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Abstract

Machine learning approaches are explored to predict the bandgaps of inorganic compounds using known compositional
features, based on a dataset of 3896 compounds with experimentally measured bandgaps. In particular, among various
existing methods, we propose a new method, random forest with Gaussian process model as leaf nodes (RF-GP), and show
its advantages. We have also investigated ensemble learning methods, which produce superior results over other
traditional machine learning methods, but at the cost of extra computational load and further reduced interpretability.

Received: 18 April 2020; Accepted date: 04 June 2020.
Article type: Research article.

1. Introduction
In recent years, machine learning-based predictions for

material properties have gained growing interests.!'
Compared with the time-consuming experimental
inferences”’ and computational methods like density

functional theory (DFT) or molecular dynamics (MD),"
machine learning-based predictive algorithm provides a high-
throughput, computationally inexpensive way to render
material properties. Specifically, a model to predict electronic
properties such as the bandgap can provide an important
guidance in the search of the ideal materials, which will
benefit fields such as solar cells, and heterojunction optical
devices, etc. In these applications, a precise bandgap is
necessary for the evaluation of the device performance.®
Through machine learning, the correlation between certain
material properties and attributes may be found and
eventually leads to the discovery of new materials.>6!

Many recent studies have used machine learning
algorithms to help with analysis in material science areas.
For example, Wang et al. introduced a self-adaptive
differential evolution algorithm to optimize a reduced
mechanism of 2-Butanone, whose performance is similar to
those of the detailed mechanism.”! Peng et al. used the
random forest algorithm to analyze the importance of various
factors on solar evaporation.®) Zhang et al. provided an
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overview of machine learning methods for screening of the
thermal conductivity for compounds, composites and
alloys.l'9! Wan et al. reviewed the research progress regarding
the materials discovery and properties prediction in thermal
transport via materials informatics.!"’

For bandgap predictions, Pilania ef al. adopted a linear
least square regression combined with kernel ridge regression
(KRR) to predict bandgaps of double perovskites.[''! The
KRR can incorporate complex non-linear relationships
between different material features, but this model can only
be applied to a limited chemical space for nonmagnetic
perovskites. Ward et al. adopted a random forest technique
with a categorized dataset based on properties such as the
range of bandgaps and element groups.''”’ However, the
partitioning of the materials has lowered the robustness of the
model, though the prediction accuracy is relatively high.

In this work, we investigate machine learning techniques
to recognize meaningful patterns in bandgap values across
thousands of compounds and their chemical properties. To
represent the materials in a feature space, the chemical
composition-based approach is adopted. As an advancement
to previous studies, we propose a new method by combining
the random forest and Gaussian process (RF-GP), which
exhibits some advantages over existing methods.

2. Data Description

Our dataset employs 3896 experimentally reported bandgaps
of inorganic compounds composed of 2458 unique element
compositions, which were extracted from the literature!'3117
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as referenced. The histogram of bandgaps of these materials
is shown in Fig. 1. It illustrates that the compositions used
for training the models range from small bandgap
semiconductors such as CrSb, (Eg; = 0.16 eV) to ultra-wide
bandgap materials like LiF (E; =11.7 eV). Inputs to models
termed as features (in machine learning) or descriptors (in
materials science) should be easily accessible properties,
obtained by experiments and simple computations. In the rest
of this paper, model inputs will be called “features.” The
applied machine-learning models predict the bandgap using a
feature set based only on the elemental properties of the
constituent elements, which are related to the atom’s relative
position on the periodic table, the electronic structure, and
their physical properties. The full list of variables is provided
in Table A1 (refer to supporting materials). The feature set is
limited to composition features in machine-learning models
because there is currently no simple and effective way to
describe crystal structures. Also, we find out the detailed
atomic structure may not be needed to achieve certain
accuracy for the prediction.
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Fig. 1 Bandgap distribution of 3896 inorganic compounds in our
dataset.

3. Methods
Input Machine Learning Model Evaluations
Linear Lasso/ Ridge

Elen.lental Random forest MAE

deSCTIPIOTS / | ey SVR — RMSE
Known GPR R2
bandgaps Neural network
RF-GP

Fig. 2 Overall workflow.

