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Abstract  
Machine learning approaches are explored to predict the bandgaps of inorganic compounds using known compositional 
features, based on a dataset of 3896 compounds with experimentally measured bandgaps. In particular, among various 
existing methods, we propose a new method, random forest with Gaussian process model as leaf nodes (RF-GP), and show 
its advantages. We have also investigated ensemble learning methods, which produce superior results over other 
traditional machine learning methods, but at the cost of extra computational load and further reduced interpretability.  
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1. Introduction 
In recent years, machine learning-based predictions for 
material properties have gained growing interests.[1] 
Compared with the time-consuming experimental 
inferences[2] and computational methods like density 
functional theory (DFT) or molecular dynamics (MD),[3] 
machine learning-based predictive algorithm provides a high-
throughput, computationally inexpensive way to render 
material properties. Specifically, a model to predict electronic 
properties such as the bandgap can provide an important 
guidance in the search of the ideal materials, which will 
benefit fields such as solar cells, and heterojunction optical 
devices, etc.  In these applications, a precise bandgap is 
necessary for the evaluation of the device performance.[4] 

Through machine learning, the correlation between certain 
material properties and attributes may be found and 
eventually leads to the discovery of new materials.[5,[6] 

Many recent studies have used machine learning 
algorithms to help with analysis in material science areas. 
For example, Wang et al. introduced a self-adaptive 
differential evolution algorithm to optimize a reduced 
mechanism of 2-Butanone, whose performance is similar to 
those of the detailed mechanism.[7] Peng et al. used the 
random forest algorithm to analyze the importance of various 
factors on solar evaporation.[8] Zhang et al. provided an 

overview of machine learning methods for screening of the 
thermal conductivity for compounds, composites and 
alloys.[[9] Wan et al. reviewed the research progress regarding 
the materials discovery and properties prediction in thermal 
transport via materials informatics.[10] 

For bandgap predictions, Pilania et al. adopted a linear 
least square regression combined with kernel ridge regression 
(KRR) to predict bandgaps of double perovskites.[11] The 
KRR can incorporate complex non-linear relationships 
between different material features, but this model can only 
be applied to a limited chemical space for nonmagnetic 
perovskites. Ward et al. adopted a random forest technique 
with a categorized dataset based on properties such as the 
range of bandgaps and element groups.[12] However, the 
partitioning of the materials has lowered the robustness of the 
model, though the prediction accuracy is relatively high. 

In this work, we investigate machine learning techniques 
to recognize meaningful patterns in bandgap values across 
thousands of compounds and their chemical properties. To 
represent the materials in a feature space, the chemical 
composition-based approach is adopted. As an advancement 
to previous studies, we propose a new method by combining 
the random forest and Gaussian process (RF-GP), which 
exhibits some advantages over existing methods.  

 

2. Data Description 
Our dataset employs 3896 experimentally reported bandgaps 
of inorganic compounds composed of 2458 unique element 
compositions, which were extracted from the literature[13-[17] 
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as referenced. The histogram of bandgaps of these materials 
is shown in Fig. 1.  It illustrates that the compositions used 
for training the models range from small bandgap 
semiconductors such as CrSb2 (Eg = 0.16 eV) to ultra-wide 
bandgap materials like LiF (Eg =11.7 eV). Inputs to models 
termed as features (in machine learning) or descriptors (in 
materials science) should be easily accessible properties, 
obtained by experiments and simple computations. In the rest 
of this paper, model inputs will be called “features.” The 
applied machine-learning models predict the bandgap using a 
feature set based only on the elemental properties of the 
constituent elements, which are related to the atom’s relative 
position on the periodic table, the electronic structure, and 
their physical properties. The full list of variables is provided 
in Table A1 (refer to supporting materials). The feature set is 
limited to composition features in machine-learning models 
because there is currently no simple and effective way to 
describe crystal structures. Also, we find out the detailed 
atomic structure may not be needed to achieve certain 
accuracy for the prediction. 
 

 
Fig. 1 Bandgap distribution of 3896 inorganic compounds in our 
dataset. 
 
3. Methods  

 
Fig. 2 Overall workflow. 

The methods utilized in this study are linear Lasso (Least 
Absolute Shrinkage and Selection Operator) and Ridge 
regression, random forest, support vector regression (SVR), 
Gaussian process regression (GPR) and artificial neural 
network (ANN). These techniques are briefly summarized 
here, with the connection between the techniques shown in 
Fig. 2. 

