Magnetocaloric Effect of Micro- and Nanoparticles of Gd₅Si₄

S. M. Harstad, A. A. El-Gendy, 1,2 S. Gupta, V. K. Pecharsky, 3,4 and R. L. Hadimani 1

ABSTRACT

Materials exhibiting large magnetocaloric effect (MCE) at or near room temperature are critical for solid-state refrigeration applications. The MCE is described by a change in entropy ($\Delta S_{\rm M}$) and/or temperature (ΔT_{ad}) of a material in response to a change in applied magnetic field. Ball milled materials generally exhibit smaller ΔS_M values compared to bulk; however, milling broadens the effect potentially increasing the relative cooling power (RCP). The as-cast Gd₅Si₄ is an attractive option due to its magnetic transition at 340 K and associated magnetocaloric effect. Investigation of effect of particles size and transition temperature in the binary material, Gd₅Si₄, can lead to development of functionally graded bulk material with higher MCE and RCP than the traditional bulk materials. A two-step ball-milling process, in which coarse powder of Gd₅Si₄ was first milled with poly(ethylene glycol) followed by milling in heptane was used to produce fine particles of Gd₅Si₄ that showed a broad distribution in particle size. Magnetic measurement on the milled sample obtained after washing with water show decrease in Curie temperature and significant broadening of magnetic transition. Compared to bulk Gd₅Si₄, the maximum MCE of the milled samples is also reduced and shifted down by close to 30 K, but the MCE remains substantial over a broader temperature range. The RCP of both milled samples increased 75% from the bulk material.

¹Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, USA

²Department of Physics, University of Texas El Paso, USA

³Ames Laboratory, Division of Materials Science and Engineering, U.S. Department of Energy, USA

⁴Department of Materials Science and Engineering, Iowa State University, USA

INTRODUCTION

Recently there has been significant effort in research directed at materials with a magnetocaloric effect (MCE) near room temperature for refrigeration applications [1]. This effort is fuelled by the opportunity for increased energy efficiency over that of conventional vapor compression refrigeration cycle. The MCE is described by a change in entropy ($\Delta S_{\rm M}$) and/or temperature ($\Delta T_{\rm ad}$) of a material in response to an applied magnetic field. The giant magnetocaloric effect is seen in materials that exhibit a first order structural phase transition but with the drawback that these materials also experience hysteresis loss when cycled through transition temperature and magnetic field. The somewhat lesser performing second order phase transition materials show an MCE over a slightly larger temperature range, and do not suffer hysteresis losses but possess lower values of $\Delta S_{\rm M}$ and $\Delta T_{\rm ad}$. One of the main goals of research on magnetocaloric materials is to increase the MCE or the temperature range of second order materials [2], [3]. To this end, a simple and effective process of ball milling the magnetic materials is often employed which, generally results in powders that exhibit smaller absolute maximum ΔS_M values than their bulk material counterparts as reported by a few research groups recently. However, this reduction in ΔS_M is accompanied by the extension of the MCE over a larger range of temperatures, potentially increasing the relative cooling power (RCP) of the material which has been reported in several systems [4]–[7]. When examining potential systems for magnetic refrigeration one of the main concerns is the material's performance near room temperature as most commercial cooling demands are for near room temperature applications. The Gd₅Si₄ and a few of its derivatives provide an attractive option because of their strong magnetostructural transition near room temperature [8]–[14]. It is important to study the properties of $Gd_5(Si_xGe_{1-x})_4$ in order to improve the performance of magnetic refrigerators. Gd₅(Si_xGe_{1-x})₄ also exhibits other unusual properties at the first order phase transition such as giant magnetoresistance of $\Delta R / R = 25\%$ [15]–[17] colossal magnetostriction of the order of 10,000 ppm [18]. These extreme properties occur close to room temperature for compositions in the range 0.4 < x < 0.575 which can be utilized in various engineering applications. These properties can be controlled by variation of temperature, magnetic field and composition which offer versatility to potential applications. There are few journal publications on thin films and nano structures of Gd₅(Si_xGe_{1-x})₄. Magnetocaloric thin films have the potential to be used in cooling the integrated circuits. Magnetocaloric thin films can also be used in various MEMS applications. Few researchers in the magnetocaloric community attempted to prepare rare-earth thin films of Gd₅(Si_xGe_{1-x})₄ but have failed [19], [20] because of high melting points of the compounds (exceeding 1700° C), incongruent melting, and extreme difficulties in controlling oxygen content during and after deposition. Hadimani et al. [21]–[23] showed high probability of success, even though the prepared films contained multiple phases. Importantly, the monoclinic Gd₅Si₂Ge₂ phase is expected to exhibit a magnetostructural transition similar to the bulk has been identified. Earlier unsuccessful attempts of depositing these films were based on pulsed laser deposition (PLD) using nanosecond laser and sputtering. PLD of metals give rise to particulate deposition hence, the thin films of Gd₅Si₄ also showed particulate deposition. We therefore were initially interested in the development of nanoparticles of Gd₅Si₄ in order to fully characterize the structures deposited during PLD [24]. After the results on nanoparticles were published, there was a significant interest in the application of these ferromagnetic nanoparticles for biomedical, energy harvesting and high frequency electromagnetic shielding applications[25]–[30]. The focus of this work is to investigate the effect of processing of bulk powder by ball milling on the magnetocaloric response of Gd₅Si₄ with specific interest on the response near room temperature.

