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Entanglement Membrane in Chaotic Many-Body Systems
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In certain analytically tractable quantum chaotic systems, the calculation of out-of-time-order
correlation functions, entanglement entropies after a quench, and other related dynamical observables
reduces to an effective theory of an “entanglement membrane” in spacetime. These tractable systems
involve an average over random local unitaries defining the dynamical evolution. We show here how to
make sense of this membrane in more realistic models, which do not involve an average over random
unitaries. Our approach relies on introducing effective pairing degrees of freedom in spacetime, describing
a pairing of forward and backward Feynman trajectories, inspired by the structure emerging in random
unitary circuits. This viewpoint provides a framework for applying ideas of coarse graining to dynamical
quantities in chaotic systems. We apply the approach to some translationally invariant Floquet spin chains
studied in the literature. We show that a consistent line tension may be defined for the entanglement
membrane and that there are qualitative differences in this tension between generic models and “dual-
unitary” circuits. These results allow scaling pictures for out-of-time-order correlators and for entanglement
to be taken over from random circuits to nonrandom Floquet models. We also provide an efficient

numerical algorithm for determining the entanglement line tension in 1 + 1D.
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I. INTRODUCTION

This paper is about universality in the dynamics of
chaotic many-body systems. One familiar type of univer-
sality is encapsulated in hydrodynamics for conserved
quantities and other slow modes [1,2]. But random circuits
[3-17], a family of tractable many-body systems, suggest
new aspects of universality [6—11,14]. In particular, they
reveal a generic structure associated with an emergent
“membrane” in spacetime [6,18]. The effective statistical
mechanics of this membrane determine the production of
entanglement after a quantum quench, the spreading of
quantum operators, and other aspects of the “scrambling”
[7,8,11,19-34] of quantum information.

One way to motivate this membrane, which is relevant to
the approach we take here, is via the multilayer structure of
the quantum circuit (or the multisheet structure of the path
integral, in continuum language) representing the observ-
ables in question. Algebraically, conventional correlation
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functions, such as an expectation value (O(r)) following a
quench, involve a single copy of the unitary time evolution
operator U(7) and a single copy of its Hermitian conjugate
U’ (t). Formally, we can represent them in terms of matrix
elements of the operator U(¢) ® U*(t). But the quantities
mentioned above (for example, the Nth Rényi entropy,
obtained by tracing the Nth power of the reduced density
matrix) require matrix elements of the multiply “replicated”
operator

UM=U®U"...U®U* (1)

with N > 1 copies of U and N copies of U*. In path integral
language, we require multiple forward and backward
paths [20,26].

The structure arising from this representation is most
easily understood in random unitary circuits, which are
chaotic models built from random unitary gates [6-8,
11,14]. Averaging U") in Eq. (1) over the random unitaries
introduces a degree of freedom o(x, t), at each location in
spacetime, that labels a pairing between the set of forward
replicas and the set of backward replicas, i.e., a pairing of
trajectories [14]. Formally, this pairing is a permutation,
o € Sy, and quantities like the Rényi entropies and the out-
of-time-ordered correlator (OTOC) map to effective parti-
tion functions for o(x, ¢). In this setting, the membrane can
be understood as a domain wall between different values of
the pairing field o(x, 7) [7,11,14].

Published by the American Physical Society
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S(x,t) = min/sgqg(v)dt +S(y,0)
path

(a) (b)

FIG. 1. The membrane picture of entanglement and other
dynamical quantities. (a) Example of a membrane for evaluating
Rényi entropy growth in a 1D quench. Minimizing the membrane
tension gives the entanglement. The tension is a function of local
velocity » = x. (b) Schematic line tension function for a chaotic
system with parity symmetry. £(v) is convex and tangential to |v|
at (:l: Up, UB).

The goal of this work is to show how to make sense of
the pairing field o(x, ) and the membrane in nonrandom
systems. Doing so allows the language of the renormaliza-
tion group to be applied to chaotic dynamics.

The basic quantity characterizing the membrane is its
coarse-grained “line tension” £(v) [18]. This line tension
determines the system’s butterfly velocity or operator
spreading speed and its entanglement growth rate. It can
be thought of loosely as associating an entanglement cost
with a given curve in spacetime (in general, this tension
depends on N). See Fig. 1 for a schematic picture.

We expect that the pairings, and the membrane descrip-
tion, continue to make sense in systems more general and
more realistic than random circuits, for the heuristic reason
described in the next paragraph. In support of this expect-
ation, there is numerical evidence that a consistent mem-
brane tension can be defined in a generic spin chain [18]
and in a dual-unitary circuit [35,36]. There are analytic
computations in random Floquet circuits in the large
Hilbert space dimension (large ¢) limit [11], showing that
the domain wall structure makes sense in that limit. Finally,
there is an analytical derivation of the form of the
membrane tension in holographic systems [34,37], at
leading order in the number of degrees of freedom; this
derivation also begins to make a concrete connection
between the entanglement membrane and the Ryu-
Takayanagi and Hubeny-Rangamani-Takayanagi geomet-
rical pictures for entanglement in AdS space [38—41].
Lattice toy models for the AdS-CFT correspondence, using
random tensor networks, also exhibit domain walls
between permutation degrees of freedom [42,43]. But, at
present, there is no formalism for explaining how the
pairing degrees of freedom emerge when there is no
average over randomness, or how to compute the properties
of the membrane in a generic system without randomness
and away from any large-N-like limit. As a more general
point, random circuits and related stochastic models shed
light on various aspects of chaotic dynamics [6—17], and a
natural question is how to generalize these calculations to

nonrandom systems. Our aim here is to provide a formalism
for making this generalization.

Heuristically, the paired configurations mentioned above
can be thought of as saddle points of the path integral for
the replicated evolution operator (1). This path integral
contains multiple forward and backward paths. In con-
tinuum language, these are weighted by ¢S and e™S,
respectively, where S is the action; in the discrete setting,
e is replaced by a product of matrix elements of local
unitaries. By pairing each forward path with a backward
path, we can cancel the phases in the exponent, so we might
guess that paired configurations predominate. In the cases
of interest to us, however, the boundary conditions force the
pairing to differ in different regions of spacetime. This
boundary condition leads to saddle-point solutions with a
nontrivial membrane structure.

In this work, we show explicitly, for a large class of
systems without conservation laws, how the pairing field
o(x, 1) and the entanglement membrane emerge, making
the above heuristic picture precise. We emphasize that we
do not require either a limit of large local Hilbert space
dimension or any kind of randomness. To demonstrate the
utility of our approach, we compute the entanglement line
tension (for N = 2, the case relevant to the OTOC and to
the second Rényi entropy) for a variety of translationally
invariant Floquet spin-1/2 chains.

Formally, our approach is to work in the replicated
Hilbert space [acted on by Eq. (1)] and to insert, in each
time slice, an exact local resolution of identity. The
insertion includes states |o) associated with pairings, but
also a projector onto the complementary part of the Hilbert
space, which we denote by _L, containing nonpairing states.
Traces of UV), yielding, for example, correlation functions
or Rényi entropies, can then be written as partition
functions for an effective “spin” s(x, ) which can take
the values either s = ¢ (a permutation) or s = L.

Including these nonpairing states allows the structures that
appear in the random circuit to be generalized to models
without any random average. The Haar-averaged random
circuit can be thought of as a special case: There, the
contribution from any spin configuration that includes a L
vanishes after averaging, leaving a spin model for permu-
tations only, and the membrane is a domain wall between
permutations [7,14]. In, say, a translationally invariant
system, the domain wall structure becomes more complex,
with the appearance of the spin value s = L along the
domain wall (in fact, this result is also true in a particular
realization of the random circuit, before we average over the
random unitaries), which leads to a thickened domain wall
with a more complex structure. However, we argue that, in
chaotic systems, the domain wall’s width remains of order 1
in terms of microscopic length scales. Therefore, on large
scales, the membrane is still well defined but with a
nontrivial, renormalized membrane tension function. We
illustrate this situation in Fig. 2.
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FIG.2. Thick membrane (schematic). Except in the special case
of Haar-averaged unitaries, the membrane (a domain wall
between permutations ¢ and ¢’) is thickened by clusters where
the effective spin takes the value “.L.” In the multilayer tensor
network for UN), this value represents the propagation of states
orthogonal to paired states. (In general, the interior of the thick
membrane also contains paired states. For N > 2, these may be
distinct from o or ¢’ [11,14].)

Ourinitial introduction of the pairing field is exact but formal,
because the microscopic weight for a configuration s(x, 7) is, in
general, complicated. To make progress, we first argue that
configurations with large unpaired regions (large regions of _L)
are exponentially suppressed. Then we show how to resum an
infinite number of configurations, or “Feynman diagrams,”
exactly, to give a simpler description of the entanglement
membrane, in terms of a reduced set of parameters.

This description is loosely analogous to the renormal-
ization of the mass of a quasiparticle due to interactions—
here, the L states dress the structure of the membrane,
giving it a larger width (than in the averaged random
circuit, where L states are suppressed) and a modified line
tension. This approach is an application of the renormal-
ization group idea to find the coarse-grained quantities
characterizing scrambling.

Before tackling translation-invariant systems, we ana-
lyze the case of a fixed realization of a random unitary
circuit. This case illustrates the basic mechanism that
makes the approach possible—suppression of L states
by phase cancellation—in a tractable setting. Since the
disorder realization is fixed, we cannot introduce the
pairing degrees of freedom by Haar averaging. Instead,
we apply the new method described here. Working at a
large but finite Hilbert local space dimension, we show that
the membrane remains well defined and is thickened
slightly by occasional appearances of L states. This result
leads to a membrane that inhabits a disordered “potential”
in spacetime. This picture reproduces our previous results
on Kardar-Parisi-Zhang (KPZ) fluctuations in the Rényi
entropy S, between different realizations of the random
circuit [14]. But, previously, these results required the
replica trick, which we are able to dispense with here.

Next, we turn to Floquet dynamics of spin—% chains,
without any kind of randomness. In order to control the cal-
culations, we introduce a systematic expansion in the
maximal temporal extent of connected L clusters in the
effective spin model. A priori, this expansion does not have

a small parameter. However, we conjecture (based on the
tractable case of the random circuit), and give numerical
evidence, that it is a convergent expansion in chaotic
Floquet systems.

Using this observation, we construct an efficient numeri-
cal scheme for computing the membrane line tension £(v)
using the expansion above: We truncate the maximum size
of a connected L cluster (but we do not require that these
clusters are dilute), and we examine convergence as a
function of the order at which we truncate. We first discuss
Floquet models with a local unitary circuit structure, since
these are the simplest case to visualize. However, the circuit
structure is not required: We also apply the method to
completely generic Floquet models, involving Hamiltonian
evolution in continuous time without any circuit structure.

The numerical results show good convergence for a wide
range of chaotic models, including prototypical spin
models for quantum chaotic systems, such as Floquet
Ising models with longitudinal and transverse fields
(kicked-Ising models) [21,44,45].

The line tension £(v) satisfies some general constraints
[18] which provide a highly nontrivial check on our results.
Recall that [ dt€[x(1)] is proportional to the “free energy,”
in the scaling limit, of a membrane whose shape is
parameterized by x(z) (Fig. 1). £(v) is a convex function
of velocity, which is tangential to the line £ = +uv at the
point (+vg, vg), Where vy is the quantum butterfly velocity
(for parity symmetric systems): See the schematic picture in
Fig. 1(b). For the chaotic systems we study, our numerical
approximations to £(v) indeed appear to converge a form
satisfying the constraints above.

We also investigate a special case of the kicked-Ising
model that has maximal entanglement growth [35,36] and
the property of “dual unitarity” which, remarkably, allows a
range of exact computations [36,46—49].

In addition to studying particular models, we discuss the
general continuum theory for the membrane in 1 + 1D. We
argue that the entanglement membrane has special proper-
ties in dual-unitary circuits: Its equation of motion becomes
a wave equation rather than being diffusive as it is in
generic models.

A. Organization of the paper

Section II introduces pairing degrees of freedom in the
multilayer unitary circuit, leading to an effective spin model
(Secs. I A-II C) in which a domain wall structure emerges
(Sec. II D).

We first test our formalism in an analytically tractable
setting, a fixed realization of a random circuit, in Sec. IIL
We show that large clusters of L in the effective spin model
are exponentially suppressed (Sec. III A) and use this result
to obtain Kardar-Parisi-Zhang scaling of the Rényi entropy
(Sec. III B).

We then develop a systematic formalism for resumming
the effect of L clusters for translationally invariant Floquet
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FIG. 3. The structure of the circuit with gates acting on nearest-
neighbor sites. In the Floquet models we study, each gate is
identical. In the random unitary case, each gate is independently
sampled from the Haar ensemble.
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circuits. Section IV describes technical preliminaries, and
Sec. V applies the method to various models from the
literature. Section VI discusses the coarse graining of the
membrane, showing that two distinct universality classes
arise, for a generic circuit and a self-dual circuit.

We discuss the application of this formalism to operator
spreading in Sec. VII and to general Floquet models in
continuous time, without any circuit structure, in Sec. VIII.

Section IX describes some open questions. Appendixes
contain technical details about the spin model and further
numerical results.

II. DEFINING THE SPIN MODEL

For concreteness, let us focus on time evolution with a
unitary circuit made of two-site gates, with the structure in
Fig. 3. (The constructions below generalize straightfor-
wardly to evolution without a circuit structure: We describe
this generalization explicitly in Sec. VIIL.) We use U(t) or
simply U to denote the full many-body unitary represented
by the entire circuit and the lowercase u to stand for a local
two-site gate.

At this point, the local gates u are left arbitrary. In some
sections, we restrict to Floquet models with both space and
time translation invariance, but this restriction is not
necessary. The circuit geometry guarantees that there is
no propagation of information outside a strict light cone
with speed v = 1; the actual butterfly speed in these circuits
is, in general, strictly smaller than 1.

Conventional time-ordered correlation functions such as
TrO(x,,t,)...O(x;,t;) involve a “two-layer” quantum
circuit made of U and U*, in the sense that they can be
obtained from the contraction of U @ U* by inserting
operators in the intermediate time steps (here, U* is the
complex conjugate of U, taken in an arbitrary local basis,
and not the Hermitian conjugate). In contrast, the quantities
of interest to us here require traces of the 2N-layer unitary
circuit

UM = UQU*..U®U" (2)

N copies of U and N copies of U*

where N > 1. For example, the out-of-time-order correla-
tion function

Clx.1) = (O(x. )P (0.0)0(x, ) (0,0))  (3)

requires N =2. The Rényi entanglement entropy for
subsystem A,

5, — —ﬁln il (1), (4)

requires N = n to write the nth power of the time-evolved
reduced density matrix.

Taking N > 1 leads to new structure. One consequence
is that it multiplies the number of conservation laws, since
formally each “copy” of the system undergoes independent
unitary evolution. This fact does not concern us here,
however, since we study models without conservation laws.
The additional structure we examine is instead associated
with pairings between spacetime histories in the “worlds”
associated with different layers [14].

The multilayer circuit has N layers of U and of U* and
can be thought of as describing evolution of a “replicated,”
multicopy system. For a heuristic picture, we may think in
terms of Feynman histories of this replicated system in our
chosen local basis. The amplitude for a given Feynman
history is given by a product of matrix elements of the local
unitaries. Feynman histories that are “paired,” so that the N
histories occurring in the U replicas are pairwise equal to
the N histories occurring in the U* replicas, avoid phase
cancellation [14]. (This pairing can happen in N! different
ways.) We argue that, in quantum chaotic systems, the
observables mentioned above are dominated by Feynman
histories that have a well-defined pairing structure after
coarse graining. We show how a corresponding local
“pairing field” o(x, t) can be defined by coarse graining
over microscopic length and timescales.

