reductions.

NFTs should be used in conjunction with other
sustainability and socio-economic indicators to pro-
vide a wholistic view of the community. Using the N
footprint as a metric for sustainability expands the
focus from energy initiatives and gives a quantitative
method to assess the impacts of food choices and
energy decisions on the environment (Pierer et al
2014, Castner et al 2017, Hayashi et al 2018, Oita et al
2018). In communities, the NFT can be used as a
method alongside other sustainability assessments
(e.g. greenhouse gas inventories, N budget approa-
ches, carbon footprint assessments, neighborhood
indicators, food desert maps) to comprehensively
assess spatial patterns of community environmental
sustainability and socioeconomic wellbeing. Using
multiple metrics to assess community sustainability
and resilience identifies any potential tradeoffs across
metrics and gives a more complete picture of the best
ways differently to address issues at spatial scales that
are sensitive to local demography, behavior and built
environment. The intended users of this tool are
city/county government agencies, non-governmental
organizations (NGOs), community and local research
groups and non-profit organizations interested in pro-
moting community sustainability and benefits.

P Letters

Baltimore City was chosen as the study site for the
first community NFT because it is connected to a set of
rich databases through the Baltimore Ecosystem Study
(http://beslter.org) and because there are docu-
mented direct consequences of excess Nr on the
local environment. Baltimore City drains into the
Chesapeake Bay, an important natural resource for
ecosystem services related to water filtration, climate
stability, recreation, and fisheries, producing an esti-
mated $22.5 billion in benefits each year (Phillips and
McGee 2016). The eutrophication caused by excess
nutrients (predominantly nitrogen and phosphorous)
reduces the capacity for the Chesapeake Bay to provide
these ecosystem services. Reducing the detrimental
effects of eutrophication improves the capacity of the
bay to provide ecosystem services (EPA 2002). Excess
Nr in Baltimore also contributes to tropospheric
ozone and smog in the Baltimore area, which is detri-
mental to the environment and can cause respiratory
illnesses in humans (Birch et al 2011). In 2011,
Baltimore City ranked higher than 90% of cities in the
US in NO,, concentrations (a by-product of fossil fuel
combustion and local air quality pollutant) over the
year (EPA 2015).

Baltimore, similar to many other cities, has no
agricultural land (USGS 2018) meaning much if not all
of the N losses attributed to food production occur
outside of the city limits. Food production is a large
contributor to individual and institution N footprints
(Leach et al 2012, Leach et al 2016, Castner et al 2017)
which also occur outside of system bounds. Analyzing
losses occurring inside and outside of city limits is
important in order to inform and engage local stake-
holders (Gu et al 2017). For Baltimore, the local N los-
ses would occur from the following sectors:
wastewater, pet waste, natural gas use, transportation,
and fertilizer used for lawns. Losses outside of the city
would occur from the following sectors: electricity
generation, food production, and pet food produc-
tion. It is important to note that some of the electricity
(~0.5% of usage) (EIA 2019) and some food (pro-
duced in home gardens) would be local losses. For the
purposes of this study, these categories are considered
to be non-local losses as the majority of the loses occur
outside of the city. Though these Nr losses occur out-
side of the city, it is the consumption and purchasing
decisions of residents and businesses within the city
that generate these losses. Therefore, these non-local
losses contribute to the city’s total N footprint. Com-
munities interested in measuring and reducing the
local and nonlocal impacts of excess Nr can benefit
from using the community N footprint analysis. The
Baltimore City N footprint provides stakeholders
information to evaluate strategies to mitigate these
impacts and improve local water quality and human
health.

The objectives of this study were to: (1) calculate
and map the N footprint of Baltimore City, (2)
present potential reduction scenarios to reduce this
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footprint, (3) determine the impact of income on N
footprints in Baltimore City, and (4) provide a meth-
odology for additional communities to calculate their
N footprints.

Methods

System bounds

The system bound of this community-level N foot-
print calculation is the city limits of Baltimore. Food
includes food purchased by individuals living in
Baltimore City, wastewater includes all wastewater
generated in Baltimore City, pet food and waste
includes all pet food bought in the city and all pet waste
released in the city, electricity and natural gas includes
all usage within the city limits, transportation includes
all miles (kilometers) traveled within city limits. This
system bound was chosen for three reasons: the
intended use of the N footprint calculation, the scale of
aggregated data available, and the jurisdictional level
of agencies intended to use the tool. The N footprint
calculations were performed at the census block group
scale. Census block groups are the smallest scale that
the United States Census Bureau publishes data and is
an area which has a population of 600-3000 indivi-
duals (CEX 2016). This resolution made it possible to
differentiate N footprints at the ‘neighborhood scale,’
which was particularly relevant for whole-city analyses
(Boone et al 2012). The existence of census block
group data across the US allows this methodology to
be used at a wide range of scales, e.g. census tracts,
counties, watersheds, cities.