EXPERIMENTAL DETAILS

A polycrystalline sample of Gd₅Si₄ was synthesized via arc-melting the stoichiometric mixture of commercial grade Gd (99.97%) and Si (99.999%) in an argon atmosphere. The sample was remelted six times, turning over each time to ensure homogeneity. Using commercial grade Gd leads to the formation of small amounts of Gd₅Si₃ and GdSi impurities in the predominantly Gd₅Si₄ matrix. To obtain sub-micrometer particles of Gd₅Si₄, the as-cast bulk material was first ground in an agate mortar and screened to eliminate particles larger than 53 μm. Further reduction in the particle size was achieved by high-energy ball-milling of the powder in a SPEX 8000M mill using stainless steel container and milling media. The milling procedure used a powder to ball weight ratio of 5:1 with 2 balls of 11 mm diameter and 4 balls of 4 mm diameter. 10 wt% poly(ethylene glycol) (PEG) (molecular weight-8000 Da) was added to the Gd₅Si₄ powder to act as a surfactant during milling. A two-step milling process was used in which the powder and PEG mixture was first milled for 1 h at which point the milling was interrupted and 5 ml of heptane was added to the vial. The milling was then continued for another 1h for sample S1 and 2 h for S2. Shorter milling periods were chosen to maintain crystallinity as extended milling results in amorphous particles and low magnetization [31]. After milling is complete, the milling container is opened inside a

glove box equipped with solvent-absorption system. The container is allowed to sit until most of the heptane evaporates. Any remaining heptane is then removed under vacuum. PEG was removed by washing the sample with deionized water.

The magnetic properties of the samples were measured using a vibrating sample magnetometer (Versalab, Quantum Design). Morphological characteristics were studied with scanning electron microscopy (Hitachi SU-70).

RESULTS

The x-ray diffraction analysis of as-cast sample shows formation of Gd₅Si₄ with orthorhombic (space group: Pnma) structure along with minor amounts of Gd₅Si₃ and GdSi. Despite careful manipulation of the starting elements and multiple re-melting of as-cast button, pure Gd₅Si₄ could not be obtained. It is most likely that small amount of non-metal impurities present in the commercial grade Gd leads to high relative stability of parasitic secondary phases. After the first hour of ball milling, the sample consisted of flakes that coated the media and walls of the vial indicating that the PEG was well integrated with the Gd₅Si₄ powder. Upon milling with heptane and subsequently drying under vacuum, the powder appeared to have very large surface area and fine particle size which was maintained after removal of PEG. The particles were examined using SEM to determine size and morphology (Fig. 1). Milling under these conditions produced particles that have a large size distribution with some particles larger than 1 micron. Increased milling time shows a higher percentage of smaller particles; however, large particles over 1 μm are still present. Most particles have a plate-like shape which may be due to preferential shearing along the slabs in the Gd₅Si₄ crystal structure [32].

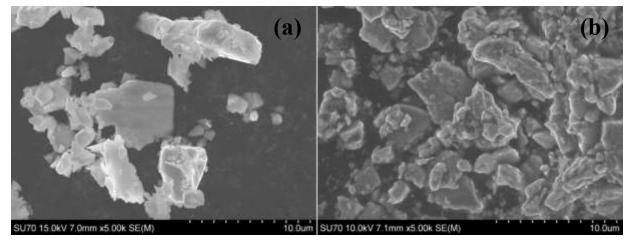


Figure 1: SEM images of (a) 2 hour and (b) 3 hour high energy milled nano/micro particles of Gd₅Si₄

Fig. 2 shows the magnetization as a function of temperature for the milled samples, S1 and S2, as well as bulk Gd₅Si₄. Both milled samples show ferromagnetic behavior below 330 K with a noticeable transition to paramagnetic phase occurring as temperature increases. Derivative of magnetization show that the particles have broad range of transition temperature and bulk has a transition temperature in a narrow range.