A. Introducing the effective spins

To motivate the structures we consider, we first recall
what happens when the local unitaries are averaged over the
Haar ensemble instead of being fixed.

For a given two-site gate u, acting on sites i and i + 1,
the replicated gate u™) is a unitary operator on 2N copies
(N layers of u, N layers of u*) of the two-site Hilbert space,
which has dimension d = ¢>. Its average (which is no
longer unitary) is the operator

U = > We(t o1 d)e7) (o0

7,0€8y

: (5)

where Wg is the unitary Weingarten function [50-52].
Here, 7 and o are elements of the permutation group Sy.
These denote a pairing of the u layers, labeled 1,2, ..., N,
with the u* layers, labeled 1,2,...,N. For example, ¢
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corresponds to pairing 1 with (1), etc. At a given spatial
site, the state |o); is a product of maximally entangled states
between paired copies of the site, and the states above are
for a pair of spatial sites: |oo) = [6); ® |6); 4.

For example, for N = 2, there are two possible permu-
tations: the identity I and the transposition, denoted (12) in
cycle notation. In our local basis, the corresponding states
at a site are

<a1,a_1, ay, a_2|H> = 5“1‘1_15“2%’
<al va_lv 612, a_2|(12)> = 5ala_25u2a_| (6)

(note that we do not normalize these states).

In Ref. [14], we show how, starting with the above
expression, the expression for U") could be reduced to a
lattice magnet, with local interactions, for the permutations
o (the permutations 7 are integrated out in this mapping). At
the end of this mapping, there is a single ¢ spin associated
with each local block in the circuit.

Now let us consider a general circuit with the brickwork
geometry in Fig. 3. The basic idea is to separate out the
pairing (permutation) states |oo) in the multicopy Hilbert
space for a pair of sites from states in the orthogonal
complement of this space.

Regardless of the choice of unitary gate, we are able to
decompose the multilayer unitary as

uN) = PH + 1, (7)

where P is a projection operator onto paired states, which

as discussed below is also equal to ug\;;r and L represents

the projection of u(") to the complement of the space of
paired states. Equation (5) shows that in the Haar-averaged
case the L contributions vanish identically. More generally,
they do not vanish, and their operator norm is not
negligible. However, we argue that the permutation states
dominate in a certain sense and that states in the orthogonal
complement can be taken into account via a systematic
procedure.

The expression for the Haar average of a local unitary in
Eq. (5) can be regarded simply as the projection operator
onto the subspace of permutation states. By the invariance
of the Haar measure under (say) left multiplications,

(N) (N) (N) (8)

Upjaar X Utaar = UHaar

showing that ugzzlr is a projector. The state |oo) satisfies

uN|66) = |66) for any choice of two-site unitary, so after
Haar averaging we also have

Ui |o0) = |oo) 9)

for any permutation . This result shows that the Haar-
averaged object, which is a Hermitian operator on the

replicated space, is equal to Py, the orthogonal projector
onto the subspace spanned by permutation states [53].

To separate out contributions from permutation states for
a general circuit, we insert the resolution of the identity (on
two physical sites)

™M) =P +P, (10)

immediately before each two-site gate in the circuit. Here,
P, is the projector onto the subspace complementary to
that spanned by pairing states. This insertion is shown in
Eq. (11) below as a bar below each gate.

We view the quantity to be computed, such as the purity,
as a partition function which we denote Z. (In the purity
example, the second Rényi entropy is the free energy
associated with this partition function.) After using
Eq. (10), this partition function is a sum of terms with
all possible choices of projection operator inserted below
each gate. Graphically,

where the sum is over all possible assignments of ||, L to
the projection operators, which are represented by hori-
zontal bars. We leave the boundary conditions at the initial
and final times unspecified at this point, since they depend
on the observable to be computed.

Note that the operator P can “absorb” an arbitrary two-
site gate. This property can be seen from the invariance of
the Haar measure. For any two-site unitary u,

wo=r.  (12)

u) x PH = ulM) x ”g\;;r = Upjgar

As a result, the term in the partition function where all the
insertions are P is identical to the expression where all
gates are replaced with Haar-averaged gates. Therefore, the
decomposition in Eq. (11) gives us a well-understood
starting point, which we can go beyond by taking into
account domains of _L insertions. Roughly speaking, this
approach is useful if these domains do not form a connected
cluster “percolating” from the top to the bottom of the
spacetime slab but instead form finite clusters. Their effect
can then be taken into account as a renormalization of the
interactions for the permutation degrees of freedom that are
present in the random circuit.

To make these permutations explicit, we decompose P
using Eq. (5). In the random circuit, it is useful to perform
the sum over the 7 variables [cf. Eq. (5)] explicitly, leaving a
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partition sum solely for the ¢ variables. Algebraically, that
corresponds to splitting P into projection operators P.:

P =>"P, (13)

cESy

which are given by grouping together terms in Eq. (5) with
a given o:

P, = (ZWgu—la; ) ool (14)

Using the properties of the Weingarten function, one can
check that the states appearing in the brackets,

(00)7) =D We(r™o1¢?)r). (15)

form the dual basis of |60), i.e., ((60)*|z7) = b,,, so that
the non-Hermitian operators P, = |(66)*)(c0| are projec-
tors satisfying (see Appendix A 1)

PaPa’ = 566’P0" (16)

Here, we assume that ¢ is generic, to avoid divergences in
the Weingarten function, which can arise for small values of
g when N is sufficiently large (for ¢ = 2, such divergences
can arise for N > 4). This obstacle is not fundamental, as
we could always define a “spin” with a larger local Hilbert
space dimension by grouping sites.

Our resolution of the identity, inserted below each block
in the multilayer circuit, is now refined to

M =3"p,+P,. (17)

oESy

Let us represent the possibilities graphically as
b e b B (D)
Pa PL

Importantly, the blocks on the left, labeled by permutations,
are independent of the choice of local unitary gate, because
P, again “absorbs” any unitary. For any gate u, we have
uM|66) = |60), so

uMp, =P,. (19)

However, the L blocks, which represent the tensor uNp B
depend on the local unitaries defining the dynamics.

We now write Z as a sum over spins s, associated with
each block in the circuit, which take values in Sy U {L}:

o] [eem] Froned
e

Su |

L

Throughout this paper, we use x, ¢ to label the bond
between two lattice sites. The gates are located on half of
the bonds.

Note that L is simply a choice of label for one of the
values that s can take; we could also denote this state by “0”
or anything else. At each location, s runs over N!+ 1
different values.

The weight of a spin configuration {s} in this partition
sum is given by contracting the network. In general, this
weight is not simply a product of local terms. However, we
argue that, for the boundary conditions of interest and
for generic models, there is an effective notion of locality.
We first describe some basic properties of the weights
(Secs. II B and II C) and then specify to the case of interest,
where the boundary conditions induce a domain wall
structure in the spin configuration (Sec. II D).

S, t+2

Sz+2,t

Sx—2t

=%
{s}

Sz t—2

B. General properties of the spin model

First, consider the subpartition function without any P |
insertions (i.e., with s# 1 everywhere), which we
denote Z; .

Zy, 1s a statistical model whose “spins” ¢ are permu-
tations [14]. The spins have local three-body interactions
on “down-pointing triangles” (and no interactions on up-
pointing triangles). To be specific, each down-pointing
triangle such as

(1)

From Eq. (14), the interaction triangle is (see Appendix A 1)

Jop.0i30,) =) (opocler)We(r™'o,i 7). (23)

T

Equivalently, the triangle is the coefficient in the expansion
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Op Oc
<0b Jc‘ P”(N) = Z ;; <Ja 0a| ) (24)

0, ESN Oa

where the two arguments in the bras refer to the pair of
spatial states.

This spin model is described in Ref. [14] for the random
circuit. In that context, the spins ¢ arise from the Haar
average over the physical random unitary in Eq. (5). The
three-body interaction appears after integrating out the “z”
spins. Here, the sum over the 7 spins appeared at the state
level in defining the projection operator in Eq. (14).

The simplest case is N =2 [7]. There are then two
possible permutations, I and (12), which we denote + and
—, respectively. The weights are symmetric under exchange
of 4+ and — and under spatial reflection. They are

i _, HE _, JE _
—~* =9~ -

with

K (25)

)

q

K=——, 26

which follows from Eq. (14) with the explicit expression

P (4 +]
1

(14 0 1= -+ @)

and symmetrically for P_.

Note the vanishing of the first weight, which amounts to
a hard constraint on the spin configurations. The spin
configuration {s} is, in fact, highly constrained for any N:
The underlying unitarity means that J vanishes for many
configurations of the triangle. In other words, many terms
in the sum over s € Sy defining Z, are zero (see Ref. [17]
and Appendix A 2 for a further simplification). For exam-
ple, as a generalization of the first equality in Eq. (25)

above,
AN
b
= :60(“017- (28)

This expression enforces a light-cone structure. For exam-
ple, for the purity calculation which we discuss below in
Sec. II D, the boundary spins on the top are s,, =1 for
x <0and s,, = (12) for x > 0. This result means that the
spin configuration is nontrivial only within a backward
light cone emanating from the entanglement cut at the
top boundary [i.e., we must have sy_,_,,sy., =1 and
St i<t = (12)].

This light-cone structure is preserved when we include
configurations with s = _L. If the two spins at the top of a
triangle are the same permutation o, the lower spin cannot

be 1, because by definition the projector onto L is
orthogonal to |6;,0,):

2, (29)
So again in the purity example above L can be inserted
only in the backward light cone emanating from the
entanglement cut.

Let us discuss the locality of the spin interactions. We see
that in the absence of L the Boltzmann weight factorizes
into three-body terms representing interactions between
three adjacent spins. Once we have large clusters of L, this
statement is no longer true. However, the weight does
factorize into a product of separate weights for each cluster
of L (together with the local weights mentioned above):
There is no interaction between disconnected clusters of _L.
This result holds because surrounding a cluster of L with
permutation states dictates a definite way of contracting up
the _L blocks, yielding a ¢ number. (We give some explicit
formulas below.) Therefore, if the partition function is
dominated by configurations in which clusters of _L have a
finite typical size, locality is regained after coarse graining
beyond this scale.

C. Symmetry of the spin model

Finally, we note that the model we define has a global
symmetry, with the symmetry group

GN = (SN X SN) X Zz. (30)

This symmetry is a consequence of the fact that Eq. (2)
involves multiple copies of the same unitary [14,43]. The
importance of Sy X Sy symmetry has been emphasized in
random tensor networks [43], where permutations labeling
pairings also appear [42].

Graphically, the symmetry arises from the possibility of
permuting the layers of the original unitary circuit without
changing Eq. (2). We can permute the U layers among
themselves with a permutation g; € Sy, and we can also
separately permute the U* layers among themselves
with another permutation gg. This permutation gives the
Sy x Sy subgroup of G, which acts on the spins via

6= g16gx, 1 - 1. (31)
The Z, subgroup of Gy arises from the fact that the
multilayer circuit is invariant if we exchange all the U
layers with all the U* layers and also complex conjugate the
circuit. The resulting symmetry acts by

c— o, 1 - 1. (32)
For both types of operation, the spin state L is invariant,

because these exchanges of layers preserve the || and L
subspaces of the two-site Hilbert space.
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The simplest case is N =2, when Gy reduces to an
Ising-like Z, symmetry relating + =1 and — = (12). In
this case, the symmetry in Eq. (32) becomes trivial,
since ¢ = o7 .

In the subpartition function Z;,, the weights J are
invariant under G, because the Weingarten function and
the overlaps in Eq. (14) depend only on the cycle structure
of products of the form or=!. This cycle structure is
invariant under the above operations.

The Gy symmetry is a symmetry of the bulk interactions
for the spin model. It is, however, strongly broken by the
boundary conditions we require.

D. Domain wall structure

As auseful illustrative example, let us consider the purity
of aregion A, e52) = tr(p3). We take A be a semi-infinite
half-system to the left of the origin in an infinite chain. This
quantity requires N = 2. If we take the physical system to
start off in the state |y), and if we denote the replicated state
in the four-copy Hilbert space by |y(?)), then

exp(=S,) = (... ++——...|[UD(0)|y?), (33)

where we label the two permutation states at a site, I and
(12), by 4 and —, respectively. For simplicity, we take the
initial state to be a product state: |y) =Q;, |e,).

Again, let us first consider the subpartition function Z |,
which is equivalent to that for Haar-random unitaries
treated in Ref. [7]. The spins have fixed boundary con-
ditions at the top, enforcing a domain wall between + and
—, and free boundary conditions at the bottom, because
(4+]e@) = (=|e®) =1. As a result of the fact that
J(+,+;-)=J(-,—+) =0 [the first diagram in
Eq. (25)], the only nonvanishing configurations in Z;
contain a single directed domain wall emanating from the
entanglement cut, separating an infinite domain of 4 on the
left and an infinite domain of — on the right. This result is
illustrated in Fig. 4(top). Formally,

Zop =Y K'=2K", (34)
directed
paths

where K, defined in Eq. (20), is the weight for a single step
in the directed walk.

Now we consider including the terms in the partition
function with s = _L, in order to address models without a
Haar average.

We showed above that the spins outside the backward
light cone are equal and fixed by the final-time boundary
condition (a consequence of causality) and that L can
appear only within the backward light cone. Hence, we can
define a “thick” domain wall separating the connected
infinite domain of + on the left from the connected infinite
domain of — on the right. In principle, this thick domain

(b)

FIG. 4. Domain walls in (a) Z,, (or in the Haar-averaged
circuit) and (b) Z, taking into account _L states. In (a), the width of
the domain wall is 1. The width of the domain wall in (b) is
argued to be of order 1.

wall could fill the entire backward light cone: For example,
the L blocks could form a large percolating cluster of O(#?)
size. If such configurations are dominant, then the repre-
sentation of the partition function in Eq. (20) is not useful.

However, we argue that this filling does not happen for a
typical chaotic choice of the circuit U because of a phase
cancellation effect which suppresses large L clusters.
Instead, the typical thickness of the domain wall remains
of order 1 in t as t — oo, so that in a typical configuration
the domain wall has the schematic structure shown in
Fig. 4. The domain wall has a nontrivial structure made up
of clusters that can contain _L, +, and —; these clusters are
separated by the places in spacetime where the domain wall
becomes “thin,” which we take to mean ‘“of minimal
width.” After coarse graining, we recover a membrane
picture similar to that in the random circuit, and we can
define a renormalized line tension £(v) for this membrane.

We give analytical and numerical evidence for this
picture in Secs. III and IV. In some cases, there may be
a small parameter which makes the analytical calculation of
renormalized line tension simple. We argue in Sec. III that
such a simplification applies for typical choices of u at large
local Hilbert space dimension g. But, even if there is no
small parameter, the renormalized line tension can be well
defined. We see below how to extract it from simulations.

We now rewrite the partition function of the domain wall
in a way which is useful when the width of the thick domain
wall does not grow with z. [54] As noted above, we then
expect that a typical configuration has order ¢ locations
where the domain wall is thin. We define a directed path
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that is made of steps connecting these locations: i.e., steps
of length ¢ > 1 connecting the “pinch points” in Fig. 4(b).
The definition of one of these “irreducible steps” is that
domain wall is thin at the beginning and end of an
irreducible step but nowhere in between.

The weight for a given domain wall configuration can
then be written as a product of weights W(Ax, At) for each
step of extent At in the time direction and Ax in the space
direction. Factorization into such a product follows from
the locality property mentioned in the previous subsection
[in the paragraph following Eq. (29)].

To simplify the formulas, we restrict for now to systems
with space and time translation symmetries such that all the
local gates are identical, but the generalization to other
cases is direct (Sec. III).

