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A B S T R A C T

Quantifying the spatial and temporal changes of urban extent is important for understanding the burgeoning
process of urbanization. Numerous well-performing methods have been used to map urban areas and detect
urban changes using nighttime light data, but many of these methods assume that the urban area is equivalent to
regions with high percentages of impervious surfaces or developed land. We present an approach to efficiently
map urban areas at the regional scale, which also provides opportunities to recognize urban extents from dif-
ferent theoretical perspectives. In our approach, appropriate demarcating criteria and urban indicators were
chosen based on understanding the current state of urbanization of the study area. After object-based seg-
mentation and detection of initial urban centers, urban patches are discerned by expanding from these initial
urban centers through a grouping algorithm, delineating the relative fringes of the urban area. We tested this
new approach for mainland China, using 2010 Defense Meteorological Satellite Program/Operational Linescan
System nighttime light data and county-level administrative units. We found a total urban area of 146,806 km ,2

spread across 2489 counties and amounting to 1.5% of the land in mainland China. The delineated boundary of
the urban patches had different values by compass direction. Mean values of fringes and sizes of different urban
patches varied greatly across regions. We detected all provincial capitals, 97.3% of the prefecture-level cities and
91.0% of the county-level cities. This approach is thus capable of identifying urban patches with reliable ac-
curacy at the regional scale.

1. Introduction

Mapping where urban growth occurs can help us understand current
dynamics of urbanization and its social-ecological causes and con-
sequences (Grimm et al., 2008; Pickett & Zhou, 2015). Urban mapping
contributes to a broad range of studies, such as urban sprawl, com-
parative studies of biodiversity, and regional planning and management
(Aronson et al., 2014; Zhou, Li, Asrar, Smith, & Imhoff, 2018). Although
such mapping is necessary in order to define urban study areas or to
conduct analysis, there is no universally accepted definition of the
urban, nor is there a distinct separating line between the urban and
non-urban areas in the real world (Brenner & Schmid, 2014; McIntyre,
Knowles-Yanez, & Hope, 2000).

One potential solution for improving urban mapping would be to
recognize relatively urban areas according to specific urban

characteristics. Regions with dense buildings could be regarded as
urban areas, so do other physical or functional structures such as
lighting systems, drainage systems, and transportation systems from a
land-use perspective (Martinuzzi, Gould, & Gonzalez, 2007). These
components or structures could all be used to delimit urban areas.
Furthermore, “invisible” social or economic urban functions and human
perceptions should also be understood as different aspects of the urban
fabric (Gandy, 2012; Lefebvre, 2003; Monte-Mór, 2005).

Diverse datasets that represent various aspects of the urban could be
used for urban mapping from different perspectives. Land cover data-
sets are often used to map urban areas, because they represent the di-
rect visual results of human constructions. Nighttime light data are
widely used for urban mapping as well, because these data have global
coverage and represent the spatial extent of intensively used settle-
ments (Bennett & Smith, 2017; Elvidge et al., 2001; Ma et al., 2015;
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Zhao et al., 2019). Nighttime light data have advantages in studying
urban dynamics at large spatial scales or high temporal frequencies
(Small, Pozzi, & Elvidge, 2005; Zhou et al., 2015).

There are two available series of nighttime light data: one is from
the Defense Meteorological Satellite Program – Operational Linescan
System (DMSP-OLS data), and the other is from the Visible Infrared
Imaging Radiometer Suite day-night band carried by the Suomi
National Polar-orbiting Partnership (VIIRS data). DMSP-OLS data have
a lower resolution of 30 arc second (about 1 km), but a longer time
series released from 1992 to 2013. The nighttime stable light compo-
sites have been used most widely in research studies, because the effects
from clouds, fires, and aurora have been largely removed from these
images (Zhao et al., 2019). The blooming effects (which can cause dark
regions to be bright in the images due to light reflections or coarse
resolutions), oversaturation, and lack of calibration among years are
major problems of DMSP-OLS data (Bennett & Smith, 2017; Elvidge,
Sutton, Tuttle, Ghosh, & Baugh, 2009; Yi, Zeng, & Wu, 2016; Zhao
et al., 2019). The VIIRS dataset is an advanced version of nighttime
light data initiated in April 2012 that has a higher spatial resolution of
15 arc second (about 500m). This dataset provides monthly-average
composite images that have on-board calibrations, yielding reduced
blooming and saturation effects (Bennett & Smith, 2017; Elvidge,
Baugh, Zhizhin, Hsu, 2013; Elvidge, Zhizhin, Hsu, & Baugh, 2013).
However, the satellite passes given points at around 01:30 locally, when
there is likely to be less human activity (Bennett & Smith, 2017;
Elvidge, Baugh et al., 2013; Elvidge, Zhizhin et al., 2013). The failure to
capture LED lights that emit at wavelengths below 500 nm also makes it
less used for urban detection (Bennett & Smith, 2017).

Most previous studies use the long-term DMSP-OLS data to map
urban areas, and the thresholding approaches have long been the foci of
these mapping studies because of the blooming effects (Henderson, Yeh,
Gong, Elvidge, & Baugh, 2003; Imhoff, Lawrence, Stutzer, & Elvidge,
1997; Liu, He, Zhang, Huang, & Yang, 2012; Tan, 2016; Zhou et al.,
2014). The blooming effects of the data would make regions without
light be seen as bright places in the satellite images. Using certain va-
lues of the brightness as thresholds to mitigate the blooming effects is a
type of approach to map urban areas (Zhao et al., 2019). Current
thresholding approaches used to detect urban fringes can be categor-
ized into two types. The first typically uses a fixed empirical threshold
for the whole country or region to identify urban areas (Henderson
et al., 2003; Imhoff et al., 1997; Liu et al., 2012). This approach as-
sumes cities in a given region have similar features, so that the same
threshold can be applied to all the cities in that same region. However,
cities may have different values of brightness even if they are close to
each other or have similar physical sizes.

The second approach calculates optimal thresholds for different ci-
ties based on relationships between the night light data and ancillary
data. This type of analysis can be more accurate but is more compli-
cated to conduct. For example, the Overglow Removal Model (ORM)
relies on atmospheric conditions, topography, elevation, and regional
lighting techniques to determine thresholds, which could be very ac-
curate if all the relevant data are available (Bennett & Smith, 2017;
Townsend & Bruce, 2010). Moreover, applications of this approach
identify thresholds based on relationships and parameters calculated
through high resolution land-cover data (Cao, Chen, Imura, & Higashi,
2009; Cheng et al., 2016; Lu, Tian, Zhou, & Ge, 2008; Tan, 2016; Xie &
Weng, 2016; Yang, He, Zhang, Han, & Du, 2013; Zhou et al., 2015,
2014). These relationships and parameters change across regions and
vary by time, which requires a large amount of work on the land cover
classification from high resolution images (Li & Zhou, 2017; Xie &
Weng, 2016).

