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ABSTRACT: In this study, we use self-consistent field theory to
demonstrate that the A(BA’), miktoarm architecture can strongly deflect
order—order phase boundaries to large volume fractions f,. The A(BA'),
architecture achieves this strong deflection by combining the effects of 40
miktoarm frustration and block bidispersity and is shown to stabilize discrete 35
spheres and cylinders of the A block up to values of f, = 0.58 and f, = 0.78,
respectively. We next analyze the prevalence of chain bridging vy in both
neat miktoarm melts and in homopolymer blends that form the fluctuation-
stabilized “bricks and mortar” phase. These calculations demonstrate that
high vy and f, can both be simultaneously achieved with highly asymmetric 15
miktoarm stars, a property especially useful for the design of tough
thermoplastic elastomers. Finally, we show that these miktoarms exhibit
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B INTRODUCTION

The phase behavior of block polymers is governed by a trade-
off between thermodynamic driving forces that seek to
minimize both interfacial energy and chain stretching.l’2
Interfacial energy arises from the chemical incompatibility of
different blocks, and favors morphologies that minimize the
interfacial area between different domains. This interfacial
driving force is balanced by the connectivity of the block
polymer and the entropic penalties that arise as the polymer
chains stretch to fill space. In linear AB diblock copolymers,
the relative importance of interfacial energy and chain
stretching is modulated by f,, the volume fraction of the A
block, and yN, where y is the Flory—Huggins interaction
parameter and N is the degree of polymerization.”* Depending
on the values of fy and yN, a linear AB diblock will self-
assemble into body-centered cubic (BCC) spheres, hexago-
nally packed cylinders, double gyroid, and lamella, in addition
to small regions of close-packed spheres” and the O70 network
phase.”” Notably, the values of f, where these phases are stable
are relatively unchanged for many polymer architectures, such
as symmetric triblocks (ABA), long alternating (ABABA...),
and the (AB), star architecture.®

For other architectures, the boundaries between different
phases can be significantly distorted to different values of f,.
One such architecture is the so-called AB, miktoarm star,
which consists of a sin§le A arm and n B arms that emanate
from a single junction. 19 In this architecture, the high steric
frustration of the B arms favors curvature of the AB interface
toward the A domains, which results in the deformation of
phase boundaries between ordered phases to larger values of
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fa'U"? The effect of this deformation increases with n, but
saturates when n ~ 4.'>"> A similar effect can be observed in
conformationally asymmetric linear chains where the A and B
blocks have different statistical segment lengths, b, and by
where b, > by.'" In this case, the smaller statistical segment
length of the B block results in a higher energetic penalty to
stretching, which favors curvature of the interface toward the A
domains. A notable consequence of the deflection of phase
boundaries to larger f, is the stabilization of new sphere phases,
such as the Frank—Kasper phases ¢ and A15.'>'*7!°

Another approach for deflecting phase boundaries is
achieved through asymmetric dispersity of the A and B blocks.
Bidispersity in asymmetric triblocks (ABA’) or mixed brushes
reduces chain stretching by decreasing the proximity of A
monomers to the interface.'”~'” This effect stabilizes interfaces
that curve toward the A domains, which leads to the
deformation of phase boundaries to larger f,.'”~** This effect
has been confirmed experimentally for both diblock and
triblock copolymers.”*~>°

Though the notion of deflecting phase boundaries may seem
somewhat abstract, the ability to stabilize phases at different
values of f, has numerous practical consequences. One
compelling example is the case of thermoplastic elastomers
(TPEs) where the deflection of phase boundaries can result in
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TPEs that possess a unique combination of hardness,
toughness, and elasticity. Typical TPEs are based on the
ABA triblock copolymer architecture and consist of a glassy A
block (e.g., styrene) and a rubbery B block (e.g., isoprene) that
self-assemble into a microphase with discrete A domains. At
use temperatures (T‘B < T TgA), the A domains act as
physical crosslinks and yield an elastomer, yet at high
temperatures (T > Tg,), the physical crosslinks fluidize
facilitating melt processability. A key requirement in TPEs is
that the glassy domains remain discrete (i.e., sphere or cylinder
morphologies); if the glassy domains percolate, then elasticity
is lost and the materials become plastic.’® In linear ABA
copolymers, this places a restriction that f, < 0.3,”” which
results in materials that are relatively soft, as the modulus of a
TPE typically increases with increasing f,.”° In principle,
increasing the values of f, while maintaining discrete A
domains should result in a material that is hard, tough, and
elastic, which is a unique property combination in unfilled
TPEs. The strategies described above to deflect phase
boundaries can be used to stabilize sphere and cylinder
morphologies at larger values of f,, thereby providing a route
to the this new class of TPE materials.