Define a partition function Z(x,y;?) with a modified
bottom boundary condition, such that there is a domain
wall between + and — at position x at the top boundary and
at y at the bottom boundary. This condition can be enforced
using the dual states |(£+)*) defined in Eq. (15):

Z(x,y;t) = (oo 4+ — = JUD(0)]...(+H)*(==)*...)
(35)

[x labels bonds of the lattice as in Eq. (20)]. In a trans-
lationally invariant system, the domain wall connecting
(x,7) and (y,0) [cf. the schematic picture in Fig. 1(a)]
forms a path that is straight on scales of order ¢ > 1, with
coarse-grained velocity v = (x — y)/t. The free energy of
the domain wall is proportional to the line tension £(v) for
a path with this velocity: At leading order in ¢,

—InZ(x, ;1) ~ 5,4E(V)1, V= (36)

This asymptotic scaling is one way to define &(v).
However, it is more efficient to extract £(v) directly from
W, as we discuss.

Let the number of time steps where the domain wall is
thin be M + 1, and let their spacetime coordinates be

(7.0) (xrs 1), ooos (Epg—ts ) (2, 0). (37)
The steps are of time duration and spatial extent

Ati:ti_ti—l Z 1, (38)

Axi - x,- - x,-_l S Z (39)

For our choice of lattice geometry, Ax + At is necessarily
even. Defining the weight for an irreducible step to be
W(Ax, At), the total partition function is given by summing
over paths of all possible lengths M:

M

Z(x.yit) = [Tw(ax.an).  (40)

M>1 {ad{ag i=1
Axj=x—y
Atj=t

Because of translational invariance, Z depends on only one
spatial argument, so we also write Z(x, ) = Z(x, 0;1).
The weight for a step of duration 1 is

W(£1,1) = K. (41)

The simplest case is for Z,, when these are the only steps
allowed:

Wo, (x.t> 1) =0. (42)

The L insertion produces nonzero values for W(x, ¢ > 1),
which may be either positive or negative. The presence of
negative steps is not necessarily an obstacle to defining a
coarse-grained line tension. If positive steps predominate,
then these negative weights disappear under coarse grain-
ing. However, we suggest that in some fine-tuned cases
negative weights are important (Sec. VI).

The rewriting in Eq. (40) is exact for the boundary
conditions we choose above, but this rewriting is useful
only if two conditions are satisfied. First, that the irreduc-
ible step weights decay sufficiently fast for large Az: At a
minimum, we require that the ratio W (x, t)/Z(x, t) tends to
zero at large 7. Second, we require that the original partition
function of interest, where the lower boundary condition is
free, is simply related to Z(x,y;1).

To be more precise, we should distinguish between
different kinds of usefulness. First, we conjecture that
the above is useful for generic chaotic models for deriving
a coarse-grained picture that is in the right universality
class. Second, we argue that, for some strongly chaotic
models, the above representation is also practically useful
for numerical determination of quantities like the line
tension £(v) and the butterfly speed vg. Third, in a more
restricted class of models with a large parameter, the above
can be used to obtain these quantities analytically.

We describe the numerical algorithm that follows nat-
urally from the above representation in Sec. IV. Its starting
point is to use the recursive form of Eq. (40) to compute
W(x,1):

W 1) =Z(x.0) =Y > Wx—y.t=1)Z(y.1'). (43)

r<t y

This expression follows simply from splitting the partition
function Z(x, t) for the directed path into the term W (x, ¢)
from the single-step path with M =1 and from paths
with M > 1 whose final irreducible step has weight
W(x —y,t—1t"). Since Z(x,t) can be computed numeri-
cally by taking appropriate traces of U(7)™), we can
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compute the irreducible step weights W(x,¢) by starting
with the weight for r =1 in Eq. (41) and employing
Eq. (43) recursively to get the irreducible weights for
larger #. The weights can then be used to extract £(v)
and vg.

In practice, we are limited to ¢ < f,,,, for some f,,, SO
the usefulness of the algorithm depends on how rapidly the
weights W get smaller at larger . We apply the algorithm to
some nonrandom but chaotic Floquet models in Sec. V,
with encouraging results. The results support the universal
picture described in this section, with a domain wall that is
not microscopically thin but has an order of 1 width.

The approach can be modified in many ways which do
not change the basic structure but which might improve the
practical usefulness of the algorithm for a given choice of
model. For example, we can insert projection operators on
single sites instead of on double sites, yielding a slightly
modified spin model. This modification has the advantage
that the weight of a step of duration A7 =1 is no longer
independent of the gate u# [which it is in the present setup;
see Eq. (41)]. For some choices of u, this modification may
give better approximations for small 7,,, (see Sec. VIII).
Here we stick with the geometry above, since it is
convenient for making contact with the random circuit
case and is sufficient to illustrate the basic ideas.

E. Weights for smallest nontrivial L cluster

In some limits, it is a good approximation to consider only
the smallest possible _L cluster, namely, a single isolated L
block (Sec. III). We can easily write down the weights for
such a minimal cluster. They depend on the singular value
structure of the local unitary gate u where L is inserted.

Recall that

& _ JE _, )
- o

as a consequence of unitarity [Eq. (29)]. Therefore, there
are four possible local configurations for one isolated L, up
to + <> — symmetry (assuming the row above contains a
single domain wall):

L1 b [ | [ JL ]
e e A e e e

@ ©) ® @

(45)

In fact, only three of these are independent, as @ and @ are
equal for any u, even if it is not reflection symmetric.
Explicit formulas are given below in Eq. (49).

For the translationally invariant case, the first three
diagrams above give the irreducible domain wall weights
W (x, 1) defined in the previous subsection for = 2:

w(0,2) =0, W(+2,2) =@. (46)
By contrast, @ does not contribute to W(x, 2), as it does not
yield a thin domain wall at the bottom. This diagram
appears only in configurations contributing to W(x, > 2).
In the limit discussed in Sec. III, namely, typical unitaries at
large ¢, only @ is required at leading nontrivial order
in 1/q.

In order to express the values of ©-®, recall that we can
regard the gate u as a quantum state for four g-state spins
(“vectorization” of the operator). In tensor network lan-
guage, this statement simply means that we regard all four
of the legs sticking out of u as physical spin indices. Let us
label these legs A, B, C, and D as

A B
u= I::::l (47)
c D

Regarding u as a state makes it clear that (after normalizing
this state) we can define the entanglement between any
subset of {A, B, C,D} and the complement following the
usual prescription for states. These are referred to as
operator entanglements [55-59] and have been studied
in the context of quantifying the “entangling power” of
unitary gates [55,60]. Unitarity implies that {A, B} is
maximally entangled with {C, D}, but other entanglements
depend on the gate u. For example, if u is close to the
identity, then {A, C} is weakly entangled with {B,D}.
For N = 2, we require the purities P = e™52:

PH = PAc, Px = PAD- (48)
All others are equivalent (e.g., Pgp = Pc) or independent
of u (e.g., P = q~' and Py = ¢~2). In terms of these, the
weights in Eq. (45) are (recall ® = @)

4 \2
P 1 2K 2K>
®= P+ —P, - —22), (49
<q4—1> < g qg q (49)

3 2
q 1 2K 2K>
®=— P+ —=Po— =22, (50
<q4—1) < U g ¢ (50)

3 2
g 1 2K 2K>
@ = PP =), (51

<q4—1>< N PR 51

See Appendix A 4 for computations.

We now describe an analytically tractable case where it is
sufficient to consider dilute L insertions of the above form
(Sec. III). Then, in Sec. IV, we consider Floquet models for
spin-1/2, where it is important to allow for larger clusters
of L.
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III. A TRACTABLE LIMIT: LARGE LOCAL
HILBERT SPACE DIMENSION

We now apply the above formalism to a typical reali-
zation of a random unitary circuit at large g. These models
are a useful test ground for our approach, because we can
quantify the suppression of large clusters of L blocks
analytically. This section provides analytical support for the
thin domain wall conjecture: Readers keen to see visual
evidence for the success of the method can skip ahead to the
numerics in Sec. V.

It is important here to distinguish between the Haar
average of e~ or of U(¢)? and a typical individual
realization drawn from the random circuit ensemble. The
latter represents a specific chaotic time evolution, with
much more structure than is captured by simply averaging
U(t)® over the ensemble.

If we average U (t)<2), the weight of any configuration
with a L is set to zero, leading to Z;,. But in a given
realization of the circuit this result does not apply, and the
1 insertions have an important effect. For example, they
modify the growth rate of averaged entropy S,, because this
quantity is not equal to the simpler ‘“annealed aver-
S

age” —Ine”

Consider a particular spin configuration in the partition
sum Z [Eq. (20)]. As noted in Sec. II B, each cluster of L
blocks in the configuration contributes separately to the
Boltzmann weight of the spin configuration. We denote
the weight of a given cluster C by Q. It depends on the
geometry of the cluster, the spins & on its boundary, and the
local unitaries in the spacetime region inside the cluster.

If we average Q. over the random unitaries inside the
cluster region, then we obtain Q- = 0 because of cancel-
lation between positive and negative values. This vanishing
is just the statement that, after Haar averaging, Z becomes
equal to Z;,, where no L blocks appear.

However, we can ask what the magnitude of Q. is for a
typical realization of the circuit. We can quantify this

magnitude by computing Q2. which is not zero. We show
below that (at least for large ¢, where the calculation is

controlled) ch is exponentially suppressed in the temporal
duration of the cluster, with the exponential suppression
getting stronger and stronger as ¢ is increased.
Therefore, the Haar circuit at large ¢ is a setting where
we can put the phase cancellation conjecture on a quanti-
tative footing. We do this next (Sec. IIl A). The present
approach to the random circuit also allows us to compute
statistical fluctuations in the second Rényi entropy due to
circuit randomness in Sec. III B. We recover the result that
these are in the KPZ or directed polymer in a random
medium (DPRM) universality class. Previously, this result
required the replica trick [14]. Here, however, we can make
the mapping to a directed polymer at the level of an
individual circuit, so the correspondence with known

classical problems can be made without the use of the
replica trick (Sec. III B).

A. Exponential suppression of large L clusters

Let us consider an isolated cluster C of L blocks. For
simplicity, we consider a cluster with trivial topology like
that shown in Fig. 5(a), but a general cluster with holes
inside can be treated similarly. Equation (44) shows that the
weight of the spin configuration vanishes if any L block
has two spins of the same sign (++ or ——) above it, so the
AL cluster must lie on a domain wall between + and —. We

wish to compute the mean square weight of the cluster, Q2.

Haar averaging maps Q2 to a partition sum for spins
o € S4. The permutations are now in §4 rather than S,,
because squaring the diagram doubles the number of layers
in the replicated circuit. The spins outside the cluster are
fixed, so simply provide a boundary condition for those
inside.

This partition sum can be computed relatively simply
when ¢ is large. We summarize the main features here and
give a detailed analysis in Appendix A 3. The domain wall
labeling convention we use is described in Ref. [14]: A
domain wall with a domain of o, to its left, and a domain of
o to its right, is labeled by the permutation o7 !o.

If we Haar average the circuit «(*), we obtain spins ¢ €
S, with the interactions J specified in Eq. (14). Here, the
interactions are modified, because we fix the configurations
of spins s € {+, —, L} before squaring and averaging. This
fixing involves insertions of P,, P_, and P, that modify
the triangle weights discussed in Sec. II B.

In the doubled problem, there is a doubled (12)(34)
domain wall incoming at the entanglement cut, as illus-
trated in Fig. 5. In a + domain, the S, spins are fixed to [,
and in a — domain, they are fixed to (12)(34). Inside the L
cluster, the spins must be summed over. However, they are
very restricted. Because of the modified triangle weights,
spin values in the subgroup S, x S, C S, are suppressed in
the interior of the cluster: A triangle whose vertices are all
equal and take one of the values I, (12), (34), or (12)(34)
has weight zero. In fact, we have

« <

+ {1y - | (12)(34)
(a) (b)
FIG. 5. (a) A domain wall configuration with a L cluster. The

weight is nonzero only when the domain wall passes through the
L cluster. (b) The average of the square of (a) in terms of the S,
spin model. The spin states outside the cluster are fixed.
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a g
\ L/ 1 for o ¢ Sy xSa,
{0 for o0 € Sy x S, (52)

g

where the symbol on the left denotes the weight for a
triangle whose lower spin is associated with a L block.

In the large ¢ limit, the leading term involves the
incoming doubled (12)(34) domain wall splitting at the
top of the cluster into a pair of doubled domain walls,
according to the allowed multiplication (cf. Sec. VIB in
Ref. [14]):

(12)(34) = (14)(23) x (24)(13). (53)
One doubled domain wall, say, (14)(23), travels along the
left boundary of the cluster, and the other along the right.
[Since (14)(23) commutes with (24)(13), either of the two
doubled domain walls can be on the left.] In the interior of
the cluster, the spin value is then (14)(23) [or (24)(13)].
This value does not incur any “bulk” cost, because a
triangle all of whose vertices are equal to (14)(23) has
weight unity by Eq. (52).

The two doubled domain walls along the two boundaries
of the cluster incur a weight ¢~* per time step. [61]
Consequently, the mean squared cluster weight is of the
order of Q2 ~ g~#euse or even smaller, where 7,y 1S the
time duration of the cluster. (We do not include the cost of
the “thin” domain wall sections above and below the
cluster.) This result indicates a typical magnitude

Q ~ q_Ztclusler (54)

for a L cluster of a given size in a typical large ¢ circuit.
Note that this weight is much smaller than the weight
~qg~Twser of a section of thin domain wall of the same time
duration. Similar considerations apply to clusters with more
complex topology, i.e., with holes inside.

Therefore, any configuration with a L cluster lasting for
fauster StEPS has a weight that is suppressed by at least
g 'ewser compared to the leading configurations in the same
spacetime region.

It should be noted that L clusters are suppressed by a
cost in the exponent that scales not with their area in
spacetime but instead with the length of their boundary.
This scaling is reminiscent of a domain wall between two
different spin states in the ordered phase of the Potts model
with O > 2 states, where bubbles of other spin states can
appear on the domain wall [62]. Here, this scaling is a
necessary consequence of unitarity. As a result of it, the
effect of boundary conditions can be subtle. For example, a
boundary condition at ¢ = O that favors L may be able to
induce a large domain of 1, because a boundary free
energy of order ¢ can compensate the additional domain
wall cost of order ¢ in the bulk. This compensation does not
occur for the quantities considered here, however. Indeed,

for entanglement growth starting from a product state, the
t = 0 boundary condition favors + over _L.

The results above strongly support the conjectures of the
previous section. For example, there we define weights W
for “steps” of variable temporal duration that connect
locations where a domain wall between + and — is thin.
We conjecture that the contribution of long steps to the
partition function is suppressed. The calculation above
confirms this conjecture explicitly for a typical circuit
realization at large g. (A realization of a random circuit is
not translation invariant, but W generalizes directly to this
case.) We find that the contribution of long steps to the line
tension is suppressed exponentially (~g~2') in the step
duration Atr. Note that, according to our definition in
Sec. IID, a step of duration Af> 1 does not need to
include O(Ar)L blocks: For example, we can have a step
with a single L block at the top, which allows the domain
wall to branch into three domain walls between + and —,
which merge again at the bottom of the step. Such
configurations are also exponentially suppressed, simply
because they contain extra domain walls, each contributing
an O(g=") factor to the cost [14].

Our results in Sec. V for translation-invariant Floquet
spin-1/2 circuits are also compatible with exponential
suppression of large steps (see Appendix B 5).

The results in this section also mean that, at large g, we
can obtain the nontrivial fluctuations of the entanglement
entropy in a random circuit by considering only single-_L
clusters. We discuss this situation next, before moving on to
deterministic models.