In addition to the methodological problems identified above, few
thresholding efforts discuss what they are mapping and what reference
they are using when they provide new mapping methods. Some studies
did not realize the necessity to define urban areas, but more often took
the assumption for granted that urban areas were equivalent to

impervious surfaces or the developed land (Chen et al., 2019). There-
fore mapping results based on land cover data have often been used as
the reference to validate urban extents derived from the nighttime light
data (Cheng et al., 2016; Huang, Schneider, & Friedl, 2016; Yi et al.,
2016; Zhao et al., 2019; Zhou et al., 2014). Based on the perspectives
and assumptions about urban areas reviewed above, most studies have
aimed to develop a universal method that could be applied everywhere
in the world. However, recent urban theories suggest that we should
recognize the contemporary urban world as complex mosaics or pro-
cesses, and the scope of the urban should not be decided only by the
visual physical structures (Brenner & Schmid, 2014; Grove, Cadenasso,
Pickett, Burch, & Machlis, 2015).

Rapid and extensive urban spread as well as the current under-
standing of urbanization require up-to-date, comparable, and efficient
urban mapping approaches. Improvements in nighttime light data and
the emergence of location-tagged data also demand updates for an ef-
ficient approach that can be used to demarcate urban areas based on
diverse datasets (Klotz, Kemper, Geiß, Esch, & Taubenböck, 2016; Xie &
Weng, 2016; Zhao et al., 2019). In this paper, we present a new ap-
proach that integrates object-based image analysis with a grouping al-
gorithm to automatically and efficiently map urban areas at the re-
gional scale. Rather than using a fixed threshold, this approach sets up
relative boundaries for different urban patches by taking local contexts
into consideration. We test this new approach for mainland China,
using the 2010 nighttime light data from the Defense Meteorological
Satellite Program/Operational Linescan System and the officially de-
signated county-level administrative units.

2. Study area

We selected China as the experimental area to test our method,
because on the one hand it has complicated topography (Fig. 1) and
possesses cities of different sizes and diverse functions experiencing
different levels of urbanization (Cheng et al., 2016). On the other hand,
although cities in China vary by region and development status, the
basic ideas of city construction and management remain the same.

Cities in East and South China are more developed and tend to grow
in continuous clusters as urban agglomerations. Cities in the west and
north are less developed. In these regions, several big cities play the
roles of “engines” for the area, and the others are smaller and scattered.
The unbalanced development of cities can also be illustrated by the
sizes of counties (Fig. 1). Administrative counties in better developed
regions have smaller areas because of their higher density of population
and resources.

Cities and towns in China are administered under powers from
several levels of government – provincial, prefecture- and county-levels
(Table 1; Box 1). The county is the smallest unit that can delimit a city
or part of a city. These divided administrative units are adjusted by the
government as an area urbanizes, so they change every now and then.
The county-level units change more rapidly compared to the provincial
or prefecture-level units. For instance, there were 2861, 2856, and 2851
county-level administrative units in the years of 2000, 2010, and 2016
respectively (Wu & Ding, 2018).

Because the terms used to designate different administrative levels
of Chinese urbanization might be unfamiliar to many readers, we clarify
the meaning of urban labels we used in this paper as below (Table 1;
Box 1).

BOX 1
: Terms for administrative units & cities in China.

In China, places are named and administratively bordered on
maps as “SHENG”, “SHI”, ‘XIAN‘’/ ‘’QU”, “JIE DAO”/”XIANG”/
”ZHEN”.

Under the administrative division, SHENG means province,
the first-level administrative unit. SHI is the prefecture-level
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division under SHENG and consists of XIAN/QU. XIAN/QU means
county. JIE DAO/XIANG/ZHEN is the fourth-level administrative
unit under XIAN/QU, which has little power and seems to be
declining. More money assigned by government goes to higher-
level units.

SHI, in addition to the administrative meaning of prefectures
under provincial units, also refers to “city” - municipality, pro-
vincial-, prefecture- or county-level cities. Municipalities are
“level-up” cities from prefecture-level cities, meaning they have
the same power level as provinces. Beijing, Tianjin, Shanghai and
Chongqing are the only four municipalities currently. A pro-
vincial city is a special type of prefecture-level city that also
functions as the capital of the province. Municipalities are gen-
erally bigger than prefecture-level cities, as they receive more
funding from the central finances. Prefecture-level cities are
generally bigger than county-level cities, as prefectures have been
assigned power to administer their counties, from which they can
accumulate resources and land. Prefecture-level cities might
consist of several county-level cities or towns.

XIAN and QU are administered by SHI, but they are different.
XIAN is usually far from its host SHI and could have an urban
patch inside as a county-level city/town. QU is close to its host
SHI and is more likely to have an urban patch as part of a mu-
nicipality or prefecture-level city.

JIE DAO, XIANG and ZHEN act as postal units rather than
administrative units nowadays in China. They are units using an
idea that is similar to watershed. They can be a region that has
one main street in the middle (like the main stream) and linked
with several smaller streets (like tributaries). In a city, they are
called JIE DAO. In rural regions, bigger units are called ZHEN
while smaller units are called XIANG.

3. Datasets

3.1. Nighttime light data

We used the stable lights of the DMSP-OLS as the major data to test
our approach. The DMSP-OLS dataset provides an image of stable lights
each year from 1992 to 2013. Each image of stable lights is made of all
available cloud-free DMSP-OLS data for the specific calendar year. The
data of stable lights record nightlights through DN values from 0 to 63.
The value “0” means dark and “63” is the maximum brightness. The
stable lights from 2010 to 2013 were obtained from the NOAA website
(http://ngdc.noaa.gov/eog/dmsp). The data of 2010 were used to map
the urban areas, while the data of 2011, 2012 and 2013 were used to
filter the inconsistent lights that disappeared in later years.