3.1 Ridge and Lasso regression 
Linear regression is the most common statistical method for 
predictive modeling. Ridge and Lasso[18] are two advanced 
linear regressions with regularization terms, which are used 
to prevent over-fitting and reduce model complexity. As is 
shown in Equation (1), in ridge regression, the cost function 
is modified by applying an L2 norm as a penalty such that the 
cost function is penalized if the coefficients are large. That 
means ridge regression shrinks the coefficients and helps to 
overcome multicollinearity. Similarly, Lasso regression adds 
the magnitude of the coefficients (L1 norm) as a penalty 
instead of taking the square of the coefficients. This type of 
regularization can cause some coefficients to be exactly zero, 
namely, some of the features are completely neglected for the 
evaluation of output. Therefore, Lasso regression helps not 
only in reducing over-fitting but also in feature selection. In 
Equations (1) and (2), X represents the matrix of input 
features, y is the actual bandgap values and the terms 𝜆1, 𝜆2 
are tuning parameters. 
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ridge
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= − +β y X β β              (2) 

 
3.2 Artificial neural networks 

 

Fig. 3 Artificial neural network illustration. 
 
One of the principal tools used in machine learning is 
artificial neural networks (ANN).[19] As the “neural” part of 
the name implies, they are computing systems inspired by 
mimicking the way the biological nervous system processes 
information. ANN uses multiple layers of nodes, each layer 
being completely connected to the next, as shown in Fig. 3. 
The input layer is composed of a group of neurons 
representing the input features. Each neuron in hidden layers 
is a result of a weighted sum of the neurons in the previous 
layer followed by an activation function whose motive is to 
introduce non-linearity into the model. Depending upon the 
type of problem (classification or regression), the output 
layer can have one or multiple nodes that collect the 
processed information from the last hidden layer. ANN 
becomes popular in the last several decades due to the arrival 
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of back propagation, which allows the network to adjust the 
connection weights after each batch of data is processed, 
based on the difference between the actual value and the 
predicted value. 
 
3.3 Support vector regression 
Different from the support vector machine (SVM, a 
classification algorithm), support vector regression (SVR)[20] 
is used to predict a continuous variable. Unlike other linear 
regression models that aim to reduce the difference between 
the true and the predicted value, SVR attempts to match the 
best hyperplane (which is a line used to predict the 
continuous value in Fig. 4) within a predefined threshold 
value denoted as ε. As is shown in Fig. 4, without violating 
the margin, the tube attempts to fit as many data points as 
possible. The error threshold controls the width of the 
boundary. Specifically, the objective function and constraints 
can be formulated as Equation (3): 

𝑚𝑖𝑛      
1

2
||𝒘||2 

𝑠. 𝑡. |𝑦𝑖 − ⟨𝒘, 𝒙𝑖⟩ − 𝑏|  ≤ 𝜀,    𝑖 = 1,2, . . . , 𝑛 , (3) 
 

where ,     denotes the inner product, ε is a tuning 
parameter served as an error threshold, and 𝐱𝑖 is a training 
sample with a target value y𝑖 . The inner product plus 
intercept < 𝑤, 𝑥𝑖 > +𝑏 is the prediction for that sample. The 
constraints in Equation (3) means that the errors between all 
predictions and target values need to be within the ε range.  
||w|| is minimized to make the fit as flat as possible. Slack 
variables may be added into the above model in case that 
there is no feasible solution for the above optimization 
problem. Furthermore, when the dataset is not linearly 
separated, a kernel function might be applied to transform the 
data into a higher dimensional feature space where linear 
separation is possible, which is called non-linear kernel SVR. 
The radial basis function kernel will be used in the 
subsequent SVR model.  
 
3.4 Random forest 
Decision trees learn hierarchically by continuously dividing 
training samples into branches that maximize the information 
gain of each split. This branching structure allows decision 
trees to naturally learn non-linear relationships. Random 
Forest[21] is an ensemble method that fits classifying decision 
trees on subsets of a dataset and averages over the trees to 
improve prediction accuracy and reduce over-fitting. During 
model training, the samples of each tree are drawn with 
replacement, known as bootstrapping, which means that 
some samples may be used multiple times in a single tree. 
Sampling with replacement decreases the variance of the 
model but not at the cost of increasing bias. When splitting a 
node in the tree, a random subset of the features is used to 
create the best split. 
 