Food purchase data was available at a census block
group scale from the 2016 Consumer Expenditure
Report (CEX 2016), Supplemental Nutrition Assis-
tance Program data (American FactFinder 2018). Data
such as the electricity, natural gas use, vehicle miles
traveled, and wastewater volume were available at a
city and county scale and scaled to census block groups
on a per capita basis using scaling. Using data specific
to Baltimore at the census block group level allows the
estimation of the spatial distribution of N footprint
drivers and outcomes, and sets the community N foot-
print apart from other national or regional calculation
methods which use national or regional averages to
determine a per capita footprint (Leach et al 2012,
Guetal 2013, Shibata et al 2014).

The US Census Bureau’s Consumer Expenditure
Report (CEX 2016) contains information on the pur-
chases made by individuals in each census block
group. The Consumer Expenditure Report is a biann-
ual survey which asks households to record purchases
at grocery stores, retail stores and other expenditures
(e.g. rent, electricity, car titles) for two weeks for resi-
dents in all 50 US states. These survey results from
2016 were aggregated to represent the entire census
block group’s annual expenditures (CEX 2016).
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Building the tool

The N footprint calculations were performed in
Microsoft Excel (modified from Leach et al 2013), and
ArcGIS was used to map those N footprint results.
ArcGIS was also used to transform data sets from
the Consumer Expenditure Report for analysis in the
Excel NFT. A brief description of the calculations is
given below for the following sectors: Food, waste-
water, fertilizer use for home lawns, electricity use,
natural gas, pet food, pet waste, and transportation.
All footprint results were calculated in kilograms of
nitrogen (kg N) and summed to determine the
nitrogen footprint of the census block group. The sum
of the 646 census block groups N footprints in
Baltimore City was the city’s N footprint. More
information on the detailed calculations are listed in
the supplementary material parts 1 and 2 is available
online at stacks.iop.org/ERL/15/075007 /mmedia.

Food

For a specific food product, the dollars spent on food
(USD) in each census block group from the United
States Consumer Expenditure Report (CEX 2016) was
converted to kilograms using average price per kilo-
gram (USD/kg) datasets (BLS 2016 and USDA 2016):

F=(Df/Cf) x N, x VNF, 1)

where F is the product food production N footprint
(kg N), Dy is the dollars spent on food (USD)
(CEX 2016), C¢(USD) is the cost of food per kilogram
(BLS 2016 and USDA 2016), N, (%) is the nitrogen
content of the food product (USDA 2018); and VNF
(kg N lost/kg N consumed) is the nitrogen used in the
food production process but not in the consumed
product (Leach et al 2020).

The other components of the N footprint include
food waste and transport. The summary equation in
calculating the N footprint of one food product
category is:

Nigod = F + W + T, (2)

where Ng,oq is the total N footprint of the food
product (kg N), F is the product food production N
footprint (kg N), W is food waste (virtual N and food
waste N) at the consumer level (kg N), and T is
transport N losses (kg N).

This calculation was completed for all food
product categories (18 total) (Leach et al 2012) in each
census block group. More details on data sources
and complete calculations can be found in the supple-
mentary material parts 1a and part 2.

Wastewater treatment

Wastewater refers to the N released following waste-
water treatment of sanitary effluent from Baltimore
City residents. Wastewater generated in Baltimore is
treated at the Patapsco and Back River treatment
plants (Baltimore City Department of Public
Works 2019). The total gallons of wastewater
treated from Baltimore City residents and businesses,
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subtracting wastewater usage from Baltimore County
which is also treated at these plants, in 2016 was 31 298
million gallons (118 476 million litters) (K Grove,
Baltimore Department of Public Works, personal
communication, March 2018). The total gallons
treated were divided among census block groups on a
per capita basis (CEX 2016). This was then converted
into kg N lost to the environment through the
treatment process as:

Nyastewater = Gcbg X N,y X (1 = R), (€))

where Nyastwater 1 the wastewater footprint of the
census block group (kg N), G, is the amount of
wastewater treated from the census block group (gal),
N,, is the nitrogen content of wastewater (kg N), and
R is the removal factor at the sewage treatment
plant (%).

More details and complete calculations can be
found in the supplementary material part 1b.

Fertilizer application for home lawns

The total lawn area in each census block group was
determined (USGS 2018), the average amount of N
fertilizer applied per m? of lawn and the percentage of
households applying fertilizer (Fraser et al 2012), and
the average N uptake by turfgrass (55%) (Hermanson
et al 1994) was used to determine the N footprint from
fertilizer in each census block group as:

Neertilizer = Ls X H X E; X (1 - U)) (4)

where Negiizer 1S the fertilizer N footprint of the
census block group (kg N), L; is the amount of lawn in
the census block group (m?), H is the percentage of
households applying fertilizer (%), F,, is the amount of
nitrogen fertilizer applied (kg N m™?), and U is the
fertilizer uptake factor of turfgrass (%).