The DMSP-OLS satellite passes at around 20:30–21:30 locally,
which is more representative for human activities than the VIIRS data
consisting of nightlight at 01:30. Nightlights captured earlier, at around
21:00 are likely to include light from residential, commercial and
fundamental street light sources. Nightlights measured at 01:30 might
not include some of the sources above based on different lifestyles in
different regions. Further militating against the use of VIIRS for ex-
tracting urban areas (Shi et al., 2014) is the lack of methods for filtering
out fires and aurora (Bennett & Smith, 2017). Consequently, we chose
the DMSP-OLS data for our analyses

Fig. 1. Provincial, county-level administrative units and topography of China. The black lines are provincial boundaries while the grey lines are county-level
boundaries. The color from snow white to light green represents changes in altitude. The highest point is in the Himalayas with an altitude of 8848m. The lowest
point is in Xinjiang with an altitude of −155m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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3.2. Administrative units and other data for accuracy assessment

The county-level administrative units of China were used as the
ancillary data to detect urban areas (Fig. 1). There are 2811 county-
level units covering mainland China (except for Hong Kong, Macao,
Taiwan and islands on the South Sea), according to the data obtained
from the National Geomatics Center of China (NGCC; http://ngcc.sbsm.
gov.cn). There is a slight discrepancy in the NGCC data since there were
2856 county-level units in 2010 except for Hong Kong, Macao and
Taiwan according to government files about administrative zones (Wu
& Ding, 2018).

Locations of cities, urban boundary dataset, and the land cover of
China were used as the reference against which to evaluate the per-
formance of our method (Fig. 2). The geographic locations of cities that
exist at different administrative levels in China, were obtained from
Baidu Maps. There are 31 provincial capitals, 332 prefecture-level cities
(excluding Sansha in South China Sea) and 2880 county-level cities/
towns in mainland China (circles and triangles in Fig. 2). Those black
triangles for county-level cities/towns are urban regions inside county-
level units, such as for Haidian and Chaoyang, which are counties inside
Beijing municipality.

The points locating cities and towns from Baidu Maps are not the
physical centers of those urban areas. In fact, except for huge cities such
as Beijing and Shanghai, most of these dots are located at the urban
constructed fringes. The dots in the map (Fig. 2) are not overlapped
when a city represents different administrative levels. For instance,
except for Beijing, Tianjin, Shanghai and Chongqing, the other 27
provincial capitals are also prefecture-level cities, and there are another
27 dots representing the same prefecture-level cities with green dots,
but these locations are different from those yellow dots representing
provincial capitals.

The urban boundary dataset contains urban boundaries of 29 cities

in China (Fig. 2; Table 2), which was made based on the land cover in
2010 with the resolution of 30m derived from Landsat satellite. To
make this boundary dataset, grids with different sizes were used to
delineate urban areas based on the land cover data, and urban areas
were defined as connected grid cells in which the proportion of de-
veloped land was above 50%.

The 2010 land cover of China at a resolution of 90m was acquired
from the National Ecological and Environmental Assessment Program
(2000–2010) and contained the six land-cover classes of forest land,
grassland, wetland, cultivated land, developed land, and barren
(Ouyang et al., 2016).

4. Methodology

We use the idea of “relatively urban” to recognize urban areas. As
mentioned in the introduction, urban systems are complex and multi-
dimensional, so that there can be different ways to understand and map
relatively urbanized regions. Specifically, the urban areas we are de-
marcating in this paper represent regions that have urban night lives.
We assume urban areas in China are likely to have more street lamps,
automobile lights and dense residential, commercial and social regions
that are brighter at night, so that the night life represents a current
urban lifestyle in China (Table 1). Under such a perspective, urban
areas could be recognized as clusters of brighter objects than their
surrounding areas in the nighttime light maps.

We used county-level units to delineate urban areas using an object-
based method. According to the knowledge of how urban areas are
administratively organized in China (Fan, Li, & Zhang, 2012; Table 1;
Box 1), we found that the county-level boundaries to be useful for
finding urban nightlife centers. Since urban areas consist of irregularly-
shaped patches, an object-based approach that works on objects is more
efficient and suitable than a pixel-based method (Myint, Gober, Brazel,

Table 1
Definitions of terms used in the paper.

Defined specifically in this paper
Term Meaning Visual or descriptive examples

The urban/urban areas/
urban regions

Human settlements and functionally-related regions that have relatively more
street lamps, automobile movements, residential and commercial regions that
have lights at night. We assume nightlife is a type of urban lifestyle in
contemporary China.

Seen from nighttime light maps, relatively brighter areas than
their surrounding regions. Fig. 4.

Urban patch Delineated urban areas based on the definition of the urban above. Mapped results in Fig. 5.
Urban center Urban patches that have high density of roads, buildings, shops and

restaurants that attract people and generate nightlife.
Seen from nighttime light maps, urban patches that have the
highest values of brightness inside counties or extreme high values
at the country scale.

City/town Urban patches that have bigger or smaller sizes. Big patches are cities, and
small patches are towns. The way we use these terms in the paper is different
from the administratively divided city or town.

Figs. 5, 7, 8

County-level city/town Urban patches inside counties, the basic unit of urban patches. Xinzheng city in Zhengzhou Prefecture, Henan Province. We take
black dots in Fig. 2 as reference.

Prefecture-level city Urban patches, connected county-level cities/towns inside prefectures. Wuxi city in Wuxi Prefecture, Jiangsu Province. We take green
dots in Fig. 2 as reference.

Provincial capital Urban patches, a special type of prefecture-level city that functions as the
capital city of a province or a municipality.

Zhengzhou city in Zhengzhou Prefecture, which is also the
provincial capital of Henan Province. We take yellow dots in Fig. 2
as reference.

Defined and divided administratively by the government

Term Meaning Visual or descriptive examples

Province/provincial unit Consists of urban and non-urban patches. Covered all areas as the provincial
division of the country. The highest level of administration under the national
government control.

Henan, Jiangsu, Guangdong Provinces. Divided by the thick black
provincial boundaries in Fig. 1.

Municipality Consists of urban and non-urban patches. Special prefectures that have the
same administrative level of provinces.

Beijing, Tianjin, Shanghai, and Chongqing Municipalities, divided
by thick black provincial boundaries in Fig. 1.

Prefecture/prefecture-level
unit

Consists of urban and non-urban patches. Covered all areas as the prefecture-
level division of the country, and the power level of which is under the
province.

Grey units in Fig. 2.

County/county-level unit Consists of urban and non-urban patches. Covered all areas as county-level
division of the country, and the power level of which is under the prefecture.

Counties are divided by grey county-level boundaries in Fig. 1.
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Grossman-Clarke, & Weng, 2011; Zhang, Xiao, Feng, & Yuan, 2017;
Zhou, Troy, & Grove, 2008).