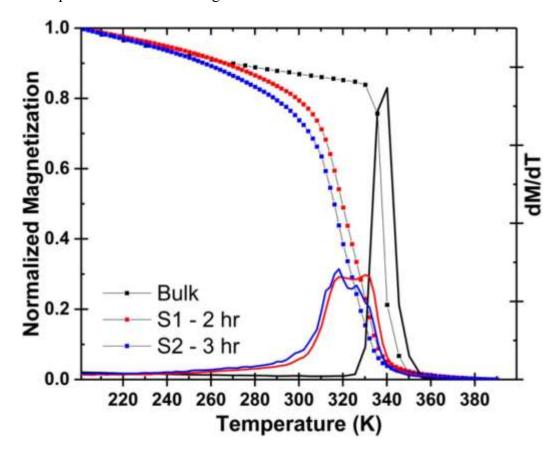


Figure 2: Magnetization as a function of temperature at an applied magnetic field of 100 Oe.

Fig. 3 shows hysteresis graphs in a magnetic field range of -30 kOe to 30 kOe for 2h and 3h milled nanoparticles of Gd₅Si₄ at 300 K. Inset is the magnified part of the hysteresis graph at the origin showing coercivity less than 50 Oe for 2h milled samples and less than 50e for 3h milled sample. The large variation in the magnetic moment was because of the presence of high amount PEG in

the particles. Although PEG was washed away but for 3h milled sample, it was difficult to wash all the PEG away and large amount retained back in the sample.

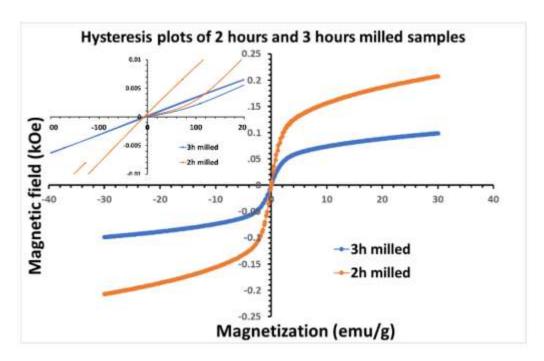


Figure 3: Magnetization as a function of magnetic field for 2h and 3h milled nanoparticles of Gd₅Si₄ at 300K. Inset is the magnified part of the hysteresis graph at the origin showing coercivity less than 50Oe.

Fig. 4 shows magnetization (M) isotherms in the range of 0-30 Oe that were collected from 210 K-390 K in order to calculate the magnetic entropy change via the Maxwell relation [10]

$$\Delta S_M = \int_0^H \frac{\delta M}{\delta T} dH \qquad [1]$$

where T is the absolute temperature and H is the applied magnetic field. The magnetocaloric effect is calculated using change in entropy for a change in magnetic field at a specific temperature using [1] are shown in Fig. 5. Temperature dependence of magnetization in Fig. 3 shows an early onset and smooth magnetic transition in the ball-milled samples indicating a distribution of Curie temperatures in the powder.

The ball-milled samples exhibit a subdued magnetocaloric response with a ΔS_M of 3 J/kgK that has broadened over a large temperature range. The peak ΔS_M value has also shifted to a lower temperature in the milled samples. This shift follows the same trend as the magnetic transition temperature in ball milled Gd₅Si₄. Increased milling time further reduces the transition temperature

as well as the peak value of ΔS_M . There is a small decrease in ΔS_M with increased milling time but little impact on further broadening of the response peak.

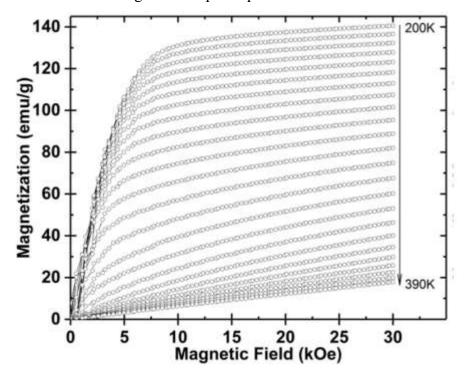


Figure 4: Magnetization as a function of magnetic field from 0-30 kOe for isotherms ranging from 200 K to 390 K. Isotherms of temperature above transition temperature are straight line showing paramagnetic behavior.

