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ABSTRACT
Bayesian models provide recursive inference naturally because they can formally reconcile new data and
existing scientific information. However, popular use of Bayesianmethods often avoids priors that are based
on exact posterior distributions resulting from former studies. Two existing Recursive Bayesian methods
are: Prior- and Proposal-Recursive Bayes. Prior-Recursive Bayes uses Bayesian updating, fitting models to
partitions of data sequentially, and provides a way to accommodate new data as they become available
using the posterior from the previous stage as the prior in the new stage based on the latest data. Proposal-
Recursive Bayes is intended for usewith hierarchical Bayesianmodels anduses a set of transient priors infirst
stage independent analyses of the data partitions. The second stage of Proposal-Recursive Bayes uses the
posteriors from the first stage as proposals in aMarkov chainMonte Carlo algorithm to fit the full model. We
combine Prior- and Proposal-Recursive concepts to fit any Bayesian model, and often with computational
improvements. We demonstrate our method with two case studies. Our approach has implications for big
data, streaming data, and optimal adaptive design situations.
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1. Introduction

Bayesian methods have been incredibly useful for scientific
inquiry because they empower the user to customize statistical
analyses for their data and desired inference as well as for-
mally incorporate existing scientific information (Gelman et al.
2013). In particular, Bayesian hierarchical models (BHMs) also
allow us to consider a complicated joint problem as a sequence
of simpler conditional components. In his seminal article on
BHMs, Berliner (1996) described the hierarchical model struc-
ture heuristically in terms of three quintessential components:
the data model, the process model, and the parameter model.
Each of these three components can be extended further, but
the basic concept that statistical models should account for
measurement error, process stochasticity, and parameter uncer-
tainty, all simultaneously, is very powerful for making honest
and reliable inference (Gelfand and Ghosh 2015).

Stochastic sampling approaches such asMarkov chainMonte
Carlo (MCMC; Gelfand and Smith 1990) have facilitated the
ability to fit a wide range of Bayesian models to data (Green et
al. 2015). However, as the size of datasets grows and the com-
plexity of models increases, MCMC methods for fitting models
have become limited in their applicability for big data settings
(Brockwell 2006). Despite a proliferation of alternative sampling
approaches (e.g., importance sampling, particle filtering,Hamil-
tonian Monte Carlo [HMC]; Doucet, de Freitas, and Gordon
2001; Del Moral, Doucet, and Jasra 2006; Neal 2011), MCMC
is still popular, but also has fundamental weaknesses such as
the inability to easily parallelize the computational procedure
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(beyond obtainingmultiple chains; e.g., Glynn andHeidelberger
1992; Bradford and Thomas 1996; Rosenthal 2000).

Bayesian models also facilitate the formal use of preexisting
information (resulting from former data analyses) in future data
analyses. However, despite widespread rhetoric claiming that
previous Bayesian analyses can and should be incorporated into
future data analyses as prior information, it is still rarely done
in practice. One potential hurdle to the formal incorporation
of prior information is the inability to characterize the results
of a previous data analysis as an analytically tractable prior
with closed form (e.g., McCarthy and Masters 2005; Garrard
et al. 2012). Thus, conventional practical guidance suggests
approximating the joint posterior distribution resulting from a
previous data analysis (using separate data) with an appropriate
joint distribution (e.g., multivariate normal) and then use the
approximate prior in the new data analysis. This practice may
yield a reasonable approximation in some cases, but is unsatisfy-
ing in the sense that recursive Bayesian analyses are not coupled
exactly using well-accepted stochastic sampling methods such
as sequential Monte Carlo (SMC), MCMC, and HMC to fit the
models.

In what follows, we discuss existing recursive Bayesian infer-
ence approaches and present a new method for performing
recursive Bayesian inference using an advantageous combina-
tion of existing methods. Our methods are helpful in a variety
of situations, for both hierarchical and nonhierarchical Bayesian
model fitting. For ongoing data collection efforts, the procedure
we describe allows us to represent previous data analyses as
priors in new analyses. We show that iterative inferential pro-
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cedures can facilitate more rapid results using the methods we
describe, especially when it is not feasible to fit the full model
repetitively as new data arrive. Our approach can also be used to
leverage parallel computing resources to accelerate the fitting of
complicated Bayesian models such as those containing explicit
dependence structure (e.g., Gaussian process models). By par-
titioning datasets and applying the recursive Bayesian model
fitting procedure, we show that our approach can lead to more
efficient algorithms for fitting Bayesian models to big datasets.
Furthermore, our approach is accessible to practitioners and is
compatible with SMC, MCMC, and HMC methods for fitting
Bayesian models. We demonstrate our methods with two case
studies: a geostatistical model fit to environmental data and a
hierarchical dynamic population model fit to ecological data.

2. Methods

Also known as “sequential” inference or Bayesian filtering,
recursive Bayes (RB) relies on fitting a statistical model to data
in a series of steps (Särkkä 2013). Traditional RB inference has a
natural appeal in studies where data are regularly collected over
time and thus, it has been more commonly used in conjunction
with state-space models (Chopin, Jacob, and Papaspiliopoulos
2013). While the word “sequential” also appears in SMC, and
SMC methods are relevant for RB (Chopin 2002), they are not
essential to the concept (as we describe in what follows).

