NBER WORKING PAPER SERIES

DO ENVIRONMENTAL MARKETS CAUSE ENVIRONMENTAL INJUSTICE?
EVIDENCE FROM CALIFORNIA’S CARBON MARKET

Danae Hernandez-Cortes
Kyle C. Meng

Working Paper 27205
http://www.nber.org/papers/w27205

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
May 2020

This paper has benefited from comments by Maximilian Auffhammer, Spencer Banzhaf, Severin
Borenstein, Jim Bushnell, Kelly Caylor, Chris Costello, Meredith Fowlie, Corbett Grainger, Larry
Goulder, Kelsey Jack, Arturo Keller, Gary Libecap, Emily Maynard, Andrew Plantinga, David
Pellow, Ed Rubin, Jim Salzman, Sam Stevenson, Chris Tessum, and Paige Weber. We are also
grateful for feedback received at various seminars and conferences. Use was made of
computational facilities purchased with funds from the National Science Foundation
(CNS-1725797) and administered by the Center for Scientific Computing (CSC). The CSC is
supported by the California NanoSystems Institute and the Materials Research Science and
Engineering Center (MRSEC; NSF DMR 1720256) at UC Santa Barbara. The views expressed
herein are those of the authors and do not necessarily reflect the views of the National Bureau of
Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies
official NBER publications.

© 2020 by Danae Hernandez-Cortes and Kyle C. Meng. All rights reserved. Short sections of
text, not to exceed two paragraphs, may be quoted without explicit permission provided that full
credit, including © notice, is given to the source.



Do Environmental Markets Cause Environmental Injustice? Evidence from California’s Carbon
Market

Danae Hernandez-Cortes and Kyle C. Meng

NBER Working Paper No. 27205

May 2020

JEL No. H4,114,Q5,Q51,Q52,Q53,Q54

ABSTRACT

Market-based environmental policies are widely adopted on the basis of allocative efficiency.
However, there is a growing distributional concern that market forces could increase the pollution
exposure gap between disadvantaged and other communities by spatially reallocating pollution.
We estimate how this “environmental justice gap” changed following the 2013 introduction of
California’s carbon market, the world’s second largest and the one most subjected to
environmental justice critiques. Embedding a pollution transport model within a program
evaluation framework, we find that while the EJ gap was widening prior to 2013, it has since
fallen by 21-30% across pollutants due to the policy.

Danae Hernandez-Cortes

Department of Economics

University of California, Santa Barbara
Santa Barbara, CA 93106
hernandezcortes@umail.ucsb.edu

Kyle C. Meng

Bren School of Environmental

Science and Management

Department of Economics

University of California, Santa Barbara
4416 Bren Hall

Santa Barbara, CA 93106

and NBER

kmeng@bren.ucsb.edu



1 Introduction

Market-based environmental policies - such as pollution trading and taxes - have been in-
creasingly used to address environmental problems. Today, these policies cover 30% of global
fisheries (Costello et al., 2016), account for over $36 billion in global ecosystem service pay-
ments (Salzman et al., 2018), and govern 20% of global greenhouse gas (GHG) emissions
(World Bank Group, 2019).

The central appeal of market-based policies is allocative efficiency. The price on pollution
introduced by these policies reduces the aggregate cost of meeting an environmental objec-
tive by inducing less abatement from polluters with high marginal abatement cost (Dales,
1968; Montgomery, 1972). This stands in contrast with more costly command-and-control
regulations, which require heterogeneous polluters to adopt uniform abatement actions.

The reallocation induced by market-based policies also spatially alters where pollution
occurs and thus who are harmed by it. In particular, the gap in pollution exposure between
disadvantaged and other communities - already large in many settings' - could potentially
widen following the introduction of a market-based policy (Chinn, 1999; Corburn, 2001;
Ringquist, 2011; Fowlie, Holland and Mansur, 2012).

In recent years, there has been increasing opposition to market-based policies because
of this environmental justice (EJ) concern, which has in some settings overtaken efficiency
arguments. For example, recent efforts to introduce state-level U.S. climate policies and
renew the European Union Emissions Trading System were opposed on EJ grounds (Leber,
2016; Herron, 2019; Transnational Institute, 2013). EJ opposition has been particularly
prominent in the case of California’s GHG cap-and-trade (C&T) program, the world’s second
largest, and arguably most ambitious, carbon market. EJ concerns led to a temporary pause
in the program’s development in 2011 (Takade, 2013) and nearly halted renewal efforts in
2017 (Megerian, 2017). Unfortunately, the debate in California has occurred largely in the
absence of causal evidence.

Whether a market-based environmental policy widens or narrows the pollution exposure
gap between disadvantaged and other communities, henceforth the “EJ gap,” depends on
the spatial distribution of polluters, their abatement costs, and the location of disadvantaged
communities. A market-based policy induces relatively less pollution abatement from high
marginal abatement cost polluters. If disadvantaged communities, which are typically ex-
posed to higher baseline levels of pollution, are downwind of these polluters, a market-based

policy will widen the EJ gap. But if other communities are downwind of these polluters, the

Tt is well documented that communities of lower income, greater minority share, and otherwise disadvan-
taged, are exposed to higher pollution levels than other communities (Bullard, 2000; Bowen, 2002; Ringquist,
2005; Mohai, Pellow and Roberts, 2009; Banzhaf, Ma and Timmins, 2019)



EJ gap will narrow (Burtraw et al., 2005; Fowlie, Holland and Mansur, 2012). Additionally,
for a market-based policy regulating global pollutants like GHGs, the EJ gap effect depends
on the relationship between GHG and local pollution emissions.

This paper provides novel causal evidence that California’s GHG C&T program has
reduced the EJ gap in NO,, SO,, PMy5, and PM;q following its 2013 introduction. We
detect a large effect: the EJ gap, which was previously rising prior to 2013, has slowed so
much because of the program that it is now falling. Between 2012 and 2017, the EJ gap fell
by 21-30% across pollutants.

To detect this causal effect, we develop an empirical approach that overcomes two chal-
lenges found in prior work. The first challenge is to establish how a market-based policy
causes a change in pollution emissions. Cross-sectional studies that correlate demographic
characteristics with emissions or the presence of nearby polluting facilities have trouble dis-
cerning between pre-policy emission patterns from changes induced by the policy (Corburn,
2001; Ringquist, 2011; Cushing et al., 2018). We follow a recent economics literature by
using a difference-in-difference research design to estimate how California’s C&T program
differentially affected emissions between regulated and unregulated facilities (Fowlie, Holland
and Mansur, 2012; Grainger and Ruangmas, 2018; Meng, 2019; Walch, 2019; Mansur and
Sheriff, 2019).