More details and complete calculations can be
found in the supplementary material part 1c.

Electricity use
The total kilowatt hours of electricity used at busi-
nesses and residences in Baltimore City was collected
(M Straub, Baltimore Gas and Electric, personal
communication February 2018) and split into census
block groups based on dollars spent on electricity
(CEX 2016 and American FactFinder 2018). The NO,,
and N,O emissions for the region (EPA 2016) and
atomic weight converstions were used to determine
the N emissions from electricity in each census block
group:

Nelectricity = (E X EFyox) + (EX)EFn20, (%)

Where Neecuricity (kg N) is the electricity N footprint
for the census block group, E is the kilowatt hours used
in each census block group (kwh), EFyo, (2.72E-04 kg
NO,/kwh) is the amount of NO,~N per kilowatt hour,
and EFy;0 (4.08E-06 kg N,O/kwh) is the amount of
N,O-N per kilowatt hour.

More details and complete calculations can be
found in the supplementary material part 1d.
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Natural gas

The total therms (10 000 British Thermal Units) of
natural gas used at businesses and residences in
Baltimore City was collected (M Straub, personal
communication February 2018) and split into census
block groups based on dollars spent on natural gas
(American FactFinder 2018, CEX 2016). The NO,
(3.42E-04 kg NO,/therm)and N,O (1.06E-05 kg
N,0O/therm) emissions for natural gas (EPA 2017) and
atomic weight converstions were used to determine
the N footprint from natural gas in each census block

group:

Nnaturalgas = (Ng x EE) + (NONg x EFnp0),  (6)

where Npacuralgas 18 the natural gas N footprint for
the census block group N, is the therms used in
each census block group (therms), EFyo. (kg
NO,~N/therm) is the amount of NO,—N per therm,
and EFyy0 (kg N,O-N/therm) is the amount of
N,O-N per therm.

More details and complete calculations can be
found in the supplementary material part le.

Pet food

The average number of cats and dogs per person in the
USA (Okin 2017) and the population of the census
block groups (CEX 2016) were used to estimate the
number of cats and dogs in each census block group.
From this, the average amount per year (kg) and
ingredients of food products in dog and cat food
(e.g. chicken, beef, grains, and vegetables) was
gathered (Baldwin et al 2010) to determine the amount
of pet food in each census block group. The food
production N footprint of pet food was treated the
same as human food. The final step of the pet food N
footprint is computed as:

Npetfood = Fp + ‘/vp + Tp: 7

where and Nef04 is the total N footprint of the food
product (kg N), F, is the product food production N
footprint (see equation (1); kg N), W), is food waste at
the consumer level (kg N), and T}, is transport N losses
(kgN),

This calculation was done for each ingredient of
the pet food for each census block group. More infor-
mation is available in the supplementary material
part 1f.

Pet waste

Pet waste was treated differently than human waste. It
was assumed that all pet waste (urine and feces) is
deposited to the land surface since most excreted N is
contained in urine (Allard 1981). The N content of the
pet food (all assumed to be excreted; USDA 2018) and
the N uptake factor of turfgrass (55%) (Hermanson
et al 1994) were used to determine the N footprint of
pet waste:
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Npetwaste = Ncp x (1 —1U), (¥

where Npeqwaste (kg N) is the N footprint of pet waste in
the census block group, N, is the nitrogen content of
the pet food (kg N), and U is the uptake factor of
turfgrass (%).

More information is available in the supplemen-
tary material part 1g.

Transportation

The transportation N footprint of Baltimore City
included all miles traveled within census block group
limits. The total miles traveled by vehicle type (light
trucks, motorcycles, cars, buses, single unit, and
combination unit trucks) within city limits was
obtained (MDOT 2016) and divided based on the total
dollars spent on each transport type in a census block
group (CEX 2016). The NO, and N,O emissions for
each transport type (EPA 2017) (additional informa-
tion on emissions factors in supplementary material)
and atomic weight converstions were used to deter-
mine the N footprint from transportation in each
census block group as:

Ntransport = (M; x EFnox) + (M; x EFn20),  (9)

where Nianspore is the transport N footprint for a
vehicle type in that census block group (kg N), M, is
the miles traveled by a vehicle type in each census
block group (miles), EFyox (kg NO,~N/mile) is the
amount of NO,~N per mile, and EFyo (kg
N,0-N/mile) is the amount of N,O-N per mile.

This was done for each vehicle type in each census
block group. More information and full equations are
in the supplementary material part 1h.