The general concept of performing an analysis in sequence
is commonplace in many fields. While many statistical methods
are developed for analyzing a full dataset in a single procedure, it
may be advantageous to analyze datasets in groups. For example,
in addition to the situation where data arise sequentially, there
may be computational advantages to analyze data in groups
even when they are not indexed temporally. In what follows, we
review conventional RB based on amethodwe refer to as “Prior-
RB.” We contrast Prior-RB with alternative recursive statistical
procedures that rely on a sequence of stages meant to facilitate
computation. We refer to these approaches as “Proposal-RB”
(for reasons that will become clear). Finally, we combine these
two recursive procedures to provide a framework for fitting
Bayesian models more efficiently by leveraging parallel process-
ing environments that are available in most modern computers.

2.1. Prior-Recursive Bayesian Inference

Consider a generic dataset y ≡ (y1, . . . , yn)′ and associated
parametric statistical model y ∼ [y|θ ], where θ represents
model parameters and we use the bracket notation “[·]” to rep-
resent probability distributions (Gelfand and Smith 1990). For a
specified prior [θ ], the posterior distribution is [θ |y] ∝ [y|θ ][θ].
The main concept in Prior-RB is that, for a given partition of
the data y ≡ (y′

1, y′
2)

′, we can find the posterior distribution
associated with the first partition [θ |y1] ∝ [y1|θ ][θ] and then
use it as a prior in a secondary analysis of the second partition

[θ |y] ∝ [y2|θ , y1][θ |y1] , (1)
∝ [y2|θ , y1][y1|θ ][θ] . (2)

The critical differences between the full model and the Prior-RB
procedure are that: 1. the second stage in the Prior-RBprocedure

requires knowledge of the conditional data model [y2|θ , y1] and
2. the formof the posterior resulting from the first stage in Prior-
RB [θ |y1] must be known analytically. However, if both distri-
butions are known or at least well-approximated analytically,
then we can make inference based on the full dataset, but using
only the second partition of data and the output from the first
stage posterior. This recursive concept is useful from a meta-
analytic perspective because the same analyst does not have to
compute the first stage posterior. In fact, well-reported results
of a previous data analysis based on a separate dataset can serve
as a sufficient statistic for reconciling inference based on both
datasets.

We can extend the basic concept of Prior-RB to accommo-
date multiple partitions of the data. Suppose that we partition
the dataset into J groups, y ≡ (y′

1, . . . , y′
J)

′, then we can fit the
first stage model as before to yield the posterior distribution
[θ |y1]. For the jth data partition, we obtain the posterior

[θ |y1:j] ∝




j∏

ν=2
[yν |θ , y1:(ν−1)]



 [y1|θ ][θ] , (3)

where, y1:j ≡ (y′
1, . . . , y′

j)
′. The J-partition Prior-RB procedure

still requires analytical knowledge of each sequential posterior
as well as the associated conditional data model [yν |θ , y1:(ν−1)].

To illustrate the Prior-RB procedure, consider the binary
dataset y ≡ (0, 1, 1, 1, 0, 0, 0, 1)′, with data model yi ∼ Bern(θ)
for i = 1, . . . , n with n = 8. Based on a prior for θ specified
as θ ∼ Beta(1, 1), the posterior is a classical result in Bayesian
statistics: [θ |y] = Beta(

∑n
i=1 yi + 1,

∑n
i=1(1 − yi) + 1), which

is a beta distribution with both parameters equal to 5 in our
example.

To perform the Prior-RB method for this example with
binary data, we split the dataset into J = 4 groups resulting
in y1 ≡ (0, 1)′, y2 ≡ (1, 1)′, y3 ≡ (0, 0)′, and y4 ≡ (0, 1)′.
Then we analyze each dataset recursively, using the appropriate
conditional data model [yj|θ , y1:(j−1)] for each partition of
data. For this simple model, the conditional data model is
Bernoulli because the original data model assumed conditional
independence of the data given θ . Thus, the Prior-RB method
proceeds by finding each posterior recursively: [θ |y1], [θ |y1:2],
[θ |y1:3], and [θ |y1:4]. It is easily shown that these are all beta
distributions with parameter sets {2,2}, {4,2}, {4,4}, and {5,5}.
Thus, the Prior-RB method results in the same posterior
distribution (i.e., Beta(5, 5)) as fitting the model to all data
simultaneously.

The practical application of Prior-RB in settings involving
more realistic statistical models and datasets involves two chal-
lenges: 1. the ability to find the required conditional data dis-
tributions and 2. the representation of the prior for the jth
stage based on the (j − 1)th stage posterior distribution. These
two challenges are exacerbated in the application of the Prior-
RB method to situations where the data are not conditionally
independent and/or more extensive hierarchical models are
specified. We revisit these issues in the sections that follow.

2.2. Proposal-Recursive Bayesian Inference

When the data are not naturally ordered in time, it is not
apparent how the Prior-RB concept may be helpful. We address
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this idea in the following section, but first we set the stage for it
by considering a slightly different form of recursive procedure
to fit Bayesian models. Suppose the model from the previous
section is expanded to accommodate latent random effects β j
for j = 1, . . . , J based on a natural partitioning of the dataset
y = (y′

1, . . . , y′
J)

′ (not necessarily partitioned in time). Then
a generic hierarchical model structure for the data may be
specified as yj ∼ [yj|β j], with “process” β j ∼ [β j|θ ], and prior
θ ∼ [θ], for j = 1, . . . , J, and where β j are p× 1 vectors and the
dataset partitions yj are not necessarily equal-sized.