The second challenge involves determining how facility-level pollution emissions map onto
location-specific pollution exposure, which matters ultimately for health outcomes. Prior lit-
erature typically assumes a facility’s emissions disperse only within the same geographic unit
(a.k.a. a unit-hazard coincidence) or within a distance circle centered around that facility
(a.k.a. a distance-based measure) (Banzhaf, Ma and Timmins, 2019). These approaches,
however, overlook the complex physical nature of pollution dispersal which, depending on
atmospheric conditions and topography, can transport pollution from different sources and
at different times in varying directions and distances. Failure to accurately account for pol-
lution dispersal lead to treatment spillovers that can bias estimates even in otherwise valid
quasi-experimental settings (Deschenes and Meng, 2018).

We address these challenges by explicitly embedding a pollution transport model within
a program evaluation framework. First, we exploit the unique facility eligibility criteria and
timing of California’s GHG C&T program to isolate C&T-driven NO,, SO,, PMy5, and
PM;o emissions during 2008-2017 from roughly 300 regulated stationary facilities.? Next,

we insert C&T-driven emissions into a pollution transport model to determine how atmo-

2We consider only pollution exposure from C&T-regulated stationary sources in the electricity and in-
dustrial sectors because the program does not directly regulate or monitor emissions from non-stationary
sources such as vehicles.



spheric and topographical conditions disperse C&T-driven emissions across California and
over time. This computationally-intensive procedure involves generating over 11 million par-
ticle trajectories over our sample period. Finally, we use pollution exposure obtained from
the transport model to examine changes in the C&T-driven pollution exposure gap between
disadvantaged and other communities before and after the program’s introduction.

We demonstrate that the EJ effect is insensitive to various robustness checks. These
include using more flexible regression models; accounting for the closure of a major nuclear
power plant in 2013; and using an alternative pollution transport model to incorporate atmo-
spheric chemistry and secondary pollutants. The EJ effect, however, is sensitive to whether
one fully models pollution dispersal. In particular, we show that employing more conven-
tional approaches for assigning pollution exposure from emissions such as restricting exposure
to only within an emitting facility’s zip code or a distance circle centered around that facility
results in considerably noisier and smaller EJ effects, consistent with bias occurring in the
presence of pollution spillovers.

Finally, this paper’s integration of program evaluation econometric techniques with pol-
lution transport modeling can be applied more broadly. Nearly every effort to value the
benefits of environmental policy must determine which locations are affected by changes in
pollution emissions. Our empirical approach provides a path forward for addressing this
widespread identification challenge found in the environmental valuation literature (Green-
stone and Gayer, 2009; Graff Zivin and Neidell, 2013; Deschenes and Meng, 2018).

2 California’s cap-and-trade program

California’s climate policy is one of the world’s most sophisticated and ambitious. In 2006,
California passed Assembly Bill 32 (AB 32), requiring state-wide GHG emissions to reach
1990 emissions level by 2020. AB 32 was, and remains, the first of its kind: all other climate
policies in the U.S. (state or national) regulate specific sectors, whereas AB 32 covers all
GHG emission sources in California. The centerpiece of AB 32 was a cap-and-trade program,
introduced in 2013 and administered by the California Air Resources Board (CARB). The
program sets a limit, or cap, on total annual emissions. This limit is imposed through the
issuance of a fixed supply of tradable emission permits. Regulated facilities are then either
given or must purchase permits to cover annual emissions. The result is that regulated
facilities face a price on their GHG emissions.

California’s C&T program is now the world’s second largest carbon market by value of
permits, following the European Union Emissions Trading System. Not only has there been

full compliance with the cap, but falling state-wide GHG emissions allowed California to



meet AB 32’s 2020 target four years early in 2016. In 2016, California extended the state-
wide GHG target to 40% below 1990 levels by 2030. The following year, the C&T program
was also extended to 2030.

The C&T program has a unique eligibility requirement for regulated facilities. The
program requires participation by all stationary GHG-emitting facilities producing at least
25,000 metric tons of annual carbon dioxide equivalent emissions, or COqe.? This eligibility
criteria, which has been unchanged since 2013, covers all sectors that directly emit GHGs
from stationary sources, including electricity and industrial sectors.* We use the facility
eligibility criteria and the 2013 introduction of the GHG C&T program to isolate stationary,
facility-level, local air pollution emissions driven by the program.® It should be noted that the
GHG C&T program does not directly regulate emissions of local criteria air pollutants, such
as NO,, SO, PMsy 5, and PM;y. Any changes in the spatial distribution of local air pollution
exposure due to the GHG C&T program is thus driven by the program’s reallocation of
GHG emissions and the co-production of local air pollutants with GHGs.

3 Data

Our analysis involves two primary datasets: 1) emissions of criteria air pollutants at the
facility-by-year level and 2) a legal definition of a “disadvantage” community at the zip code

level.

Air pollution emissions We obtain 2008-2017 facility-level annual emissions of NO,,
SO,, PMys, and PM;q from CARB’s Pollution Mapping Tool.® Stationary facilities with
annual emissions past a certain threshold must report emissions to CARB. For NO,, SO,,
PM, 5, and PM;q, the reporting threshold is 10 metric tons per year. For GHGs, the reporting
threshold is 10,000 metric tons of COqe. Because the CARB GHG reporting threshold is
below the C&T program’s eligibility threshold of 25,000 metric tons of COse, we observe

3Greenhouse gases covered by the program were COg, CHy, N,O, HFCs, PFCs, SF6, NF3 and other
fluorinated GHGs.

4In 2015, the GHG cap-and-trade program further covered suppliers of oil and natural gas using the same
25,000 metric ton of CO9 equivalent criteria. Because fuel suppliers do not directly contribute to stationary
GHG emissions, they are regulated based on the GHG content of their fuels (i.e., embedded carbon) which
converts to GHG emissions when the fuel is eventually combusted from non-stationary sources (i.e., vehicles).
We exclude fuel suppliers from our analysis because they do not directly produce or report GHG emissions.

SCARB also developed other regulations to meet the AB 32 target, such as a Low Carbon Fuel Standard
and Advanced Clean Car Standards. These programs, however, were not market-based, were mostly intro-
duced prior to 2012, and did not have the same facility-level eligibility criteria as the cap-and-trade program.
Thus, while our estimated C&T effects take place in the presence of these other regulations, it is unlikely
that C&T effects are conflated with the effects of these other regulations.

6 Available here: https://ww3.arb.ca.gov/ei/tools/pollution_map/


https://ww3.arb.ca.gov/ei/tools/pollution_map/

NO,, SO,, PMy5, and PM;y emissions for both GHG C&T-regulated and non-regulated
stationary facilities. Both local criteria and GHG emissions are required to be reported
annually by CARB.” Table S1 shows the number of GHG C&T regulated and non-regulated
facilities in our sample and the distribution across sectors.® Each regulated facility is shown
as a black dot in Figure la.

Several additional facility-level variables serve as input into the pollution transport model.
CARB provides facility latitude and longitude as well as pollution-specific stack heights for
a subset of facilities. For other facilities, we impute missing pollution-specific stack heights

using sector averages constructed from non-missing observations.