Recent work by our group”®™® has made progress toward
this goal using A(BA’); miktoarm star polymers. This design
combines the phase boundary deflection resulting from the
miktoarm design and block-length bidispersity to deform phase
boundaries to larger values of f,. Initial simulation work
indicated that this miktoarm architecture results in exceptional
deformation of phase boundaries, and could achieve cylinders
of species A at volume fractions of up to f, = 0.55,°° a
prediction that was subsequently confirmed experimentally.”’
Perhaps, most importantly, mechanical tests on these materials
indicate that they are indeed strong, tough, and elastic.”’
Polymer alloys consisting of A(BA’); miktoarm stars and A
homopolymers also demonstrate intriguing phase behavior.
These alloys have been shown to exhibit highly asymmetric
lamellar structures with A volume fractions of 97%,® as well as
the so-called “bricks and mortar” (B&M) phase,”’ an aperiodic
phase consisting of discrete A domains (bricks), surrounded by
a continuous B matrix (mortar) that has been shown by field-
theoretic simulations (FTS) to be stabilized by fluctuations.’”

Building on this prior work, in this study, we explore the
limits of the miktoarm design to determine the maximum
deflection of phase boundaries that can be achieved with the
A(BA’), architecture. Using self-consistent field theory
(SCFT), we have found that for a judicious choice of
architectural parameters, the miktoarm design can achieve
dramatic distortion of the phase diagram, with the sphere
phase stable up to f, = 0.58 and cylinders up to f, = 0.78. This
exceptional deflection of phase boundaries is achieved through
a cooperativity between the steric congestion of the miktoarm
design and the bidispersity of the A and A’ blocks. To examine
the suitability of these materials for TPEs, we examine the
prevalence of chain bridging in both neat miktoarm melts and
in polymer alloys that form the B&M phase. We show that the
bridging fraction in the cylindrical phase is nearly constant with
both f, and homopolymer volume fraction ¢y, respectively,
and that bridging fraction increases significantly with n, the
number of BA’ arms. This indicates that the deflection of phase
boundaries and the connectivity of the rubber network are
approximately orthogonal parameters, and that each can be
optimized independently when designing miktoarm-based
TPEs. Lastly, we show that this deflection of phase boundaries
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opens up large windows of parameter space where the Frank—
Kasper phases ¢ and Al15 are predicted to be stable.

B METHODS

Miktoarm Model. We consider a neat incompressible melt of n,
A,(BA"), miktoarm star polymers in volume V. Each miktoarm star
polymer consists of / arms that are A homopolymers and n arms that
are BA’ diblocks. The degree of polymerization of each of arm type is
given by N, and N, = Ny + Ny, respectively. The total degree of
polymerization of a miktoarm star is, therefore, N, = IN, + nNg, and
the volume fraction of the A block is f, = (IN, + nN,)/N,. We

define N = N + Ny, and note that N is unchanged when varying the
number of arms n and /. This choice was made to be consistent with
the phase diagrams of Lynd et al.*® where results were presented in
terms of Npa' = N + Ng,. The bidispersity of the A and A’ blocks is
represented by the block asymmetry parameter 7 = N,/(N, +
Ny)."”** For simplicity, we have assumed that A and B monomers
have equal statistical segment lengths, b = b, = bg, and that they
occupy the same volume, v, All lengths were normalized by the

unperturbed radius of gyration of a linear chain Rg =4 b*N /6.

By following standard procedures, a field-theory of this model
(using notation of “model E” in ref 35) can be derived where the
canonical partition function is given by

Z(n, N, T) = ZO/Z)W+/Dw_exp(—H[w+, w_]) (1)

Hlw, w_] = /)()/.dr‘[i14)(1')2 - iw+(r)] — 1, In Q[wy, wg]
(2)

where Z, contains the contribution from an ideal gas of miktoarm star
polymers, the fields w,, wg = iw, F w_, y is the Flory—Huggins
parameter that controls the interactions between A and B blocks, and
Po =1yl = n,N,/V is the average monomer number density. All
information about the polymer architecture and chain statistics are
contained within Q[w,,wg], the single-chain partition function. For
the miktoarm architecture

1
Qlwy, wgl = ;/d"l:I qu(rz Nu) 3)

where the product runs over all v = / + n arms in the miktoarm star,
N, is the length of the vth arm, and the propagator, g, describes the
probability of finding a monomer at spatial position r and contour
position s, by propagating from the free end of the vth arm. For
Gaussian chain statistics, q,(r,s) satisfies the modified diffusion
equation

b_ZVZ

oV 4,(rr9) = wlr; $)q,(r, )

0

s q,,(r; s) = (4)
with initial condition q,(r,0) = 1, and w,(r;s) = w(r) if contour
position s is a monomer of type K (for K = A or B). The
complementary propagators, g} (r,s), also satisfy eq 4 but are subject
to the initial condition g;(r,0) = I1.29.(r,N,), which reflect the
constraint that all » arms join together at the star center. The density
operator is defined as

D . sq (r,s)g (r —s
pK<r>—VQ;/QquU<, ) (r, N, = 5) “

where / o.ds indicates an integration over all contour positions s
within blocks of monomer type K (for K = A or B), and the volume
fraction is given by ¢y (r) = pi(r)/pq.