Our method includes five steps: 1) preprocessing, 2) object-based
segmentation, 3) detection of urban centers, 4) detection of urban
fringes, 5) merging, infill, and refinement (Fig. 3). Briefly, we first fil-
tered nighttime light data by removing light pixels that disappeared in
later years and ran image segmentation on the filtered image to gen-
erate objects. We then identified objects as urban centers based on their
brightness. These urban centers then aggregate into larger urban areas
based on an optimal grouping algorithm. Finally, we merged and re-
fined the map. We will detail these five steps below. In addition, we also
performed an accuracy assessment.

4.1. Preprocessing

Through comparing nighttime light data and remote sensing images

from 2010 to 2013, we found groups of lit spots in desert and in other
non-urban regions, which completely disappeared in later years.
According to assumptions that most urban patches in China are cur-
rently not expected to shrink (Liu et al., 2012), we filtered the target
nighttime light map in 2010 by darkening the light pixels that dis-
appeared in later years. However, in other regions of the world, the
filtering methods should be optimized according to local conditions.

We first reclassified the nighttime light images of 2011–2013 to
light (“1”) and dark (“0”) pixels individually, and then overlaid them to
create a stable light mask (Liu et al., 2012). Finally, we applied this
mask on 2010 data to filter out unstable light pixels. This procedure
worked well for removing non-urban lights in China.

4.2. Object-based segmentation

We used a multiresolution segmentation algorithm in ©eCognition to
segment the filtered nighttime light image into objects. This segmen-
tation method can minimize the local heterogeneity of pixels inside the
image object and maximize the heterogeneity among objects for a given
resolution (Trimble Germany GmbH, 2014). Segmentation is ex-
emplified by the Beijing-Tianjin-Tangshan megaregion (Fig. 4).

We used empirical parameters of shape= 0.1 and color= 0.9, be-
cause color (i.e., spectral information, as digital number/DN values in
nighttime light data) is the most important information the light data
provide. The shape defines the textural homogeneity of objects, which
consists of smoothness (0.5) and compactness (0.5). These empirical
parameters are commonly-used and well-supported in urban studies
(Mathieu, Aryal, & Chong, 2007; Pu, Landry, & Yu, 2011). We did the

Fig. 2. Locations of provincial capitals, prefecture-level cities and county-level cities/towns from Baidu Maps. Cities in the urban boundary dataset are distributed
inside the pink units. Grey patches are prefectures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 2
Cities in the urban boundary dataset.

Region City

North Beijing, Tianjin, Shijiazhuang, Tangshan, Baoding, Cangzhou,
Chengde, Hengshui, Langfang, Qinhuangdao, Xingtai

Central Wuhan, Changsha, Xiangtan, Zhuzhou
East Shanghai, Nanjing, Hangzhou, Suzhou, Wuxi, Changzhou, Nantong,

Ningbo
South Shenzhen, Guangzhou, Foshan, Dongguan,
South-west Chongqing, Chengdu
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segmentation at the scale of 1 with previous empirical parameters, so as
to make sure that every segmented object has the same DN value and
the objects are as fine as possible (Fig. 4). We recommend to do the
segmentation at the scale of 1 for DMSP-OLS data, because the DMSP-
OLS data have a coarse resolution of 1 km, so that increasing the scale
of segmentation would cause the urban mapping to be even coarser and
inaccurate. Increasing the scale of segmentation has little influence on
urban regions that have been delineated at the scale of 1, but would
extract more roads or bright non-urban patches as urban areas. For
other high resolution dataset, the scale could be altered to improve the
mapping efficiency.

4.3. Detection of urban centers

We recognized the brightest objects inside each county as urban
centers (Table 1) based on our understandings of the urbanization in
China. We found some counties in west China only had scattered vil-
lages, and there were no objects with brightness greater than “0”.
Therefore, to qualify as urban centers, the value of the brightest object
must be greater than “0”. If there is additional information based on
some types of classification suggesting that the brightness of qualified
urban centers in China should be above a certain value, then the results
of urban centers could be adjusted.

Meanwhile, although there should be only one urban patch inside
every county-level unit “officially” according to the management of
cities in current China, we are not sure if there are other patches in
well-developed counties that would qualify to be urban regions under
our definition (Table 1). In addition, the administrative data of county-
level units we are using have fewer units than what they should have in
2010 (Section 3.2), which might cause failure to detect enough urban
centers. Under such circumstances, we also identified objects that were
brighter than 99.5% of all the segmented objects globally as urban
centers to avoid losing qualified urban patches in more developed re-
gions. This percentage of 99.5% is an extreme threshold used to make
sure that we will not lose patches that are brighter than most of the
objects at the country level, even if they might not be recognized as
urban regions officially inside some county-level units. The extreme DN
value for our 2010 DMSP-OLS data is 58. This method of detection can
be applied in regions where the urbanization varies greatly.

4.4. Detection of urban fringes

We developed a grouping algorithm for the detection of urban
fringes. With this algorithm, the initial urban centers continued
“sprawling”, that is, merging with surrounding objects, when these
surrounding objects were brighter than their neighboring objects. As a
result, the initial urban centers and objects that merged with urban

Fig. 3. Flowchart of the processing steps.

Fig. 4. Image segmentation of the Beijing-Tianjin-Tangshan megaregion
in. ©eCognition .
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centers were classified as urban areas, and the values of urban fringes
were thresholds. We used the loosest condition that any difference
would make the urban growth continue. A stricter rule might provide
better results, which needs further local investigations to acquire a
commonly-accepted reference in advance.

“Brighter than their neighboring objects” means the target object
next to the urban center patch has a larger brightness value than the
mean value of its surrounding objects, which include the urban center
patch and objects that have not yet been classified. To calculate the
mean value of the brightness of the surrounding objects, the lengths of
borders between the target object and its surroundings were used for
weighting. When the urban center has been merged with some sur-
rounding objects, the new patch became slightly darker than before.
The urban center would stop merging with other objects when the new
object did not meet the criteria of merging, meaning that the new object
was statistically too dark to be classified into the same group of objects
similar to urban centers inside the same county. We ran the algorithm
on all urban centers, and thereby detected urban fringes by extracting
urban areas in each county.

With the grouping algorithm, the thresholds of the urban fringe
could vary by direction, as a city could have different types of structures
at the fringe. This is different from many previous studies that typically
used a fixed threshold to identify urban fringes in all directions for a
city (He et al., 2006; Imhoff et al., 1997; Liu et al., 2012; Shi et al.,
2014; Sutton, 2003). We did not set up stopping boundaries for the
spread, so that urban areas could cross administrative boundaries and
connect with one another. This allowed us to acquire information on
evolving connections among cities. This flexible approach differs from
previous studies that set up potential urban areas a priori (Zhou et al.,
2014, 2015).