B. KPZ and DPRM scaling in the random circuit

Recall that e=52 = Z with the appropriate (free) lower
boundary condition. Averaging over Haar-random gates
gives Z = Z,, (Sec. II). However, the averaged Rényi
entanglement entropy S, cannot be obtained from — log(Z)
because of fluctuations.

Let us first recall the replica approach used previously. It
involves computing the replicated partition function Z* and
extracting quantities like S, from the k — 0 limit. At large
q, there is a simple picture for the replicated partition

function Z. It describes k domain walls that interact via a
mutual attraction. In the microscopic S,; spin model, the
attraction is due to an additional local spin configuration
that is possible when two domain walls come into contact
with each other [14].

This description can be identified with the replica
description of a well-known classical problem, the directed
polymer in a random medium [63,64]. In that context, the
free energy of the polymer can be calculated by replicating
the system k times and integrating out the disorder. For an
appropriate choice of lattice model, the resulting k poly-
mers have exactly the same mutually attractive interactions
as the domain walls here. Therefore, we indirectly map the
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FIG. 6. Domain walls on a tilted square lattice. Left: In the
replica approach, two domain walls have an attractive interaction
when they both visit two sides of a plaquette (starred). Right: This
replica treatment describes a single domain wall subject to a
random potential on the vertical bonds. The domain wall in the
figure is affected by the potentials on the two dashed bonds.

entanglement to the free energy of a single domain wall in a
random potential that modifies the weights of steps. This
mapping leads to KPZ scaling [63,64] for the fluctuations
of the entanglement.

In the present approach, we consider a single domain
wall, without replicas. However, to go beyond Z;,, we
must “dress” the domain wall with insertions of L. We
show above that clusters of L are exponentially suppressed
in their size. At large ¢, it suffices to consider only dilute,
isolated | clusters made up of a single block. Furthermore,
at large ¢, the local configuration labeled @ in Eq. (45)
dominates over the other configurations in Eq. (45) (see
Appendix A 5).

By Eq. (44), these L insertions are restricted to lie on the
domain wall. In the notation of Sec. II D, we have a nonzero
weight

W(0,2;u) (55)

for a step with Ax = 0 and A¢ = 2. The notation indicates
that this weight depends on the local gate u, unlike the
deterministic weights W(%1,1). Since all the u’s are
independent, the weight yields an uncorrelated random
potential for our “polymer” in spacetime [65]. In an
equivalent stochastic differential equation representation
for S,(x, t), which is the KPZ equation, W(0,2; u) deter-
mines spatiotemporal noise.

The above picture, with random weights assigned to
vertical steps, agrees with the replica approach: We just
need to check the strength of the noise matches.

The average W(0, 2; u) vanishes. Its variance is given by
the squared average of ® in Eq. (45) (see Appendix A 5):

-
T -2 (56)
q

where K = q/(q* + 1) is defined in Eq. (26). This result
matches the result for the variance in Ref. [14].

We therefore confirm that a thin domain wall with dilute
L insertions reproduces the result of the replica calculation.

IV. FLOQUET SPIN-1/2 CHAINS:
PRELIMINARIES

We now apply the formalism of Sec. II to models that are
invariant under both space and time translations. In the
brickwork circuit geometry, such a model is defined by a
single two-site unitary u.

In Sec. IID, we define the “thick” domain wall that
appears in the calculation of Z(x, ). This definition reduces
this partition function to one for a directed path with
irreducible step weights W(Ax, Ar) that take into account
successively larger clusters of L. The line tension of this
path can be extracted easily from the weights W.

In Sec. V, we present numerical data for several models
using this scheme. In preparation for this presentation, we
next describe how to obtain systematic approximations to
E(w) =&, (v) and the butterfly velocity vg from the
weights W(Ax, At) (see Sec. IVA).

The numerical method for obtaining the weights W
themselves is described in Appendix B 1. We use exact
diagonalization, which allows us to treat Af up to #,,,x = 8.
Together with the analytical results below, this formalism
yields a straightforward algorithm which can be applied to
any circuit. Section VIII gives an extension to dynamics
that are not of circuit form.

A. Extracting £(v) from W

Recall that the line tension function is encoded in the
asymptotics of the partition function Z(x,r) defined in
Eq. (40):

Z(x,t) ~ exp[—seqE(v)1], v =x/t. (57)

We use generating functions to determine £(v). Define
generating functions for the partition function Z and for the
irreducible weights W:

L(s.b) = Z(x.1)e" D, (58)
o(s.b) =D W(x.1)e™D". (59)

(The variable s in this section should not be confused with
the spin variables elsewhere in the paper.) We can relate
these generating functions using Eq. (40), which yields a
geometric sum for {:

g(s’b) = 1 i)(s’ b)

T ons b (60)

By truncating the sum in Eq. (59) at the order of b'mx,
we obtain a polynomial approximation to @(s,b). This
approximation is physically motivated: It amounts to
setting a maximum step length 7,,, in the directed walk
of Eq. (40). We expect this approximation to improve
systematically with 7,,,, for chaotic models.
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We then need the prescription for obtaining the asymp-
totics of Z, or, in other words, the line tension £(v), from
the numerically accessible quantity w(s, b), which can be
done with the pole method. For a given s, let by(s) be the
smallest root (in absolute value) of the denominator
(s, b) — 1 in Eq. (60). Then, the desired relation is

E(v) = Sim?x[ln lbo(s)| + vs]. (61)
eq

This relation is explained in Appendix C. The root b,
appearing here has a physical meaning (although we do not
need it here): If we write

Seql'(s) = In|by(s)

, (62)

then s.,I"(s), which is related to s.,&(v) by a Legendre
transformation, Eq. (61), is the Rényi entropy growth rate
in a state with 05/0x = s [18].

As an example, consider the lowest-order approximation
where we truncate W at f,,, = 1, corresponding to the
partition function without any _L blocks. We then need only

W(x.0)=0,  W(£l,1) =K. (63)

At this order, (s, b) = 2Kb cosh s, giving the root

1

b = 64
o(s) 2K cosh s (64)

The quantity Inbgy(s) + vs in Eq. (61) is maximized by
s = tanh~! ». Plugging this result in gives
v 1—=v 1+v 1+

e
Seq€(v) =InK~! + 5 In 7+t In 5 (65)

This equation is indeed the correct result for Z,, [14,18]
(and also the leading-order result in the random circuit at
large q).

In the numerical algorithm, we compute W(x,?) up to
! = I'hax and neglect W for larger times. Given a constant s,
we then solve numerically for the smallest zero by(s) of

1= > W(x.1)e™by = 0. (66)

XIS lmax

If we define [66]

Zx,tﬁtmaxw(x’ t)e**by(s)" x x

. = Re )
Us Y ersn, W(x, 1)esby(s) x ¢

(67)

then &£(v;) is given by sz [In |by(s)| + vys]. [We see this
result by setting the s derivative of the argument in Eq. (61)
to zero and extracting the derivative of In |by(s)| from
Eq. (66).] We iterate over s to construct the entire curve.

This approach also allows us to extract the butterfly
speed wvp, as the point [67] where &(vg) = vg. The
“entanglement speed” vy for the second Rényi entropy,
for a quench from the product state, is simply £(0).

It is worth noting that this generating function approach
sums up an infinite number of domain wall configurations
directly in the thermodynamic limit, eliminating a signifi-
cant source of finite-¢ effects. As an illustration, if (hypo-
thetically) steps of size greater than 7,,,, have zero weight,
the present approach gives the exact result for £(v) already
at time 7,,,,,. In reality, the weights are not zero for large ¢,
but the analytical results in Sec. III A suggest that the
convergence in t,,, is typically exponential.

By contrast, attempting to directly extract the exponen-
tial decay rate of Z(vt, t) by a fit for 7 < 1,,,,, is subject to
finite-¢ effects that are generically only polynomially small
in ., (as one can see in the case where the domain wall is
a simple random walk). Therefore, understanding the
domain wall structure improves the computation of the
line tension.

Reference [18] extracts the line tension associated with
the von Neumann entropy for a chaotic Ising model directly
from the operator entanglement of U(7). That study indeed
notes larger finite-7 effects than those found here. However,
we do not address the von Neumann entropy (as opposed to
the higher Rényi entropies) here.

B. General parameterization

In our discussion of the numerical results, it is sometimes
useful to use the following parameterization of the two-site
gate u, which is an arbitrary SU(4) matrix [36,47,70,71]:

(68)

where

u; = exp (—i Z h{(,i)(;“), (69)

a=x.y,z

Ugym = EXP <—i Z J 0% ® 0”’). (70)

a=x.y.z

The u; scramble the individual sites, and the two-site
unitary ug,, entangles the two sites.

We mostly restrict to the reflection-symmetric case
such that u; = u, and u3 = uy. Additionally, Z(x,1) is
unchanged by the transformation u — (v ® v)~'u(v ® v),
where v is any single site unitary, which amounts to a trivial
redefinition of the circuit, and one may check that the
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conjugate operators v and v~! all cancel out in the weights
in the partition function. Exploiting this symmetry, we
can take

h =h fori=1,234, (71)

so that the general symmetric gate is parameterized only by
the two vectors h and J.

V. APPLICATION TO FLOQUET CIRCUITS

We are finally ready to apply the numerical scheme in
Sec. IVA to a variety of Floquet circuit models, described
in the following subsections. In Sec. VIII, we show that the
restriction to circuits is not necessary. But circuits are
especially convenient for numerics, since they have a strict
light-cone structure (propagation of information outside the
light cone is not only exponentially suppressed, as in
generic spin chains [19], but exactly zero). The space of
circuit models is also already very rich.

For each model we study, we show the sequence of
approximations to £(v), indexed by t =1, ..., ., With
fmax = 8; see, for example, Fig. 7. These successive
approximations take weights W for longer and longer steps
into account.

The curve for t = 1 (in red) is independent of the gate
defining the circuit: This lowest approximation matches the
result of the random average computed in Eq. (65). It can be
thought of as a baseline showing how far the Rényi entropy
growth in a particular circuit deviates from the random
average.

Our algorithm works if the curve converges sufficiently
rapidly to the actual line tension function. In addition to
showing the bare plots, we perform several other checks of
convergence. In Sec. V C, we directly examine the decay of
W(x,t) and W(x,t)/Z(x,t) at large 7. The assumption on
the structure of the domain wall implies that the latter
should be negligible at large .

Additionally, we check that the line tension function
E(v) satisfies several constraints. It is positive, convex,
greater than or equal to |v|, and tangent to this line only at
vé/ R To visualize this check, we plot the boundary curve
& = |v| with dotted lines. We also mark an estimate of vp
from an independent numerical computation of the OTOC
(the protocol is described in Appendix B 3). We show this
estimate as a pair of black dots.

Convergence to a form consistent with these constraints
is a nontrivial test, because they are not built into the
formulas for finite 7,,, (indeed, we see that they can be
disobeyed by the small-7,,,,, approximations).

A. Generic symmetric and asymmetric gates

First, we consider the following one-parameter family of
reflection-symmetric gates [see Eqgs. (68)—(71)]:

14 t=
t =
12}

0.8 t
0.6 t
04t
0.2t

1.6
14t
1.2+

0.8 t
0.6 t
04t
0.2 t

(b)

FIG. 7. Numerical computation of £(v) with ., up to 8 for
(a) the reflection-symmetric gate in Eq. (72) with x = 0.8; (b) a
generic nonsymmetric gate (specified in Appendix B). Black dots
mark estimates of vé/ * from an independent calculation of the
OTOC in Appendix B 3.

J=x2(3,-4,5)/V/50, h:gugsyJﬁ.(n)

T
4
The parameter x tunes the strength of the interaction
between the two qubits. For small x, local scrambling
takes a long time: We do not expect our algorithm to
converge rapidly in that case, so we choose x reasonably
large. Otherwise, the numbers above are arbitrary and are
chosen to ensure (i) that there is no fine-tuning in the sense
of any of the coefficients J, vanishing and (ii) that u;
represents a rotation on the Bloch sphere by a significant
angle (here, 7/5).

Figure 7(a) shows results for the gate with x = 0.8. The
results are consistent with a relatively fast convergence of
E(v). We see that this chosen gate has a smaller vz and a

smaller vg) than the annealed average for the random
circuit.

Note that the results are in striking agreement with the
general constraints listed above: The asymptotic £(v) is a
convex curve that touches the line £ = v at a single point,
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which is consistent with (vg,vp) as obtained from an
independent calculation of vp.

Next, Fig. 7(b) shows an example of a generic gate
without the reflection-symmetry constraint. We simply pick
arandom gate from the Haar distribution on U(2) and use it
to build a translation-invariant circuit. The matrix elements
of this gate are given explicitly in Appendix (B2).

Again, the algorithm appears to be working. However,
the convergence is now to an asymmetric curve with
E(v) # E(—v). The touching point on the left marks v
and that on the right marks v.

B. Chaotic Ising models

Next, we consider Floquet ‘“kicked” Ising models
[21,44,45] with the Floquet unitary

Upioqg = exp(—itH,) exp(—itH,) (73)

with a longitudinal field to spoil integrability:

L-1 L
H, =) oioi, + > hoi (74)
i=1 i=1

This unitary can be written in the brickwork circuit form
(Fig. 3) with the gate

L

H, =) heo!,

i=1

where
u, = exp(—ith,c"), (76)
u, = exp{—itfo* ® 6* + ih (o; @I +1® o°)/2]}. (77)

We expect that for generic values of the parameters
(z,he, h,) this gate defines a chaotic model. In special
limits, such as A, =0 or h, =0, the model becomes
integrable: In those limits, we do not expect our algorithm
to succeed.
Interestingly, this model also has a “self-dual” line in
parameter space [35,36,46-48,72]:
b2
==

1 h,=1, h, generic, (78)
where some quantities can be computed exactly. In par-
ticular, entanglement growth is maximal on this line. This
fact is related to the property that, for this choice of
parameters, the tensor u remains unitary if it is rotated
so as to exchange the roles of space and time [36,46,47],

which is referred to as “dual unitarity.” Though this

property is highly fine-tuned, the model is believed to
remain chaotic for generic values of 7, on this line [36,72].

The fact that v = 1 for the dual-unitary models implies
vg = 1 and that the line tension is flat as a function of
velocity [18]:

Ew) = 1. (79)

This case is an interesting test for our algorithm. First,
the above form is very far from our perturbative starting
point. Second, the flatness of £(v) implies that for dual-
unitary models the large-scale properties of the domain
wall are rather different from the generic case, with
negative signs in W playing an important role. We describe
this case in Sec. VL

To begin with, we check the algorithm for a presumably
generic set of parameters within the kicked-Ising class in
Fig. 8(a):

=1, h, =0.8090. (80)

h, = 0.9045,

The algorithm appears to be working, and the curves
converge to one that represents a gate more entangling
than the random average.

Kim and Huse study similar values of the fields [73]
but with the smaller period 7 = 0.8 [44]. However, the
Kim-Huse values (z, h,) 2~ (0.8,0.90) happen to be quite
close to the dual-unitary values, [74] which are (z, h,)~
(0.785,1). This coincidence explains the strong entangle-
ment growth in the Kim-Huse model. Our numerical results
for this case (not shown) give a line tension function with a
vp close to 1 and a larger £(v) than for 7 = 1.

We now check our algorithm for the dual-unitary case,
taking [75]

T =

%, h,=1, h, =06. (81)
The value of A, is not important for the dual-unitarity
condition, but we should have 7/, # 0 mod 2z to avoid the
model being free. Empirically, we see only very small
differences for the line tension function among different
choices of /1, including the special point s, = 1 where the
dynamics is Clifford as well as being dual unitary.