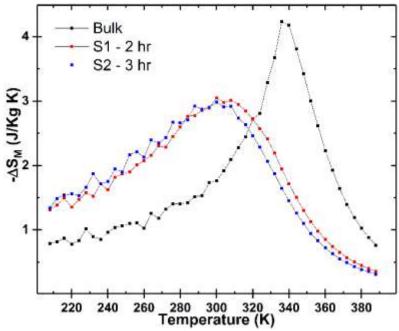


Figure 5: Magnetic entropy change vs temperature for bulk Gd₅Si₄ and both milled samples.

DISCUSSION

Ball-milling Gd₅Si₄ reduces the temperature at which the material undergoes its magnetostructural transition. The transition temperature of the bulk material is ~335 K and is reduced to about 320 K for milling times of 2 and 3 hours similar to previous reports in thin films [23]. As the particle size decreases, magnetic disorder at the surface has a larger influence on the magnetic ordering of the particle [4], [5]. In the case of ball-milling where particle and grain sizes are reduced, the magnetic transition is smoothed out over a range of temperatures which is observed in Fig. 2 and is in agreement with previous literature [33], [34]. In the bulk sample the structural transition causes a rather sharp peak in the ΔS_M curve that is centred on the transition temperature. However, in the milled samples we see that the peak change in entropy occurs nearly 15 K below the transition and remains substantial as temperature decreases. In both samples the spectrum of transition temperatures is expressed as a broad transition that translates to a very broad peak in ΔS_M as each size range of particles contributes to the whole at a specific temperature. This broadening gives rise to a much larger RCP in the milled samples when compared to the base material which confirms previous report by Blázquez et al. [4]. Using the standard full width at half maximum method for calculating cooling power the relative cooling power of both milled samples is ~340 J/kg; a 75% increase from the 200 J/kg provided by bulk Gd₅Si₄ material.

CONCLUSION

Gd₅Si₄ was ball-milled using PEG as a surfactant and heptane as a liquid processing agent. The resultant powder was sub-micron, maintained crystallinity and the magnetic transition temperature was reduced to 320 K from the bulk value of ~340 K. The MCE was slightly suppressed as expected but remains substantial and nearly constant over a wide temperature range between ~280 K and ~320 K with peak values occurring at room temperature, 295 K-300 K. Ball-milling Gd₅Si₄ is a viable route to producing coolant material with good performance at room temperature. Functionally graded Gd₅Si₄ with improved cooling performance can be developed from additive manufacturing using the nanoparticles reported in this paper.

ACKNOWLEDGEMENTS

Synthesis and materials processing at the Ames Laboratory was supported by the Office of Basics Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy (DOE). The Ames Laboratory is operated for the U.S. DOE by Iowa State University of Science and Technology under contract No. DE-AC02-07CH11358. Work at VCU was partially funded by National Science Foundation, Award Numbers: 1357565 and 1726617.