Self-Consistent Field Theory. In SCFT the functional integral in
eq 1 is assumed to be dominated by the inhomogeneous mean-fields
w¥(r) and w*(r). Under this approximation, the free energy, F, of a
mean-field configuration is given by

https://dx.doi.org/10.1021/acs.macromol.9b02254
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= —lo Z%Hw*,wi<
kT 8 Lt w-]

(6)

where w¥ and w* are saddle-points of H that satisfy

O6H[w,, w_]

_ G6H[w,, w_]
Sw(r) B

Sw_(r) | -
wy,w’

=0

Wit 7)

The fields wi and w* are solved using a steepest descent scheme
with field updates performed using the semi-implicit Seidel scheme.*®
The modified diffusion equation was solved using a second-order
operator splitting algorithm.>”

Phase diagrams were constructed by computing the free energy of
candidate phases at different model parameters (i.e., fy, 7, /, n, ¥N),
and drawing phase boundaries where the intensive free energies of
two phases are equal. Additional details, including spatial and contour
resolutions, are provided in the Supporting Information.

Field-Theoretic Simulation of B&M Phase. The B&M phase
was formed using FTS of blends of A(BA’); miktoarms and the A
homopolymer as described in previous work.>> To numerically
stabilize these calculations and to remove UV divergences, the model
was adjusted from that described in eq 2 to include softer contact
interactions by smearing particle centers with a Gaussian convolution
of width a and permitting local deviations from the total density p,
through the use of a Helfand compressibility.*®

To compute the bridging statistics in the B&M phase, the fields
from the FTS simulations were subsequently relaxed to a local saddle
point using SCFT. Although the B&M phase spontaneously emerges
only in the presence of fluctuations, we found that instantaneous
snapshots of the B&M phase represent stable SCFT saddle points,
and that this procedure resulted in an intact B&M morphology for the
bridging analysis. Once the resulting w¥ and w* fields were obtained,
they were used to calculate the bridging fraction as described in the
following section.

For our calculations of the B&M phase, neat A(BA’)3 miktoarms
with fy = 0.4 and 7 = 0.9 were blended with homopolymers of length
aN, where a = 0.14, with the homopolymer volume fraction given by
¢y For these calculations yN, = 34, the Helfand compressibility
coefficient {N; = 100, the dimensionless chain number density C = 20
(N = 6°C?), the Gaussian smearing width a = 0.2R,, and cell size is
101.7R, X 105.7R, and a spatial resolution of 512 X 512 (simulations
were conducted in two dimensions). Field updates were performed
using the Euler—Maruyama predictor corrector method.*

Bridging. There are numerous examples in the literature for
calculating the bridging statistics of linear block copolymers.””*’
More recently, Spencer and Matsen have developed an elegant
approach to calculate the bridging statistics of (BA), stars consisting
of n identical diblock arms.*" The approach described here extends
the work of Spencer and Matsen to account for the / homopolymer
arms that compose the A,(BA’), considered in our work.

The first step in computing bridging statistics is to define a region
R within the simulation cell. This region R is defined using a
converged density profile from SCFT, and is typically centered on a
discrete A domain. For well-ordered symmetric morphologies (i..,
lamella, cylinders, spheres), all A domains are equivalent, and region
R is defined by first performing a Voronoi tessellation using all A
domain centers, and then defining R as one of these Voronoi cells.
For other morphologies like the B&M phase or in Frank—Kasper
phases, each A domain is not necessarily equivalent and it is necessary
to define a different R for each A domain within the morphology.
Furthermore, definition of region R for the B&M phase is
complicated by the rough and asymmetric shape of A domains,
which prevents the use of a simple Voronoi tessellation as in the
symmetric morphologies. Our procedure for defining R for the B&M
phase is described in the Supporting Information.

Once R is defined, the next step is to compute a modified
propagator for the BA’ arms, qp,(r,s), which corresponds to the
propagator for an arm with its B—A’ junction constrained to R.
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Gga(r,s) is obtained by solving eq 4 with fields w¥, subject to the
modified initial condition
B q.,(r,s=N,) ifreR
Tpua(r s =Ny) = ™
0 otherwise (8)

and propagating forward until s = Ny, As Gga(r,5) is not periodic in
space, it is necessary to perform this step using a large-cell simulation
to remove finite size effects. In practice, this was achieved by
periodically replicating the w¥* fields from the unit-cell calculations
several times in each dimension prior to the calculation of Gg,(r,s).