Results are shown in Fig. 8(b). The curves seem to
converge to the expected flat line £(v) = 1. The touching
points where E(vg) = |vg| seem to converge to the
expected value vz = 1 very fast.

Therefore, the domain wall structure appears to make
sense even for dual-unitary gates, which represent a limit-
ing case. However, in this case, negative signs in W are
important: Without these, it is impossible to have a flat
E(v); see Sec. VL

C. Structure of W matrix

We now examine the temporal decay of the step weights
W defined in Sec. II D. In order to examine the importance
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1.6
14t

E(v)

I
B =
I
I
I
0 ~1

~

5
6 —

3
4

~ =~
~ o

0
-1 -0.5 0 0.5 1
v
(b)
FIG. 8. Numerical calculations of &£(v) for Floquet Ising

models. (a) shows the parameters in Eq. (80). (b) shows the
“dual-unitary” parameter values in Eq. (81). The bottom arrow in
case (b) illustrates the convergence to the expected limiting form
E(v) = 1. The intersections with the line £(v) = |v| are in good
agreement with the known value vz = 1 (top arrows).

of long steps, we consider the normalized quantity
W(x,t)/Z(x,t): This quantity compares the weight of a
single long step, with displacement x and duration ¢, with
the total weight of all paths with the same two end points.
This ratio should decay with 7 if asymptotically long steps
can be neglected. [Individually, both W(x,?) and Z(x,¢)
decay exponentially with z.] A slight extension of the
reasoning in Sec. [II A shows that, in a typical realization of
a random circuit at large ¢, the typical value of this ratio
(for a given starting point of the domain wall in spacetime)
decays like ¢~".

Figure 9 shows heat maps of W(x,t)/Z(x, t) for exam-
ples of translation-invariant Floquet models for spin-1/2.
Figure 9(a) is for the generic reflection-symmetric gate in
Eq. (71), whose line tension function is shown in Fig. 7(a),
and Fig. 9(b) shows the dual-unitary gate of Eq. (81) and
Fig. 8(b).

In both cases, the weight is small at large 7, though finite-
time effects in this quantity seem to be large for the former

Wz, t)/Z(x,t)

01 X
2<
t
4 0
6<
o 1
8 6 4 =2 0 2 4 6 8 i
xr
()
Wz, t)/Z(x,t) )
01 X
2 .l.
t
4 0
6<
o 1
8 6 4 =2 0 2 4 6 8 i
xr
(b)

FIG. 9. The spacetime structure of W(x,)/Z(x, ) for (a) the
generic reflection-symmetric gate in Eq. (71) [Fig. 7(a)] and
(b) the maximally entangling dual-unitary gate specified in
Eq. (81) [Fig. 8(b)]. The cross marks the coordinate (0,0). In
our construction, only steps with even x + ¢ are possible.

gate at displacement x = 0. We also find decay of W/Z for
the generic asymmetric gate discussed in Sec. VA and for
the kicked-Ising model with the generic parameters in
Eq. (80) (data not shown).

The domain wall picture appears to be well defined both
for the generic models and for the dual-unitary model.
However, there are key differences between the two cases
which we discuss in Sec. VI. Note that the weight at x = 0,
t = 2 is positive for the gate in Fig. 9(a) and negative for the
dual-unitary gate in Fig. 9(b). In the former case, this extra
positive step weight increases Z(0, ) compared to Z,, (0, #),
leading to decreased vg). In the latter case, the negative step
weight decreases Z(0, ) compared to Zy, (0, ), helping the
dual-unitary gate to attain the fastest possible decay of
Z(0, 1), i.e., the most rapid possible entropy growth.

Let us also show an example where the local gate is very
weakly entangling, resulting in slower convergence of the
algorithm. This example is the reflection-symmetric gate
defined in Eq. (72) but with the smaller interaction constant
x = 0.5 (in Sec. VA, we show results for x = 0.8).
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Wz, t)/Z(x,t)

X

FIG. 10. Weakly entangling gate with x = 0.5 [Eq. (72)]: Heat
map showing the relative importance of long steps.

First, we show the ratio W/Z in Fig. 10. We see that there
are large values close to the edges of the light cone.
However, the apparent decay inside the light cone suggests
that the results may still converge, just more slowly than in
the cases examined above.

- =
Il
00 ~1

0
]
@
E(v)
2 — :
t=1 — t=3 — t=5 t=7 —
t=2 t=4 t=6 — t=8 —
1.5
1f
0.5
ot
—-0.5 :
-1 —0.5 0 0.5 1
v
()
FIG. 11. Weakly entangling gate with x = 0.5 [Eq. (72)]:

(a) Successive approximations to I'(s) (see Sec. IVA). For some
small 7 values, ['(s) is negative around s = 0. (b) Approximations
to £(v) obtained by Legendre transform of (a). Note the small
£(0) =1(0).

The slow convergence in this case is related to the fact
that the gate is weakly entangling. First, we examine the
function I'(s) defined in Sec. IVA [whose physical mean-
ing, for |s| <In2, is as an entanglement entropy growth
rate in a state with a nonzero gradient in the entanglement
S(x) across a cut at position x, with 9S/0x = s]. The
approximations to I'[s] for 7 =2, 4, 6, 8 are shown in
Fig. 11(a). Note that they are no longer concave functions
over the whole range s. However, this effect gets less severe
with increasing ¢. If we restrict to the concave region in
performing the Legendre transform, we get a reasonable
result for £(v); see Fig. 11(b). This result is consistent with
slow convergence to a function that satisfies the general
constraints, with a very small entanglement growth rate.

For a quantitative analysis of convergence rates in the
various models, see Appendix B 5.

VI. COARSE GRAINING: GENERIC MODELS
VERSUS DUAL-UNITARY CIRCUITS

The thin domain wall conjecture implies that the entan-
glement membrane is well defined once we coarse grain
sufficiently in space and time. The relevant length scale, the
width of the domain wall, is microscopic, in the sense that it
remains finite as the system size and the total time ¢ of the
evolution go to infinity. In the models investigated here,
which do not contain any small parameter, the width of the
domain wall is an order of 1 multiple of the lattice spacing.
In cases where the dynamics is tuned close to a special
point, a large length scale may emerge.

In this section, we discuss this coarse graining in slightly
more detail, in order to make a distinction between two
universality classes.

Microscopically, the step weights W(x,7) can be of
either sign. But, we conjecture that, for generic models, the
minus signs do not alter the universality class from that of a
classical directed path. Heuristically, we can think of the
step weights becoming positive after coarse graining, so
that the membrane is effectively a classical directed path
with diffusive wandering (at least for v < vg). We restate
this conjecture in terms of the recursion relation for
Z(x,t) below.

This coarse-grained picture implies a strictly convex
E(v), with a positive second derivative that is related to the
diffusivity of the path. (This diffusivity can depend on the
coarse-grained velocity v that we condition on.) This fact
implies, for example, that the scaling of Z(x, 1) is

Z(x, 1) ~ 17127501, (82)

The power-law prefactor is universal and comes from the
fact that both end points of the random path are fixed. For
example, consider the case where x < ¢, so that the coarse-
grained velocity is close to zero, and let the model be parity
symmetric. Expanding in v = x/t, the above is then
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Seq” (0)x?

Z(x,t) ~t71/2 exp(— 5,

> (x<r1), (83)

where we factor out the extensive free energy of the path by
defining [recall vz = £(0)]

Z(x,1) = e~ Z(x, 1). (84)

Up to a normalization constant, Eq. (83) is the probability
for a random walker with diffusion coefficient

1

D—=——
25,£"(0)

(85)

to be at position x at time ¢. In Fig. 12(a), we show Z(x, t)
for a generic kicked-Ising gate: These numerical results are

exp(SeqUrt) Z(z, t)

0 X
H N
21 []
t
4.
6.
8.
: 0
8 6 4 2 0 2 4 6 8
X
(a)
1
0

FIG. 12. Heat map of Z(x, 1) = exp(seqvgt)Z(x. 1). (a) Floquet
Ising model as in Fig. 8(a). Z(x, t) is consistent with the solution
of a parabolic equation. For example, the decay at x =0 is
compatible with the #~'/? scaling in Eq. (83): This scaling is
demonstrated in Appendix B 6. (b) Dual-unitary model as in
Fig. 8(b). Unlike the previous model, Z(x, ) is approximately
constant in the interior of the light cone and zero outside.

in good agreement with the +~1/2

Appendix B 6).

The dual-unitary model behaves differently. The mem-
brane and its line tension function still appear to make
sense, but its wandering is not diffusive. For example, we
can contrast the scaling of Z(x, ¢) with the formula above.
The numerical results in Sec. VI A are consistent with the
large-¢ scaling

scaling in Eq. (83) (see

Z(x, 1) ~ e Sl =271 (86)

with a trivial x dependence inside the light cone (we neglect
the even-odd effect at the lattice scale). This result is also
consistent with the analytical calculation in Sec. VIA
below.

Evidently, in the dual-unitary case, the membrane is not a
classical random walk. Indeed, since for the dual-unitary
model £(v) is constant (inside the light cone) and £’ (v)
vanishes, the diffusivity in Eq. (85) must diverge in the
limit that a model becomes dual unitary.

The distinction between the two cases may be clearer if
we think of the recursion relation as a discrete analog of a
linear partial differential equation. In the limit of large 7, we
may write Eq. (43) as

Z(x,1) = f: > W(Ax,AZ(x - Ax,t— Ar).  (87)

At=1 Ax

We would like to relate this to a continuum equation in the
limit of large times. We cannot immediately perform a
derivative expansion of Z: Since it is exponentially
decaying, higher derivatives are not parametrically smaller
than lower ones. For simplicity, consider first the regime
x < t discussed above (close to the v = 0 ray) and assume
reflection symmetry [so £'(0) = 0]. Then, Z in Eq. (84) has
a sensible derivative expansion. Let us define the following
“average” for an arbitrary function F:

(F(y. 7))o= Y _W(y.1)e’s"F(y.7).  (88)

(We replace Ax, At with y, 7 to avoid clutter. The subscript
on the average specifies the spacetime ray whose vicinity
we are considering.) This equation satisfies (1), = 1, by
the relations in Sec. IVA. The derivative expansion of
Eq. (87) yields

(1)00,Z = 5 (y*)00:Z, (89)

N[ =

plus less-relevant terms. The thin domain wall assumption
implies that the two coefficients shown are finite. While the
weights W defining the averages are not necessarily
positive, the averages shown are nonzero in the absence
of fine-tuning. The higher terms can then be dropped,
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leading to the diffusive (random walk) scaling discussed
above. We can also check using the relations between
generating functions that

<T>O = Squn(o) <y2>0’ (90)

so that the diffusion constant in Eq. (89) agrees with that in
Eq. (82). We emphasize that the above equation is valid
only close to the v = 0 ray; see below for a more general
equation. The information contained in Eq. (89) is already
contained in &£(v), and the spacetime picture is usually
more convenient.

The universality class changes if (z), vanishes due to
fine-tuning. It is clear from the definition in Eq. (88) that
the vanishing of (z) requires negative step weights (which
are absent in the large-¢g limit described in Sec. III). When
this vanishing occurs, we must take into account the next
time derivative term, which was previously irrelevant:

<72>oatzz = <y2>06)262. (91)

This vanishing is what occurs in the dual-unitary model
above. We see that the equation becomes a wave equation,
consistent with the constancy of Z inside the light cone (see
Sec. VI A). We have confirmed that (7)), is consistent with
zero in the dual-unitary circuit: The finite ¢ approximation
to (), from the truncated W(x, r) matrix decays exponen-
tially in #, with a characteristic time of approximately
1.8 steps.

To simplify further, let us consider a toy model, which
takes only a single additional nonzero W element (beyond
the ones present in Z;, ). We parameterize its elements in
terms of a constant y:

W(+1,1) =K, W(0,2) = —uk>. (92)

When p < 1, we are in the diffusive class. However,
when g = 1 (in fact, the dual-unitary model is numerically
quite close to this simplified model), removing the factors
of K by defining Z(x, 1) = K'Z(x,t) gives

Zx,t) =Z(x+ 1, t = 1)+ Z(x=1,t=1) = Z(x,t = 2),
(93)

which is a discrete version of the wave equation
(0? —32)Z = 0. This result gives a Z(x,t) which is
constant inside the light cone and zero outside.

Numerically, we find that the structure in the specific
dual-unitary kicked-Ising model that we study above is
similar: 2'Z(x, t) is approximately constant within the light
cone and zero outside. Figure 12 contrasts the spacetime
pattern of e*«"#'Z(x, ) for the generic kicked-Ising model
and the dual-unitary kicked-Ising model.

In the derivations of the continuum equations [Egs. (89)
and (91)], we restrict to the vicinity of a particular ray.

For a more general equation, we may write Z(x,t) =
exp[—S(x, )] and expand in derivatives of S(x,7). The
resulting dynamical equation [18] also applies to the
second Rényi entropy S(x,¢) of a time-evolving quantum
state in a 1D system, for an entanglement cut at x. [76] As
described in Appendix D, this expansion gives the equation

as ds 1 _,[dS\ &*S

dr {F <dx> 2F <dx> al }’ 4)
where I" is the Legendre transform of £ (see Sec. IV A). The
first term is the leading-order dynamics that captures the
O(t) term in the entanglement. Here, dS/dx and dS/dt are
generally of order 1 at late times, so we keep all powers of
dS/dx, but higher derivatives are small and we can expand
in them. The second term gives subleading corrections [18].
The random walk picture implies that the two coefficients
are related. The above equation can also be written in terms
of £(v), giving a form consistent with Egs. (89) and (90)
(see Appendix D).

A. Partition function for dual-unitary models

Let us confirm by an explicit calculation that dual
unitarity implies the above-mentioned approximate con-
stancy of Z(x,t) within the light cone [which is related to
the wavelike structure of the recursion equation for Z and
which implies constancy of £(v) as a function of v].

This fact can be seen by considering a slightly different
partition function, in which we place states |£) at the lower
boundary, rather than the dual states |(£%)*) used in
Eq. (35):

Zop(x.y: 1) = (e 4 = JUO@)]... + =) /gt (95)

Here, x and y label the positions of the domain walls
between + and — on the top and bottom boundaries, res-
pectively. Figure 13(a) shows an example of ¢*“Z, (x, ).
In contrast to the domain wall partition function Z(x, 1)
defined in Eq. (35), Z,, (x,y, t) does not force the end point
of the domain wall to lie precisely at y but instead penalizes
configurations whose end point deviates from y (via a
negative power of ¢ in the weight). However, in analogy to
the random circuit case, we expect that this difference leads
only to an O(1) boundary term in the free energy (so long
as |x — y| < vgt, which in the dual-unitary circuit is a trivial
restriction, since vy = 1), so that

InZy,(x,y,t) ~InZ(x,y, 1) ~=E(v)tlng.  (96)

Physically, the above partition function Z,, simply
computes the operator entanglement of the time evolution
operator itself, for a certain partition of the “legs” of the
time evolution operator. This operator entanglement is
maximal in the dual-unitary circuits, like various other
measures of entanglement in these systems [36,46,49,72].
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(b)

FIG. 13. The partition function Z,(x,t) for a dual-unitary
circuit. (a) ¢*Z,,(x = 1,1 = 5). By unitarity [the first identity in
Eq. (98)], we can remove the unitaries outside the light cone,
giving ¢*Z,,(x = 1,1 =5) as expression (b). Then, Eq. (98)
allows the remaining gates to be removed.

This result is easily seen by manipulations similar to those
in Refs. [36,46,47]. Specifically (setting y = 0), we show
that Z,,(x, 1) = ¢~ for a dual-unitary circuit, so long as x is
within the light cone of the origin.