Zip code definition of a disadvantaged community There is no established definition
of a “disadvantaged” community. Previous papers in other empirical settings use a location’s
median income or minority share of population as proxy measures (Fowlie, Holland and
Mansur, 2012; Grainger and Ruangmas, 2018; Mansur and Sheriff, 2019). For our setting, we
use a legal definition of a “disadvantaged” community that has direct policy relevance. Senate
Bill 535 (SB 535), passed in 2012, requires a portion of the revenue from the auction of C&T
permits to be directed towards benefiting disadvantaged communities. To implement this
spending, SB 535 formally defines a “disadvantaged community” using CalEnviroScreen, a
fixed scoring system based on multiple indicators developed by the California Environmental
Protection Agency. Specifically, a zip code is considered disadvantaged if it contains all or
part of a census tract with a CalEnviroScreen score above the top 25th percentile. Zip codes
designated as disadvantaged are shaded in dark blue in Figure 1a. Importantly, pre-2013 data
was used in constructing CalEnviroScreen, which mitigates the concern that the introduction
of cap-and-trade may have affected whether a zip code is designated as disadvantaged. We
follow this definition because it is the basis for which zip codes receive government funds
to offset environmental justice concerns. We further augment our zip code level data with

average 2008-2012 population obtained from the U.S. Census Bureau.

"Details on CARB’s reporting requirements can be found here: https://ww3.arb.ca.gov/ei/tools/
pollution_map/doc/caveats%20document12_22_2017.pdf

8All but 39 facilities that emit local air pollution found in CARB’s Pollution Mapping Tool have time-
invariant GHG C&T regulatory status between 2008-2017. All 39 facilities with time-varying statuses switch
status only in 2017. Because we do not know if these switches are due to actual changes in regulatory status
or coding errors, we drop these 39 facilities from our sample. An unreported robustness check shows that
our results are not affected when we include these 39 facilities and recode their 2017 regulatory status with
their 2008-2016 regulatory status.


https://ww3.arb.ca.gov/ei/tools/pollution_map/doc/caveats%20document12_22_2017.pdf
https://ww3.arb.ca.gov/ei/tools/pollution_map/doc/caveats%20document12_22_2017.pdf

4 Empirical approach

Our analysis proceeds along three steps. First, we use facility-by-year-level data to predict
NO,, SO,, PMy 5, and PM;y emissions driven by California’s GHG C&T program. Second,
we feed predicted emissions into an atmospheric transport model to generate zip code-by-
year-level exposure of these pollutants driven by the program. Third, we examine whether the
GHG C&T program changed the exposure gap for these pollutants between disadvantaged

and other communities following its 2013 introduction.

Step 1: Isolating facility emissions driven by C&T We exploit the unique facility-
level eligibility criteria and 2013 timing of the GHG C&T program to isolate C&T-driven
annual NO,, SO,, PM, 5, and PM;, facility-level emissions during 2008-2017. Let j index
facilities required to report annual pollution emissions to CARB. C; € {0,1} is GHG C&T
regulatory status with C; = 1 indicating that facility j is regulated. For facility j in year ¢, Yﬁ
is annual emissions of local pollutant p € {NO,, SO,, PM, 5, PMy}. To isolate differential

emission trends driven by the GHG C&T program, we estimate the following specification:
Y[ = kKV[C; x t] 4+ K5[C; x 1(t > 2013) x t] + ¢ + 4/ + pif, (1)

where ,u?t is an error term. To facilitate an emission trends interpretation, we include facility-
specific dummy variables gb? to remove time-invariant determinants of pollution p for facility
j. To further enable a comparison of emission trends between C&T regulated and non-
regulated facilities, we include year-specific dummy variables +; to remove common determi-
nants of pollution p affecting all sample facilities in year ¢, such as California-wide economic
conditions.

After estimating equation (1), we construct facility-by-year emissions of pollutant p that
is driven solely by the C&T program (relative to California-wide determinants of pollution),
by applying an exponential transformation to &} [C; x t] +R5[C; x 1(t > 2013) x t] +</b\§ , where
the hat notation indicates estimated parameters. Because facilities vary by average emission
levels within our sample period, the inclusion of facility-level fixed effects, ggf , allows us to
generate heterogeneous C&T-driven abatement across regulated facilities despite estimating
a common percentage effect across regulated firms.” Figure S1 shows this abatement hetero-
geneity, displaying the distribution of facility-level predicted abatement driven by the C&T
policy between 2012-2017 for NO,, SO,, PM, 5, and PM;,.""

9For example, a 10% abatement effect implies 10 tons of abatement for a facility with 100 tons of average
annual emissions and 5 tons of abatement for a facility with 50 tons of average annual emissions.

10A potential concern about this method to isolate GHG C&T-driven emissions is the possibility of policies
targeting these pollutants introduced as the same time as the GHG C&T program. To our knowledge, there



Step 2: Modeling pollution transport We next determine how C&T-driven pollution
emissions is spatially dispersed across California. The standard approach is for the researcher
to prescribe the set of locations exposed to emissions from a particular source, either by as-
suming emissions only affect a particular administrative unit or locations within a particular
distance of the source. For example, one may assume emissions from Los Angeles county
only affect Los Angeles county or the set of counties within a certain radial distance of Los
Angeles county. Actual pollution dispersal from Los Angeles, however, may not conform to
these assumptions and instead may vary depending on meteorological conditions and topog-
raphy. To fully capture the complexity of pollution transport, we turn to an atmospheric
transport model.

We input predicted facility-by-year NO,, SO,, PMs 5, and PM;q emissions from step 1,
together with the location and stack height of each facility, into the Hybrid Single Parti-
cle Lagrangian Integrated Trajectory Model (HYSPLIT), an atmospheric transport model
developed by the U.S. National Oceanographic and Atmospheric Administration (NOAA)
with meteorological conditions from NOAA’s 40-km resolution North American Model Data
Assimilation System (NAMDAS) (Draxler and Hess, 1998).

We choose HYSPLIT because it provides a middle-of-the-road approach for our applica-
tion, balancing atmospheric realism with computational tractability. For example, HYSPLIT
is less computationally intensive than chemical transport models such as WRF-Chem, but
at the cost of not being able to model secondary pollutants. At the same time, HYS-
PLIT is more reliable when modeling pollution transport beyond 50 kilometers, which
less computationally-intensive Gaussian-plume models like AERMOD or APEEP do poorly
(EPA, 2015).

We note several aspects of our HYSPLIT implementation. First, to account for mete-
orological conditions that vary hourly, for each C&T-driven facility-level annual emission,
we run forward particle trajectories at 00:00, 06:00, 12:00, and 18:00 for every day of the
year, implicitly assuming that annual emissions are distributed uniformly within the year.
Each trajectory runs for 24 hours, a duration long enough to ensure most emitted particles
leave California. Second, because HYSPLIT does not explicitly account for particle decay,
we apply half-life parameters from the atmospheric chemistry literature set at 3.8 hours for
NO, (Liu et al., 2016), 13 hours for SO, (Lee et al., 2011), and 24 hours for PM, 5 and
PM;o(U.S. EPA, 2018). Third, we assume that a particle no longer contributes to surface
pollution concentrations once it exits the planetary boundary layer, beyond which there is
far less turbulent mixing. We conservatively set the boundary layer height at 1 km above
the surface, which is about double the typical height for California (Rahn and Mitchell,

was no local air pollution policy introduced in 2013.