For example, consider the situation where J different datasets
are collected by separate investigators and each set of coefficients
β j represent a subpopulation of interest. Suppose that our main
goal is to make population-level inference by characterizing the
parameters θ . These parameters (θ) give rise to the stochasticity
associated with the subpopulation coefficients β j and could
represent, for example, an overall effect at the population level
of a predictor variable on the response a$er accounting for
subpopulation-level variation. When the desired sample unit
is the subpopulation, the hierarchical model helps avoid pseu-
doreplication in the study (e.g., Hurlbert 1984).

The hierarchical model can also be thought of as a way to
reconcile the results of separate data analyses in a meta-analysis
framework. Lunn et al. (2013) sought to usemodels with similar
hierarchical structure to perform meta-analysis, synthesizing
results across separate studies to obtain population-level infer-
ence for θ . Assuming that each study used stochastic sampling
methods (e.g., MCMC) to fit a Bayesian model to obtain a
sample from the posterior distribution [β j|yj] ∝ [yj|β j][β j]
based on the prior [β j], Lunn et al. (2013) proposed a way
to recursively use the results of these first stage analyses in a
second stage to obtain population-level inference based on the
full dataset. We refer to this approach as Proposal-RB because
Lunn et al. (2013) suggested using the posterior samples from
the subpopulation-level analyses asMetropolis–Hastings (M-H)
proposals for β j when fitting the full hierarchical model using
MCMC.

The Proposal-RB approach is comprised of the following
stages: 1. specify subpopulation-level priors [β j] and obtain a
sample from the posterior distributions [β j|yj] for j = 1, . . . , J
independently, then 2. fit the full model using MCMC with M-
H updates for β j based on the previous stage posterior as a
proposal (β(∗)

j ).
The M-H acceptance probability for each β

(∗)
j is min(rj, 1)

where rj simplifies to

rj =
[β(∗)

j |θ (k−1)][β(k−1)
j ]

[β(k−1)
j |θ (k−1)][β(∗)

j ]
, (4)

with β
(∗)
j arising from the first stage posterior sample and

MCMC iteration k (k = 1, . . . ,K). The proposals β
(∗)
j should be

independent draws from the first stage posterior distribution for
the cancellations to occur in theM-H ratio (4). Thus, in practice,
we sample β

(∗)
j randomly (with replacement) from the first

stageMarkov chains to reduce autocorrelation (Lunn et al. 2013,
AppendixA).We then use aGibbs,M-H, importance, orHamil-
tonian update for the remaining model parameters θ based on

their full-conditional distribution [θ |·] ∝
(∏J

j=1[β j|θ ]
)
[θ ]

as usual (note that this full-conditional distribution does not
involve y).

Benefits of the Proposal-RB suggested by Lunn et al. (2013)
are that: 1. it provides a way to use output from a first stage
analysis to fit a full hierarchical model where the first stage
posterior distributions are well-represented, 2. it is not limited
to meta-analysis, and 3. it can dramatically simplify the M-
H ratio (4) because the data model cancels in the numerator
and denominator. Thus, using only output from J independent
model fits and knowledge of the first stage priors [β j], we can fit
the full hierarchical model to obtain inference.

Aside from being a generally useful approach for fitting
hierarchical models recursively, the Proposal-RB procedure is
useful in data privacy situations where the original data can-
not be released due to proprietary reasons, public safety, or
legal restrictions (Altman et al. 2018) because the data do not
appear in the second stage analysis. Proposal-RB is also trivial
to implement and is naturally adapted for parallel computing
environments because we can sample from each of the transient
posterior distributions [β j|yj] in parallel at the first stage.

To demonstrate the Proposal-RB approach, Hooten and
Hefley (2019) fit a hierarchical Gaussian model to a set of
biometric data taken on a sample of blue tits (Cyanistes
caeruleus) that arose from a study of individual-level versus
population-level variation in wild birds. Hooten and Hefley
(2019) specified a simple hierarchical Bayesian model with
random means for each individual and showed that the results
are the same when fitting the full hierarchical model using
traditional MCMC and when using Proposal-RB.

When the models and/or datasets are more complex, the
Proposal-RB method can lead to computational improvements.
For example, Hooten et al. (2016) and Gerber et al. (2018)
applied the Proposal-RB method to make population-level
inference about resource selection by animals. In particular,
Hooten et al. (2016) showed that the Proposal-RB approach
suggested by Lunn et al. (2013) may be particularly useful
for cases where the data model is numerically challenging
to evaluate. Specifically, Hooten et al. (2016) considered a
hierarchical point process model for animal telemetry data
where the data model was specified as a product of weighted
distributions (Patil and Rao 1977) that contained integrals of
a function that included model parameters. These integrals
were a crux in implementing the spatial point process model
because an optimization or stochastic sampling algorithm such
as MCMC must numerically calculate the integral repeatedly
when fitting the model to data. The Proposal-RB approach used
by Hooten et al. (2016) simplified the sampling procedure in
the second stage analysis substantially because the integrals in
the data model did not need to be calculated again a$er the first
stage, resulting in a procedure that required less computational
time than fitting the full model jointly.

Overall, the Proposal-RB method is useful for fitting cer-
tain classes of hierarchical models to data that are naturally
partitioned. However, Proposal-RB does not directly translate
to nonhierarchical models and cases where the data are not
conditionally independent. When the data are not condition-
ally independent, we can still fit independent models for each
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partition in the first stage, but the data model will not cancel in
the second stage M-H updates for β j. If the data model is trivial
to calculate, it is possible that the Proposal-RB approach may
still be useful, but data models with dependence (e.g., Gaussian
process models) can be numerically challenging to calculate
repetitively.