Given Gp(r,s), the single chain partition function of a A;(BA’),
miktoarm star centered at r with m arms in region R and n — m arms
outside of R is

Q,(r) = (nm)q;,\("r NBA’)[qBA('z Nga) — qBA(": Nga )"

X qy(r, Ny) ©)

As explained by Spencer and Matsen,” the first factor is the
number of ways of choosing m of the total n BA’ arms, the second
factor is the partition function for m arms with their BA" junction
constrained to R, and the third factor is the partition function for n —
m arms constrained to have their BA’ junction outside of R. The final
term is unique to our work and provides an additional constraint
because of the /A homopolymer arms, where g,(r,N,) is the
unmodified single chain propagator. Upon normalization, we define
the joint probability distribution

B(r) =mQ (r)/Q (10)

where P, (r) gives the probability that an arm in R belongs to a star
centered at position r that has a total of m arms in R. The factor of m
accounts for the multiplicity of star arms in R. The normalization
factor Q' is the partition function of a star with one or more arms in R

41

n
Q' = fdrz mQ_ (r)
m=1
=n f drz,, (r, Nyp)a! () Npw)g' () N) (1)
where the second line makes use of the binomial theorem and the

identity m(f;) = "(;?1 - 11)

In the A,(BA’), miktoarm stars considered here, each of the n BA’
arms in the star can either loop or bridge between region R and other
A domains. This results in a distribution of different star
configurations with different degrees of looping/bridging. For
example, for A(BA’); stars, there can be one, two, or three BA’
arms in region R, and the star center can either be in R or outside of
R, resulting in six possible chain configurations (see Figure S2). This
distribution of chain configurations can be determined from P,,(r) by
calculating the integrated (or marginal) probability distribution, P, of
b arms bridging between region R and all regions other than R

f drB,_,(r) + f drP(r) b<n
~ rerR réR

B,
>/r-$R der(r) (12)

Note that this equation accounts for the symmetry of equivalent
miktoarm stars for both r € R and r ¢ R (Figure S2). Finally, the
bridging fraction, vy, can be obtained by summing over all
configurations with b > 0

b=n

n
vy = Z Pb=1-P
b=1 (13)
where the final expression uses the fact that Y'_ P, = 1 and P, is the
fraction of miktoarm stars that form loops with all of their n BA” arms.
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B RESULTS

Phase Boundary Deflection. To examine the limits of
phase boundary deflection that can be achieved with the
A(BA'), miktoarm architecture, we begin by examining the
cylinder/gyroid phase boundary for different values of 7 and n
for yN = 40 (Figure 1). The cylinder/gyroid phase boundary

A(BA"); A(BA)s

Wl

A(BAY),

1.0
.\Q\g
0.9
Cylinder Gyroid
0.8 -
»~
0.7 r‘
—e— A(BA');
06k —B- A(BA)); ]
—¥— A(BA')s
A(BA');
0.5 A(BA’)g 4
0.2 0.3 0.4 0.5 0.6 0.7 0 8

fa

Figure 1. Cylinder-gyroid phase boundary as a function of block
asymmetry parameter, 7, and block fraction, f,, for A(BA’), miktoarm
stars for yN = 40. For optimal choices of 7 & 0.925 and n = 9 the
cylinder-gyroid phase boundary can be deflected to f, ~ 0.78.

corresponds to a transition from discrete A domains
(cylinders) to continuous A domains (gyroid), which induces
a transition from elastic to brittle thermoplastic elastomers.
Consistent with our prior work,”® A(BA’), miktoarm stars
achieve modest deflection of this phase boundary relative to
ABA'’ triblocks for all values of 7, shifting the maximum f, at
which cylinders can be achieved from 0.37 to 0.62. For
increasing n > 3, however, the direction of phase boundary
deflection exhibits a strong dependence on 7. For 7 < 0.9,
increasing n > 3 results in deflection of the phase boundary to
decreased values of f, with phase boundaries comparable to the
linear ABA’ triblocks. When 7 = 1.0, the phase boundaries are
approximately constant for all n > 3, indicating that the effect
of AB, miktoarm frustration on the deflection of phase
boundaries has essentially saturated, as found previously for
the AB, limit.'"> However, for the narrow range of 0.9 < 7 <
0.975, the deflection of the phase diagram to larger f, is quite
dramatic, with cylinders stable up to f, = 0 78 for A(BA'),.
Prior work by Matsen on ABA triblocks'® and by our group
on A(BA’); miktoarm stars™® has argued that this optimal
value of 7 can be understood as a trade-off between bidispersity
and A’ pull-out. The energetic benefits of bidispersity increase
as 7 approaches unity; as the A" blocks become shorter and the
A blocks grow longer (to maintain fixed f,), the total chain
stretching energy is decreased. This occurs because the
bidisperse brush permits a larger fraction of A monomers to
be far from the A—B interface, which results in a net decrease
in chain stretching energy. Yet, when the A’ blocks become too
short, they pull out and mix with the B domain, and the
benefits of bidispersity are lost. The optimal value of 7 = 0.925
appears to strike a balance between these two competing
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effects, and results in significant deflection of the cylinder/
gyroid phase boundary.

The balance between bidispersity and chain pull-out can be
quantified by examining the bridging fraction, vy, as a function
of 7 in the cylindrical phase (Figure S3a). Increasing 7 2 0.9
results in a rapid decrease in vg, which corresponds to the pull-
out of the short A" blocks. Notably, the pull-out of these A’
blocks is accompanied by a rapid increase in the domain
spacing (Figure S3b), an effect first noted in linear ABA’
triblocks.'” This occurs because the mixing of the extracted A’
blocks relieves the chain stretching in the B block, which
stabilizes the mlcrophase at larger domain spacings. Prior work
by our group”® noted that this rapid increase in domain
spacing occurs approximately at the optimal value of 7, and our
results presented here are consistent with this finding.