We represent the multilayer two-site unitary evolution
matrix as a four-leg tensor:

A B B
uN) = ﬁ( ; Uéﬁl - >:<E ©7)

We label the external legs of this tensor by A, B, C, and D.
As a unitary, the legs A and B correspond to the row index
and C and D to the column index. We rotate the tensor by
90° to obtain the dual tensor. Dual unitarity requires the
dual tensor to be unitary (with B and C as row legs and A
and D as column legs) as well. To contrast with the generic
gate in Eq. (47), we draw the dual-unitary tensor as a
(fourfold symmetric) square in Eq. (97). For N =2,
unitarity and dual unitarity can be used to propagate ++
(or ——) states from the top to bottom, right to left, and vice
versa. Graphically, we have (the same holds for arbitrary N
with + replaced by any o)

v —+

The first of these relations (unitarity) allows us to remove
the unitary gates outside the light cones in Fig. 13(a).
Keeping track of the g factor, ¢*'Z,,(x,1) equals the
expression in Fig. 13(b). Next, dual unitarity (the second
relation) can be used to propagate the + states to the right,
so that all the unitary gates are removed and Fig. 13(b) is
reduced to (+|—-)" = ¢'. Hence, ¢*Z,,(x.1) = ¢', so that
Zop(x, 1) = e™*«" within the light cone.

VII. OPERATOR SPREADING

We focus on the second Rényi entropy as a test case, but
the present formalism can be applied to almost any
observable expressible in terms of UW). One of the
simplest is the out-of-time-order correlation function,
which requires N = 2 and which on large scales we expect
to reduce to a stochastic growth process [7,8].

The OTOC can be written in terms of the same partition
sum as for e~ but with different boundary conditions. In
the Haar-averaged circuit, this sum reduces to a simple
partition function for a pair of domain walls. Since we have
now made sense of the domain wall in a generic, fixed
circuit, this picture from the random circuit carries over.
The modification is that the domain walls now have a
nontrivial internal structure, including finite regions of L,
with an associated microscopic timescale #,. A typical
configuration from the partition sum is illustrated
in Fig. 14.

For a brief heuristic summary, we consider the OTOC in
the form of a commutator squared of two traceless
operators:

Clx, 1) = —%([0(% 1).0'(0.0)]%). (99)

We take the expectation value at infinite temperature, and,
to simplify the boundary conditions, we average over local
unitary rotations of the local operators O — VOV' and

O(z,t)
1
I i I T e A

iio i
IIII i) -1-:
i

FIG. 14. The membrane picture for the out-of-time-ordered
commutator C(x, 7). The top boundary condition creates two
domain walls. The bottom boundary condition favors —, provid-
ing an outward force on the lower end points of the two domain
walls. The right domain wall thus moves with the optimal speed
vy. Here, the left wall is forced by the dual state |—*) at the
operator insertion point to travel with v > vp.
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O - V'O'V'", Carrying out manipulations similar to
Sec. VIB in Ref. [7], we rewrite C(x, ) using the present
notation (here, tr is a single-site trace):

C(x,1)
_ 1(@)u(0%)
-
X (ot +—++ . UYL === == ) /gt
(100)

The operator insertion at the top initiates a domain of — in
the bulk. Because of the — boundary condition at the
bottom, this domain prefers to expand at rate +vy (assum-
ing reflection symmetry) [77].

However, the operator insertion at the initial time
cannot lie in the + region exterior to the — domain,
because this leads to a factor of (+|—*) = 0. If |x| < vpt,
then C(x,t) is constant at leading order: C(x,t) =
g 2trO*trO”. But, if |x| > vg, the lower operator inser-
tion “stretches” one of the domain walls, forcing it to
move at a speed greater than vp. This mechanism is
illustrated for the left domain wall in Fig. 14. The
additional free energy cost means that, outside the light
cone, for x/t > vg, the OTOC scales as [78]

C‘(x, t) ~ e )t

u(v) = seglE(v) o). (101)

In random models, these results can also be obtained
from a stochastic growth process for the operator cluster
[7,8,13]. In this picture, () is the large deviation function
describing the probability for the boundary of the operator
cluster to propagate at speed v [79]. From the above
discussion, we expect that in generic models this stochastic
picture applies after coarse graining to timescales greater
than to.-

Forthcoming work using the memory matrix formalism
will give a complementary view on the operator spreading
problem [80].

VIII. BEYOND CIRCUIT MODELS

In Sec. II, we describe how to introduce the pairing
field (the spin s € Sy U {L} in the effective partition
function) in the context of models with a circuit structure.
These models were a natural starting point, since the idea
of inserting permutation states is inspired by the random
unitary circuit. However, there is no need to restrict to
circuits.

In this section, we study generic Floquet systems, i.e.,
models where the Hamiltonian is periodic in time but which
do not have the form of a circuit. We are still free to insert
resolutions of identity as in Eq. (11):

In this graphical equation, the shaded region denotes the
Floquet operator (evolution operator for one time period),
which, in general, does not have an exact circuit decom-
position. As in Eq. (11), the horizontal bars represent
projectors onto either a permutation state or the L sub-
space, these possibilities being summed over.

For models that are translationally invariant by one
lattice spacing, an alternative that may appear at first sight
more natural is to insert single-site, rather than two-site,
projectors:

-+ =

CaC

CaC

CaC

H H H H H
H H H H K

C

Both rewritings of Z are exact. In the following, we
consider both schemes.

The partition functions are sums over spins s, ,, taking
N!+ 1 values, associated with each horizontal bar. We
focus on the case of the purity (N = 2), where s, , can be +
or L. We choose a graphical notation that resembles that for
the circuit, labeling the shaded region immediately above
the horizontal bar with the bar’s spin value; see Fig. 15.
This figure shows possible spin configurations for a section
of domain wall of finite width in the two schemes.

The numerical algorithm in Sec. IVA can be carried
over with little modification. We first define the partition
function Z(x, t) the same way as in Eq. (35)—the differ-
ence here is that Z(x,t) may be nonzero even when x is
arbitrarily large. We then solve for the irreducible step
weights W(x, t) recursively, using Eq. (43).

The approach is feasible, because the Floquet evolution
has an emergent Lieb-Robinson light cone [81] which
suppresses Z(x, t) for large x. For practical computation of
Z(x, 1), we must truncate the Floquet operator to a chain of
finite length L, so at the end we must check that our results
are converged in L. For a fixed , the error introduced due to
the finiteness of L should be exponentially small at large L,
but, of course, the required L grows linearly with .

We consider two examples of an Ising model with an
oscillating transverse field 4, (¢):
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FIG. 15.
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(b)

Domain wall (membrane) in Floquet evolution with-

out a circuit structure. The spin variables 4, —, and L denote the
three choices of projection operators inserted on the horizontal
bars beneath them; see Eqs. (102) and (103). Figures show
samples of thick domain walls for (a) two-site and (b) one-site
insertion.

L-
H(t) = Z:

i=1

”“+z) d+§)a

In the first example, h () is a square wave with period

7 = 1, taking the values A" and A for half the period
each:

(104)

A =09045 +w,  w=03,
J =05, h, = 0.8090. (105)
The Floquet operator is then
Urioq = exp(—iH,7/2) exp(—iH,7/2) (106)

with H;, equal to Eq. (104) with the appropriate value
of h,.

In the second example, &, (t) oscillates sinusoidally, with
period 7 = 1:

h, = 0.9045[1 + wcos(2xt/7)], (107)
the parameters J, h,, and w being the same as in
Eq. (105). Neither of these two examples allows a circuit
representation.

For the first system (square wave), we compare the one-
and two-site insertion schemes. Figure 16 shows approx-
imations to the line tension function, for increasing values
of tax> 1IN @ system of L = 12 spins, for the two-site and
one-site schemes, respectively. We position the domain
wall at the top boundary so as to minimize finite-L effects;
see the numerical details in Appendix B 1. (Performing
calculations for a given L with multiple choices of the top
boundary condition incurs an additional cost, but this cost
is a subleading factor.) We compute up to #,.x = 6. We
estimate the error due to the finiteness of L by computing

FIG. 16. Numerical calculations of £(v) for Floquet evolution
with the square wave h,(¢) [Egs. (104) and (105)] for (a) two-site
and (b) one-site schemes.

the difference in the r = 5 result for £(0) for L = 10 and
for L = 12. We find a relative error of 0.2% for the two-site
scheme and 1% for the one-site scheme.

For both schemes, the =6 curves in Fig. 16 are
consistent with reasonable convergence to a legitimate line
tension function, with a value of vy consistent with that
computed directly from the OTOC.

(v)

O

35— =5 —
4 =6 —
0.8
0.6 t
0.4}
0.2}
O N N ‘ | |
-1 —0.5 0 0.5 1
v

FIG. 17. Numerical calculations of £(v) for Floquet evolution
with the sinusoidally varying h,(7) in Eq. (107) for the two-site
scheme.
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One counterintuitive feature of Fig. 16(a) is that the two-
site scheme performs better than the one-site scheme for
small ¢ (the one-site scheme is also more expensive
computationally). The contrast is most obvious at = 1,
where the curve for the one-site scheme [Fig. 16(a)]
strongly violates the constraints of the line tension.
Despite this violation, the two curves for t = 6 are in
remarkably good agreement, with 0.5% relative difference
in the entanglement velocity estimates.

Finally, in Fig. 17, we show results for the sinusoidally
oscillating field [Eq. (107)]. These are qualitatively similar
to Fig. 16(a).

IX. OUTLOOK

In random circuits, the pairing field and the membrane
picture emerge in a simple way from the average over
unitaries whenever we deal with dynamical quantities that
require multiple forward and backward evolution operators
(such as Rényi entropies or OTOCs). Here, we have shown
how to make sense of the pairing field, which describes a
pairing of trajectories in the multisheeted path integral, in
realistic systems that do not involve randomness. This
description opens the way to extending the various results
that have been obtained in random circuits to a much
broader class of more realistic models. More generally, by
identifying appropriate effective fields, it provides a frame-
work for applying the renormalization group to chaotic
real-time dynamics.

We separated the local multicopy Hilbert space into
paired states and states in their orthogonal complement, L.
Dynamical quantities then became partition functions for
an effective field s(x,7) € {L} U Sy. The state L of the
effective spin here is reminiscent of the state S =0,
representing a vacancy, in the Blume-Capel model (the
classical Ising model with vacancies, where the spin takes
the values S =0,+£1). We have shown that in strongly
chaotic Floquet systems the ‘“vacancies” L dress the
structure of domain walls between different pairing states
but leave the basic structure of the domain wall intact on
large scales.

After using a typical realization of a random circuit as a
test case, we applied this picture to Floquet systems, for
spin 1/2, that have no small parameter at all and no
randomness.

The method gave convincing results for the line tension
function for N = 2 (which determines both the second
Rényi entropy growth rate and the butterfly velocity) from
calculations on relatively small length scales. A simple but
important ingredient was a resummation of the weights in
the spin model into a single function W(x, ), describing
the amplitude for the membrane—which in 1 4 1D can be
viewed as a directed path—to take a step of temporal extent
¢t and spatial displacement x. Interestingly, there was a
qualitative difference in the structure of W for generic

Floquet models (whether circuits or not) and for dual-
unitary, maximally entangling circuits.

Many questions remain for the future. First, there are
many kinds of extra structure that could be incorporated
and which might be expected to have interesting effects.

We have focused on Floquet models without any con-
served quantities. Any slow mode, for example, a con-
served U(1) charge, will interact with the dynamics of the
membrane. (A single physical conserved charge gives rise
to multiple conserved charges in the replicated Hilbert
space.) Results on random circuits with conservation laws
provide a starting point [9,10]. Our approach can be
extended to models with conservation laws by refining
the resolution of the identity to specify information about
the charge as well as the permutation: We will discuss this
extension elsewhere. One cautionary note is that it has
recently been shown that the dynamics of the higher Rényi
entropies, for which the present method is suitable, can be
qualitatively different from that of the von Neumann
entropy in models with conservation laws [15,82-84].

In the present approach, the von Neumann entropy
corresponds to a nontrivial replicalike limit, which it would
be interesting to understand better even in the absence of
conserved quantities.

Also interesting are continuous spatiotemporal, as
opposed to internal, symmetries, for example, Lorentz
invariance. Such symmetries will constrain the effective
field theory of the membrane, in addition to giving new
hydrodynamic modes [85,86].

There is considerable freedom in the precise way in
which the effective spins are introduced. We focused
mainly on inserting a resolution of the identity for pairs
of sites, since this convention was convenient for making
contact with the Haar-random circuits studied previously.
We also explored the use of single-site resolutions of the
identity, which appeared to be less efficient for the model
we studied. It would be useful to understand this better in
order to optimize the efficiency of the scheme.

The basic idea of this paper is not restricted to 1 + 1D:
The effective partition function can be introduced in the
same way in any number of dimensions, and we may again
argue for the coarse-grained picture in terms of a codi-
mension-1 membrane dressed with L states. However, the
additional computational cost means that in higher dimen-
sions we are likely to need either special structure or a small
parameter in order to obtain quantitative results. The
method may also be applied to dynamics without spatial
structure, in which any qubit can interact with any other.

For the observables studied here, the pairing between
layers of the circuit is local in time. For some dynamical
quantities, for example, the spectral form factor, pairings
that are nonlocal in time play a role [11,33,87]. It would be
interesting to extend the present approach to this setting.

Our method for defining the effective spin model might
illuminate other interesting universal dynamical phenom-
ena. First, we may consider how the description in terms of

031066-24



ENTANGLEMENT MEMBRANE IN CHAOTIC MANY-BODY ...

PHYS. REV. X 10, 031066 (2020)

an entanglement membrane breaks down on approaching a
many-body-localized phase. We hope to return to this
consideration elsewhere. There are other failure modes
that could be investigated, for example, the approach to a
noninteracting or integrable point.

Within the more limited domain of random circuits, the
effective spin model here may also give a way of thinking
about entanglement in random Clifford circuits which is
more generalizable (e.g., to higher dimensions) than the
approach of mapping the evolution of stabilizers to an
effective classical stochastic dynamics [6,88,89].

The approach could also be used to study questions
motivated by quantum information such as the emergence
of the “design” property in random circuits with non-Haar-
distributed gates [5,17,90-92].

The effective spin model may also be extended to
dynamics with measurement, or other types of interaction
with an environment, for example, to clarify the relation-
ship between different universality classes of measurement-
induced criticality [88,89,93-103].

The approach could also be adapted to study tensor
networks that do not involve a time direction, for example,
in the context of the AdS-CFT correspondence where
random tensor networks have been used [42,43].

For chaotic dynamics, further numerical tests and further
development of the numerical scheme, extending the range
of models to which it could be applied usefully, would also
be worthwhile and might give new insights into the physics
on the scale of the membrane thickness (which, in many
natural situations where there is a small parameter at hand,
may be much larger than the lattice spacing).
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APPENDIX A: PROPERTIES OF THE
SPIN MODEL

1. Projectors onto permutation states

The operator P, defined in Eq. (14) is a projection operator
onto the o permutation state (it is a nonorthogonal projector,
ie., P} # P,). Here, we prove the projector property in Eq. (16).
According to the definition of P, in terms of the Weingarten
function and permutation states in Eq. (14), we have

Py Py, = ng(ff101)|71><01|T2>Wg(75102)<52|- (A1)

71,72

We simplify the notation by writing |z) as a shorthand for the
two-site state |z7), which emphasizes that the formulas here
apply to an arbitrary Hilbert space, using the Weingarten
functions for the appropriate value of the Hilbert space
dimension (equal to g> here). We return to the previous notation
after Eq. (A4). Note that states associated with distinct permu-
tations are not orthogonal.