Assistant data can provide more information about urban areas in
specific studies, and could be used to improve the grouping algorithm.
For example, in our study, we did not set up an additional ending cri-
terion, but if we have the data on distributions of some types of night
activities, we might be able to use such distributions as reference to
promote grouping accuracy.

4.5. Merging, infill, and refinement

We first classified all the objects that were entirely enclosed by
mapped urban patches as urban objects. We did this because we assume
that dark objects (e.g., rivers, lakes, green infrastructures, and other
daily functional regions) within cities function together with those
bright patches during the day and are important parts of urban areas
(Cadenasso, Pickett, & Schwarz, 2007; Grove et al., 2015; Rademacher,
Cadenasso, & Pickett, 2019). Therefore, we did not exclude them using
NDVI or other metrics as previous studies did (Cao et al., 2009; Cheng
et al., 2016; Lu et al., 2008; Xie & Weng, 2016; Yang et al., 2013).

We then merged all the urban patches, and deleted objects that were
smaller than 8 km2, which is the size assumed to be too small to func-
tion as a city in China (Yang et al., 2013). This particular size is a local
refining procedure that could be modified in other regions. In this step,
other available and reliable datasets can also be used to refine the re-
sults according to the research or management aims, for example to use
the Landscan population dataset or cellular signal dataset to delineate
urban areas with larger populations.

4.6. Accuracy assessment

Currently, the most popular way of conducting the accuracy as-
sessment is to compare the delineated urban areas with those derived
from high resolution remote sensing data. Relationships of areas,
thresholds, and sometimes a confusion matrix are provided (Xie &
Weng, 2016; Zhou et al., 2014). Studies employing such assessments
possess different conceptual views of urban mapping from ours. These
studies regard discrete and bounded patches having a high percentage

of impervious surface as urban areas; therefore, they match nighttime
light data to remote sensing images as the way of conducting urban
mapping, which necessarily makes their results close to references de-
rived from remote sensing images. Some studies have discussed the
possibility that the delimitation of urban systems using nighttime light
data might differ from delimitation based on high resolution images
(Zou et al., 2017), and that nighttime light maps provide different
urban patterns from land cover maps (Uchiyama & Mori, 2017). Some
urban mapping studies did not conduct such accuracy assessment
(Ginzarly, Roders, & Teller, 2018; Peng, Hu, Liu, Ma, & Zhao, 2018).

However, there are no other commonly-used reference maps, and
the accuracy assessment is often required for urban mapping studies. In
addition to providing visual mapping results with land cover maps, we
compared urban extents with the total area of the developed land inside
urban patches at the county level, and with urban areas derived from
the urban boundary dataset (Fig. 2; Table 2), to show the results from
different perspectives of urban mapping. We also used the locations of
provincial capitals, prefecture-level and county-level cities/towns from
Baidu Maps to evaluate our urban detection to those administrative
realities (Fig. 2). We further compared our results with the modified
DMSP-OLS data in which the blooming and saturation effects have been
largely removed through a self-adjusting model (the SEAM model from
Cao et al., 2019), to evaluate if our mapping approach is influenced by
the blooming and saturation effects.

5. Results

We delineated 2323 connected urban patches across the mainland
of China (Fig. 5). Among all the 2811 administrative counties, urban
areas existed in 2489 counties and covered 146,806 km2, that is 1.5% of
the mainland China. Some urban areas overspread their county-level
boundaries, and some even stretched across prefectures to form re-
gional urban agglomerations. Nearly all provinces had large cities, and
in most cases the largest patch was the capital city of the province
(Fig. 5).

5.1. Thresholds of brightness in the urban fringe

The mean thresholds of urban patches at the prefecture level ranged
from 5 to 62 in DN value (Fig. 6). Most of the mean thresholds were
between 30 and 50 of the DN values. Spatially, the mean thresholds
showed a hierarchical pattern of urban patches in China (Fig. 7).
Coastal urban patches tended to have mean thresholds higher than 50.
Higher thresholds in other regions turned out to be capital cities and the
cities around them, and the brightness of those cities ranged from 40 to
55. Other remote urban patches had lower mean thresholds.

Based on our method, the thresholds for identifying urban areas
differed by compass direction for a specific urban patch (Fig. 8). The
different values of thresholds suggested that various structures or
functions existed in the fringes of a city. Thresholds of the edges also
showed connections among different cities in megaregions. For ex-
ample, in the Yangtze River Delta megaregion, Shanghai city had
stronger connections with Suzhou and Wuxi, while Wuxi city had
weaker connections with Changzhou city (Fig. 8, C).

Thresholds of urban patches varied by patch size and differed by
region. Thresholds were larger for large patches and smaller for small
ones (Figs. 7 and 8). Even in Xizang or Xinjiang province, where the
economy was below the average among provinces, the thresholds of
large patches were around 50. Small patches had much lower thresh-
olds which were lower than 20, and most of those were county-level
cities. The thresholds were generally bigger in the eastern and southern
parts of China. For example, small urban patches in the Beijing-Tianjin-
Hebei megaregion, the Yangtze River Delta megaregion, and the Pearl
River Delta megaregion had thresholds higher than 40, much higher
than those of urban patches with similar sizes in the southwest of China,
such as urban patches in Yunnan, Sichuan, and Guizhou Provinces.
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5.2. Urban extents

Urban patches in the east and the south were bigger and tended to
have more linkages among one another than those in the west and the
north, which in line with the development status of cities in China. The
three conspicuous continuous urban areas were all located in the east
and the south (Fig. 8). The biggest one was in the Yangtze River Delta
with an area of 7529 km2, which included part of Shanghai, Suzhou,
Wuxi, Changzhou and Taizhou. The second biggest urban patch was in
the Pearl River Delta with an area of 5521, which included part of
Guangzhou, Shenzhen, Dongguan, Foshan, Zhongshan and Jiangmen.
The third was 2964 km2, including the biggest urban patch of Beijing
and part of Sanhe.

At the regional level, East China had the highest coverage (5.9%)
and average size (96.1 km2) of urban patches. Urban areas in the north,
south and central covered 4.2%, 3.5% and 2.7% of the land, respec-
tively. While in the west, urban areas covered less than 1% of the land
(Fig. 9; Table 3).