We next examine how such large values of f, affect the
appearance of the cylindrical phase (Figure 2). For moderate

A-B interface
(fa = 0.5)

Voronoi
Cell

Figure 2. Density profiles of the cylindrical phase at increasing
volume fraction, f,. For moderate volume fractions f, = 0.3—0.5, the
A-B interface is smooth and cylindrical. For A(BA’), miktoarm stars,
which stabilize the cylindrical phase up to f, > 0.6, the A—B interface
becomes faceted as the interface deforms to match the Voronoi cell of
that domain. The plotted densities correspond to A(BA’)y miktoarm
stars with 7 = 0.925 and yN = 40. The dashed line denotes the
contour where f, = 0.5.

volume fractions f, = 0.3—0.5, the diameter of the cylinder is
small relative to the Voronoi cell of that cylinder, and the A—B
interface is observed to be round and smooth. For larger
volume fractions f, > 0.6, the diameter of the cylinder
approaches the size of the Voronoi cell, and the cylinders are
observed to deform into faceted domains, where the A—B
interface deforms to match the Voronoi cell of the cylindrical
domain (in this case, to form a hexagon).

Prior work by Grason and Kamien has examined the
transition from smooth to faceted interfaces as a shifting
balance between regimes where either interfacial energy or
chain stretching dominate.'”” When f, is low, the stretching
penalty incurred by the B chains to fill the Voronoi is relatively
small and the interfacial energy dominates, which results in
smooth A—B interfaces. The stretching penalty incurred by the
B chains increases with f,, which eventually leads to a cross-
over where the chain stretching dominates relative to
interfacial energy. Chain stretching favors interfaces that
match those of the Voronoi cell, and this cross-over leads to
the deformed domains that we observe in Figure 2.

The effects of 7 and n are not unique to the cylinder/gyroid
phase boundary, and are also observed to deform the phase
boundaries between the sphere/cylinder and gyroid/lamellar
phases (Figure 3). As with the cylinder/gyroid phase boundary
discussed in Figure 1, the extent of phase boundary deflection
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Figure 3. Phase boundary deflection with miktoarm architecture for
classical phases (BCC spheres, hexagonal cylinders, double gyroid,
and lamella). All phase boundaries deflect to larger f, with increasing
number of BA’ arms. Whereas phase boundary deflection in AB,
miktoarm stars (7 = 1.0) saturates by n ~ 4, the bidispersity effect of
the small A’ blocks when 7 = 0.9 and 0.925 permits continued phase
boundary deflection up to n = 7. Simulations were performed at yN =
40.

is strongly dependent on 7. In the limit of 7 = 1, the A’ blocks
shrink to zero, and our miktoarm stars become the widely
studied AB,."”'%"*7'*" For these molecules, the phase
boundary deflection saturates by n ~ 4, with only minor
deflections for increasing number of arms. A choice of 7 = 0.9
delays this saturation to slightly larger values of n = 5.
However, for 7 = 0.925 saturation is not observed for the
sphere/cylinder and cylinder/gyroid phase boundaries up to n
= 7. In this case, the additional BA" arms result in a sphere/
cylinder boundary at f, = 0.68, and a gyroid/lamellar boundary
fa = 0.81, significantly higher values than observed for the
widely studied AB, miktoarm stars (f, = 0.37 and f, = 0.6,
respectively). Note that this analysis was performed at yN = 40
and that different values of yN can have a significant effect on
the locations of these phase boundaries (to be discussed in
Figure 9). Nonetheless, these results indicate that the
combination of bidispersity and miktoarm frustration present
in the A(BA’), architecture interact cooperatively, and result in
larger phase boundary deflections than could be achieved by
either effect alone.

Whereas such deflection of phase boundaries is impressive,
the ability to synthesize such precise miktoarm stars can be
challenging in practice. For example, incomplete coupling
reactions between the polymer arms and the star core””** or
arm dispersity” can result in a variable number of both A and
BA’ arms, which could affect the deflection of phase
boundaries discussed in Figure 3.

To examine if this is indeed the case, we have recomputed
the cylinder/gyroid phase boundary for variations in both the
number of A and BA’ arms, an architecture denoted by
A,(BA’), (Figure 4a). For increasing values of /, the extent of
phase boundary deflection is significantly reduced. When
I =1, a deflection of the phase boundary to f, > 0.5 requires
only n = 2, whereas / = 2 requires n = 3 and / = 3 requires n =
S. Additional A arms counteract the induced curvature toward
the A domains and favor flatter A—B interfaces, which retards
the deflection of the phase boundaries with increasing n.
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Figure 4. Effect of number of A homopolymer arms, /, on phase
boundary deflection in A;(BA’), miktoarm stars for 7 = 0.9 and yN =
40. (a) As/ increases, the deflection of phase boundaries is delayed to
larger values of n. (b) Phase boundary deflection for A,(BA’),
miktoarm stars collapses to a single curve based on the ratio of /1.