Comparison between income and nitrogen
footprint

To evaluate the relationship between income and the
nitrogen footprint of census block groups within
Baltimore City, the average income of households in
each census block group was collected from the
American FactFinder database (American FactFin-
der 2018). Linear regression analysis was used to
examine the relationship between the average income
and average per capita N footprint of census block
groups. Census block groups without complete data
sets were removed from this analysis.

Scenarios

The Baltimore City results were used to investigate N
footprint spatial patterns, and the differential impacts
of N management scenarios on the N footprint.
Management scenarios were modeled to determine
the potential scale of impact for individual and
combined cases. The energy reduction scenarios
followed the reduction strategies suggested in the 2015
Maryland Climate Action Plan (Hogan et al 2015). The
food scenarios focused on reducing consumption of
high N-footprint food products primarily beef and
other animal products.
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The following scenarios were analyzed:

1. Energy scenarios: Maryland Climate Action Plan

a.Reduce energy consumption in residential
and business locations by 10%

b. Decrease single passenger car travel by 10%
by increasing public transportation by 10%

c.Increase renewables by 20% (assuming a
conversion from coal to renewable)

2. Food scenarios: proposed for Baltimore City

d.Convert 15% of fast food restaurants to
vegetarian restaurants

e. Cutting beef consumption by 50% by weight
(grams) in census block groups consuming
excessive amounts (over 80 g of protein per
capita per day)

f. Switch 25% of beef purchases to beans by
weight (grams)

The food scenarios were run by replacing and redu-
cing food category purchases input to the community
footprint tool. For example, food scenario (e), cutting
beef consumption by 50% (weight) for census block
groups consuming protein in excess (80 g per capita per
day which is well above the required daily protein in the
US of 46 g for women and 56 g for men) WHO 2007. The
80 g N per person per day was used as the cut off for this
scenario to ensure that consumers still would consume
the required protein level. For these over-consuming
census block groups, beef consumption was cut in half
and the impact on the total N footprint was assessed.

All scenario strategies were evaluated relative to a
baseline year of 2016 and do not include growth projec-
tions or changes in emissions factors for any future year.
Details are provided in supplementary material part 3.

Results

Baltimore city total nitrogen (N) footprint results
and per capita results

The total N footprint of Baltimore City was 19 000 MT
N and 30 kg N per capita in 2016. Note the per capita N
footprint is an estimate including all activities occurring
in the area including businesses and commuter con-
tributions. The largest contributor to the N footprint of
Baltimore City was food production sector (meat, dairy/
egg, and crops) at 73%, with meat products being the
most important (figure 1). Energy use sectors (electricity,
natural gas, and transportation) were the next largest
contributor, making up 15% of the city’s footprint. Pet
food and waste was the third largest contributor, at 10%
of the total N footprint. Other categories making up
smaller portions of the footprint included wastewater
(1%) and fertilizer use for home lawns (<1%).
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Figure 1. The average components of (a) the total nitrogen footprint of Baltimore City and (b) average per capita nitrogen footprint for

Baltimore.

an average Baltimore City resident. Both figures include food production: meat: (beef, poultry, pork, fish, and others); dairy/eggs,
crops: (vegetables, fruits, grains, and tubulars), wastewater, fertilizer use for home lawns, pet food, pet waste, electricity, and natural
gas. The starred sectors indicate N losses occurring in Baltimore City directly while unstarred sectors indicates emissions outside of
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Figure 2. The N footprint of census block groups within Baltimore City in 2016. The average value is 30 000 kg N which is indicated by
the black box on the legend. Values lower than the average are colored in shades of yellow and values higher than the median are
colored in shades of red. Complete data sets were not available for gray census block groups due to a variety of reasons including these
census block groups being comprised of schools, prisons, or primarily businesses.

Distribution of the N footprint among census block
groups

The total N footprint varied among census blocks due
to multiple factors such as the number of businesses,
population distribution (see supplementary figures 2
and 3), and varying lifestyles of residents. The range
was 2600-171000kg N with an average of about
30 000 kg N (figure 2).