Similarly, for nonhierarchical models, natural partitions of
the data may not exist and it becomes more difficult to envision
useful partition-specific first stage models. While it may be pos-
sible to contrive an auxiliary variable approach that augments
a nonhierarchical model with an artificial latent process (e.g.,
Albert and Chib 1993), we propose a simpler alternative in what
follows.

2.3. Prior-Proposal-Recursive Bayesian Inference

Proposal-RB is useful for meta-analysis and fitting hierarchical
models, but the concepts in Proposal-RB do not automatically
transfer to nonhierarchical models, or if so, may not be helpful
computationally. Therefore, we propose a combination of Prior-
and Proposal-RB (herea$er, PP-RB) concepts that makes RB
more accessible to practitioners and facilitates inference for
model parameters for a wide class of Bayesian models.

Our PP-RB approach assumes the data can be partitioned
as described earlier such that y ≡ (y′

1, . . . , y′
J)

′ and we can
implement the Prior-RB procedure for recursively fitting the full
model in stages. To implement the PP-RB approach, we first
obtain a sample from [θ |y1] as before, then, for the next J − 1
stages, we recursively obtain samples from

[θ |y1:j] ∝ [yj|θ , y1:(j−1)][θ |y1:(j−1)] , (5)
for j = 2, . . . , J. Borrowing the technique from Proposal-RB
where we use the transient posterior from the previous stage as
the proposal (in addition to the prior, as in Prior-RB), our M-H
acceptance probability for the jth stage and kthMCMC iteration
can be written as min(rj, 1) with

rj =
[yj|θ (∗), y1:(j−1)][θ (∗)|y1:(j−1)][θ (k−1)|y1:(j−1)]
[yj|θ (k−1), y1:(j−1)][θ (k−1)|y1:(j−1)][θ (∗)|y1:(j−1)]

, (6)

= [yj|θ (∗), y1:(j−1)]
[yj|θ (k−1), y1:(j−1)]

, (7)

where θ (∗) is the kth realization from the transient posterior
sample from the previous stage. Notice that the M-H ratio in
(7) consists only of a ratio of the conditional data models. Thus,
the PP-RB approach still requires the knowledge and calculation
of the conditional data model at each MCMC iteration and
stage. However, because the set of posterior realizations we
use as proposals throughout the procedure are acquired as a
result of the first stage analysis, we can pre-calculate the log
density (or mass function) of the conditional data model for
each proposal θ (∗) in parallel between stages 1 and 2 in the
procedure. With values for the numerator in the M-H ratio
resulting from our quasi-prefetching technique (i.e., the pre-
calculation of log densities for all possible proposals of θ ; Brock-
well 2006), performing the updates for θ is less computationally
intensive. Furthermore, because we need only save the values for
log[yj|θ (∗), y1:(j−1)] a$er the first stage, the PP-RB approach has
low memory requirements between stages.

3. PP-RB Application to Geostatistics

Our PP-RB approach can be applied to fit a wide range of
Bayesian models recursively. As a first demonstration of the PP-
RB method, we apply it to fit the standard geostatistical model
(Cressie 1993), which is very commonly used in environmental
and ecological applications. The data used for this illustration
are measurements of sea surface temperature (SST) on the east-
ern and northern Bering Sea shelf near the Pribilof Islands,
Alaska. The data were obtained as part of the 2017 NOAA
Fisheries bottom trawl surveys used to assess the condition of
groundfish stocks in the Bering Sea. The SSTmeasurements are
collected in the same locations as the fishing trawls (Figure 1,
“FULL”). There are n = 520 observations in this dataset spaced
on a 20 km grid with additional locations surveyed near the
Pribilof Islands and St. Matthew Island.

Parametric geostatistical modeling involves the use of Gaus-
sian processes that are ubiquitous throughout many different
fields. The use of Gaussian processes in spatially explicit models
has a long history in statistics, but has experienced a resurgence
lately due to the need to flexibly and efficiently model large
datasets and provide optimal predictions in space and time (e.g.,
Gelfand and Schliep 2016; Hooten and Johnson 2017; Heaton et
al. 2019).

For this example, we specify a version of the full Bayesian
geostatistical model (Arab, Hooten, and Wikle 2017) as

y ∼ N(Xβ ,#(σ 2,φ, τ 2)), (8)
β ∼ N(µβ ,#β), (9)

σ 2 ∼ Inv-χ2(α1,α2), (10)
φ ∼ half-N(0, γ ), (11)

τ 2 ∼ Unif(0, 1), (12)

where the full dataset is denoted as y ≡ (y1, . . . , yn)′ and
comprises observations of SST (◦C) at locations s1, . . . , sn in
continuous space S . The spatial covariance of y is modeled with
sill, range, and nugget parameters as

#(σ 2,φ, τ 2) ≡ σ 2((1 − τ 2)R(φ)+ τ 2I) . (13)

We used a Matérn (Matérn 1986; Guttorp and Gneiting 2006)
covariance function with smoothness parameter set to 3/2 to
model the latent spatial structure and parameterize the corre-
lation matrix R(φ). The entries of the correlation matrix are
Rij = (1 + dij/φ) exp(−dij/φ), where φ is a parameter that
controls the range of spatial structure and the Euclidean distance
between locations si and sj is dij = ||si − sj||2. For simplicity,
the spatial process is assumed to be second-order stationary and
isotropic (although our PP-RB approach can be applied in cases
with more general assumptions as well). For covariates, we used
the easting and northing associated with each spatial location.