3.5 Gaussian process regression 

Gaussian process (GP) regression model[22,[23] has been 
increasingly popular for the prediction of various materials 
properties, with the capability of handling complex non-
linear relationships. The GP regression conducts a measure of 
the distance similarity (the kernel function) between samples 
to predict the value for an unobserved instance. The 
prediction is not just an estimate for that sample but also 
includes uncertainty information. In the present case, the 
commonly used radial basis function kernel 𝑘(𝑖, 𝑗) = 𝑒𝑥𝑝( −
||𝒇𝑖 − 𝒇𝑗||

2/2𝜎2)  is adopted to measure the similarity of 
materials properties. It is significant to construct features 
where materials have a small “distance” if their properties are 
similar. 
 
3.6 Random forest with GP node 
GP is attractive to be used due to its accommodation of the 
prior knowledge and estimates of predictive confidence. 
However, the bandgap training data tend to be nonstationary 
(i.e., statistical properties of data are not constant in the 
feature space), which is difficult for standard GP to handle. 
Partitioning the data into smaller subregions (that are 
relatively stationary) is a simple and effective way to deal 
with data non-stationarity. This can be easily achieved by a 
tree-based algorithm such as the random forest. Hence, we 
combine GP with random forest and propose an RF-GP 
method (random forest with Gaussian process models as leaf 
nodes). Unlike standard random forest that uses simple 
average values for leaf nodes, the RF-GP uses GP, which is a 
much more powerful nonlinear regressor. Typically, a well-
performed random forest has only a small number of data 
points at each leaf node (e.g., two or three), but the RF-GP 
can handle much larger leaf nodes due to the nonlinear 
regressor GP. As larger leaf nodes correspond to larger 
subregions in the feature space, this potentially increases the 
interpretability of the model as well. Specifically, the tree 
partitioning approach will do binary splits at each node based 
on a randomly selected feature and its critical value 
(e.g., 𝑥𝑖 > 𝑠). For each way of splitting the data into two 
subsets based on the selected feature, two GP models can be 
fitted (one for each subset). The critical value (and hence the 
optimal split) is determined by minimizing the sum of 
prediction errors of the two GP models.  
 
4. Results and Discussion 
In this section, we discuss the results of all methods 
described in the previous section. The dataset is randomly 
split into a training and testing set with a ratio of 9:1. For 
each method, we perform 10-fold cross-validation on the 
training set to optimize the hyper-parameters of the model 
and then report the root mean squared error (RMSE), mean 
absolute error (MAE) and coefficient of determination (R2) 
on the testing set. These three metrics are described as 
follows: 
 

https://www.quora.com/What-is-an-intuitive-explanation-of-a-decision-tree
https://www.quora.com/What-is-an-intuitive-explanation-of-a-decision-tree
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
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where 𝑦𝑖 , 𝑦𝑖′ , 𝑦𝑚𝑒𝑎𝑛 and n represent the true bandgap, predict-
ed bandgap, mean of all true bandgaps and the number of 
training samples, respectively. The R2 score ranges from 0 to 
1, with 1 being the perfect performance. 
 

 
Fig. 4 Linear SVR illustration. 

 
Table 1. MAE, MSE and R2 scores for different machine 
learning methods. 

Model MAE RMSE R2 
Linear Lasso 0.569 0.750 0.708 
Linear Ridge 0.481 0.642 0.786 

Random forest 0.255 0.419 0.909 
SVR 0.395 0.566 0.833 
GPR 0.314 0.552 0.841 
ANN 0.529 0.723 0.728 

 
Table 1 presents the MAE, RMSE and R2 scores of 

bandgap predictions with different machine learning methods 
using the same features set. Here, the minimum number of 
samples required to be at a leaf node of the random forest is 
two. From Table 1, it can be seen that the random forest 
method has the best prediction performance compared with 
other machine learning methods. One reason may be that it 
has its built-in feature selection architecture. The random 
forest consists of several decision trees. Every node in the 
decision trees is a condition on a single feature, designed to 
split the (sub)dataset into two so that similar response values 
end up in the same set. Therefore, the importance of each 
feature is derived from how “pure” each of the sets is, by 
which random forest selects the important features. The 
Lasso method also includes feature selection, but it does not 
work very well likely because the bandgap and features are 
not much linearly related. 

Fig. 5 illustrates the bandgap predictions versus 
experimental results on the testing set. It shows that the 
machine learning-based predictions are, in general, close to 
experimentally measured bandgaps. However, it is not hard 

to observe that the solid dots with wide bandgaps (>5.0 eV) 
often fall below the dashed line, which means that there is 
often underestimation for the wide bandgap compositions. It 
is likely due to a limited number of compounds in the dataset 
with these very wide bandgaps.  
 