In addition to total N footprint, we analyzed varia-
tion in the per capita N footprint among census block
groups. The average N footprint per capita in Balti-
more City was 30 kg N per year in 2016, with variation

among census block groups ranging from 8 to
103 kg N per capita (figure 3). There was also variation
in the distribution among sectors within block groups.
For example, the footprint for the census block group
with the lowest footprint was derived 53% from food,
12% from fossil fuels, and 35% from pets and fertilizer
use for home lawns. The footprint of the census block
group with 103 kg N per capita was derived 83% from
food, 15% from fossil fuels, and 2% fertilizer and pets.
The spatial variation in N footprints among
census block groups was related to spatial variation in
income (figures 4, 5). There was a significant
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kg N per capita

Figure 3. The N footprint of census block groups per capita within Baltimore City in 2016. The average value is 30 kg N per capita
which is indicated by the black box on the legend. Values lower than the average are colored in shades of yellow and values higher than
the median are colored in shades of red. Complete data sets were not available for gray census block groups due to a variety of reasons
including these census block groups being comprised of schools, prisons, or primarily business districts.
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Figure 4. Per household income of census block groups within Baltimore City from US census tract data. The average income was
$45 921 per household per year in 2016. Complete data sets were not available for gray census block groups due to a variety of
reasons including these census block groups being comprised of schools, prisons, or primarily business districts. Note: these
intervals are unequal.

correlation (p < 0.01, R* = 0.43) between the N Localand non-local N footprints of Baltimore city

footprint and annual household income (figure 5). The local N footprint refers to the Nr lost within city
The average annual income per household in Balti- limits while the non-local N footprint refers to the N
more City was $45921 (American Factfinder Data- lost outside of the city boundaries. For this analysis,
base 2018). the sectors assumed to impact local losses were:
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Figure 5. Linear regression between per capita N footprint and average household income for all census block groups in Baltimore
City. This shows a significant correlation between income and per capita N footprint (P < 0.01).
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Figure 6. (a) The local N footprint of Baltimore City included wastewater (5%), fertilizer (1%), pet waste (8%), natural gas (16%), and
transportation (70%) of the total local footprint (2475 MT N). The local N footprint refers to the Nr lost to the environment likely
within city bounds. (b) The non-local N footprint of Baltimore City included food production (86%), pet food (11%), and electricity
(3%) of the total (16 530 MT N). The non-local N footprint refers to the Nrlost to the environment outside of city bounds.

3%

11%

® Food
Production

 Pet Food

Electricity

b) 86%

wastewater (excluding sludge), pet waste, fertilizer use
on home lawns, natural gas, and transportation. The
remaining sectors (food production, pet food, and
electricity) were assumed to be non-local losses as the
majority of the Nr lost from these activities is outside
of the city bounds. Of the total N footprint of
Baltimore City, ~13% (2475 MT N) were local losses
while the remaining 87% (16 530 MT N) were non-
local. The largest contributor to the local N footprint
was transportation (70%) followed by natural gas
(16%), pet waste (8%), wastewater (5%), and fertilizer
(1%) (figure 6(a)). The largest contributor to the non-
local footprint was food production (86%) followed by
pet food (11%) and electricity (3%) (figure 6(b)).

There was spatial variation in the local and non-
local per capita N footprints (figures 7(a), (b)), similar
to the total N footprints (figure 3).

Calculation reduction strategies and scenarios

The scenario analysis suggested that strategies to
reduce N footprints in Baltimore City should,
unsurprisingly, focus on food (figure 8), which makes
up 73% of the City’s footprint (figure 1). The most
effective scenario was to reduce the amount

of beef purchased in census block groups over-
consuming protein (more than 80 g of protein per
person per day) by 50% (in weight), which reduced
the total footprint of the city by 5.5% (Scenario (e) in
figure 8) . Implementing all food scenarios together
produced a total footprint reduction of 14% (data not
shown). Energy and transportation scenarios
reduced the footprint by 1.9%. (data not shown).
Combining all scenarios (food and energy) reduced
the city’s footprint by 16% (Scenario (all scenarios)
in figure 8).

Some of the scenarios: (a) reducing energy con-
sumption in residential and business locations by
10%, (b) decreasing single passenger cars by 10% and
increasing public transport by 10%, would affect the
local N footprint specifically (figure 9).

Discussion

Baltimore city’s total and per capita N footprint

The largest sector in the Baltimore City total
(~13 800 MT yr™ ') and per capita (23 kg N/capita/yr)
N footprints was food production. This was consistent
with the US average N footprint (24 kg N/capita/yr)
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Figure 7. (a) The local N footprint of census block groups within Baltimore City in 2016. The average was per capita local N footprint
was 5 kg N indicated by the black box on the legend. (b) The non-local N footprint of census block groups within Baltimore City in
2016. The average per capita non-local N footprint was 25 kg N indicated by the black box on the legend. (a) and (b) Values lower than
the average are colored in shades of yellow and values higher than the median are colored in shades of red. Complete data sets were not

available for gray census block groups. Note: these intervals are unequal.