The methods utilized in this study are linear Lasso (Least
Absolute Shrinkage and Selection Operator) and Ridge
regression, random forest, support vector regression (SVR),
Gaussian process regression (GPR) and artificial neural
network (ANN). These techniques are briefly summarized
here, with the connection between the techniques shown in
Fig. 2.
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3.1 Ridge and Lasso regression

Linear regression is the most common statistical method for
predictive modeling. Ridge and Lasso!'¥! are two advanced
linear regressions with regularization terms, which are used
to prevent over-fitting and reduce model complexity. As is
shown in Equation (1), in ridge regression, the cost function
is modified by applying an L, norm as a penalty such that the
cost function is penalized if the coefficients are large. That
means ridge regression shrinks the coefficients and helps to
overcome multicollinearity. Similarly, Lasso regression adds
the magnitude of the coefficients (L1 norm) as a penalty
instead of taking the square of the coefficients. This type of
regularization can cause some coefficients to be exactly zero,
namely, some of the features are completely neglected for the
evaluation of output. Therefore, Lasso regression helps not
only in reducing over-fitting but also in feature selection. In
Equations (1) and (2), X represents the matrix of input
features, y is the actual bandgap values and the terms 44, 4,
are tuning parameters.

A

Brisee = argﬁmin ly—=X"Bl5 +4 1B (1)

Blasso = arg;nin || y _XTB ||§ +12 || ﬁ ||1 (2)

3.2 Artificial neural networks
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Fig. 3 Artificial neural network illustration.

One of the principal tools used in machine learning is
artificial neural networks (ANN).['”] As the “neural” part of
the name implies, they are computing systems inspired by
mimicking the way the biological nervous system processes
information. ANN uses multiple layers of nodes, each layer
being completely connected to the next, as shown in Fig. 3.
The input layer is composed of a group of neurons
representing the input features. Each neuron in hidden layers
is a result of a weighted sum of the neurons in the previous
layer followed by an activation function whose motive is to
introduce non-linearity into the model. Depending upon the
type of problem (classification or regression), the output
layer can have one or multiple nodes that collect the
processed information from the last hidden layer. ANN
becomes popular in the last several decades due to the arrival
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of back propagation, which allows the network to adjust the
connection weights after each batch of data is processed,
based on the difference between the actual value and the
predicted value.

3.3 Support vector regression

Different from the support vector machine (SVM, a
classification algorithm), support vector regression (SVR)?"
is used to predict a continuous variable. Unlike other linear
regression models that aim to reduce the difference between
the true and the predicted value, SVR attempts to match the
best hyperplane (which is a line used to predict the
continuous value in Fig. 4) within a predefined threshold
value denoted as ¢. As is shown in Fig. 4, without violating
the margin, the tube attempts to fit as many data points as
possible. The error threshold controls the width of the
boundary. Specifically, the objective function and constraints
can be formulated as Equation (3):

. 1 2
min > [lw]|

s.it. lyi—(w,x;))—b| <¢g, i=12,..

)

LT,

where <-,-> denotes the inner product, & is a tuning

parameter served as an error threshold, and Xx; is a training
sample with a target value y;. The inner product plus
intercept < w, x; > +b is the prediction for that sample. The
constraints in Equation (3) means that the errors between all
predictions and target values need to be within the & range.
|lw|| is minimized to make the fit as flat as possible. Slack
variables may be added into the above model in case that
there is no feasible solution for the above optimization
problem. Furthermore, when the dataset is not linearly
separated, a kernel function might be applied to transform the
data into a higher dimensional feature space where linear
separation is possible, which is called non-linear kernel SVR.
The radial basis function kernel will be used in the
subsequent SVR model.

3.4 Random forest

Decision trees learn hierarchically by continuously dividing
training samples into branches that maximize the information
gain of each split. This branching structure allows decision
trees to naturally learn non-linear relationships. Random
Forest?!l is an ensemble method that fits classifying decision
trees on subsets of a dataset and averages over the trees to
improve prediction accuracy and reduce over-fitting. During
model training, the samples of each tree are drawn with
replacement, known as bootstrapping, which means that
some samples may be used multiple times in a single tree.
Sampling with replacement decreases the variance of the
model but not at the cost of increasing bias. When splitting a
node in the tree, a random subset of the features is used to
create the best split.