The full posterior distribution associated with our geostatis-
tical model is [β , σ 2,φ, τ 2|y] ∝ [y|β , σ 2,φ, τ 2][β][σ 2][φ][τ 2].
To fit the full geostatistical model in (8)–(12), we constructed
a MCMC algorithm based on conjugate updates for β and σ 2,
and used aM-H update for φ and τ 2 (see Appendix B for details
on the implementation). For our example, we used conjugate
Jeffreys’ specifications (Jeffreys 1946) for the priors [β] ∝ 1 and
[σ 2] = 1/σ 2.
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Figure 1. Sea surface temperaturemeasurements (◦C) fromNOAA Fisheries 2017 bottom trawl survey on the eastern and northern Bering Sea shelf off the coast of Alaska.
The “FULL”plot depicts all data together, while the remaining plots show the locations used in each partition of the data for the PP-RB approach.

The general PP-RB procedure to fit the Bayesian geostatisti-
cal model for J > 3 partitions of the data involves the following
steps:

1. Partition the data into y ≡ (y′
1, . . . , y′

J)
′ subsets.

2. Stage 1: Fit the Bayesian geostatistical model in (8)–(12) to
the first partition of data to yield a MCMC sample from
[β , σ 2,φ, τ 2|y1] resulting in realizations β(k), σ 2(k), φ(k),
τ 2(k) for MCMC iteration k = 1, . . . ,K.

3. Calculate log[yj|β(k), σ 2(k),φ(k), τ 2(k), y1:(j−1)] for realiza-
tions k = 1, . . . ,K and partitions j = 2, . . . , J, in parallel.

4. Stage 2: Perform block M-H updates for model parameters
using β(k), σ 2(k), φ(k), and τ 2(k) randomly from the first stage
transient posterior as proposals in (7) according to Appendix
A.

5. Stage 3: Sampling randomly from the resulting MCMC sam-
ple from the second stage as proposals (Appendix A), per-
form the third stage M-H updates based on the ratio (7).

6. Stages 4–J: Repeat for all stages, conditioning on the posterior
from the previous stage each time.

The precalculation step between stages 1 and 2 in our PP-RB
procedure is the computational crux because we must evaluate
the log density of the conditional Gaussian distribution repet-
itively. Based on well-known multivariate Gaussian properties
(e.g., Gentle 2007), the jth conditional data distribution for

our geostatistical model is [yj|β(k), σ 2(k),φ(k), τ 2(k), y1:(j−1)] =
N(µ̃j, #̃j), with conditional mean and covariance

µ̃j ≡ Xjβ + #j,1:(j−1)#
−1
1:(j−1),1:(j−1)(y1:(j−1) − X1:(j−1)β) ,

(14)
#̃j ≡ #j,j − #j,1:(j−1)#

−1
1:(j−1),1:(j−1)#1:(j−1),j . (15)

Thus, to evaluate the conditional data model, we must calculate
two matrix inverses as well as several matrix products and a
determinant. The floating point operations (FLOPS) associated
with inverting#1:(j−1),1:(j−1) are themost numerically intensive,
on the order of O(n31:(j−1)) (where n1:(j−1) is the dimension of
y1:(j−1)), which is less thanO(n3) required for the full dataset. In
the case where we have two equal sized partitions (i.e., J = 2),
the FLOPS associated with matrix inverses are O(2( n2 )

3) =
O(n34 ), four times less than for the full dataset. Additionally, a$er
the log conditional data model is evaluated for a given set of
parameters, we do not need to retain its mean and covariance
matrix, which reduces our storage requirements substantially.

We applied the PP-RB approach to fit the Bayesian geosta-
tistical model to the SST data using J = 3 partitions and K =
200,000MCMC iterations. Figure 1 shows the full spatial dataset
and the J = 3 partitions of data, subsampled randomly from
the full dataset. The computational time required to perform the
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entire PP-RB procedure based on a first stagemodel fit withK =
200,000 MCMC iterations was 1.7 hr whereas the time required
to fit the full model with the same number of MCMC iterations
was 6.9 hr. Thus, our PP-RB approach based on J = 3 random
partitions of the spatial data resulted in an algorithm that was
approximately 4 times faster to obtain the same inference from
the exactmodelwithout approximating the covariance function.

We summarized the inference resulting from the two model
fits in Figure 2, where the 95% credible intervals and posterior
means for each parameter are shown for the fullmodel (in black)
and for each stage of the PP-RB procedure in colors ranging
from red (stage 1) to green (stage 3). It is clear that our inference
concerning all geostatistical model parameters improves as we
fit the models in each stage of the PP-RB procedure recursively
(the green credible intervalsmatch the black ones in Figure 2). In
particular, for the β3 regression coefficient (associated with the
northing covariate), our inference changes from nonsignificant
to significantly different than zero (based on the 95% credible
interval) between the second and third stages as the credible
interval is shrunk toward the full-data posterior when we incor-
porate additional partitions of data.

4. PP-RB Application to Online Updating

To illustrate the PP-RB approach for “online” updating (i.e., a
strategy for efficiently assimilating new data as they become
available; Schifano et al. 2016; Wang et al. 2018), we analyzed
temporal data resulting from surveys of Steller sea lion pop-
ulations. Steller sea lions are listed as endangered under the
U.S. Endangered Species Act over much of their geographic
range. The NationalMarine Fisheries Service of the U.S. Federal
Government monitors the status of this species in Alaska by
conducting aerial surveys to count the number of sea lion pups
born in the Aleutian Islands and Gulf of Alaska each year.
We focused our analysis on counts at two different rookery
sites (Marmot and Sugarloaf) monitored during 1978–2013;
although both sites were not surveyed every year and survey
effort was generally sparse early in themonitoring program. The
Steller sea lion pup count data are available in the R package
“agTrend.”