Unless ¢>=0,4+1,+2,...,£(N—1), the function
We (77 !s), viewed as a matrix with 7 and o as its indices,
is the inverse of the Gramian matrix (c|z) [50,51]:

Y (o) We(r™'oy) = 6, .-

T

(A2)

This equation means the states |¢*) defined in Eq. (15)
indeed form the dual basis:

<6T|62> = 501,02‘ (A3)
So, for ¢*> > N, we have
P01P02 = ng<rl_161>|11>501,02 <62| = P015010'2' (A4)

T1.T2

Any four-layer unitary gate with the projector P,
attached at the bottom is equal to P, [Eq. (19)]. In
Eq. (18), we represent the projector as a tensor (box)
labeled with a ¢ inside. Given the expression in Eq. (14), it
can be decomposed as

-5

where the ket |(60)*) = Y. Wg(r716)|r7) is the two-site
dual state of |o) and the bras at the bottom just give (oo| =
(6] ® (o] on the two sites.

This structure helps us to clarify the definition of the
triangle weights J (s, 6.; 6,) as the result of contracting the
red part of the following tensor:

(AS)

ae][oe e
“= = shaded part of 22 (A6)

s
= <O'bac|(6a6a>*>’ (A7)

which yields the expression of J(o,,0.;0,) in Eq. (23).

2. N independence of the weights
The triangle weights

J(O'baac;aa): =
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define the interactions of the effective spin models arising
from the random unitaries. The spin ¢ is an element of Sy,
where N is the number of copies of U and of U* in the
multilayer circuit.

In some cases of interest to us, the spins ¢,, 0}, and o,
are all in the smaller permutation group S;,, with M < N,
corresponding to permutations involving the indices
1,...,M only. For the corresponding bras, the first 2M
layers (M “U” layers and M “U*” layers) can be paired
arbitrarily, with the pairing labeled by a permutation in Sy,
and the remaining 2(N — M) layers are paired in the
manner prescribed by the identity permutation. For exam-
ple, consider the case 6, = 6, =1 and ¢. = (12):

IV(U) .

(A9)

This weight is independent of N (proved algebraically in
Ref. [14]). This N independence holds whenever all the
spins are in the permutation group S,,, as conjectured in
Ref. [14] and proved by Hunter-Jones in Ref. [17]. Here,
we review this result.

Algebraically, the triangle is the coefficient in the
expansion (24):

gy O¢
(op o PH(N) = Z ; ; (04 04], (A10)

0,ESN Oa

(the two spins refer to the two spatial states), which is
equivalent to the definition in Eq. (23):

Op Oc
;; = Z <0b UC‘TT>Wg(7—710’a§q2)a
Oq

TESN

(A11)

as we see by using Eq. (A2) to extract a particular
coefficient on the right-hand side of Eq. (A10).

Now consider the case where o, 0. € S);, where S, is
the subgroup mentioned above. [104] The fact that the
resulting weights are independent of N is not immediately
apparent from Eq. (A11) but can be seen from Eq. (24).
When 6,0, € S);, we have

(N) _ (M) N-M
bCPc - c .
(op0.|P) (opo. (P @ 1My (A12)

For example, we can see this independence by writing the

(N)

projection operator P|| as the average of a stacked random

unitary. The unitaries in the layers with index greater than
M cancel, since the bra contracts them together in the
same way on each site. This contraction leaves the average

of a stack acting only on the first 2M layers, which is equal

to P‘(‘M) acting on those layers. The identity acts on the

remaining 2(N — M) layers.

This result shows that in Eq. (A12) the only nonvanish-
ing terms on the right-hand side have ¢, € S, as well. As a
result, Eq. (A12) becomes equivalent to the same equation
for the 2M-layer case [except that both sides are tensored
with the “identity” bra for the remaining 2(N — M) layers].
This result shows that the triangle weights are the same as
in the 2M-layer case, i.e., independent of N.

Note, however, that if all of the spins are in Sy ®
Syv_m C Sy, where the subgroups refer to the first 2M and
the last 2(N — M) layers, respectively, the weight does not
factorize, in general. That is, if we have

Oq = 041042, Op = Op10p2,s G = 0,10¢2;, (A13)
where ¢, € Sy, and 6,, € Sy_y, etc., the triangle
Tp O¢
; ; (A14)
Ta
is, in general, not equal to
Op1 Tc1 Tp2 Oc2
; ; X ; ; (A15)

The two are equal if, for example, ¢,, = o,.

3. Suppression of large | clusters

We analyze the spin model that arises in computing the
mean square weight QZ of a L cluster like that in Fig. 5.
(The average is over Haar-random unitaries.) The spins take
values in S,, because in total we need four U layers and
four U* layers to write Q2. We see that there is a distinction
between spin values in the S, X S, subgroup generated by
(12) and (34) and spin values outside this subgroup. At
leading order, the former are forbidden inside the cluster.

We first look at the region outside the L region. Each
block there is labeled as either + or —, indicating a local
insertion of P before squaring. Recall that this projection
operator “absorbs” the local unitary gate: Equivalently, in

the squared system, a given -+ block is (recall that each P@

acts on two physical sites)

u(P? @ PPy =PY @ P (A16)
and similarly for —. This result defines an interaction
triangle for the case where the lower spin in the triangle
is from a plus block, in analogy to the triangle interaction

defined in Sec. II B for the case without the Pf) ® P(f)
factor. However, because of the projection operator, the
spin associated with the block (the lower spin of the
triangle) is fixed to be L. Similarly, the spin associated
with a — block is fixed to be ¢ = (12)(34). Therefore, in
computing ., the spins outside the cluster are not free to
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fluctuate. Their role is to provide a boundary condition for
the spins inside the cluster.
Explicitly, the + weights are [from Eq. (24) with P

replaced by Pf) ® Pf) ; the — weights are related to the
following by symmetry]

ap O¢
Y =i o (P2 @ P )iy

l

(A17)

Using the expression for the projector in Eq. (27), this +
triangle is equal to

ﬁ S g - (AlS)

€S,

Since |o,7| + |7| > |06}, in the large ¢ expansion, the +
triangle is at most of the order of

Op Oc
—lov|—loc]
;; Sq ¢

I

(A19)

and, similarly, the — triangle can be bounded by

op e
; ; < q—IUb(12)(34)\—Iac(12)(34)|.

(12)(34)

(A20)

Here, |o},| and |06,(12)(34)| can be understood as the
numbers of elementary domain walls (i.e., number of
transpositions) on the left edge of the + and — triangle,
respectively. And, similarly, the corresponding o, terms are
for the right edge. We thus interpret Eqgs. (A19) and (A20)
as costing ¢g~! per outgoing domain wall on the two edges.

Inside the cluster, we have L blocks. These lead to a L
interaction triangle defined by

oy o
Z V (0004l = (o0 0c| (W—W@ﬁ)

0,ESy Oa

_ @) _ p@ o p®
—<"WC|<PH AT eh )
(A21)

where we use the equivalence between the parallel projec-
tion and the Haar-averaged stack of unitaries.

The right-hand side of Eq. (A21) gives the L triangle
weight as the difference of two terms. The first term is the
ordinary triangle weight for S,. The second term vanishes
unless o, € S, x S,. Depending on whether s, € S, ® S5,
the large g expansion yields

Ubvac ~glotelloted 5 ¢ S, @08y,
o < glodtol=lostol=2 5 6,2 8,.
(A22)

For the first case, the L triangle weight is exactly equal to
an ordinary triangle

op Oc ap Oc
Q = i; , 0a ¢ S2ax Sy (A23)
T4 o4

We again interpret the corresponding expansion (the first
line) in Eq. (A22) as a cost of ¢! for each outgoing
elementary domain wall. For the case of 6, € 5, ® S,, we
can show using the large g expansion techniques in
Ref. [14] that the term of the order of q“"5l“"|‘|”5]"v‘
cancels, which therefore incurs an additional cost of g~2.
In particular, if o, and o, are also in S, x S,, then the L
triangle vanishes exactly:

ap Oc
; ; =0,

Oaq

(A24)

Oa,Ob, Oc € So X S5.

With this result in hand, we can estimate the cost of a L
cluster in Fig. 5. Because of the vanishing weight in
Eq. (A24), each triangle inside the L region must host
at least one spin that is not in S, x S,. Therefore, in each
time slice that contains a L, there are at least four
elementary domain walls. By the estimates above, each
costs at least 1/¢ per time step, regardless of whether it is
inside the L region or on the boundary between the L and
=+ regions. A L cluster that persists for ¢ steps is, therefore,
suppressed by a factor of ¢g~* or smaller. This result
completes the argument in Sec. IIL.

The cost of g~ is achieved by the following configu-
ration. We set the spins in the L cluster to (13)(24). The
triangle weights inside the L cluster are then 1, by
Eq. (A23). There are two elementary domain walls making
up the composite domain wall (13)(24) on the left boundary
of the L cluster and two elementary domain walls making
up (14)(23) on the right boundary. They enter the L cluster

through the triangle
I V (12)(34)

(13)(24)

(A25)

which is equal to the ordinary triangle and costs g~*.
Meanwhile, on the boundary, the four domain walls also
cost g~*, according to Egs. (A19) and (A20). In total, the
weight is ¢~ for the squared average of the L cluster.
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4. Minimal L cluster and operator purity

In Eq. (45), we list four nontrivial configurations for an
isolated L surrounded by + and —. Here, we compute their
weights for a fixed unitary u at the location of the L. We see
that they are related to the operator purity of u.

It is more transparent if we represent each + and — block
graphically as in Eq. (AS):

—  —
[ |
= shaded part of alg
e[
(A26)

The weight on the left-hand side is equal to the ¢ number
given by contracting the colorful parts of the tensor on the

right-hand side. The four-leg L tensor (red) is ¥ P, . We
can rewrite it as u® — P =u® - P, —P__ It is con-
tracted with states (-+| and (—| on the top (blue) and the kets
at the bottom from the green tensors:

T Kq | 1

.
T+ ] :q2_1_|+>_q73_>’
K 1
:q2_1 |+>_q|_>]’
(A27)
== e (1)~ )
-1 ¢
= K | 1
T 21 |+> o q|_>]
Combining these, we have
[ .\
T =242 (1)
Cr ] ¢ 1
+ - e e T
e oy Ry P iy
+ - + o+ - - -+
(A28)

where the & symbols around the ) block in the second
line indicate contraction with (+| (at the top) or |+) (at the
bottom). Similarly,

I L+ -1
e = e =K+ k21«

o o (¢* —1)?

S P S T

-4 -3 4 )
(A29)

N
JC-IC = K
C

+ - + - + - + -
1 1 1
] - - - L)

i
]

;X
(¢* —1)?

K
-

(A30)

The blocks on the second line, representing different
contractions of u¥, are the operator purities for different
partitions. Two of them are actually independent of the
unitary gate u:

(A31)

+ - + -
] - [ -
+ 4+ - -

This independence is because |+)|+) and |-)|—) are
invariant under the action of u*). The other two terms
are proportional to the operator purity of vertical and
diagonal partitions:

+ - + -

= 4¢P, =¢'Px.

+ - -+

(A32)

Using these operator purities and simplifying, we obtain the
expressions in Eq. (49).

5. The size of the fluctuations

In Sec. III, we list four local configurations where an
isolated L lies at the path of the domain wall. The average
weight of each configuration is zero in the Haar ensemble.
In this Appendix, we estimate their fluctuations, i.e., their
mean-square values:

-] - -1 [
b I S &y

© @ ®

(A33)

®= @ by the symmetry under spatial reflection and

+/— exchange. We thus evaluate the other three.
The averages of these diagrams generate the S; model
discussed in Appendix A 3. They can be expressed in terms

of L and =+ triangles:
I v (12)(34)

| (12)(34)
a4

where o, and o, label the types of the triangles and are
determined by the spins = in the bottom two blocks of the

(A34)
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configurations in Eq. (A33). Because of the doubling
of layers (due to squaring), + corresponds to (e.g.)
o, =1€S8,, and — corresponds to o, = (12)(34). We
can write these weights as

w,(op.0.) = ZWJ_<6bvac;o-a)v (A35)

where the sum is over the spin o, at the center vertex and

wi (va Oc; aa) (A36)

:; HUVG(IQ)(?A) § uaa § %(12)(34).

(A37)

The lower spins of the second and triangles in this product
are fixed to be o, and o, respectively, so are not written
explicitly. According to Egs. (A19) and (A20), the ¢}, and
o. triangles have the leading-order expansion

I Oa
< glovlloytoal < gloal,

(A38)

Oq 12)(34
( s < g loe12)E o ou] < —loa(12)(39)]

(A39)

1

For ¢, € S, x S,, we have 6, =0, ", and

1

For o, € S2 x Sa, we have 0, =0, ", and

" Ou Oq 12)(34
W X ( ! )gq‘\aa<12><34>|—\a;1\

< q72

= s

(A40)

(A41)

where Eq. (A41) is based on the large ¢ expansion in
Eq. (60) of Ref. [14].
Hence,

w (6p.0.,0,) < g0 fore, €S, xS,. (A42)

On the other hand, if 6, € S, x S,, the L triangle is
equal to an ordinary triangle [Eq. (A23)]. There will be at 8
walls in the L triangle, and we have

I 7% % (12)(34)
b oe < g loa(12)BY1=loal  (A43)
<q* (A44)
and
I (12)(34)
V ~ g 17 (12)BY=loal < f=4 (A45)
Oa
So
w(6},00:50,) < q 8 foro, &S, xS,. (A46)
These inequalities can be saturated only when
o, =1, o. = (12)(34),
o, = (13)(24) or (14)(23). (A47)
Therefore, the largest terms in Eq. (A33) are
wi[L (12)(34)] ~w I, (12)(34); (13)(24)]  (A48)
+w  [L, (12)(34); (14)(23)] (A49)
~2q78. (A50)
In other words, @ dominates and scales as
® ~ 2qg78. (A51)
Note that we may also write
@n - (Zu Z_u)n’ (ASZ)

where we use P, =1 — P to split © into Z,, — Z, and
L1

11

(A53)

We may then use the result for Z7 in Sec. VI A of Ref. [14].

APPENDIX B: FURTHER DETAILS OF
NUMERICAL RESULTS

1. Protocol to compute Z(x,¢) and W(x,?)

In the main text, we define the partition function Z(x, 1)
for a domain wall with fixed upper and lower end points
[fixed by contracting with + and — states at the top
boundary and (4+)* and (——)* states at the bottom;
see Eq. (35)].

A naive way to evaluate Z(x,f) numerically is by
contracting U®? with these boundary states as per its
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definition. However, it is numerically inefficient to store the
full four-copy unitary U,

It is much easier to compute modified partition functions
whose bottom boundary conditions contain only |+). We
discuss a subset of these modified partition functions,
which we call Z,,(x,1), in the context of dual-unitary
circuits in Eq. (43). We can view the unitary circuit
representing the single-copy time evolution operator
U(t) as a state on 2L spins and view all the legs with
the + boundary condition as a subsystem. The modified
partition function Z,, is then proportional to the operator
purity for this partition. By rewriting the states at the

bottom boundary via
1 1
(1)

1+ +)
7’ ’

we find that Z(x, 7) is a linear combination of these operator
purities. Our numerical scheme then computes these
operator purities and obtains Z(x, ) as the linear combi-
nation. We can then recursively compute W(x, ¢) through
Eq. (43). This scheme enables us to compute up to #,,,, = 8
for a circuit.