At the provincial level, the proportion and the distribution patterns
of urban areas varied greatly (Fig. 10). Except for the formal munici-
palities, Jiangsu, Zhejiang, Shandong and Guangdong were the top four
provinces in terms of urban coverage, all of which were higher than 5%.
Tibet, Qinghai, Xinjiang, Inner Mongolia, and Gansu were the five
provinces that had the lowest coverage of urban areas, with each
amounting to less than 1%. All of these low urban cover provinces were
located in west China. Beijing, Shanghai, Jiangsu, Zhejiang, Shandong
and Guangdong were municipalities or provinces that possessed higher
household incomes than other regions. Urban patches in these weal-
thier regions were larger in size and more clustered in space (Fig. 10, a,
b, c) than urban patches in provinces having lower household incomes,
such as Hebei, Henan, and Hubei. Although less wealthier or powerful,
these provinces did have some large urban patches that functioned as
economic centers, around which smaller urban patches clustered
(Fig. 10, a, e, f). Urban patches in Yunnan, Xinjiang Provinces in the
west were smaller and fewer (Fig. 10, g, h).

All prefecture-level units had urban areas, but with great variation
in size and proportional coverage. Shanghai, Suzhou, Beijing, Tianjin,
Wuxi, Chongqing, Dongguan, Ningbo, Guangzhou, and Nanjing were
the top 10 prefectures that had the highest coverage of urban areas. The
urban area of Shanghai was 203 times larger than that of Tumushuke,
which had the smallest urban patch in Xinjiang province. As for the
proportion of urban areas, 36 prefectures had more than 10% of their
area as urban coverages, while 63 prefectures had less than 1% of urban

Fig. 5. Urban areas on the mainland of China.

Fig. 6. Histogram of mean thresholds of urban patches at the prefecture level.
The mean threshold of an urban patch is the mean value of the brightness of the
urban fringe.
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areas. Dongguan, Shenzhen, Shanghai and Zhongshan were the top 4
prefectures that had the highest proportion of urban areas, amounting
to more than 40%. Ali, Naqu, Yushu, Alashan, Guoluo, Rikaze, Haixi,
Bayin, Hetian, Linzhi and Hami, in the west of China, had less than
0.1% of the urban coverage.

5.3. Accuracy assessment

On the mainland China, all 31 provincial capitals, 323 out of 332
prefecture-level cities, and 2619 out of 2880 county-level urban patches
were successfully detected using our new methodology for urban
mapping (Fig. 2). Some cities that were not successfully detected are
located in regions of no lights at night, such as cities in Tibet. We also
noticed that some urban dots from Baidu Maps were distant from
human settlements, which also caused errors of our detection. The ac-
curacy of the detection for provincial capitals, prefecture-level cities
and county-level cities were 100%, 97.3%, and 91.0%, respectively.

The derived urban extents and areas of the developed land inside
the urban areas showed significant correlations (Fig. 11, A, r= 0.986,
P < 0.01, R2=0.97). The slope of the regression line was 0.57, because
we considered spaces such as parks and water bodies within cities to be
part of urban areas and these features covered a large proportion of
land inside urban areas. In addition, the land cover data have a re-
solution of 90m, that is, 10 times finer than the nighttime light data.
Therefore, the relationship should not generate a slope of 1 even if
parks, water bodies and other land cover types are excluded.

Urban areas delineated through our method were different from
urban patches derived from land cover data in the urban boundary
dataset, but had significant correlations with them (Fig. 2; Table 2;
Fig. 11, B, r= 0.95, P < 0.01, R2=0.91). The slope of the regression

line was 0.77 rather than 1, because urban areas were derived through
approaches based on different definitions of the urban, and the data
have different spatial resolutions. Nighttime light data have a resolution
of 1000m while the land cover data were derived from 30m Landsat
images.

We compared our results with the modified DMSP-OLS data in
which the blooming and saturation effects have been largely removed
through the SEAM model (Cao et al., 2019). The model also enhanced
the brightness of roads and small scattered non-urban regions, such as
some transportation spots, industrial lands and villages (Fig. 12). The
results showed that the blooming effects could hardly influence our
urban mapping results (Fig. 12). Our mapping results matched well
with those bright urban regions in the nighttime light map after ap-
plying the SEAM model. Although we lose a few urban patches, the
small scattered non-urban patches are not recognized as urban areas
using our mapping approach.

6. Discussion

6.1. Comparisons with previous studies

Most urban mapping studies based on the nighttime light data
prefer to use land cover as reference to conduct urban mapping, and
regard urban areas as impervious surfaces or developed land (Chen
et al., 2019). Some of these studies stated that they aimed to recognize
built-up areas using the nightlights (Shi et al., 2014; Su et al., 2015; Xie
& Weng, 2016), in which case they excluded green infrastructure and
water that are also urban elements. Some other studies used propor-
tions of the impervious surface inside the mapping grids to define urban
areas (Zhou et al., 2014, 2018). The mapping grids are usually squares

Fig. 7. Mean thresholds of urban patches at the prefecture level across China. Urban patches in coastal regions and capital cities had higher values of thresholds.
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with a size of hundred meters times hundred meters. Some studies did
not mention their urban definitions but compared the mapping results
with those derived from land cover data (Yang et al., 2013). The
comparisons between results derived from nightlights and land covers
always used the latter as a standard. However, the delimitation of the
urban based on nightlights is not necessarily equivalent to the devel-
oped land or impervious surfaces (Zou et al., 2017).

Previous thresholding methods are likely to overestimate the size of
big cities while underestimating the size of small cities. This may be due
to their references of impervious surfaces, since the percentages of
impervious surfaces at fringes in big cities are often higher than those in
small cities. However, our mapping approach is able to compensate for
the blooming effects of big cities, but does not work very well for small
cities or dark towns (Fig. 12). We think this is due to the hypothesis and
data we used. Small cities and dark towns show slight differences be-
tween urban centers and surrounding patches, so it is difficult to detect
the differences theoretically. In addition, the coarse resolution of the
DMSP-OLS data (1000m) also increase the difficulty in mapping small
urban patches, since there would be more mismatches in the edges. It is
possible to use different grouping parameters for cities of different sizes,
but this procedure would require visual comparisons and manual se-
lections, which goes against our major goal of dividing relatively-urban
regions using the dataset itself rather than making manual corrections.

The major difference between our study and previous approaches
using the nighttime light data is the perspective of urban areas.
Previous methods used NDVI, water masks, high resolution classifica-
tion maps, topography, census data, and many other ancillary datasets
to translate nighttime light into urban extents (Cheng et al., 2016; Liu
et al., 2012; Tan, 2016; Townsend & Bruce, 2010; Xie & Weng, 2016;

Zhou et al., 2015, 2014). Most of these urban mapping studies, re-
gardless of what ancillary data they used - whether land cover maps,
population distribution, or economic categories - were actually trans-
lating nighttime light data into other types of data and using the land
cover data as reference. Such translation relies on the perspective that
there is only one standard to map the urban and only one type of urban
boundaries existing in reality.