REFERENCES

- [1] S. Crossley, W. Li, X. Moya, and N. D. Mathur, "Large electrocaloric effects in single-crystal ammonium sulfate.," *Philos. Trans. A. Math. Phys. Eng. Sci.*, vol. 374, no. 2074, p. 20150313, Aug. 2016.
- [2] V. Chaudhary, D. V. Maheswar Repaka, A. Chaturvedi, I. Sridhar, and R. V. Ramanujan, "Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles," *J. Appl. Phys.*, vol. 116, no. 16, 2014.
- [3] V. Chaudhary and R. V. Ramanujan, "Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling," *Sci. Rep.*, vol. 6, no. September, p. 35156, 2016.
- [4] J. S. Blázquez *et al.*, "Analysis of the Magnetocaloric Effect in Powder Samples Obtained by Ball Milling," *Metall. Mater. Trans. E*, vol. 2, no. 2, pp. 131–138, Jun. 2015.
- [5] D. M. Rajkumar, M. Manivel Raja, R. Gopalan, and V. Chandrasekaran, "Magnetocaloric effect in high-energy ball-milled Gd₅Si₂Ge₂ and Gd₅Si₂Ge₂/Fe nanopowders," *J. Magn. Mater.*, vol. 320, no. 8, pp. 1479–1484, 2008.
- [6] N. J. Jones, H. Ucar, J. J. Ipus, M. E. McHenry, and D. E. Laughlin, "The effect of distributed exchange parameters on magnetocaloric refrigeration capacity in amorphous and nanocomposite materials," *J. Appl. Phys.*, vol. 111, no. 7, p. 07A334, Apr. 2012.
- [7] P. Gorria, J. L. Sánchez Llamazares, P. Álvarez, M. J. Pérez, J. Sánchez Marcos, and J. A. Blanco, "Relative cooling power enhancement in magneto-caloric nanostructured Pr ₂ Fe ₁₇," *J. Phys. D. Appl. Phys.*, vol. 41, no. 19, p. 192003, Oct. 2008.
- [8] V. K. Pecharsky and K. A. Gschneidner, "Phase relationships and crystallography in the pseudobinary system Gd₅Si₄-Gd₅Ge₄," *J. Alloys Compd.*, vol. 260, no. 1, pp. 98–106, 1997.
- [9] V. K. Pecharsky and J. Gschneidner K. A., "Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from [bold ~]20 to [bold ~]290 K," *Appl. Phys. Lett.*, vol. 70, no. 24, pp. 3299–3301, Jun. 1997.

- [10] K. A. Gschneidner and V. K. Pecharsky, "MAGNETOCALORIC MATERIALS," *Annu. Rev. Mater. Sci.*, vol. 30, no. 1, pp. 387–429, 2000.
- [11] R. L. Hadimani and D. C. Jiles, "Irrecoverable and Recoverable Resistivity Resulting From the First Order Magnetic-Structural Phase Transition in Gd5(SixGe1-x)4," *IEEE Magn. Lett.*, vol. 1, pp. 6000104–6000104, 2010.
- [12] R. L. Hadimani, Y. Melikhov, J. E. Snyder, and D. C. Jiles, "Field induced structural phase transition at temperatures above the Curie point in Gd₅(Si_xGe_{1-x})₄," *J. Appl. Phys.*, vol. 105, no. 7, p. 07A927, 2009.
- [13] R. L. Hadimani, Y. Melikhov, J. Snyder, and D. Jiles, "Determination of Curie temperature by Arrott plot technique in Gd₅(Si_xGe_{1-x})₄ for x>0.575," *J. Magn. Magn. Mater.*, vol. 320, no. 20, pp. e696–e698, Oct. 2008.
- [14] R. L. Hadimani, Y. Melikhov, J. E. Snyder, and D. C. Jiles, "Estimation of second order phase transition temperature of the orthorhombic phase of Gd₅(Si_xGe_{1-x})₄ using Arrott plots," *J. Appl. Phys.*, vol. 103, no. 3, p. 033906, 2008.
- [15] R. L. Hadimani and D. C. Jiles, "Resistivity recovery in Gd₅(Si_xGe_{1-x})₄ by annealing," *J. Appl. Phys.*, vol. 107, no. 9, p. 09C501, 2010.
- [16] R. L. Hadimani and D. C. Jiles, "Irrecoverable and Recoverable Resistivity Resulting From the First Order Magnetic-Structural Phase Transition in Gd₅(Si_xGe_{1-x})₄," *IEEE Magn. Lett.*, vol. 1, pp. 6000104–6000104, 2010.
- [17] R. L. Hadimani, Y. Melikhov, J. E. Snyder, and D. C. Jiles, "Anomalous Behavior in Electrical Transport Properties in Single-Crystal Gd5Si1.8Ge2.2 and Polycrystalline Gd5Si2.09Ge1.91," *IEEE Trans. Magn.*, vol. 45, no. 10, pp. 4368–4371, Oct. 2009.
- [18] R. L. Hadimani, P. a. Bartlett, Y. Melikhov, J. E. Snyder, and D. C. Jiles, "Field and temperature induced colossal strain in Gd₅(Si_xGe_{1-x})₄," *J. Magn. Magn. Mater.*, vol. 323, no. 5, pp. 532–534, Mar. 2011.
- [19] S. N. Sambandam, B. Bethala, D. K. Sood, and S. Bhansali, "Evaluation of silicon nitride as a diffusion barrier for Gd-Si-Ge films on silicon," *Surf. Coatings Technol.*, vol. 200, no. 5–6, pp. 1335–1340, Nov. 2005.
- [20] A. Raghunathan, "Growth, Characterisation and Modelling of Novel Magnetic Thin Films for Engineering Applications," PhD Thesis, Cardiff University, 2010.
- [21] R. L. Hadimani, I. C. Nlebedim, Y. Melikhov, and D. C. Jiles, "First successful growth of