20,000 - -0.4% -0.6% -0.6% -3.5% -5.5% -0.3%  -15.5%

= = Baseline

unstarred sectors indicates emissions outside of Baltimore.

z

~

= 15,000 -

2

8

© 10,000 -

1)

£

& 5,000 -

Z

=

ﬁ 0 | T T T
Baseline a b c

mmmm Food Production Wastewater*

mmmm Natural Gas* mmm Pet Food

Figure 8. The effect of different scenarios of actions to reduce the total nitrogen footprint of Baltimore City in metric tons, broken
down in to sectors (colored bars); the first bar and dashed line represent the baseline N-footprint for Baltimore City. The following are
scenarios run which include the following: (a) reducing energy consumption in residential and business locations by 10%, (b)
decreasing single passenger cars by 10% and increasing public transport by 10%, (c) increasing renewables by 20% and assuming a
conversion from coal to renewable sources, (d) converting 15% of fast food restaurant options to vegetarian, (e) cutting beef
consumption in half (by weight in grams) from census block groups consuming over 80 g of protein per capita per day, (f) switching
25% of beef purchased with beans (by weight in grams), and the implications of implementing all of these scenarios. The percent
decreases from the baseline are shown above the bars. The starred sectors indicate N losses occurring in Baltimore City directly while
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(Leach et al 2020) and average institution footprints
(Castner et al 2017). The average per capita N footprint
in Baltimore City (30 kg N/cap/yr) was lower than the
average US resident’s N footprints (42 kg N/cap/yr)
(Leach et al 2020) (figure 10).

The average N footprint of food in the US
(24 kg N) was slightly higher than a Baltimore City
residents’ (19 kg N). Leach et al 2020 The weight of
food consumed by Baltimore City residents is on aver-
age 15% less than the average US. The US average N
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Figure 9. The effect of different scenarios of actions to reduce the local nitrogen footprint of Baltimore City in metric tons, broken
down in to sectors (colored bars); The first bar and dashed line represent the baseline N-footprint for Baltimore City. The following
are scenarios run which include the following: (a) reducing energy consumption in residential and business locations by 10%,
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Figure 10. The average per capita N footprint for Baltimore City residents (30 kg N/cap/yr) and for the US (37 kg N/cap/yr)
(Leach et al submitted). The Baltimore City average includes pets and fertilizer while the US average does not. The US average includes
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footprint looks at an average US citizen’s food con-
sumption and energy use while the Baltimore City N
footprint looks more closely at a citizen’s actual pur-
chases and usage to make recommendations specific
to the community. There are sources of uncertainty
that should be considered for this calculation.

The Baltimore N footprint considers N losses to
the environment from businesses electricity, natural
gas, wastewater, food, and fertilizer use, but does not
consider losses to the environment from the industrial
feedstock of goods purchased by city residents, which
may be a significant portion of the footprint (Gu et al
2013). For example, N losses to the environment from
residents purchasing clothing in 2016 are not included
in this analysis. These are potential additions to be
made in future studies.

Another source of uncertainty is within the CEX
dataset. The CEX report collects data which is through
two-week surveys of a sample population in each cen-
sus block group. Cook et al (2000) evaluated the accur-
acy of a dietary survey given to individuals in
comparison to actual consumption and found that
people are notoriously bad at reporting food con-
sumption data and tend to under report by 29%—-46%
of their daily intake. The reporting frame was only for
two-weeks out of the year which is used to estimate a
year’s worth of food purchasing. Using a longer time-
frame and tracking receipt data may be ways to remedy
this uncertainty however, the CEX survey is the only
federal household survey to provide information on
consumer expenditures (CEX 2016). The datasets used
to convert dollars to kilograms were both based on US

10
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averages which may not have held true for Baltimore
City prices.

The N footprint of electricity and natural gas in
Baltimore City was approximately twice as large as the
US average. However, the calculation for Baltimore
includes businesses, while the US average only
includes households. The N footprint of transporta-
tion in Baltimore was one third less than the US aver-
age, likely because the calculation for Baltimore only
included travel within census block group limits.
However, this would include transportation of
non-residents commuting to the city for work. This is
especially pertinent for Baltimore City as the commu-
ters increase the weekday, daytime population of Balti-
more City by about ~37% (American Community
Data 2015).

Wastewater made up a smaller percentage of the N
footprint in Baltimore City than the US average due
the presence of sewage treatment facilities with higher
N removal than the US average in Baltimore City. In
addition, there were sectors included in the Baltimore
City N footprint (e.g. pet food, pet waste, fertilizer use
on home lawns) that were not in the personal N foot-
print and vice versa (e.g. goods and services).

It is important to note that the N footprint model
does not indicate where N losses occur. The calcul-
ation was driven by resources used within each census
block group. As mentioned earlier, the N footprint is
tied to the consumption of residents within each cen-
sus block group which is influenced by policy, infra-
structure, and individual behavior. The actual losses to
the environment can occur either outside of Baltimore
as non-local losses or within as local losses (or prox-
imal to) the city of the location where the resources
were used. Sectors affecting local N pollution were fer-
tilizer use on home lawns, pet waste, natural gas use,
transportation, and wastewater. Sectors affecting non-
local pollution include electricity use, food produc-
tion, and pet food.