2016). As an illustration of pollution dispersal modeled by HYSPLIT, Figure 1b shows the
trajectories of pollution emitted by a regulated facility in Los Angeles during 2016. In total,
we compute over 11 million particle trajectories from over 300 regulated facilities between
2008-2017.

Finally, to obtain zip code-by-year pollution exposure (in ug/m?®) due to GHG C&T-
driven emissions, we sum across HYSPLIT trajectories for each zip code and year and divide
by the volume of the atmosphere between a zip code’s surface and the boundary layer. We
further divide by 365 to obtain an average daily measure of HY SPLIT-generated pollution ex-
posure. Figure lc show our benchmark HYSPLIT-generated daily exposure (in pg/m3/day)
for each zip code, averaged across 2008-2017 for NO,. Figure S2 similarly shows average
2008-2017 zip-code exposure for SO,, PMy 5, and PM;,.'!

To examine whether HYSPLIT-generated air pollution exposure correlates with ambient
air pollution, we match zip code-level HYSPLIT-generated pollution exposure averaged over
2008-2017 to the average ambient pollution of that zip code as recorded by pollution monitors
averaged over the same period, obtained from the U.S. Environmental Protection Agency.'?
Note that a perfect model fit is not expected as ambient pollution at any location originates
from many more sources (i.e., stationary and non-stationary, within and beyond California)
than the subset of California stationary sources regulated by the state’s GHG C&T program.
However, a positive correlation between the two pollution exposure measures would provide
reassurance that HYSPLIT-generated pollution exposure from C&T regulated facilities is
being detected by ambient pollution monitors. The positive correlations shown in Table S2
indicate that is indeed the case.'?

While HYSPLIT incorporates high-frequency atmospheric conditions to determine tra-
jectories of C&T-driven facility-level emissions, there is one major limitation. HYSPLIT
does not incorporate atmospheric chemistry and thus omits secondary pollution such as
particulates. To see if secondary PMs 5 exposure exhibits a different spatial pattern than
primary PM, 5 exposure, in a robustness check, we replace the use of HYSPLIT in step 2
with InMAP, a reduced-complexity transport model based on the WRF-Chem model which
incorporates secondary pollutants (Tessum, Hill and Marshall, 2017).

HFigure 1, Figure S2, and Table S3 show that criteria air pollution from GHG C&T-regulated facilities
disperses across all of California and not just zip codes designated as disadvantaged. This implies that any
change in average pollution exposure between disadvantaged and other zip codes occurs because the GHG
C&T program alters the differential exposure between disadvantaged and other zip codes.

12 Available here: https://www.arcgis.com/home/item.html?id=8d2012a2016e484dafaac0451f9aca24

13We are interested in modeling where C&T-driven pollution goes. As such, we do not directly use ambient
pollution data (either from ground-based monitoring stations or remotely-sensed satellites) in our analysis
as it is often difficult to determine which component of any location’s ambient pollution originates from
C&T-regulated facilities. Such “backwards” atmospheric modeling often yield indeterminate results.
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Part 3: Estimating the C&T driven change in the EJ gap Finally, we examine
whether California’s GHG C&T program changed the pollution exposure gap between disad-
vantaged and other communities, or the EJ gap. Let D; € {0, 1} denote disadvantaged status,
with D; = 1 indicating that zip code ¢ contains all or part of a “Disadvantaged Community
Census Tract,” as defined by Senate Bill 535. For zip code i in year t, we take HYSPLIT-
generated C&T-driven pollution exposure, EY, for pollutant p € {NO,, SO,, PMs 5, PM},

and estimate the following specification:
EY = BY[D; x t] + B5[D; x 1(t > 2013) x t] + ¢F + 67 + €, (2)

where ¢! are zip code-specific dummies and ¢} are year-specific dummies. [ captures the
linear trend in the average pollution exposure difference (from facilities that would eventually
be regulated by the C&T program) between disadvantaged and other zip codes, or the EJ
gap, during 2008-2012, before the GHG C&T program was introduced. 57 > 0 (57 < 0)
would indicate that the EJ gap was widening (narrowing) prior to the C&T program. We call
B the “pre-C&T EJ gap trend.” 7 + 85 > 0 captures the EJ gap trend after the program is
introduced in 2013-2017, or the “post-C&T EJ gap trend.” 7+ 85 > 0 (67 + 55 < 0) would
indicate that the GHG C&T program is widening (narrowing) the EJ gap. (5 captures the
change in the EJ gap trend after the program’s introduction, or the “post-C&T EJ gap trend
break.” As an alternative model, we also estimate a more flexible variant of equation 2 using
annual EJ gap coefficients which allows the EJ gap to differ each year. We also estimate a
version of equation 2 using log pollution exposure as the outcome.

For the baseline model, the error term, €;, is clustered at the county level to allow for
arbitrary forms of heteroskedasticity and serial correlation within a county. To estimate an
average pollution exposure effect across individuals in California, we further weight each zip
code-by-year observation in equation (2) by average zip code population during 2008-2012.
We choose the 2008-2012 period to avoid potential concerns about migration induced by the
C&T program.

5 Results

We begin by examining the baseline EJ gap in 2008, before the introduction of the GHG
C&T program. Consistent with prior work documenting existing EJ gaps both in California
(Cushing et al., 2018) and elsewhere (Bullard, 2000; Bowen, 2002; Ringquist, 2005; Mohai,
Pellow and Roberts, 2009; Banzhaf, Ma and Timmins, 2019), Table S3 shows that disad-

vantaged communities experienced higher levels of NO,, SO,, PM, 5, and PM;, exposure in

10



2008 than other communities on average due to local air pollution emissions from facilities
that would eventually be regulated by the C&T program.

We now turn to our main result examining the evolution of the EJ gap after 2008, as
shown in Figure 2. Across all four pollutants, the EJ gap widens during 2008-2012, the period
leading up to the start of the C&T program, as evident by the positive pre-C&T EJ gap
trend (i.e., A} from equation (2)) and the more flexibly estimated annual EJ gap coefficients
prior to 2013. However, we find that the post-C&T EJ gap trend is negative following the
2013 introduction of the C&T program (i.e., 87+ 85 from equation (2)). This drop in the EJ
gap is large: during 2012-2017, the EJ gap narrowed at a faster annual rate than its previous
expansion during 2008-2012. Between 2012 to 2017, the program reduced California’s EJ gap
by 21%, 24%, 30%, and 30% for NO,,, SO,, PM, 5, and PM,, respectively. The difference in
EJ gap trends before and after the program’s introduction, or post-C&T EJ gap trend break
(i.e., 5% from equation (2)), is statistically significant for all four pollutants. Table 1 displays
coefficients from equation (2) as well as from the more flexibly estimated year-specific EJ

gap model.