- magnetic thin films of meta-stable monoclinic $Gd_5(Si_xGe_{1-x})_4$," Bull. Am. Phys. Soc., vol. 58, 2013.
- [22] R. L. Hadimani, I. C. Nlebedim, Y. Melikhov, and D. C. Jiles, "Growth and characterisation of Gd₅(Si_xGe_{1-x})₄ thin film," *J. Appl. Phys.*, vol. 113, no. 17, pp. 17A935-17A935-3, Apr. 2013.
- [23] R. L. Hadimani, Y. Mudryk, T. E. Prost, V. K. Pecharsky, K. A. Gschneidner, and D. C. Jiles, "Growth and characterization of Pt-protected Gd5Si4 thin films," *J. Appl. Phys.*, vol. 115, no. 17, p. 17C113, May 2014.
- [24] R. Hadimani, S. Gupta, S. Harstad, V. Pecharsky, and D. Jiles, "Investigation of room temperature ferromagnetic nanoparticles of Gd5Si4," *IEEE Trans. Magn.*, vol. 51, no. 11, p. 2504104, 2015.
- [25] S. M. Harstad *et al.*, "Gd₅Si₄ -PVDF nanocomposite films and their potential for triboelectric energy harvesting applications," *AIP Adv.*, vol. 9, no. 3, p. 035116, Mar. 2019.
- [26] P. J. Bora *et al.*, "Gadolinium silicide (Gd₅Si₄) nanoparticles for tuneable broad band microwave absorption," *Mater. Res. Express*, vol. 6, no. 5, p. 055053, Feb. 2019.
- [27] S. Harstad, Z. Shivakumar Hunagund, O. Boekelheide, Z. A. Hussein, A. A. El-Gendy, and R. L. Hadimani, "Gd-based Magnetic Nanoparticles for Biomedical Applications," in *Magnetic nanostructured materials : from lab to fab*, Elsevier, 2018, pp. 137–155.
- [28] S. G. Hunagund, S. M. Harstad, A. A. El-Gendy, S. Gupta, V. K. Pecharsky, and R. L. Hadimani, "Investigating phase transition temperatures of size separated gadolinium silicide magnetic nanoparticles," *AIP Adv.*, vol. 8, no. 5, p. 056428, May 2018.
- [29] S. M. Harstad *et al.*, "Enhancement of beta phase in PVDF films embedded with ferromagnetic Gd₅Si₄ nanoparticles for piezoelectric energy harvesting," *AIP Adv.*, vol. 7, p. 056411, 2017.
- [30] Z. Boekelheide, Z. A. Hussein, S. M. Harstad, A. A. El-Gendy, and R. L. Hadimani, "Gd₅ Si₄ Micro- and Nano-Particles for Self-Regulated Magnetic Hyperthermia," *IEEE Trans. Magn.*, vol. 53, no. 11, p. 5400204, Nov. 2017.
- [31] R. L. Hadimani, S. Gupta, S. M. Harstad, V. K. Pecharsky, and D. C. Jiles, "Investigation of Room Temperature Ferromagnetic Nanoparticles of Gd₅Si₄," *IEEE Trans. Magn.*, vol. 51, no. 11, pp. 5–8, 2015.
- [32] V. K. Pecharsky and K. a. Gschneidner Jr., "Gd₅(Si_xGe_{1-x})₄: An Extremum Material,"

- Advanced Materials, vol. 13, no. 9. pp. 683-686, May-2001.
- [33] G. Giovanna do Couto, V. Svitlyk, M. Jafelicci, and Y. Mozharivskyj, "Bulk and highenergy ball-milled Gd₅Si₂Ge₂: Comparative study of magnetic and magnetocaloric properties," *Solid State Sci.*, vol. 13, no. 1, pp. 209–215, 2011.
- [34] P. V. Trevizoli, C. S. Alves, M. A. B. Mendes, A. M. G. Carvalho, and S. Gama, "Powder metallurgy influences on the magnetic properties of Gd_{5.09}Ge_{2.03}Si_{1.88} alloy," *J. Magn. Magn. Mater.*, vol. 320, no. 8, pp. 1582–1585, 2008.