Notably, the phase boundaries for different values of / can be
collapsed onto a single curve by plotting the ratio of BA" arms
to A arms or n// (Figure 4). We note that our analysis here has
assumed that n > /. Maintaining this equality is critical because
if n </, then the phase boundaries will be deformed in the
opposite direction to that desired. Taken together, our results
suggest that the ratio of A to BA’ arms is a critical parameter
when designing miktoarm architectures that seek the maximum
degree of phase boundary deflection. One promising synthetic
approach that offers good control over this ratio is the recently
developed y STAR technique.”

Bridging. As discussed in the introduction, one possible
application of the A(BA’), miktoarm design is for increasingly
hard and tough thermoplastic elastomers (TPEs). Such
materials can be achieved by taking advantage of the large
phase boundary deflections discussed in Figure 1; the large
values of f, should result in materials with a high modulus,
whereas the discrete A cylinder domains will maintain
elasticity. The mechanical response of such materials will
also be influenced by the configurations of the polymer chains
themselves. Materials where a large fraction of the polymer
molecules have their A and A’ blocks anchored in different
glassy A domains (so-called bridging configurations) should be
more robust mechanically than materials where most polymers’
A and A’ blocks are anchored in the same domains (i.e.,
loops). We have developed an approach to calculate the
prevalence of bridging configurations in melts of A,(BA'),
miktoarm stars (see methods), and employ it here to examine
how the deflection of phase boundaries affects the propensity
of miktoarms to bridge between different A domains.

We begin by calculating the spatial distribution P,,(r) of
A(BA'); miktoarm stars for the cylindrical morphology (Figure
Sa—c). Recall that P,,(r) is the probability of that an arm in R
belongs to a star whose junction is at position r and has m arms
in region R. For stars with one arm in R (m = 1), the junction
of these stars are located at the corners of the cylinders, which
permits the miktoarm stars to bridge between multiple
cylindrical domains (Figure Sa). When two or more arms are
constrained in R (m > 2), the position of the stars is
constrained to lie directly between two cylinders (Figure Sb,c).

The probability of each of these star configurations is
quantified by the integrated probability distribution P, of
A(BA’), stars for n = 3, 5, 7 (Figure 5d). Recall that P, is the
probability that b of the total n arms bridge between different
A domains, and that the distribution of P, quantifies the
prevalence of different looping and bridging star configurations
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Figure S. (a—c) Joint probability distribution, P, (r), of A(BA’)s
miktoarm stars centered at position r with one, two or three BA’ arms
constrained to the central cylinder region R. Dashed lines denote
contours where f, = 0.5. (d) Integrated probability distribution, P,, of
b bridging arms for A(BA’);, A(BA’);, and A(BA’), miktoarm stars.
For these calculations f, = 0.54, yN = 40, and 7 = 0.9.

within a morphology (see Methods and Figure S2). As the
number of BA’ arms increases, P, broadens and shift to larger
values, which indicates that an increase in # leads to an increase
in the number of bridging arms between domains in the
cylindrical network. For n = 3, 5, 7 the maxima occur at

B~ %1, which suggests that combinatorial entropy is a

dominant factor in dictating the distribution of bridging versus
looping chains. However, as P, is not symmetric about this
maximum and the distribution skews toward higher values of b,
our results suggest that bridging chains are slightly preferred to
looping chains. We hypothesize that this results from the
excluded volume of the arms, which favors bridging
configurations as they relieve the steric congestion of the B
monomer in the vicinity of the congested A—B interface. The
trends seen in P,,(r) and P, for the cylindrical morphology are
qualitatively similar to the BCC sphere and lamellar
morphologies (Figures S4 and SS).

From P,(r) and P,, we can calculate the bridging fraction,
Up, the probability that a miktoarm will bridge between two or
more A domains (Figure 6). Consistent with prior work,'”*!
we have neglected the gyroid phase in this analysis. As the
number of BA’ arms increase, vy increases for all values of f,.
For example, in the cylinder phase, the bridging fraction
increases from 0.8 to 0.93 to 0.97 as n = 3, 5, 7. As shown
previously,'”*" the bridging fraction is strongly dependent on
morphology, with discontinuous changes in bridging fraction at
phase boundaries (shown by dotted lines in Figure 6). In the
sphere phase, vy decreases slightly with f,, whereas in the
lamellar phase v drops dramatically. The decrease in vy in the
lamellar phase results from the rapid detachment of A" blocks
with small increases in f, (see Figure S6). In the cylindrical
phase, vy is approximately constant for all f,, even up to large
volume fractions of f, = 0.7 for A(BA’);. This result indicates
that for the cylinder phase, phase boundary deflection can be
achieved without sacrificing the bridging fraction, indicating
that TPEs based on the miktoarm design should exhibit good
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Figure 6. Bridging fraction, vy, as function of f, for A(BA');, A(BA'),,
and A(BA’), miktoarm stars (7 = 0.9, yN = 40). The bridging fraction
increases significantly as the number of (BA’) arms increases. Dotted
lines denote phase transitions. Note that the gyroid phase was
neglected in this analysis.

mechanical properties even in the distorted cylinders shown in
Figure 2.