Robustness checks We consider several robustness checks. Within step 1, we conduct
three robustness checks. The closure of the San Onofre Nuclear Generating Station, a major
power plant in southern California, also occurred in 2013. This event impacted California’s
electricity sector which may confound our estimates (Davis and Hausman, 2016). To avoid
these effects, we additional construct a measure of C&T-driven pollution exposure using
only emissions from regulated non-electricity facilities. We obtain a similar estimate for (55
(M2 of Figure 3 and col. 2 of Table S4). Equation (1) models changes in the emissions
difference between C&T regulated and non-regulated facility as linear trends. We find a
similar estimate for S5 when we allow for more flexible year-specific differences in equation
(1) (M3 of Figure 3 and col. 3 of Table S4). Next, rather than subdivide annual C&T-driven
emissions uniformly across 4-hour intervals within a year, we instead use the within-year
distribution of emissions for electricity facilities with Continuous Emissions Monitoring data,
available from the U.S. EPA for NO, and SO, emissions. Imposing the within-year emissions
distribution does not affect our EJ gap results for NO, and SO, (M4 of Figure 3 and col. 4
of Table S4).

We conduct four robustness checks within step 2. We use pollution half-life parameters
taken from the atmospheric chemistry literature because HYSPLIT does not model pollution
decay over time. Our estimate for 5 is relatively stable to whether we allow for a 10% larger
half-life parameter which implies a slower decay rate (M5 of Figure 3 and col. 2 Table S5) or

a 10% smaller half-life parameter which implies a faster decay rate (M6 of Figure 3 and col.
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3 of Table S5). Likewise our results are little affected if we lower the height of the planetary
boundary layer to 0.5 km (M7 of Figure 3 and col. 4 Table S5) or raise it to 2 km (M8 of
Figure 3 and col. 5 Table S5).

We conduct three robustness checks within step 3. The first set of checks consider alter-
native error structures. We find that our 55 becomes more precise when we allow errors to
be spatially correlated within a uniform kernel across a distance of 500 km distance (Con-
ley, 1999), roughly the longitudinal width of California, and serially correlated across 5 years
(Newey and West, 1987) (M9 of Figure 3 and col. 6 of Table S5). Likewise, 85 becomes more
precise when we allow for error terms to be correlated across the four local pollutants using
a Seemingly Unrelated Regression (SUR) procedure (M10 of Figure 3 and col. 7 of Table
S5). Equation (2) examines the EJ gap in daily pollution levels of ug/m?/day, the unit of
exposure typically used for air pollution policy and by the public health literature. In Table
S6, we detect a statistically significant post-C&T EJ gap trend break when modeling pollu-
tion exposure in logs, showing that following 2013, C&T-driven exposure in disadvantaged
communities decreased as a percentage of exposure in other communities.

Finally, to examine the potential role of secondary PMs 5, we replace HYSPLIT in step 2
of our procedure with InNMAP, a reduced-complexity transport model based on output from
WREF-Chem, which models total (i.e., primary and secondary) PMs 5 exposure from C&T-
driven facility-level NO,, SO, and PMy 5 emissions (Tessum, Hill and Marshall, 2017).** In-
MAP, however, has one major limitation: it only employs transport patterns in 2005 whereas
our sample period is 2008-2017. Because InNMAP does not model transport patterns during
our sample period, we are unable to directly compare estimates using InMAP-generated
exposure with that using HYSPLIT-generated exposure.'® Instead, we examine the role of
secondary PMs 5 by comparing how estimates of the EJ gap differ between InMAP-generated
primary PMs 5 exposure and InMAP-generated total PMs 5 exposure. Table S8 replicates
the structure of Table 1. Column 1 examines InMAP-generated primary PMs 5 exposure
while column 2 examines InMAP-generated total PMs 5 exposure. Changes in the EJ gap
are very similar for primary and total PMs 5 exposure generated by InMap. This suggests
that the EJ effect on primary pollution exposure may not be very different from that on

total pollution exposure.

14Tn addition to the inputs used in HYSPLIT, InMap requires the diameter, temperature, and emissions
velocity for each smokestack. We obtained these data from CARB. In the case of facilities with more than
one stack, we use the mean value across stacks. In the case of the facilities with missing observations, we
impute data using the industry-level average.

15Furthermore, there is a difference in units between HYSPLIT and InMap. For any given location,
HYSPLIT produces the stock of pollution exposure during a given period, whereas INMAP produces that
period’s average flow of pollution exposure.
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The importance of modeling pollution transport Our empirical approach explicitly
embeds a pollution transport model within a causal inference framework. To examine the
importance of modeling pollution transport for our results, we compare our approach with
prevailing methods for assigning pollution exposure from emission sources. Specifically,
we re-estimated the EJ effect under different commonly employed assumptions about how
emissions disperse spatially. We fail to detect a statistically significant post-C&T EJ gap
trend break (i.e., 85 in equation (2)) when we assume that pollution exposure from a facility
is limited to the zip code of that facility (M1 of Fig. 4 and col. 1 of Table S7) and to zip codes
with centroids that are within 1.6 km and 4 km distance circles around the facility (M2-3 of
Fig. 4 and cols. 2-3 of Table S7). Attenuation of the EJ effect likely occurs because pollution
typically disperses beyond the areas prescribed by these methods. The resulting pollution
spillover leads to a violation of the Stable Unit Treatment Value Assumption (SUTVA) (see
discussion in Deschenes and Meng (2018)).

More recent work use atmospheric transport models in a limited manner (Ash and Fetter,
2004; Morello-Frosch and Jesdale, 2006; Grainger and Ruangmas, 2018; Mansur and Sheriff,
2019). To reduce computational demands, these papers consider only “prevailing winds” by
modeling one year of pollution transport, typically at the start of the sample period, and
then imposing that transport pattern onto the rest of the sample period. To replicate this
approach, we impose HYSPLIT trajectories from only 2008, only 2013, or only 2017 onto
the rest of our sample years. We detect a negative effect for 55. However, the magnitudes
for 5 using this approach is 20-50% smaller than our benchmark estimates that fully model
pollution transport every 4 hours throughout the 2008-2017 period (M4-6 of Fig. 4 and cols.
4-6 of Table S7).

6 Discussion

Many market settings are characterized by stark efficiency-equity trade-offs (Okun, 2015).
We find that California’s carbon market led to environmental justice co-benefits by dramat-
ically narrowing the pollution exposure gap between disadvantaged and other communities.
This result brings causal evidence to a long-standing debate that continues to shape one of
the world’s most ambitious climate policies. Moreover, the integration of pollution trans-
port modeling and causal inference developed in this paper is broadly applicable across many
questions that involve environmental valuation.

This paper has limitations that future studies can explore, both for California’s cap-and-
trade program and in other contexts. First, as with prior EJ studies, our analysis omits

uncertainty arising from how pollution transport is modeled. One possibility involves resam-

13



pling meteorological conditions via a bootstrapping algorithm. Unfortunately, substantial
computational advances must be made for this to be feasible: in our setting, one iteration of
our three-step procedure currently takes about 10 hours on a high-performance computing
cluster. Second, pollution exposure constitutes only one component of the many distribu-
tional consequences of California’s cap-and-trade program. Questions remain regarding how
the program alters the distribution of health outcomes as well as the cost burden of climate
policy. Additionally, to fully understand welfare consequences, one must also account for
sorting as households move in response to changes in the pollution exposure gap (Banzhaf,
Ma and Timmins, 2019).