In our method, the recognition of urban fringes depends on the
night lights themselves, without setting potential boundaries referring
to other types of data. The results of linkages among urban patches that
derived from different urban centers will not be separated by manual
preference or prior impressions. For example, the major urban patch of
Beijing city consisted of patches from Dongcheng, Xicheng, Haidian,
Chaoyang and eight other districts in 2010. Instead of physically re-
lating to the other four smaller urban patches distributed inside Beijing
municipality, the major urban patch of Beijing city was connected with
the urban patch in Yanjiao and Sanhe, towns in the east to Beijing
municipality.

There are similar efforts to convey diverse perspectives of urban
regions in other parts of the world. Zhou et al. (2018) developed an
approach to map urban areas globally with only DMSP-OLS data
themselves. García-Palomares, Gutiérrez, and Mínguez (2015) con-
ducted an urban mapping of spatial human activities from locals and
tourists in several European cities through geotagged photographs,
implying that local residents and tourists perceived the same city dif-
ferently. Aiello, Schifanella, Quercia, and Aletta (2016) used picture
tags to map Barcelona and London into sound maps, depicting un-
familiar urban regions from visual buildings and streets. Uchiyama and
Mori (2017) reviewed literature showing that cities could be defined

Fig. 8. Thresholds in three major urban megaregions in China. Thresholds of the fringes also showed connections among administratively different urban patches in
megaregions. A: Beijing-Tianjin-Tangshan megaregion. B: the Pearl River Delta megaregion. C: the Yangtze River Delta megaregion.
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and delineated in practice based on landcover, night lights, and popu-
lation, and the results varied greatly according to different practical
criteria.

In order to virtually show the similarities and differences between
our urban mapping results and previous studies, we further conducted
urban mapping in China in 2005 to compare our results with those
delineated by Zhou et al. (2014). In general, our mapping results
matched pretty well with their results, and we both delineated most of
the urban areas in the Beijing-Tianjin-Hebei region (Fig. 13). We deli-
neated 183 urban patches using our approach, while the number of
urban patches in the same region is 214 using Zhou’s method. Our
methods extracted fewer but more connected urban patches than those
from Zhou et al. (2014), which we think is due to the different defini-
tion of the urban in two methods. Zhou’s approach detected more urban
patches, but some small scattered patches might be non-urban patches
considering their sizes or functions. Our approach detected fewer urban
patches, and most of them were urban areas for sure, but we might lose

some relatively small and dark urban areas.
Although these two methods can delineate most of the urban areas

in the Beijing-Tianjin-Hebei region, they might both miss some of the
urban areas in this region. There are 206 county points in this region
currently. Based on the ways of China developing and managing urban
areas, there should be fewer than 206 urban areas that have official
names. In Zhou’s mapping results, there are 157 urban patches over-
lapping with county points, and 14 county points have no urban pat-
ches to match with. In our mapping results, there are 147 urban patches
overlapping with county points, and 22 county points have no urban
patches to match with.

6.2. Advantages and disadvantages of the “relatively urban” mapping
approach

Our study used the idea of “relatively urban” to map urban extents.
This method delineated urban fringes according to a grouping algo-
rithm, which was conducted on every urban center in China based on
the nighttime light data. It classified patches into a relatively urbanized
group where objects were similar to the bright urban nightlife centers,
and a relatively non-urban group that was close to dark rural or unin-
habited areas.

We admit that our mapping results are coarse, because the blooming
effects cannot be erased completely using the grouping method with the
1000m DMSP/OLS data as mentioned earlier. However, it is acceptable
to use this dataset for urban mapping at the regional scale (Fig. 12).
Another important factor influencing our mapping result is the quality
of the administrative boundaries. If the units do not update with the
latest adjustment (Sections 2 and 3.2), our approach might fail to detect
some of the newly-emerged urban patches. Locations of cities could be

Fig. 9. Geographical regions of China and their urban coverages.

Table 3
Attributes of urban areas in seven geographical regions.

Region Proportion
of the total
area

Average
size
(km2)

Maximum
size (km2)

Mean
brightness
of the light

Standard
deviation
of the light

East 5.9% 96.1 7529 42.9 11.7
North 4.2% 69.2 2964 43.2 10.2
South 3.5% 76.7 6065 35.3 13.6
Central 2.7% 50.9 681 34.5 11.9
North-east 1.1% 57.6 779 45.3 9.7
South-west 0.8% 43.3 693 27.4 14.2
North-west 0.5% 45.1 1158 37.2 13.5
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used as additional data to help map urban regions, but which would
weaken our original attempt to promote a simple method using as few
ancillary data as possible. Meanwhile, the accuracy of locations of cities
might cause other problems (Section 5.3).

Nevertheless, our major point is to provide methodologies to effi-
ciently map urban areas based on different perspectives. Our method
can detect and map urban areas under different definitions efficiently,
because the basic ideas of the urban detection and the grouping algo-
rithm are simple and direct. Based on the criteria considering both local
and regional characteristics, this method is usable for comparative
analysis at large spatial extents or long-term temporal scales.

The object-based approach with a grouping algorithm we developed
in this paper provides a way to recognize relatively urban regions using
different datasets. With the development of techniques of remote sen-
sing and widely used geo-tagged data, previous methods or parameters

that worked well on DMSP-OLS data would have to be revised to work
on new data. However, our approach does not set up thresholds or
parameters in advance, and the grouping process is based on the dataset
itself: therefore it has the potential to be applied to any type of data. For
instance, we used the nighttime light data to map urban regions with
more lights and electric-based residential and commercial nightlives.
We can also use the social-media data, location-tagged data, or per-
ceptions about the city with the same approach to describe urban re-
gions with different characteristics or lifestyles.

6.3. Knowledges of the urban areas are necessary for urban mapping

The knowledge of how urban areas are administered or organized in
the study region helped to choose the operating scale for urban map-
ping (e.g. Box 1). Urban areas in different countries or regions might

Fig. 10. Delineated urban areas mapped on the land cover and remote sensing images in 2010. Continual urban patches are segmented by prefecture-level
boundaries. a: Beijing, Tianjin and Hebei Province; b: Shanghai, Jiangsu and Zhejiang Provinces; c: Guangdong Province; d: Shandong peninsula; e: Henan Province;
f: Hubei Province; g: Yunnan Province; h: Xinjiang Province.