4.1 Comparisons of RF and RF-GP performance 
From Table 1 and Fig. 5, it is observed that the random forest 
method has the best prediction performance. Now we 
compare the random forest with the proposed RF-GP method, 
which may be viewed as a more advanced version of random 
forest that has nonlinear regressors at leaf nodes. We 
compare the performance between the regular random forest 
(RF) and RF-GP with various minimal leaf node sizes. 

 
Fig. 5 Bandgap predictions on the testing set with different 
models. The red dashed lines represent the ideal results. 

 
Table 2. RMSE comparisons between RF and RF-GP. 
Leaf node 

size 
RMSE for RF RMSE for RF-GP 

10 0.510 0.520 
20 0.548 0.544 
30 0.587 0.511 
50 0.642 0.530 
60 0.665 0.535 
80 0.733 0.550 

100 0.799 0.555 
 

Table. 2 shows that the performance of RF-GP is 
reasonably good even with large leaf nodes due to its 
nonlinear model. Unlike the RF, the performance of RF-GP 
does not increase monotonically as the node size decreases. 
This is because a GP needs to be fitted with a reasonable 
sample size due to its model complexity, which means there 
is an optimal node size for RF-GP. But overall, the 
performance of RF-GP is very robust to the node size and it 
is reasonably good even with a large node size. However, RF 
performance gets monotonically worse as the leaf node size 
increases due to its simple average predictor at the node (a 
better result in Table. 1 was achieved by a node size of 2). An 
added advantage of RF-GP is that it is more likely to identify 
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better or even physically interpretable subcategories of the 
data due to its much larger leaf node size comparing with a 
regular RF.  

4.2 Ensemble learning 
In this section, we investigate more ensemble learning 
methods[24,[25] on the material bandgaps dataset in light of the 
finding that ensemble-based random forest performs better in 
the previous study. Ensemble methods are proposed to 
decrease variance, bias or improve predictions by combining 
several machine learning techniques into one predictive 
model. In general, ensemble methods can be divided into 
three groups: bagging (bootstrap aggregation), boosting and 
stacking. Bagging[26] uses bootstrap sampling to obtain data 
subsets for training base learners. For aggregating the outputs 
from base learners, bagging uses voting for 
classification and averaging for regression. The previous 
random forest (leaf node size = 2) as a bagging method is 
used here to make comparisons. Boosting[27] has been 
proposed to transform weak learners (models that are only 
slightly better than random guesses, such as small decision 
trees) to strong learners. Samples that are misclassified by 
earlier rounds will be allocated more weights. The boosting 
algorithm applied here is XgBoost[29] (Extreme gradient 
boosting). Stacking[28] method is usually composed of two-
layer algorithms. The inputs in the second-layer algorithm 
are the predictions generated by the first-layer machine 
learning algorithms. This second-layer algorithm is trained to 
optimally combine the model predictions to constitute a new 
set of outputs. For instance, the first-layer algorithms may 
consist of GP regression, random forest and SVR, whose 
predictions are combined by XgBoost as a second layer 
regressor.  

The prediction performance by three ensemble methods 
is shown in Table 3. With ensemble learning and elemental 
features, it is interesting that all of the methods yield 
similarly good performance. This further emphasizes the 
entangled nature of composition and crystal structure. 
Besides, the stacking method shows slightly better 
performance as it integrates multiple machine learning 
methods. 

Table 3. Comparisons of three ensemble methods on bandgap 
predictions. 

Models MAE RMSE R2 
Random forest 0.255 0.419 0.909 
XgBoost 0.249 0.408 0.912 
Stacking ensemble 0.246 0.402 0.914 

 
5. Conclusion 
Ever since the advent of data science and efficient machine 
learning tools, they have been used by diverse fields to solve 
domain-specific problems. Together with the abundance of 
data, they provide a unique opportunity for many unsolved 
problems in materials science. In summary, this paper 

presents several supervised machine-learning schemes 
trained using 3896 experimentally measured bandgaps from 
the literature. Our results show that these methods, using a 
feature set based on only composition information, are 
capable of making bandgap predictions with reasonable 
accuracy. Among various existing methods, we propose a 
new method (i.e., RF-GP) that has its advantages. In addition, 
the ensemble learning models outperform other traditional 
machine learning methods, but at the cost of extra computa-
tion and minimal interpretability. The results show that these 
machine learning methods can reliably predict bandgaps at a 
significantly reduced computational cost, compared with 
first-principles methods. 
Two main directions we might further improve our model are: 
adding more training data and using feature engineering. 
Besides, adding material crystal structure into the feature set 
has the potential to further improve prediction accuracy. The 
proper representation of crystal structure information is, 
however, a challenging issue with many ongoing active types 
of research.  
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