More generally, environmental markets may not always reduce the pollution exposure
gap between disadvantaged and other communities, as it has in California. In settings where
disadvantaged communities are downwind of high marginal abatement cost polluters, an
environmental market could increase the environmental justice gap. Future research should
theoretically characterize the general conditions under which environmental markets worsen

or improve the environmental justice gap.
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Figure 3: Robustness checks
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Point estimates and 95% confidence intervals of the change in the EJ gap trend (in avg. daily ug/m3yr—1)
after the introduction of the C&T program in 2013 (i.e., EJ gap trend break or 5 from equation (2)),
for NO,, SO,, PMy 5, and PM;( across robustness checks. M1: benchmark model. M2: using only non-
electricity facilities to estimate C&T-driven emissions. M3: using year-specific effects to estimate C&T-
driven emissions. M4: using the within-year distribution of emissions for electricity facilities (available
for NO,, and SO, only). Mb5: applying a slower pollution decay (i.e., 10% larger half-life parameter).
M6: applying a faster pollution decay (i.e., 10% smaller half-life parameter). MT7: applying a planetary
boundary layer set at 0.5 km. MS8: applying planetary boundary layer set at 2 km. M9: using standard
errors adjusted for spatial (500 km uniform kernel) and serial correlation (5 years). M10: using standard
errors that allow correlation across pollutants using a Seemingly Unrelated Regression (SUR) procedure.
Estimates also reported in Tables S4-S5.
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Figure 4: Importance of modeling pollution transport
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Point estimates and 95% confidence intervals of the change in the EJ gap trend (in avg. daily ug/m3yr—1)
after the introduction of the C&T program in 2013 (i.e., EJ gap trend break or 5 from equation (2)),
for NO,, SO, PMs 5, and PM;( across different approaches for assigning pollution exposure from sources.
M1: pollution exposure assigned only to zip code of emitting facility. M2-3: pollution exposure assigned
to zip codes with centroid within 1.6 km and 4 km circle of emitting facility, respectively. M4-6: pollution
exposure based on transport pattern only in 2008, 2013, and 2017, respectively. M7: benchmark pollution
exposure with pollution transport modeled every 4 hours throughout 2008-2017. Estimates also reported
in Table S7.
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Table 1: Environmental justice gap before and after cap-and-trade

(1) (2) (3) (4)
NO, SOz PMo 5 PM;o

Panel a: Trend-break model

EJ gap:
pre-C&T trend (37) 0.08 0.10 0.21 0.22
0.09]  [0.09]  [0.14]  [0.15]
post-C&T trend (ﬁf + ﬂg) -0.26%FF  _0.19%F*  _(.22%*F (. 25%F*
0.06  [0.06]  [0.06]  [0.06]
post-C&T trend break (85)  -0.35%*  -0.29%*  -0.43%*  -0.48**
0.13]  [0.14  [0.19]  [0.20]
EJ gap pct. change since 2012 21% 24% 30% 30%

Panel b: Year-specific effects model

EJ gap:
in 2008 -0.19 -0.23 -0.65 -0.67
[0.32] [0.26] [0.45] [0.49]
in 2009 -0.41 -0.43 -0.77 -0.83
[0.48] [0.38] [0.55] [0.60]
in 2010 -0.49 -0.44 -0.63 -0.70
[0.58] [0.45] [0.58] [0.64]
in 2011 -0.24 -0.28 -0.40 -0.42
[0.47] [0.36] [0.50] [0.56]
in 2012 - - - -
in 2013 0.10 0.08 -0.04 0.00
[0.11] [0.09] [0.04] [0.05]
in 2014 -0.78%%  -0.28%F  -(0.43%HFK  _(.52%**
[0.33] [0.13] [0.14] [0.17]
in 2015 -0.86%* -0.54  -0.52%%*  _(.62%**
[0.42] [0.34] [0.19] [0.23]
in 2016 S1LBE%F* 130K 1.26%0F -1.43%%*
[0.47] [0.46] [0.43] [0.46]
in 2017 -1.04%%F - L0.68%*F  -1.04%F  -1.16%FF
[0.33] [0.27] [0.40] [0.43]
Zip codes 1650 1650 1650 1650
Observations 16,488 16,488 16,488 16,488

NoOTEs: Panel (a) shows estimates of the pre-C&T EJ gap trend (i.e., 51 from
equation (2)), post-C&T EJ gap trend (i.e., 5 + 5 from equation (2)), and and
post-C&T EJ gap trend break (i.e., 85 from equation (2)) for NO,,, SO,, PMj 5,
and PM, across columns. Percentage change in EJ gap calculated between 2012
and 2017. Panel (b) shows a more flexible version of equation (2) by estimating
year-specific EJ gaps with 2012 being the omitted year. All models include zip
code-specific and year-specific dummy variables. Observations weighted by zip
code-level average population during 2008-2012. Standard errors clustered at the
county-level in brackets. P-values from two-sided t-tests with *** p<0.01, **
p<0.05, * p<0.1. 19
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Supplementary Figures

Figure S1: Facility-level C&T-driven abatement between 2012-2017
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Panels (a)-(d) show the distribution of facility-level change in C&T-driven pollution abatement between
2012-2017 predicted from step 1 for NO,, SO,, PMs 5, and PMj, respectively.
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Figure S2: Average pollution exposure driven by C&T regulated facilities
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Panels (a)-(d) show daily exposure (in pug/m?/day) for each zip code averaged across 2008-2017 from GHG
C&T-regulated facilities as modeled in step 2 generated by HYSPLIT for NO,, SO., PMy 5, and PM;y,

respectively.
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Supplementary Tables

Table S1: GHG cap-and-trade regulated and non-regulated facilities
C&T regulated non-C&T regulated

facilities facilities

All 306 440
By sector:

Cement 9 2

Cogeneration 52 7

Electricity 70 173

Hydrogen 7 0

Oil 46 41

Other 102 213

Refinery 20 4

Notgs: Total number of sample GHG cap-and-trade regulated and
non-regulated facilities and by sector.