A complimentary route for stabilizing discrete A domains at
large values of f, is through polymer alloys that form the B&M
phase. These alloys consist of blends between cylinder-forming
A(BA’); miktoarms with A homopolymers of a suitable
molecular weight.”' As the volume fraction of homopolymer
¢y is increased, the cylinders grow to accommodate the
additional homopolymer, which eventually results in a
fluctuation-induced phase transition to form the aperiodic
B&M phase.”"**

Figure 7 shows how the bridging fraction vy changes with
increasing ¢y. The spatial distribution of stars Pi(r) is
qualitatively similar between the hexagonal and B&M
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Figure 7. Bridging statistics for the B&M phase. (a) Joint probability
distribution, P,(r), for the cylindrical phase. (b) Joint probability
distribution, P,(r), for the B&M phase. (c) Violin plots indicate that
the average bridging fraction is nearly unchanged as the homopolymer
volume fraction, ¢y, is increased and the cylinder phase transitions to
form the B&M phase. With the emergence of the B&M phase the
distribution widens, indicating that the bridging fraction becomes
increasingly heterogeneous throughout the sample. Vertical dotted
lines denote phase transitions.

https://dx.doi.org/10.1021/acs.macromol.9b02254
Macromolecules 2020, 53, 513-522


http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.9b02254/suppl_file/ma9b02254_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.9b02254/suppl_file/ma9b02254_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.9b02254/suppl_file/ma9b02254_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02254?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02254?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02254?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02254?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02254?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02254?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02254?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02254?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02254?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02254?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02254?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02254?fig=fig7&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.9b02254?ref=pdf

Macromolecules

pubs.acs.org/Macromolecules

morphologies, with the stars located along the domains
adjacent to R (Figure 7a,b). As the cylindrical domains swell
to form the B&M phase, the average bridging fraction
decreases slightly from vp = 0.8 for ¢, = 0.15 to v = 0.73
for ¢, = 0.6, in contrast to the discontinuous change in vj
observed in other phase transitions (cf. Figure 6). This is
consistent with our current understanding of the cylinder-
B&M phase transition as a type of continuous unbinding
transition.

As the B&M phase forms with increasing ¢y, the
distribution of vy across the sample broadens as a consequence
of heterogeneous structure of the B&M phase (Figure 7c). In
these simulations, the large 101.7R, X 105.7R, simulation cells
consisted of 200—1000 discrete cylindrical or B&M domains
and the distribution was obtained by selecting 50 domains at
random. Despite the heterogeneous structure in the B&M
phase, the average bridging fraction vy only changes slightly
across ¢y = 0.15—0.6. The relative insensitivity of vy with ¢y
bodes well for the B&M phase as an approach to toughen
TPEs by maintaining discrete A domains for large values of f,.

Frank—Kasper Phases. As discussed in the introduction,
phase boundary deflection is often accompanied by the
emergence of new phases beyond the canonical BCC spheres,
cylinders, double gyroid, and lamella. In particular, Grason and
Kamien'” and more recently Xie et al.'* have shown that AB,
miktoarm stars can stabilize the Frank—Kasper sphere phases ¢
and A1S. As our phase diagrams presented in Figure 3 indicate
that A(BA’), miktoarm stars can stabilize spherical phases up
to large f,, we were curious if A(BA'), stars might also stabilize
Frank—Kasper sphere phases.

To examine this possibility, we reconsidered the phase
behavior of A(BA’), miktoarm stars with 7 = 0.925, which in
Figure 3 exhibited the strongest phase deflection of the sphere/
cylinder phase boundary of all miktoarm stars considered. We
recomputed the free energies of the classical BCC and FCC
sphere phases but now also considered the Frank—Kasper
phases o, AlS, Cl14, and C1S (Figure 8a). This calculation
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Figure 8. (a) Phase boundary deflection achieved with A(BA'), leads
to the stability of the Frank—Kasper phases ¢ and AlS up to volume
fractions f, = 0.45 and f, = 0.59, respectively (yN = 40). (b) The
resulting o phase at f, = 0.44 exhibits domains that are faceted, and
deform to match the Voronoi cell that constrains each domain.

indicates that the large sphere window that ranges from f, =
0.1-0.59 is dominated by the ¢ and AlS5 phases, with only a
miniscule region (fy = 0.1—0.16) occupied by BCC spheres.
Our results predict that the ¢ and A1S phases can be stabilized
up to fy = 0.45 and f, = 0.59, respectively, values much larger
than could be achieved with AB,, stars (f, = 0.3, f, = 0.34)."" A
consequence of the stability of ¢ and AlS5 at large f, is that
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their domains begin to impinge on the Voronoi cell, which
leads to a transition from a spherical A—B interface to one
where the interface is deformed to match the Voronoi cell
(Figure 8b).