3.5 Gaussian process regression
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Gaussian process (GP) regression model?>23] has been
increasingly popular for the prediction of various materials
properties, with the capability of handling complex non-
linear relationships. The GP regression conducts a measure of
the distance similarity (the kernel function) between samples
to predict the value for an unobserved instance. The
prediction is not just an estimate for that sample but also
includes uncertainty information. In the present case, the
commonly used radial basis function kernel k(i,j) = exp(—
[If: — f;11?/20?) is adopted to measure the similarity of
materials properties. It is significant to construct features
where materials have a small “distance” if their properties are
similar.

3.6 Random forest with GP node

GP is attractive to be used due to its accommodation of the
prior knowledge and estimates of predictive confidence.
However, the bandgap training data tend to be nonstationary
(i.e., statistical properties of data are not constant in the
feature space), which is difficult for standard GP to handle.
Partitioning the data into smaller subregions (that are
relatively stationary) is a simple and effective way to deal
with data non-stationarity. This can be easily achieved by a
tree-based algorithm such as the random forest. Hence, we
combine GP with random forest and propose an RF-GP
method (random forest with Gaussian process models as leaf
nodes). Unlike standard random forest that uses simple
average values for leaf nodes, the RF-GP uses GP, which is a
much more powerful nonlinear regressor. Typically, a well-
performed random forest has only a small number of data
points at each leaf node (e.g., two or three), but the RF-GP
can handle much larger leaf nodes due to the nonlinear
regressor GP. As larger leaf nodes correspond to larger
subregions in the feature space, this potentially increases the
interpretability of the model as well. Specifically, the tree
partitioning approach will do binary splits at each node based
on a randomly selected feature and its critical value
(e.g., x; > s). For each way of splitting the data into two
subsets based on the selected feature, two GP models can be
fitted (one for each subset). The critical value (and hence the
optimal split) is determined by minimizing the sum of
prediction errors of the two GP models.

4. Results and Discussion

In this section, we discuss the results of all methods
described in the previous section. The dataset is randomly
split into a training and testing set with a ratio of 9:1. For
each method, we perform 10-fold cross-validation on the
training set to optimize the hyper-parameters of the model
and then report the root mean squared error (RMSE), mean
absolute error (MAE) and coefficient of determination (R?)
on the testing set. These three metrics are described as
follows:
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where y;, Vi, Vmean and n represent the true bandgap, predict-
ed bandgap, mean of all true bandgaps and the number of
training samples, respectively. The R? score ranges from 0 to
1, with 1 being the perfect performance.
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Fig. 4 Linear SVR illustration.

Table 1. MAE, MSE and R? scores for different machine
learning methods.

Model MAE RMSE R?
Linear Lasso 0.569 0.750 0.708
Linear Ridge 0.481 0.642 0.786

Random forest 0.255 0.419 0.909
SVR 0.395 0.566 0.833
GPR 0.314 0.552 0.841
ANN 0.529 0.723 0.728

Table 1 presents the MAE, RMSE and R? scores of
bandgap predictions with different machine learning methods
using the same features set. Here, the minimum number of
samples required to be at a leaf node of the random forest is
two. From Table 1, it can be seen that the random forest
method has the best prediction performance compared with
other machine learning methods. One reason may be that it
has its built-in feature selection architecture. The random
forest consists of several decision trees. Every node in the
decision trees is a condition on a single feature, designed to
split the (sub)dataset into two so that similar response values
end up in the same set. Therefore, the importance of each
feature is derived from how “pure” each of the sets is, by
which random forest selects the important features. The
Lasso method also includes feature selection, but it does not
work very well likely because the bandgap and features are
not much linearly related.

Fig. 5 illustrates the bandgap predictions versus
experimental results on the testing set. It shows that the
machine learning-based predictions are, in general, close to
experimentally measured bandgaps. However, it is not hard
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to observe that the solid dots with wide bandgaps (>5.0 eV)
often fall below the dashed line, which means that there is
often underestimation for the wide bandgap compositions. It
is likely due to a limited number of compounds in the dataset
with these very wide bandgaps.