More information on data quality and uncertainty
is provided in the supplementary material part 4.

Spatial distribution of the N footprint and
relationship to income

In this study, the N footprint was compared with one
socio-economic data set: household income (figure 3).
There was a significant positive relationship between
income and per capita N footprints in Baltimore City.
This relationship was driven by differences in food and
transportation, ie. higher income areas purchased
more food (primarily meat products) and drove
personal-use vehicles for longer distances than those in
lower income areas. Establishing the relationship
between N footprints and income is helpful for target-
ing reduction strategies to specific areas. For example,
strategies in the higher income areas could be focused
on reducing food waste, eliminating unnecessary pro-
tein heavy diets, and encouraging use of public
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transportation. Strategies in lower income areas may
need to focus less on reducing food purchases as some
residents may not have their nutritional needs met
(Drewnowski and FEichelsdoerfer 2011). Strategies
in this area could focus on a combination of
meeting nutritional needs sustainable (Gephart et al
2016) as well as focusing on sustainable business
practices such as reducing electricity and natural
gas use and using renewables for on-site energy
generation. Further investigation of the spatial
variability of the N footprint among census blocks
alongside other environmental and socio-economic
indicators should be used to evaluate best practices in
particular areas.

More broadly, it will be important to determine if
the relationship between per capita N footprint and
income holds outside of Baltimore City in future stu-
dies. Income, alongside other factors, have been
shown to be a general driver of human impact on the
environment in analyses. For example, in short term
studies carbon emission increases with an increase in
income but ultimately leads to a decrease in emissions
over time in the US (Liu et al 2019). This study on car-
bon footprints follows the Kuznets Curve which iden-
tifies that in most situations, the environment
degradation will increase with income until a certain
point where money begins being invested back into
the environment and restoration begins (Dinda 2004
and Zhang et al 2015). Tracking the N footprint in
Baltimore City and other communities across the US
could determine if similar trends are visible with
regards to the N footprint.

Effectiveness and efficacy of local and non-local N
footprint scenarios

The scenario analysis suggested that dietary changes are
the most effective way to reduce the total N footprint of
Baltimore City. Changes in energy and transportation
had a much smaller impact. However, changes in food
consumption may be harder to achieve than changes in
the energy related sectors. In addition, changes in the
food sector impact emissions outside of the city rather
than within the city, meaning that dietary changes
would not directly reduce N losses within Baltimore.
The energy scenarios listed align with goals and
initiatives already in place with the Maryland Climate
Action Plan. Assuming the goals of this action plan are
achieved, the N footprint co-benefits shown in this
study would also be achieved.

Only some of the N footprint strategies presented
in this paper would reduce local N losses. For example,
food related scenarios would primarily reduce N losses
outside of the city (i.e. where the food was produced)
while natural gas related scenarios will reduce local N
pollution. Depending on the community’s goals, dif-
ferentiating strategies impacting the local and non-
local environments could determine the strategies
implemented. Stakeholders concerned with local air
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and water quality would be more inclined to push for
strategies focusing on transportation, fertilizer use on
lawns, pet waste, wastewater, natural gas, and trans-
portation. Additional improvements to the local Balti-
more City N footprint could include continuing to
upkeep and improve the wastewater treatment plant as
this plant uses some of the most advanced technology
available to treat waste and remove Nr. The Baltimore
City’s wastewater treatment plants have advanced
treatment processes that remove significant amounts
of nitrogen, particularly compared to other treatment
plants in the United States (see EPA 2016). There are
potentially small efficiency gains possible depending
on the technology used and upkeep at the plant
(Tchobanoglous and Burton 1991, Gu et al 2013),
though Baltimore is a clear example for other cities.
Development of a city-wide reduction goal could
focus on reducing the local N footprint while the total
N footprint could be used for educational purposes.
For example, future strategies and scenarios could
look at the impact of pet waste pick-up laws on the
local N losses in Baltimore City. The total N footprint
(Iocal and non-local sectors) could be used to educated
residents on their impact on the environment on both
alocal and global scale.

Stakeholders concerned with Baltimore’s global
impact on the environment would be more inclined to
push for both local and non-local strategies focusing
on food production and electricity use.