Fig. 11. A. Relationship between urban areas delineated from the DMSP-OLS data and total areas of the developed land inside those urban patches. B. Relationships
between urban areas delineated from the DMSP-OLS data and those from the urban boundary dataset.
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obey different rules of organization, which gives additional information
on where urban areas might emerge. In China, either big cities or small
towns are controlled by the basic administrative units at the county
level, which is beneath the prefecture level. That is, every urban patch
is controlled by a county-level government, and urban patches that are
not physically connected might belong to the same prefecture-level city
or municipality administratively. For example, Tianjin municipality sets

up a new costal county to administer its newly developed urban patch
near the harbor, which is far from Tianjin downtown.

The knowledge of how urban patches spread helped to decide the
grouping algorithm. Some urban patches in China break through ad-
ministrative boundaries to connect with one another, but they do not
necessarily belong to the same city administratively. Therefore, it is not
proper to constrain an urban patch from sprawling out of its

Fig. 12. Urban mapping results overlapped with the original DMSP-OLS map, modified DMSP-OLS data (After SEAM; SEAM is a model to mitigate the blooming and
saturation of the DMSP-OLS data, Cao et al., 2019), and the land cover maps. a: Beijing, Tianjin and Hebei Province; b: Shanghai, Jiangsu and Zhejiang Provinces; c:
Shandong peninsula; d: Henan Province; e: Yunnan Province; f: Xinjiang Province.
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administrative boundary, and we did not set up such rules in the
grouping algorithm. Examples include the urban megaregions in the
Pearl river delta and in the Yangtze River Delta (Figs. 8, B, C; 10, b, c).

Another important issue is to understand that urban areas differ
spatially and temporally. Knowing what characteristics of the urban can
be derived from specific datasets would support meaningful urban
mapping. We used the nighttime light data to map urban areas in China,
because we think it is possible to distinguish urban areas from this

dataset. We assume that people in most cities in China would engage in
active nighttime activities illuminated by artificial light that spills into
the sky. Such active night lifestyle may well be a symbol of urban life,
leisure, and consumption (Shaw, 2014). However, such assumptions
might not be applicable in some other parts of the world or some certain
types of cities where nighttime activities are not popular. Therefore, the
specific criteria used for urban mapping should be based on local
characteristics.

Fig. 13. Urban mapping results in 2005 based on our approach, compared with urban areas delineated from Zhou et al., 2014.

Fig. 14. The land cover, night lights, and the original remote sensing images of Daqing, a city based on oilfields in the northeast of China. Some classification errors
can be found in the land cover map in the largest middle patch compared with original image on the right. There might be gas flares in the map of night lights.
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6.4. Diverse perspectives and integration are needed for understanding of
the urban

In general, most people can depict images about the urban in their
heads very easily – tall buildings and busy streets. Under the same logic,
non-urban regions could be depicted as places with flowing rivers and
green trees. Such inherited impressions may encourage researchers to
employ the visual physical differences of the grey and green as criteria
to distinguish urban and non-urban places. However, are there un-
ambiguous urban boundaries in reality? If so, what do such boundaries
separate, or in other words, what do such separated urban or non-urban
regions represent?

If we take a closer look, we may find land cover and nighttime light
data tell different stories. The easiest way to understand the difference
is to look at the concrete or grey surfaces on Earth. Although urban and
rural areas both have structures of concrete and impervious surfaces
which look the same as red pixels in land cover maps, the concrete
surfaces have different appearances in nighttime light maps (Figs. 10
and 14). Similarly, regions with similar values of the brightness look
different on land cover maps (Fig. 14). Shall we understand these dif-
ferences as deviations caused by different datasets, or shall we admit
that there are different legitimate ways of viewing the urban?

Urban areas have diverse features, sizes, forms and functions, which
makes the urban area hard to define and of no universally accepted
definition (Aubrecht, Gunasekera, Ungar, & Ishizawa, 2016; Chen et al.,
2019; Huang et al., 2016; Klotz et al., 2016; Pickett & Zhou, 2015;
Sutton, 2003). Current urban studies imply that urban systems are
complex and consist of many kinds of spatial mosaics (Grove et al.,
2015), and the urban should be regarded as a process rather than a
universal bounded unit (Brenner & Schmid, 2015). Since there is no
single distinct line between the urban and its surrounding regions
(McIntyre et al., 2000), an urban boundary should be recognized for
each type of mosaic or features according to the specific questions
guiding a research project. In addition to the visual physical structures
of buildings and roads, other urban functions and human perceptions
can also be used to understand urban areas (Gandy, 2012; Lefebvre,
2003; Monte-Mór, 2005). For instance, under the perspective of daily
commuting, the urban areas of New York city or Shanghai could be
much larger than expectations, or at least much larger than the concrete
developed land delineated through the land cover types.

Integrated datasets are required to define and detect urban areas
(Cai, Huang, & Song, 2016; Elvidge et al., 2009). If urban areas are
combinations of complex mosaics, as mentioned earlier, integrated
datasets will be important. For example, the land cover shows the
pattern or mosaics of buildings, pavements, and green infrastructures,
the nighttime light data gives clues on urban settlements and trans-
portation, while the social-media and location-tagged data describes
preferences and human daily activities. Thinking of how these mosaics
combined with each other, we may find a more convincing way of
understanding the urban and linkages among places, which is vital for
reasonable urban planning and management.

7. Conclusion

We propose a flexible approach that can be applied on datasets that
describe aspects of the urban from diverse perspectives, which meets
the demand of up-to-date urban mapping approaches and current the-
oretical understanding of the urban. The specific method we use in this
paper can delineate defined urban areas efficiently at the regional scale
through nighttime light data and county-level administrative units in
China. The method has a low requirement for ancillary data and is
usable for comparative analysis at large spatial extents or long-term
temporal scales.

We do not set urban centers using points of interest (POI) data or
through manual selections, rather, all the initial urban centers were
detected using the same criteria across the whole country. Without the

procedure of using high resolution remote sensing images, our method
saves a large amount of time and labor. We believe this method can be
used in other places to map urban areas with nighttime lights or other
datasets that describe some characteristics of the urban. One detail of
using this approach in other places or to reveal temporal patterns is that
the mapping unit should be decided based on local conditions. For
example, the dataset of Places could be used as the unit for urban de-
tection in the United States.

Because urban mosaics are complex and multidimensional, there is
no single way to define or delineate urban areas. Therefore, urban
boundaries must be drawn based on specific characteristics according
to research questions or management applications. Urban mapping that
integrates local knowledges such as the administrative organization of
human settlements can help enhance the understanding of urbanization
in the region of interest. Our approach of urban mapping lays the basis
for an integrated perception of urban mosaics, which is necessary for
urban planning and management. Therefore, we believe it is useful for
promoting urban studies.
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