For general Floquet evolutions that do not have a circuit
representation, discussed in Sec. VIII, the exact computa-
tion of Z(x,t) requires, in principle, infinitely many
operator purities of the Floquet operator on an infinite
chain. As argued in the text, in practice, we may truncate
the Floquet operator to a chain of L sites. To minimize finite
size effects, we choose the entry and exit locations of the
membrane (at the top and bottom, respectively) to be
symmetric about the center of the chain. To compute the
partition function Z(x,t), in the one-site scheme we

[(++)7) = p

=) = (1) (B1)

q

contract on the top with (+ + --- — —[, where the last +
is at x;, and we contract on the bottom with
| +* +* ... —=* —*), where the last +* is at site x, (i.e.,

the domain wall enters at the link to the right of x; and
leaves at the link to the right of x,). For the two-site
scheme, we use two-site boundary states, (+ + | at the top
and |(+4)*) at the bottom, except that at the spatial
boundaries we use one-site states when commensuration
effects make it necessary. For both schemes, we take x; =
[(L—x)/2] and x, = [(L + x)/2].

The computational cost is dominated by the largest L we
study. In addition to the cost of computing each purity, we
must sum over of the order of 2£/2 or 2% (for the two-and
one-site insertions, respectively) different purities. We use
the same L for each x and ¢ (in principle, one could reduce
L for the smaller values of 7). Since we use different top
boundary conditions for different x, there is an additional
polynomial factor in the cost proportional to the number of
distinct x and ¢ values.

2. The random gate

The matrix elements of the random gate used in Fig. 7(b)
are approximately

—0.10054 0.01426 —-0.53043  0.35559
0.48842  0.52408 —-0.44873 —0.19577
—-0.22473 0.50727 0.11189  0.26009
0.77248  0.02169 0.26725  0.12918
(B2)
—0.04094 0.27291 —-0.05859 0.70873
.1 —0.28822  0.22707 —0.15763 —0.29600
o 0.11952 —-0.46156 —0.61862 0.04465
0.07122 —-0.35814 0.14956  0.39873
(B3)

This gate is less entangling than the Haar average, but,
nevertheless, the scheme for extracting £(v) seems to
work well.

3. Protocol to estimate vy

We use the Pauli weight [18,25,105] to estimate vy in the
Floquet circuit. The Pauli weight is defined to be the
fraction of the operator weight at a site on nonidentity
operators. To minimize the number of distinct length scales
affecting the data, we place ¢* at the leftmost site 0 and
probe its Pauli weight at the rightmost site d = L — 1:

WPauh t d = —= Z tI'{ O-d }/ZL
0! X, V.2
3 1 ) o
=371 2 uley(neie(eg)/2t. (B4)
a=x,y,z

According to the operator spreading picture, the Pauli
strings in the time-evolved operator o(#) spread to the right
with mean velocity vg. Before the Pauli strings reach the
right boundary, i.e., when vgt < d, the Pauli weight is
close to zero. At long times when vyt > d, oj(t) can be
regarded as a random operator for the purpose of calculat-
ing the Pauli weight, which is then %.

Figure 18(a) shows the Pauli weight for the kicked-Ising
model with the parameters in Eq. (80). Because of the
circuit structure, the Pauli weights at consecutive integer
time steps are equal. Hence, we place the data at half
integer points and interpolate the curve (with cubic spline)
when the data are greater than zero. Following Ref. [18],
we define 7,5, as the time when the interpolated curve is at
%. Fitting d with 7,,,4 gives us an estimation of vp.
Figure 18(b) shows the results of fitting for the generic
symmetric gate and the fixed but randomly chosen gate
(Sec. VA) and for the kicked-Ising model [Eq. (80)].

031066-30



ENTANGLEMENT MEMBRANE IN CHAOTIC MANY-BODY ...

PHYS. REV. X 10, 031066 (2020)

Pauli weight
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i Symmetric vg = 0.451
35 | Random left vp = 0.383

4) ——
6) ——
5) ——
Random right vp = 0.347(3)

(b)

FIG. 18. (a) Pauli weight for the kicked-Ising model with
parameters in Eq. (80). (b) Estimation of vp by fitting 7,iva
versus d. “Chaotic Ising” is the kicked-Ising model with the
parameters in Eq. (80), while “Symmetric” and “Random” refer
to the generic parity-symmetric gate with x = 0.8 [Eq. (72)] and
the fixed random parity-asymmetric gate (see Sec. VA and
Appendix B 2). For the asymmetric gate, we fit separately for
the left and right butterfly velocities. For the dual-unitary model
(not shown), vgp = 1 exactly.

4. The approximate entanglement velocity

The second Rényi entropy after a quench corresponds to
a free boundary condition at the bottom for the domain
wall. Therefore, the system selects out vz = min, £(v) as
the entanglement speed for S,. We extract the approximate
entanglement speed from our numerical calculation of £(v)
and show its dependence on the truncation time ¢ in Fig. 19.

All the curves start off for = 1 at the purity velocity of
the random circuit. Differences between the gates then
drive the curves to their respective entanglement velocities,
either above or below the value at t = 1.

Notably, the curve for the dual-unitary gate shows a clear
trend toward the analytical result vz = 1. Curves for the
Floquet Ising model, the generic reflection symmetric gate,
and the fixed random gate behave reasonably well.
Fluctuations are still visible for 7,,,, up to 8, and it is hard

UEp

Symmetric(z = 0.8) ——
08 | Fixed random
Floquet Ising —e—
Dual unitary h, = 0.6
0.6 Symmetric(z = 0.5) i
cos, w =0
cos, w = 0.3 ——

FIG. 19. The approximate entanglement velocity vz computed
by truncating to times < ¢, for 7 up to 8. The first four curves are
for the four circuits studied in Sec. V [the first three are also the
subject of Fig. 18(b) for vg]. The fifth shows the generic
symmetric gate [Eq. (72)] at a weaker coupling strength. The
two curves with w =0 and w=0.3 are the entanglement
velocities for the Floquet Hamiltonian with sinusoidal field in
Eq. (107). Because of the absence of circuit structure, their
starting values at # = 1 are not identical to that obtained from the
random average, while the others are.

to determine the functional form for convergence directly
from this plot. However, in the next subsection, we give
evidence for exponential suppression of the irreducible step
weights in these models at large ¢.

We also include in the plot a continuous time model with
a static Hamiltonian [the limit w = O of the Floquet model
with a sinusoidal field, Eq. (107)]. This model requires a
separate theoretical analysis, and we include it only for
comparison. Because of continuous time translation sym-
metry, it has a diffusive conserved energy density. This
diffusive density is expected to suppress vg to zero for the
second Rényi entropy [83,106,107] and is likely to intro-
duce parametrically larger (in ¢) finite time effects [108].

S. The suppression of irreducible weights

In Sec. IIT A, we conjecture that L clusters inside a thick
domain wall are exponentially suppressed at large ft,
leading, in turn, to an exponential suppression of the
irreducible step weights at large 7. We show this suppres-
sion explicitly for a typical fixed realization of a random
circuit at large ¢g: There, long steps of size ¢ are suppressed
by O(g™") compared to the leading-order contributions to
the domain wall free energy on this scale.

Here, we examine the nature of the decay in step weights
at large ¢ numerically for translation-invariant spin-1/2
models. Quantitatively, we can compare W(x,7) with
exp(—seqvgt), where the former represents the irreducible
step weight for a single step of size t, while the latter
represents the asymptotic scaling of the partition function
Z(0,1) for a domain wall of duration ¢>> 1. Their ratio
should decay exponentially according to our conjecture.
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1071 | \.
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10! 1 -\\\‘
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10 ] —— [W(z =0, &
1 = [W(z=11)
10-34 = Z@@=0.)
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107! 4
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10779 e w@=0,0) Y
4] T We=11)
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10778 Z@ =0,
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10 ? —o— exp(—SeqUEt)
T
1

FIG. 20. The decay of |W|and Z at x = 0, 1 and exp(—Seqv?)
for (top) reflection symmetric gate in Eq. (72), (center) Floquet
Ising model in Eq. (80), and (bottom) dual-unitary gate in
Eq. (81).

In Fig. 20, we plot W(x, t) along with both Z(x, ¢) and
exp(—seqVgt) as a comparison. The best case is the dual-
unitary circuit, where a faster exponential decay of W (x, 7)
with respect to both Z(x, ) and exp(—seqvgt) is clearly
visible. The Floquet Ising model follows a similar trend.
Though this trend is less clear for the reflection symmetric
gate at x = 0, that is consistent with the fact that this gate is

—— J(x=0,t)
== Slope = —0.464

0.40 1

0.30 1

2.0

FIG. 21. The diffusive decay of Z(x, ) at x = O for the chaotic
Ising model in Eq. (80). Both axes are logarithmic.

more weakly entangling than the others (Fig. 19) and takes
larger ¢ to reach convergence.

6. Diffusive character of the domain wall

In Sec. VI, we argue that for generic choices of the gate
the wandering of the domain wall is diffusive at large
scales. One consequence of this result is the 7~/ scaling
in Eq. (83): Z(0,1) ~¢~'/2. We state in the caption to
Fig. 12(a) that the data are in good agreement with this
scaling. This agreement is demonstrated in Fig. 21, which
shows Z(0,¢) versus ¢ on a log-log plot.

APPENDIX C: RELATION BETWEEN ROOT
AND LINE TENSION

We give details of the relation between £(v) and the root
bo(s) described in Sec. IVA. Let

7(s, 1) = ZZ(x, t)esr. (C1)

This expression is the partition function with a fixed force
on the end point rather than a fixed end point.
Asymptotically, it should scale as

2(s. 1) ~ exp[—segI'(s)1] (C2)
with [18]
[(s) = min {5(0) - :—s} , (C3)
eq

so that —se,I"(s) and s.,&(v) form a standard Legendre
transform pair. On the other hand,

t

(C4)

Assuming that the smallest root of (s, b) for a given s is
by(s), then for |b| < |by

1
)b~ ————. C5
Do, ~ e (c3)
Matching the expansions in b,
Seql'(s) = In[bo(s)]. (Co)

Finally, inverting the Legendre transform yields the expres-
sion (61) in the main text for £(v).

Generically, by(s) is a single root. But in the dual-unitary
case, b is a double root for s = 0. In Sec. VI, we postulate
that Z(x,t) for the dual-unitary model is approximately
constant in space, and so z(s = 0, 1) ~ te”*a’. The factor of
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t in the front indicates a double root on the right-hand side
of Eq. (C4) in the limit of large 7.

APPENDIX D: THE CONTINUUM
EQUATION FOR Z

For completeness, let us give a more general derivation
of the continuum equation which makes contact with the
equation in Ref. [18] for the dynamical evolution of the
state entanglement. Writing Z = exp(—S), we assume that
the solution is such that higher derivatives of S(x,7) are
small at late times (to be checked self-consistently) and
expand in derivatives.

So far, we consider a domain wall which is tethered at
both the top and the bottom. To compute the entanglement
S(x, ) of a state across an entanglement cut at position x,
we should instead take the domain wall to be tethered at
position x at the top and free at the bottom; the initial
condition Z(x,0) = exp[—S(x,0)] is set by the entangle-
ment in the initial state. The recursion relation still applies.

To reduce clutter, let us write (y, 7) instead of (Ax, Af) in
the recursion relation. In terms of S(x, 7), it reads

=St = ZW(y, 7)e ST, (D1)
V.7

Expanding in the exponent gives

2 2
1 = ZW(y,T) exp <yS/ + 18 —%S” - %S - yrS’).
v,z

(D2)

Generically, S is of order ¢, §" and S are of order 1, and the
higher derivatives are smaller. Therefore, the leading-order
equation is simply

1= ZW(y,r) exp (yS' + 75).

VT

(D3)

Using the definitions in Sec. IV A, this equation is solved
by

S = 5egT(S"), (D4)
so that I" is the growth rate, which depends on the derivative
S’ of the entanglement as a function of the spatial location.
We are interested in the subleading corrections to this
equation. Let us define an s-dependent “average” of an
arbitrary function F of the step:

(F(y,7)), = ZW(% T)eserseqF(s)rF(y’ 7). (D)
YT
From the relations for the generation functions,
(s =1. (D6)

We also define the associated velocity v(s) = (y),/(z),. By
differentiating Eq. (D6) with respect to s, we have
dr’(s)
=— ) D7
os) = —5eg (7)

This equation is the coarse-grained velocity of the mem-

brane, since it also solves the Legendre transform [Eq. (61)]

relating the growth rate I'[s] and the line tension £(v).
We may then write Eq. (D2) as

<eT[S—seqF(S’)]e—(yz/Z)S”—(TZ/Z)S—yTS/+~~~>S/, (D8)

where the - - - are higher derivatives. The exponent is now
written in terms of quantities that are small at late times and
so may be expanded:

(g8 + (2)gS + 2<y7>s’~§/
21)g .

We may use the leading-order solution to replace the time
derivatives on the right-hand side with space derivatives
[cf. Egs. (D4) and (D7)]: §' ~ —v(8')S"” and § ~ v(§')2S".
Then,

S = s L(8) + (DY)

(b = v(8)7?)

S = seqI'(8") + 20) S”. (D10)
By differentiating Eq. (D6) twice,
(b —v(s)7?) _ _dT(s)
(z) 7 (D11)

SO

. 1
S = Seq (F(S’) - EF”(S’)S”>. (D12)
(The primes on I' indicate derivatives with respect to its
argument.)

We may also write everything in terms of £(v). From the

Legendre transform relationship between £(v) and T'(s)
and Eq. (D7),

£(v) = s + 2808 (D13)
Seq
we differentiate twice and obtain
s 1 1
&) =—, &) = =- . (D14)
Seq Seq?'(8) saql"'[s]

This result along with Eq. (D12) gives a diffusive equation

. 1
S =5eqEW) + 529"

2squ”(1j) (DIS)
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with diffusion constant D = 1/[25.,,&(v)], consistent

with Eq. (85).

APPENDIX E: TRIANGLE WEIGHTS FOR TWO
COMMUTING DOMAIN WALLS

For reference and use in Appendix A 5, here we list exact
expressions for triangle weights J|I, (12)(34);aa]. This
expression corresponds to two incoming ‘“‘commutating”
elementary domain walls at the top of the triangle. (An

We categorize them in terms of o,:

8 —¢% —12¢" + 14¢% + 22

elementary domain wall is a transposition.) We also list
their order relative to the weight of two separated domain
walls. We use the notation from Ref. [14], drawing one line
for each elementary domain wall crossing an edge of the
triangle.

There are in total six classes. Within each class, the
configurations are related by the combination of reflection
symmetry about the center axis, conjugation by (12), (34),
or both.

I v (12)(34)

(12)(34)

(i) T and (12)(34)—

(ii) (12) and (34).—

(¢* =9)(¢* —4)(¢* + 1)

(¢® —12¢* +12)(¢* — 1)

?7 [1+q26+0<(;2>} (E1)

uV (12)(34) ?A?
(12)

(iii) (13)(24) and (14)(23).—

(¢* = 9)(g* — 4)(¢* + 1)¢?

S/ | b-gee(@)] @

2

nv(w) (34) , , )
2 —

* = %/ —t+o(=)]. E3

(13)(24) (4" = 9)(¢* +1) Lﬁ <q6>} (E3)

(iv) (13), (24), (14), (23), (1234), (1423), (1243), and (1342).—

Uv (12)(34)

+6)(¢"—1)

2

(1234)

o v QLT
(* —9)(¢* —4)(¢* + 1)g?

|| @) e

(v) (123), (124), (132), (142), (234), (134), (243), and (143).—

VIQ )(34)

q
(123) % (a* = 9)(

ey | 5 | [Gre(s)]

031066-34



ENTANGLEMENT MEMBRANE IN CHAOTIC MANY-BODY ...

PHYS. REV. X 10, 031066 (2020)
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