We analyzed Steller sea lion pup counts using the hierarchical
model

ys,t ∼ Pois(λs,t), (16)
log(λs,1) ∼ N(µ1, σ 2

1 ) , (17)
log

(
λs,t

)
∼ N(φs + log

(
λs,t−1

)
, σ 2

s ) , (18)
φs ∼ N(0, σ 2

φ) , (19)
σ 2
s ∼ IG(α,β) , (20)

where ys,t is the observed pup count at sites s = 1, 2 (i.e.,Marmot
and Sugarloaf sites) in year t = 1, . . . ,T (see Appendix C for
implementation details). These sites were not monitored in year
T+1 = 2014, thuswe sought to use the available data from 1978
through 2013 (ys,1:T) to predict sea lion pup count intensity in
the year 2015 (λs,T+2) as rapidly as possible a$er obtaining the
subsequent observations ys,T+2.We used the PP-RB approach to
accomplish this task without the burden of fitting the model to
the full dataset.

In the context of online updating, we assume a first-
stage analysis has been conducted based on previous pup
counts ys,1:T resulting in a MCMC sample comprised of
θ
(k)
s ≡ (φ

(k)
s , σ 2(k)

s ,λ(k)
s )′ (where k = 1, . . . ,K indexes MCMC

iterations from the first-stage analysis). When new data ys,T+2
arrive and we wish to update inference using the second-stage
algorithm, we first sample the new intensity parameters λs,T+1
and λs,T+2 from their predictive distributions

log
(
λ
(∗)
s,T+1

)
∼ N

(
φ(k)
s + log

(
λ
(k)
s,T

)
, σ 2(k)

s

)
, (21)

log
(
λ
(∗)
s,T+2

)
∼ N

(
φ(k)
s + log

(
λ
(∗)
s,T+1

)
, σ 2(k)

s

)
. (22)

Then, the kth M-H acceptance ratio to update all parameters,
including λs,T+2, in the second-stage analysis is

r =

[ys,T+2|λ(∗)s,T+2][λ
(∗)
s,T+2, λ

(∗)
s,T+1, θ

(∗)
s |ys,1:T] ×

[λ(k−1)
s,T+2, λ

(k−1)
s,T+1, θ

(k−1)
s |ys,1:T]

[ys,T+2|λ(k−1)
s,T+2][λ

(k−1)
s,T+2, λ

(k−1)
s,T+1, θ

(k−1)
s |ys,1:T] ×

[λ(∗)s,T+2, λ
(∗)
s,T+1, θ

(∗)
s |ys,1:T]

, (23)

=
[ys,T+2|λ(∗)s,T+2]
[ys,T+2|λ(k−1)

s,T+2]
, (24)

Figure 2. Posterior means (points) and 95% credible intervals resulting from fitting the Bayesian geostatisical model to the full dataset (black) and for each partition
j = 1, . . . , 3 using the PP-RB approach.
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Figure 3. Posterior means (points) and 95% credible intervals (vertical lines) for
Steller sea lion pup count intensities λs,T+2 at two sites in the Aleutian Islands, AK
for year T + 2 = 2015. The black intervals correspond to the results from the full
model, whereas the red and green intervals correspond to the inference obtained
from the first- and second-stages of the PP-RB analysis.

which simplifies to a function containing only Poisson proba-
bility mass functions resulting from the fact that the proposal
distribution for

(
λs,T+2, λs,T+1, θ s

)
is

[
λs,T+2, λs,T+1, θ s|ys,1:T

]
,

which is sampled during the first-stage analysis. As before, we
draw proposals λ

(∗)
s,T+2 randomly with replacement from the

stage oneMCMCposterior predictive sample (Appendix A) and
accept the proposal with probability min(r, 1).

To compare the PP-RB method for online updating with the
model fit to the entire dataset simultaneously, we used K =
100,000 MCMC iterations for both the full dataset (ys,1:T and
ys,T+2) and the dataset without the last year of data (ys,1:T). We
then relied on the PP-RB method to assimilate the final year
of data ys,T+2 in a second algorithm using the M-H updates
described in (24). Although predictions from the first-stage
analysiswere highly uncertain (i.e., wide red credible intervals in
Figure 3), upon incorporation of the newdata (ys,T+2), inference
was virtually identical to the full-data posterior (i.e., green and
black credible intervals match in Figure 3). For this analysis,
updating our inference using the second-stage algorithm and
the final year of data was 59 times faster than fitting the model
to the full dataset simultaneously.

5. Discussion

In this era where new data are constantly streaming in and both
sensing and storage technology are improving, online statistical
models have becomemore challenging to fit efficiently. Dietze et
al. (2018)made a strong case for the need to fit statistical models
to incoming data operationally and regularly provide iterative
forecasts based on important ecological and environmental data
streams. Statistically rigorous recursive inference and forecast-
ing is clearly useful in all fields, but existing methods for assimi-
lating new data recursively or performing meta-analysis may be
inaccessible to practitioners or computationally infeasible. Our
PP-RB approach relies on well-known Bayesian updating prin-

ciples and commonly used MCMC methods for fitting mod-
els. The PP-RB approach combines two existing RB concepts
(i.e., Prior- and Proposal-RB) to result in a broadly applicable
multistage technique for fitting Bayesian models sequentially to
partitioned datasets.