Co-benefits of reducing Baltimore city’s nitrogen
footprint

Reducing Baltimore City’s N footprint will reduce
nitrogen pollution within and outside of Baltimore.
There is a potential for these strategies focused on
local nitrogen emissions to positively impact other
city goals for human health and the environment. For
example, changes in energy and transportation will
reduce the N footprint, improve the health of
Baltimore residents, and increase the resilience of the
electricity grid. NO, is a contributor to the formation
of tropospheric ozone, which can cause respiratory
health issues and vehicle emissions include a range of
other pollutants with negative human health con-
sequences (e.g. PM, CO, etc). Studies in the Chesa-
peake Bay region evaluated the economic and social
impact of reducing specific Nr species. One study
indicated focusing on NO, pollutant reduction is one
of the most effective and economically savvy way to
improve human and environmental health (Birch
et al 2011). The resilience of the power system is
increased by integrating more renewables into the
fuel mix, decreasing the city’s reliance on finite fossil
fuel resources. The resilience of the electricity system
could also be improved by implementing policies that
reduce overall electricity usage at peak times, pre-
venting power surges and outages.
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There are also ancillary benefits from reducing
Baltimore’s food production N footprint, including
improving the health of Baltimore City residents and
reducing waste loads. Promoting a reduction in the
consumption of red meat with initiatives such as vege-
tarian fast food options, decreasing beef purchased in
high income areas, and encouraging switching from
beef to beans will reduce the amount of red meat con-
sumed. Overconsumption of red meat has been tied to
multiple health effects such as increased risk for can-
cer, diabetes, and heart disease (Godfray et al 2018). In
large cities, finding areas to dispose of waste becomes
an issue as the city grows. Reducing the waste load at
local landfills can be accomplished by providing a
composting service for food scraps for the city.
Composting increases the decomposition rate of waste
and reduces the need for landfill space.

Reducing the N footprint of the city can also
improve the economic resilience of the city. Decreas-
ing Nr loads to the Chesapeake Bay is a priority in the
region for sustaining both fisheries and tourism. These
fisheries are a source of income for fishers and restau-
rants in the surrounding harbor area. Improving the
health of the Chesapeake Bay improves the experience
of tourists enjoying the beauty of Baltimore City’s
Inner Harbor district.

Applicability to other communities and
environmental and socio-economic indicators

The community NFT is the first in the suite of NFTs to
evaluate city spatial patterns of N footprints with a
census block group scale resolution. Using the com-
munity as the system bounds, the tool gives insight on
what the patterns of residential and commercial
impacts are of the N footprint. The community system
bounds also allows for local issues regarding N
pollution to be the focus for reduction.

This analysis can be applied to other commu-
nities within the US and beyond. The majority of the
data used was gathered from publicly available
databases; in particular the United States Census
Consumer Expenditure Report. The data gathered
from the Consumer Expenditure Report are available
for communities across the United States. The spatial
grain of the community NFT allows stakeholders to
objectively quantify and evaluate the N footprints of
specific sectors and locations within the community.
With knowledge of the wholistic picture of sustain-
ability and demographics within the area, this can be
used to determine appropriate measures to take to
reduce the N footprint.

A future goal of this study is to use the community
NFT to calculate the N footprint of other commu-
nities. Work that entails comparing different commu-
nities’ (i.e. urban versus rural, east versus west coast, or
wealthy versus poor) N footprints would be useful in
evaluating drivers of the N footprint unique to
certain community types and general trends across
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communities. Another future goal would be to distin-
guish between business and residential N footprints
which was not possible in this study due to lack of
available data. Determining the contribution of each
entity within the community would allow for specific
recommendations to be made to each group.

The community NFT’s spatial scale would also be
useful to use in conjunction with other environmental
indicators such as carbon, water, or phosphorus foot-
prints to provide an expanded view of environmental
sustainability. Adding socio-economic indicators to
this tool could further expand the scope of the tool to
evaluate social equality and equity with respect to
environmental indicators and changes. Factors could
include ethnicity, age groups, food availability, and
average education of residents within each block
group. An inclusion of this lens can broaden the scope
of environmental sustainability to city resilience.

Summary

This study presents the first-ever community-level
NFT, which allows users to examine N footprint
patterns of a community on a fine spatial scale,
examine relationships of the N footprint to socio-
economic factors (e.g. income), and create targeted
reduction strategies to mitigate and prevent excess N
losses. The community NFT uses publicly available
datasets to analyze the N footprint of a community. In
the Baltimore City study, the relationship of the N
footprint and household income was found to be
significant. Some reduction strategies were based on
the spatial nature of these findings while others
focused on city-wide reductions.

With collaboration from multiple groups within a
community, this NFT tool can be used to effectively
assess the scope of N emissions associated with the
community and determine how sustainability actions
could reduce those emissions. When used alongside
other sustainability and socio-economic metrics, an N
footprint calculation can provide a broader view of the
overall sustainability and resiliency of a community. If
multiple stakeholders within a community are able to
collaborate on feasible reduction strategies, the NFT
can educate communities and reduce nitrogen pollu-
tion as a result of a community’s resource use and bene-
fit sustainability and resiliency goals of the community.
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