4.1 Comparisons of RF and RF-GP performance

From Table 1 and Fig. 5, it is observed that the random forest
method has the best prediction performance. Now we
compare the random forest with the proposed RF-GP method,
which may be viewed as a more advanced version of random
forest that has nonlinear regressors at leaf nodes. We
compare the performance between the regular random forest
(RF) and RF-GP with various minimal leaf node sizes.
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Fig. 5 Bandgap predictions on the testing set with different
models. The red dashed lines represent the ideal results.

Table 2. RMSE comparisons between RF and RF-GP.

Leaf node

size RMSE for RF RMSE for RF-GP
10 0.510 0.520

20 0.548 0.544

30 0.587 0.511

50 0.642 0.530

60 0.665 0.535

80 0.733 0.550

100 0.799 0.555

Table. 2 shows that the performance of RF-GP is
reasonably good even with large leaf nodes due to its
nonlinear model. Unlike the RF, the performance of RF-GP
does not increase monotonically as the node size decreases.
This is because a GP needs to be fitted with a reasonable
sample size due to its model complexity, which means there
is an optimal node size for RF-GP. But overall, the
performance of RF-GP is very robust to the node size and it
is reasonably good even with a large node size. However, RF
performance gets monotonically worse as the leaf node size
increases due to its simple average predictor at the node (a
better result in Table. 1 was achieved by a node size of 2). An
added advantage of RF-GP is that it is more likely to identify
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better or even physically interpretable subcategories of the
data due to its much larger leaf node size comparing with a
regular RF.

4.2 Ensemble learning

In this section, we investigate more ensemble learning
methods**[25! on the material bandgaps dataset in light of the
finding that ensemble-based random forest performs better in
the previous study. Ensemble methods are proposed to
decrease variance, bias or improve predictions by combining
several machine learning techniques into one predictive
model. In general, ensemble methods can be divided into
three groups: bagging (bootstrap aggregation), boosting and
stacking. Bagging* uses bootstrap sampling to obtain data
subsets for training base learners. For aggregating the outputs
from  base  learners, bagging  usesvoting  for
classification and averaging for regression. The previous
random forest (leaf node size = 2) as a bagging method is
used here to make comparisons. Boosting?” has been
proposed to transform weak learners (models that are only
slightly better than random guesses, such as small decision
trees) to strong learners. Samples that are misclassified by
earlier rounds will be allocated more weights. The boosting
algorithm applied here is XgBoost!*! (Extreme gradient
boosting). Stacking?®! method is usually composed of two-
layer algorithms. The inputs in the second-layer algorithm
are the predictions generated by the first-layer machine
learning algorithms. This second-layer algorithm is trained to
optimally combine the model predictions to constitute a new
set of outputs. For instance, the first-layer algorithms may
consist of GP regression, random forest and SVR, whose
predictions are combined by XgBoost as a second layer
regressor.

The prediction performance by three ensemble methods
is shown in Table 3. With ensemble learning and elemental
features, it is interesting that all of the methods yield
similarly good performance. This further emphasizes the
entangled nature of composition and crystal structure.
Besides, the stacking method shows slightly better
performance as it integrates multiple machine learning
methods.

Table 3. Comparisons of three ensemble methods on bandgap

predictions.
Models MAE RMSE R?
Random forest 0.255 0.419 0.909
XgBoost 0.249 0.408 0.912
Stacking ensemble 0.246 0.402 0.914

5. Conclusion

Ever since the advent of data science and efficient machine
learning tools, they have been used by diverse fields to solve
domain-specific problems. Together with the abundance of
data, they provide a unique opportunity for many unsolved
problems in materials science. In summary, this paper
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presents several supervised machine-learning schemes
trained using 3896 experimentally measured bandgaps from
the literature. Our results show that these methods, using a
feature set based on only composition information, are
capable of making bandgap predictions with reasonable
accuracy. Among various existing methods, we propose a
new method (i.e., RF-GP) that has its advantages. In addition,
the ensemble learning models outperform other traditional
machine learning methods, but at the cost of extra computa-
tion and minimal interpretability. The results show that these
machine learning methods can reliably predict bandgaps at a
significantly reduced computational cost, compared with
first-principles methods.

Two main directions we might further improve our model are:
adding more training data and using feature engineering.
Besides, adding material crystal structure into the feature set
has the potential to further improve prediction accuracy. The
proper representation of crystal structure information is,
however, a challenging issue with many ongoing active types
of research.
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