Overall, the PP-RBmethod we presented is very accessible to
practitioners because it relies on a first-stage posterior sample
(that can be acquired using automated so$ware) followed by a
sequence of simple M-H updates. The multicore architecture
of modern computers can be leveraged to accelerate the PP-
RB by precomputing the conditional log-likelihoods for each
first-stage MCMC sample in parallel, but parallel computing is
not necessary to use PP-RB in general. For example, when the
results of a previous analysis are available and we only seek to
obtain inference based on a single new incoming data partition
(i.e., partition yJ), no recursion is necessary. In that case, we
simply condition on the most recent model output (i.e., based
on partitions y1:(J−1)).

Themain challenge associatedwith the PP-RBmethod is that
we need to evaluate conditional log-likelihoods. The PP-RBpro-
cedure is straightforward when the conditional log-likelihood
function is analytically tractable (such as for the multivari-
ate normal distribution), but approximation of the conditional
log-likelihood must be used when it is not tractable. We have
had good success approximating the conditional log-likelihood
using SMC and, in some cases, pseudo-likelihood approaches in
a variety of other applications.

The data partitions required in PP-RB need not correspond
to a meaningful aspect of space, time, or model structure, but
in some cases, natural partitions may be available (i.e., spatio-
temporal data) and can be used. In fact, partition design is
an important area of future research related to PP-RB because
it could lead to optimal recursive strategies and even faster
inference. In fact, Gramacy and Apley (2015) and Guinness
(2018) explored similar concepts related to the design of parti-
tions for fitting approximate Gaussian processmodelsmore effi-
ciently. Those partitioning concepts can be used in conjunction
with our PP-RB approach and may extend to a broader set of
Bayesian statistical models. However, poorly selected partitions
may result in suboptimal inference because the early stages
could result in MCMC samples that do not adequately explore
the correct posterior in practice. For example, Zimmerman
(2006) found that designs with clusters comprised of sampling
locations that are near each other in space facilitate the estima-
tion of covariance parameters in geostatistical models.

Many other approaches to Gaussian process approximations
have been developed over the past several decades and are
appearing with greater regularity recently. For example, Vecchia
(1988) presented a Gaussian process approximation based on
the same type of recursive expression of the data model we
used in our geostatistical example from the previous section
(also see Stein, Chi, and Welty 2004; Huang and Sun 2018;
Katzfuss and Guinness 2018). This concept led to several recur-
sive approaches to developing approximate Gaussian process
models that have been proposed recently, including predictive
processes (Banerjee et al. 2008) and nearest neighbor processes
(Datta et al. 2016; Finley et al. 2018), both of which are compat-
ible with our PP-RB method. Furthermore, any of the alterna-
tive approaches for approximating Gaussian process covariance
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matrices using reduced-rank or sparse parameterizations (e.g.,
Higdon 2002; Furrer, Genton, and Nychka 2006; Cressie and
Johannesson 2008; Wikle 2010; Lindgren, Rue, and Lindstrom
2011; Gramacy and Apley 2015; Nychka et al. 2015; Katzfuss
2017) are also compatible with our PP-RB method, as long as
they are applied in a Bayesian context (also see Heaton et al.
(2019) for an excellent review). Finally, there may be value in
pairing subsampling methods (e.g., Liang et al. 2013; Kleiner
et al. 2014; MacLaurin and Adams 2015; Barbian and Assun-
cao 2017) with PP-RB to reduce computational requirements
further.

The natural recursive nature of the PP-RB method is not
limited to use for improving computational efficiency, it also
reconciles well with optimal design and monitoring strategies.
Optimal adaptive design, especially in the spatio-temporal con-
text, is becoming more popular in environmental (e.g., Wikle
and Royle 1999, 2005) and ecological statistics (e.g., Hooten et
al. 2009; Hooten, Ross, and Wikle 2012; Williams et al. 2018).
Our PP-RB method can be used to rapidly assimilate new data
and characterize posterior forecast distributions that can be
optimized to reduce the uncertainty associated with ongoing
monitoring efforts without requiring a reanalysis of the entire
cumulative dataset.

In terms of alternative methods for efficient Bayesian com-
puting, a variety of computing strategies have become popular
because of increasing computational demands due to larger
datasets and more complex models. For example, related classes
of computing strategies are: Consensus MC (Scott et al. 2016),
Weierstrass samplers (Wang andDunson 2013), embarrassingly
parallel MCMC (Neiswanger, Wang, and Xing 2013), andMod-
ular Bayes (Jacob et al. 2017), among others.

Appendix A

The cancellations in the M-H ratios (i.e., Equations (4), (7), and (24))
occur when our proposed parameter values independently arise from
the proposal distribution. Lunn et al. (2013) suggested sampling the
proposals randomly with replacement from the stage one Markov
chains to reduce dependence. To illustrate this concept, we denote
the stage one Markov chain values for the parameters in (4) as β

(∗,k)
j

for k = 1, . . . ,K MCMC iterations. Then if we sample our pro-
posal at random from those values, the implied proposal distribution
is a categorical distribution on the set of β

(∗,k)
j with probabilities

[β(∗,k)
j |yj]/

∑K
ν=1[β

(∗,ν)
j |yj] for k = 1, . . . ,K. Because the denomi-

nator sums over the space of β in our proposal, it is a function of the
data f (yj) only. Thus, the proposal distribution has the form

[β(∗,k)
j |yj]

∑K
ν=1[β

(∗,ν)
j |yj]

∝ f (yj)[β(∗,k)
j |yj] , (A.1)

∝ [β(∗,k)
j |yj] , (A.2)

∝ [yj|β(∗,k)
j ][β(∗,k)

j ] , (A.3)

as required in (4). Other options could involve thinning the stage
one MCMC sample to reduce dependence in the proposed values or
randomly permute the stage one MCMC sample (Hooten and Hefley
2019). Thinning is the most common way to reduce dependence in
the MCMC sample before making inference using Monte Carlo inte-
gration, but it may reduce the number of possible proposal values in

Proposal-RB and PP-RB substantially. By contrast, permuting the stage
one MCMC sample will not remove the dependence in the Markov
chains completely, but does allow us to use the entire set of potential
proposals from the first stage (unlike the sampling with replacement
approach).