Table S2: Correlation between HYSPLIT-driven and ambient pollution exposure

(1) (2) (3) (4)
Outcome is ambient In exposure

In NO, In SO, InPM;s In PM;

HYSPLIT-driven In exposure 0.16***  0.09  0.09%**  (0.09***
003 [0.07]  [0.03  [0.02]

Zip codes 95 32 86 94

NoTES: Linear coefficient from zip code-level regressions of In daily HYSPLIT-driven
pollution exposure (in pg/m?/day) averaged across 2008-2017 on In daily pollution
exposure from ambient pollution monitors (in pg/m?/day) averaged across 2008-
2017. We employ a In-ln specification because ambient pollution readings, which
capture the average daily instantaneous stock of pollution, are not directly com-
parable to our exposure measure, which capture average daily pollution flow from
C&T-driven emissions. Ambient pollution are assumed to be uniformly distributed
within a monitor’s zip code. To reduce measurement error from zip codes with large
areas, we restrict the sample of California zip codes with ambient monitors to zip
codes with area below the mean. Standard errors clustered at the county-level in
brackets. P-values from two-sided t-tests with *** p<0.01, ** p<0.05, * p<0.1.
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Table S3: Pollution exposure difference between disadvantaged and other zip codes in 2008

(1) (2) (3)
Disadvantaged Other Difference

NO, 8.14 2.35 5.80%**
(19.49) (7.93) [0.77]
SO, 5.06 1.28 3.79%**
(16.57) (3.89) [0.63]
PMay 5 4.22 1.24 2.98%**
(5.91) (3.09) [0.24]
PM;g 4.94 1.44 3.50%**
(6.67) (3.42) [0.27]
Zip codes 722 990 1,712

Notes: Column 1 shows average 2008 pollution ex-
posure (ug/m?) across disadvantaged zip codes, with
standard deviation in parentheses. Column 2 shows av-
erage 2008 pollution exposure (ug/m?) across other zip
codes, with standard deviation in parentheses. Column
3 shows the average difference in 2008 pollution expo-
sure between disadvantaged and other zip codes, with
standard error in brackets. All pollution exposure gen-
erated by HYSPLIT from facilities that would eventu-
ally be regulated by the GHG C&T program. P-values
from two-sided t-tests with *** p<0.01, ** p<0.05, *
p<0.1.
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Table S4: Robustness: Step 1

(1) (2)

Non elec. Year-specific

(3)

(4)

Within-year

Benchmark facilities effects emissions dist.
Panel a: NO,,
EJ gap:
pre-C&T trend (A7) 0.08 0.21 0.06 0.07
[0.09] [0.13] [0.08] [0.08]
post-C&T trend break (5%)  -0.35%* -0.43%** -0.32%* -0.35%**
[0.13] [0.16] [0.12] [0.13]
Observations 16,488 16,444 16,491 16,488
Panel b: SO,
EJ gap:
pre-C&T trend (A7) 0.10 0.16 0.10 0.10
[0.09] [0.11] [0.09] [0.08]
post-C&T trend break (%)  -0.29%* -0.41%** -0.28%* -0.29°%*
[0.14] [0.19] [0.14] [0.14]
Observations 16,488 16,444 16,491 16,488
Panel c: PM2‘5
EJ gap:
pre-C&T trend (57) 0.21 0.18 0.22 0.21
[0.14] [0.13] [0.14] [0.14]
post-C&T trend break (5%)  -0.43** -0.34%** -0.44%* -0.43%*
[0.19] [0.16] [0.19] [0.19]
Observations 16,488 16,444 16,491 16,488
Panel d: PM;q
EJ gap:
pre-C&T trend (A7) 0.22 0.26* 0.23 0.22
[0.15] [0.15] [0.15] [0.15]
post-C&T trend break (5%)  -0.48%* -0.40** -0.49%* -0.48%*
[0.20] [0.17] [0.20] [0.20]
Observations 16,488 16,444 16,491 16,488

NoOTES: Estimates of the pre-C&T EJ gap trend (i.e., 8] from equation (2)) and post-C&T EJ
gap trend break (i.e., 85 from equation (2)) for NO,, SO,, PMy 5, and PM;y down panels. All
models include zip code-specific and year-specific dummy variables. Observations weighted by zip
code-level average population during 2008-2012. Column 1 shows the benchmark model. Column
2 uses only non-electricity facilities to estimate C&T-driven emissions. Column 3 uses year-specific
effects to estimate C&T-driven emissions. Column 4 uses the within-year distribution of emissions for
electricity facilities (available for NO, and SO, only). Standard errors clustered at the county-level
in brackets. P-values from two-sided t-tests with *** p<0.01, ** p<0.05, * p<0.1.
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Table S5: Robustness: Steps 2 and 3

(1) (2) (3) (4) (5) (6) (7)
Slower  Faster Lower Higher Spatial ~ Pollution
Benchmark  decay decay  boundary boundary corr. err. corr. err.
Panel a: NO,,
EJ gap:
pre-C& T trend (5Y) 0.08 0.10 0.07 0.04 0.09 0.08 0.08
[0.09] [0.10] [0.08] [0.08] [0.09] [0.07] [0.05]
post-C&T trend break (45) -0.35%* -0.38%F  _0.31%FF  _0.28%* -0.35%F  0.35%F*  _(.35%**
[0.13] (0.15]  [0.12] 0.11] [0.13] [0.12] [0.09]
Observations 16,488 16,488 16,488 16,470 16,491 16,488 16,488
Panel b: SO,
EJ gap:
pre-C&T trend (37) 0.10 0.12 0.09 0.07 0.11 0.10%* 0.10%**
[0.09] [0.09] [0.08] [0.07] [0.09] [0.04] [0.04]
post-C&T trend break (85)  -0.29%*  -0.31%% -0.27%%  -0.23** -0.30%%  -0.20%Fk (. 29%H*
[0.14] [0.15] [0.12] [0.11] [0.14] [0.09] [0.06]
Observations 16,488 16,488 16,488 16,470 16,491 16,488 16,488
Panel ¢: PMy 5
EJ gap:
pre-C& T trend (5Y) 0.21 0.22 0.20 0.12 0.22 0.21%%% (. 21%%*
[0.14] [0.14] [0.13] [0.10] [0.14] [0.04] [0.02]
post-C&T trend break (58)  -0.43*F  -0.44%%  -0.42%%  -0.28%* -0.45%F  L0.43FFx (.43
[0.19] [0.19] [0.18] [0.13] [0.19] [0.06] [0.04]
Observations 16,488 16,488 16,488 16,470 16,491 16,488 16,488
Panel d: Pkllo
EJ gap:
pre-C&T trend (57) 0.22 0.23 0.21 0.12 0.23 0.22%%* 0.22%%*
[0.15] [0.15] [0.14] [0.10] [0.15] [0.04] [0.03]
post-C&T trend break (45) -0.48%F  -0.49%F  -0.46%*  -0.31** -0.50%F  -0.48%FF  _(.48%**
[0.20] [0.21] [0.19] [0.13] [0.20] [0.07] [0.04]
Observations 16,488 16,488 16,488 16,470 16,491 16,488 16,488

NoTES: Estimates of the pre-C&T EJ gap trend (i.e., 8} from equation (2)) and post-C&T EJ gap trend
break (i.e., 85 from equation (2)) for NO,, SO,, PMss, and PM;o down panels. All models include

zip code-specific and year-specific dummy variables.