In light of the large regions of ¢ and AlS stability, we
computed the complete yN versus f, phase diagram for
A(BA’); and A(BA’); miktoarm stars (Figure 9). We observe
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Figure 9. Phase diagrams of f, vs yN for (a) A(BA’); and (b)

A(BA’)s miktoarm stars. Phase boundaries are deflected significantly

to increased f, and large regions of Frank—Kasper phases ¢ and Al5

are stabilized.

large regions of stable ¢ and AlS5 phases that result from the
large conformational asymmetry and the shift of phase
boundaries to increased values of f,. The shift of phase
boundaries is particularly striking for A(BA’)s miktoarm stars,
which see a vanishingly small region of the lamellar phase that
exists only at f, = 0.79. An additional feature of these phase
boundaries is the prevalence of many order—order transitions
with changing yN. For example, ¢ transitions to cylinders along
fa = 0.55, and cylinders transition to gyroid along f, = 0.7 (for
A(BA’)s). We hypothesize that this phenomenon results from
the bidispersity of the A and A’ blocks, which allows the A’
block to pull out and mix with the B phase at moderate yN.
The balance between the enthalpic cost of A’ mixing with B
and the release of chain-stretching in the B block results in
order—order phase boundaries that depend on yN.

When analyzing the bridging statistics in Figure 6, we only
considered the BCC sphere phase. Yet, our results in Figure 9
indicate that much of this region is dominated by other sphere
phases like ¢ and AlS. We were therefore interested in
exploring how the bridging statistics vary across these different
sphere phases and if some sphere phases might have properties
that are superior to others.

In ordinary phases like cylinders and spheres, each domain is
equivalent, and therefore the bridging fraction is the same for
each domain. In Frank—Kasper phases, different micelles have
different environments, which makes the bridging fraction
dependent on their Wyckoft position. This is shown for the
C15 phase (Figure 10a); the smaller micelles located at the
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Figure 10. Bridging in Frank—Kasper sphere phases. (a) Bridging
fraction of the C15 phase for A(BA’); and A(BA’); miktoarm stars.
Micelles at the 8a and 16d Wycoff positions exhibit slightly different
bridging fractions. (b) Bridging fraction for different Frank—Kasper
phases for A(BA’); miktoarm stars. The bridging fraction is
approximately the same for all sphere phases.

16d Wyckoft position have a slightly larger vp, whereas the
large micelles at the 8a Wyckoff position have smaller v. This
is consistent with a general trend we observed for all sphere
phases: the smaller a micelle, the larger that micelle’s bridging
fraction. We observe that the difference between the bridging
fraction of the 8a and 16d micelles is relatively small, consisting
of a difference in bridging fraction of less than 3%. The
variations because of differences in micelle size have a slight
impact of the average bridging fractions of different sphere
phases (Figure 10b). We observe that the C14 phase exhibits
the highest values of v, whereas the A1S vy values are slightly
lower. Nonetheless, these differences quite small and are all
within 1% of the other sphere phases.

B CONCLUSIONS

Here, we have shown that A(BA’), miktoarm stars can achieve
considerable deflection of phase boundaries and can stabilize
the o and A1S Frank—Kasper phases across a wide range of f,.
The A(BA’), architecture achieves a much larger phase
boundary deflection than the simpler AB, architecture by
combining miktoarm frustration and A block bidispersity to
drive interfacial curvature toward the A domains. The
stabilization of canonical phases up to large values of f, results
in an increasingly deformed A—B interface as the A domains
begin to impinge upon the boundaries of their Voronoi cell.
We have also shown that a critical parameter in A(BA’),
miktoarm synthesis is the ratio of BA’ to A arms and that the
deflection of phase boundaries observed here are only achieved
if this ratio is sufficiently large.

An additional benefit of the A(BA’), architecture is that
these molecules bridge between different A domains, which
improves their mechanical response and makes them a
promising candidate for hard, tough, and elastic TPEs. We
have calculated the bridging statistics of these molecules, and
show that the bridging fraction nearly unchanged as discrete A
domains are stabilized with increasingly large f, in both neat
A(BA'), melts and in polymer alloys that form the “B&M”
phase. This indicates that the increased modulus in TPEs that
results from increased f, is compatible with high levels of inter-
domain bridging, both factors that are necessary to achieve
distinguished TPEs.

Though our primary emphasis in this work was TPEs, there
are numerous other application areas in which the A(BA’),
design could prove to be useful. As the A(BA’), architecture
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can nearly decouple f, from the resulting phase, we envision
that the A(BA’), architecture could also be used in
nanoporous membranes**~*® where it is desirable to maintain
a bicontinuous morphology (e.g., double gyroid), while
simultaneously changing the volume fraction of the pores
relative to the support (i.e., changing f,). A similar approach
could be applied to block polymer electrolytes, where recent
work has indicated that polystyrene (PS) and poly(ethylene
oxide) (PEO) PS—PEO; miktoarm stars exhibit higher ionic
conductivity and modulus over linear PS—PEO analogues."’
This work suggests that the miktoarm architecture leads to
increased confinement of the PEO chains and lithium ions,
which (for reasons not fully understood) leads to increased
jonic conductivity. The A(BA’), design explored in our work
here could provide a means to further enhance this intriguing
effect.
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