Appendix B

The Bayesian geostatistical model for the full dataset y was specified as
y ∼ N(Xβ ,#(σ 2,φ, τ2)), (B.1)
β ∼ N(µβ ,#β ), (B.2)

σ 2 ∼ Inv-χ2(α1,α2), (B.3)
φ ∼ half-N(γ 2), (B.4)

τ2 ∼ Unif(0, 1). (B.5)
We fit the Bayesian geostatisticalmodel to the full dataset usingK =

20,000MCMC iterations and hyperparametersµβ = (0, 0, 0)′,#−1
β =

0 (i.e.,flat prior),α1 = 0,α2 = 0, and γ = 0.05. The coordinates for the
spatial locations were scaled to bewithin [0, 1]×[0, 1] and the γ = 0.05
choice implies that ≈95% of the posterior mass for the effective range
of spatial correlation lies between 0 and 1/3 the maximum distance
between spatial locations.

The full-conditional distributions for this geostatistical model are
conjugate for β and σ 2. For β the full-conditional distribution is
[β|·] = N(A−1b,A−1) with

A ≡ X′#−1X+ #−1
β , (B.6)

b ≡ y′#−1X+ µ′
β#−1

β . (B.7)

For σ 2 the full-conditional distribution is [σ 2|·] = Inv-χ2(α̃1, α̃2)
with

α̃1 ≡ n+ α1 , (B.8)

α̃2 ≡ α1α2 + nS2
α1 + n , (B.9)

where S2 = (y − Xβ)′((1 − τ2)R(φ)+ τ2I)−1(y − Xβ)/n.
The full-conditional distribution for the spatial parameters φ and

τ2 will not be conjugate, but we can sample it using an M-H update in
the first-stage algorithm. We write the full-conditional distribution for
φ and τ2 as

[φ, τ2|·] ∝ [y|β , σ 2,φ, τ2][φ][τ2] . (B.10)
We use the randomwalkmethodwith rejection sampling for proposing
values of (φ(∗), τ2(∗)) (where we reject the update when φ(∗) or τ2 ≤ 0
and τ2 > 1), the resulting M-H ratio is

r = N(y|Xβ(k),#(σ 2(k),φ(∗), τ2(∗)))half-N(φ(∗)|γ )
N(y|Xβ(k),#(σ 2(k),φ(k−1), τ2(k−1))half-N(φ(k−1)|γ )

.

(B.11)
The random walk proposal distribution is adaptively tuned to reach an
acceptance rate of ≈0.3.

Appendix C

The full BHM for the Steller sea lion count data (ys,t) is specified as
ys,t ∼ Pois(λs,t) , (C.1)

log(λs,1) ∼ N(µ1, σ 2
1 ) , (C.2)

log
(
λs,t

)
∼ N(φs + log

(
λs,t−1

)
, σ 2

s ) , (C.3)
φs ∼ N(0, σ 2

φ) , (C.4)

σ 2
s ∼ IG(α,β) , (C.5)
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for s = 1, . . . , 2 and t = 2, . . . ,T. For hyperparameters, we specified
µ1 = 8.7, σ 2

1 = 1.69, σ 2
φ = 1, α = 1, and β = 20.

We fit this full model using a MCMC algorithm and K = 100,000
iterations with conjugate updates for model parameters φs and σ 2

s , and
M-H updates for λs,t for all s and t. The full-conditional distributions
for model parameters are as follows. For φs, the full-conditional is
[φs|·] = N(a−1b, a−1), with

a ≡ T − 1
σ 2s

+ 1
σ 2
φ

, (C.6)

b ≡
∑T

t=2(log(λs,t) − log(λs,t−1))

σ 2s
. (C.7)

For σ 2
s the full-conditional is [σ 2

s |·] = IG(α̃, β̃), with

α̃ ≡ T − 1
2

+ α , (C.8)

β̃ ≡
(∑T

t=2(λs,t − φs − λs,t−1)2

2
+ 1

β

)−1
. (C.9)

For log(λs,t) the full-conditionals are as follows. For t = 1, the full-
conditional is

[log(λs,1)|·] ∝ [ys,1|λs,1][log(λs,2)|φs, σ 2
s , log(λs,1)][log(λs,1)] ,

(C.10)
for t = 2, . . . ,T − 1, the full-conditional is

[log(λs,t)|·] ∝ [ys,t|λs,t][log(λs,t+1)|φs, σ 2
s , log(λs,t)] (C.11)

[log(λs,t)|φs, σ 2
s , log(λs,t−1)] , (C.12)

and, for t = T, the full-conditional is

[log(λs,T)|·] ∝ [ys,T |λs,T ][log(λs,T)|φs, σ 2
s , log(λs,T−1)] . (C.13)

We used random walk Metropolis proposals for the log intensity state
variables such that log(λs,t)(∗) ∼ N(log(λs,t)(k−1), σ 2

tune).
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