Observations weighted by zip code-level average

population during 2008-2012. Column 1 shows the benchmark model. Column 2 applies a slower pollution
decay to HYSPLIT pollution trajectories (i.e., 10% larger half-life parameter). Column 3 applies a faster
pollution decay to HYSPLIT pollution trajectories (i.e., 10% smaller half-life parameter). Column 4 applies
a lower planetary boundary layer set at 0.5 km. Column 5 applies a higher planetary boundary layer set
at 2 km. Column 6 adjusts standard errors for spatial (500 km uniform kernel) and serial correlation
(5 years). Column 7 adjusts standard errors allowing correlation across pollutants using a Seemingly
Unrelated Regression (SUR) procedure. Standard errors in brackets. P-values from two-sided t-tests with
*x p<0.01, ** p<0.05, * p<0.1.
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Table S6: Robustness: log exposure

(1) (2) (3) (4)
In NOI In SOI In PM2.5 In PM10

EJ gap:
pre-C&T trend (A7) 0.05%**  0.04* 0.02 0.02
002 [0.02]  [0.01]  [0.01]

post-C&T trend break (85) -0.05%**  -0.04*  -0.03*  -0.03**

[0.02] [0.02] [0.01] [0.01]
Zip codes 1650 1650 1650 1650
Observations 16,488 16,480 16,483 16,483

NoTEs: Estimates of the pre-C&T EJ gap trend (i.e., 87 from equation (2)) and
post-C&T EJ gap trend break (i.e., 85 from equation (2)) for In NO,, In SO,,
In PMs 5, and In PM;jg, across columns. All models include zip code-specific and
year-specific dummy variables. Observations weighted by zip code-level average
population during 2008-2012. Standard errors clustered at the county-level in
brackets. P-values from two-sided t-tests with *** p<0.01, ** p<0.05, * p<0.1.
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Table S7: Importance of modeling spatial transport

(1) 2 6 (4) () (6) (7)
Facility 1.6 km 4 km 2008 2013 2017 Full
zip code circle circle transport transport transport transport
Panel a: NO,,
EJ gap:
pre-C&T trend (537) -0.15 0.07  -0.12 -0.09 -0.10 -0.12 0.08
[0.19] [0.18] [0.38] [0.07] [0.08] [0.08] [0.09]
post-C&T trend break (35) 0.24 -0.18  0.13  -0.21%%*  _Q.25%FF  _Q.24%FF  _(.35%*
[0.22] [0.16]  [0.48] [0.07] [0.08] [0.09] [0.13]
Observations 1,742 3,825 6,051 16,486 16,483 16,482 16,488
Panel b: SO,
EJ gap:
pre-C&T trend (5Y) -0.16 -0.08  -0.04 -0.07* -0.08* -0.08* 0.10
[0.10] [0.09] [0.14] [0.03] [0.04] [0.04] [0.09]
post-C&T trend break (35) 0.18 -0.03  0.00 -0.15***  _0.19%** -0.19** -0.29%*
[0.12] [0.09] [0.19] [0.06] [0.08] [0.09] [0.14]
Observations 1,644 3,631 6,238 16,486 16,483 16,482 16,488
Panel c: PM, 5
EJ gap:
pre-C&T trend (5Y) -0.01 -0.03  -0.15 0.02 0.02 0.02 0.21
[0.02] [0.02] [0.10] [0.04] [0.05] [0.05] [0.14]
post-C&T trend break (%) 0.02 -0.02  0.16 -0.27***  _(.32%* -0.35%* -0.43**
[0.02] [0.02] [0.14] [0.08] [0.14] [0.16] [0.19]
Observations 1,710 3,792 6,501 16,486 16,483 16,482 16,488
Panel d: PM;
EJ gap:
pre-C&T trend (5Y) -0.02 -0.04 -0.16 0.02 0.01 0.01 0.22
[0.02] [0.02] [0.11] [0.04] [0.05] [0.05] [0.15]
post-C&T trend break (35) 0.02 -0.03  0.17  -0.30***  -0.36** -0.39** -0.48**
[0.02] [0.02] [0.15] [0.09] [0.14] [0.16] [0.20]
Observations 1,711 3,794 6,502 16,486 16,483 16,482 16,488

NoTEs: Estimates of the pre-C&T EJ gap trend (i.e., 8] from eq. (2)) and post-C&T EJ gap trend break
(i.e., A5 from eq. (2)) for NO,, SO,, PMs 5, and PM;y down panels. All models include zip code-specific
and year-specific dummy variables. Observations weighted by zip code-level average population during
2008-2012. Column 1 assigns pollution exposure to only the zip code of the emitting facility. Columns 2
and 3 assign pollution exposure to zip codes with centroid within a 1.6 and 4 km circle of emitting facility,
respectively. Columns 4-6 assign pollution exposure based on transport pattern only in 2008, 2013, and
2017, respectively. Column 7 reproduces benchmark estimates in panel a of Table 1 using HYSPLIT to
fully model pollution transport every 4 hours throughout 2008-2017. Standard errors clustered at the
county-level in brackets. P-values from two-sided t-tests with *** p<0.01, ** p<0.05, * p<0.1.
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Table S8: Modeling secondary PM, 5 exposure using InMAP

(1)

Primary PMy 5

(2)

Total PM2_5

Panel a: Trend-break model

EJ gap:
pre-C&T trend (47) -0.004 -0.005
[0.008] [0.008]
post-C&T trend (B + 35) -0.019* -0.024**
[0.010] [0.012]
post-C&T trend break (43%) -0.015 -0.019
[0.014] [0.016]
EJ gap pct. change since 2012 47 43

Panel b: Year-specific effects model

EJ gap:
in 2008 0.018 0.026
[0.025] [0.026]
in 2009 0.019 0.024
[0.025] [0.026]
in 2010 0.021 0.024
[0.025] [0.026]
in 2011 -0.001 0.000
[0.001] [0.001]
in 2012 - -
in 2013 -0.003 -0.003
[0.002] [0.002]
in 2014 -0.031* -0.037*
[0.018] [0.021]
in 2015 -0.038* -0.048**
[0.020] [0.024]
in 2016 -0.095** -0.121%*
[0.047] [0.057]
in 2017 -0.081* -0.099*
[0.044] [0.052]
Zip codes 1647 1647
Observations 16,470 16,470

NOTES: Panel a shows estimates of the pre-C&T EJ gap trend (i.e.,
BV from equation (2)), post-C&T EJ gap trend (i.e., 7 + 85 from
equation (2)), and and post-C&T EJ gap trend break (i.e., 55 from
equation (2)). Column 1 examines InNMAP-modeled primary PMg 5
exposure. Column 2 examines inMAP-modeled total (i.e., primary
and secondary) PMa 5 exposure. PMs 5 exposure in average jug/m3
within a year. InMAP employs transport patterns for 2005 and not for
the 2008-2017 sample period. Percentage change in EJ gap calculated
between 2012 and 2017. Panel b shows a more flexible version of
equation (2) by estimating year-specific EJ gaps with 2012 being the
omitted year. All models include zip code-specific and year-specific
dummy variables. Observations weighted by zip code-level average
population during 2008-2012. Standard errors clustered at the county-
level in brackets. P-values from two-sided t-tests with *** p<0.01, **
p<0.05, * p<0.1. 32
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