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ABSTRACT
Crack formation limits the growth of (AlxGa1−x)2O3 epitaxial films on Ga2O3 substrates. We employ first-principles calculations to determine
the brittle fracture toughness of such films for three growth orientations of the monoclinic structure: [100], [010], and [001]. Surface ener-
gies and elastic constants are computed for the end compounds—monoclinic Ga2O3 and Al2O3—and used to interpolate to (AlxGa1−x)2O3
alloys. The appropriate crack plane for each orientation is determined, and the corresponding critical thicknesses are calculated based on
Griffith’s theory, which relies on the balance between elastic energy and surface energy. We obtain lower bounds for the critical thick-
ness, which compare well with available experiments. We also perform an in-depth analysis of surface energies for both relaxed and
unrelaxed surfaces, providing important insights into the factors that determine the relative stability of different surfaces. Our study pro-
vides physical insights into surface stability, crack planes, and the different degrees of crack formation in (AlxGa1−x)2O3 films for different
growth orientations.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0019915., s

I. INTRODUCTION

Due to its large bandgap (4.76 eV–5.04 eV),1–4 monoclinic
β-Ga2O3 provides a large critical electric field strength in field effect
transistors (FETs).5,6 Despite being a wide bandgap material, Ga2O3
can easily be n-type doped.5,7 β-Ga2O3 thus constitutes a promising
platform for applications in high-power electronic devices.

Alloying can be used to tune device performance through
bandgap engineering. Alloys with Al have increased bandgaps and
enable carrier confinement in heterojunction FETs.8,9 The smaller
Al atomic size leads to smaller lattice parameters in (AlxGa1−x)2O3.
For (AlxGa1−x)2O3 epilayers pseudomorphically grown on β-Ga2O3
substrates with the same crystallographic orientation as the sub-
strate, tensile stress in (AlxGa1−x)2O3 is expected due to the lat-
tice mismatch.10 For a thin layer, the stress can be accommo-
dated by elastic deformation. As the elastic energy in the growing
film increases, it can lead to the formation of misfit dislocations,

surface roughness,11 V-shaped defects,11 or cracks,12 leading to a
critical thickness where the strain can no longer be accommodated
elastically. For the growth of β-(AlxGa1−x)2O3 films on Ga2O3 sub-
strates, cracks have been found to be the major limitation.13 Under-
standing the mechanism of crack formation is essential for growing
the high-quality films required for devices.

In this paper, we study the critical thickness for (AlxGa1−x)2O3
films grown on β-Ga2O3 substrates along [100], [010], and [001]
directions; among these, the [010] orientation is most commonly
used in growth. Our approach is based on the energy balance
between the elastic energy and the brittle fracture toughness,
where the latter is derived from surface energies. All quanti-
ties are calculated with first-principles density functional theory
(DFT). DFT calculations for surface energies have been previously
reported,14,15 but they did not cover all the orientations discussed
here and were not at the same level of accuracy as the results
presented here.
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The calculations of surface energies performed in the context
of crack formation also prompted us to perform an in-depth anal-
ysis of surface stability. We explore the mechanisms that determine
the relative stability of different surfaces; we analyze bond strengths,
dangling-bond densities, and atomic relaxation, providing a com-
prehensive picture of how these factors impact the energetics. These
insights are important for surface science in general, particularly in
the context of understanding growth.

We find that the (100)B surface14 is most stable and acts as the
crack plane for (AlxGa1−x)2O3 film growth along the [010] and [001]
directions. The remarkably small energies of (100)B crack planes
greatly limit the film thickness and hinder the incorporation of larger
concentrations of Al. Growth along the [100] direction gives rise to
a considerably larger critical thickness, owing to the higher energy
of the favored crack plane, which is (001)B.

II. METHODOLOGY
The Griffith criterion16 states that the critical thickness hc for a

crack to propagate in an isotropic medium under equibiaxial stress
is given by

hc =
2Γ

Z(∑i,j ϵiCijϵj)
, (1)

where Γ is the fracture toughness of the material (discussed below)
and the sum in the denominator is over elastic constant (C) and
strain (ϵ) components. Voigt notation is used, i.e., the components
are defined as 1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = zx, and 6 = xy. Z is
a dimensionless driving force that depends on the geometry of the
crack and the film.12 In (AlxGa1−x)2O3/Ga2O3, “channeling” cracks
have been observed,13 which initiate at the surface and extend to the
substrate. For this channeling type, Z = 1.976.12

Equation (1) represents an energy balance between the elastic
energy stored in the strained film per unit area ( h2 ∑i,j ϵiCijϵj) and the
fracture toughness, Γ. The fracture toughness consists of the surface
energy when the crack is created as well as the energy of plastic defor-
mation at the crack tip.12 In this study, we assume brittle fracture
(Γ = Γb), meaning that only the surface energy is taken into account
in the fracture toughness. Therefore, the calculated hc constitutes a
lower bound on the true critical thickness.

First-principles calculations were performed using DFT and
projector augmented wave (PAW) potentials17 as implemented in
the Vienna ab initio Simulation Package (VASP).18,19 A 500 eV
kinetic energy cutoff was chosen for the plane wave expansion. The
PAW potentials correspond to the valence-electron configurations
3d104s24p1 for Ga, 3s23p1 for Al, and 2s22p4 for O. We included
Ga 3d electrons as valence states since it can be important for accu-
rate determination of certain structural properties;20,21 however, we
found that it has minimal influence on the surface energies. To
accurately describe the structural property and the electronic struc-
ture of monoclinic Al2O3 (denoted as θ-Al2O3) and β-Ga2O3, we
use the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE)22

with a mixing parameter 0.32, which produces lattice parame-
ters and bandgaps in agreement with the experiment20 (see the
supplementary material). The structure of the bulk 10-atom mon-
oclinic primitive cell of β-Ga2O3 and θ-Al2O3 is optimized with a
4 × 4 × 4 Monkhorst–Pack23 k-point grid. The elastic constants

of β-Ga2O3 and θ-Al2O3 are determined based on the conven-
tional cell by performing six finite distortions of the lattice and
deriving the elastic constants from the stress–strain relationship.
Hellmann–Feynman forces for bulk calculations are converged to
within 0.005 eV/Å. The elastic constants of the (AlxGa1−x)2O3 alloy
are linearly interpolated between the end compounds. To quantita-
tively describe the bond strength, bond-stretching force constants
are calculated using the finite difference method.

Surface calculations are performed in a slab geometry, with 12
Å vacuum separating the slabs. Details about the slabs used in the
surface calculations are included in the supplementary material. For
each slab, the top and bottom surfaces are equivalent by symmetry.
For Brillouin-zone integrations, we used a 4 × 2 k-point grid in the
plane and one k point in the out-of-plane direction. For unrelaxed
surfaces, the atoms are frozen in their bulk positions. For relaxed
surfaces, the Hellmann–Feynman forces are converged to within
0.01 eV/Å.

Surface energies (Esurf) for stoichiometric slabs are calculated as

Esurf =
1
2A
(Eslab −

Nslab

Nbulk
Ebulk) =

1
2
Γb, (2)

where A is the surface area, and Eslab and Ebulk are the total energies
of the slab supercell and the bulk primitive cell. Nslab (Nbulk) is the
number of formula unit (f.u.) contained in the slab (bulk) cells. The
brittle fracture toughness (Γb) is twice the surface energy since two
surfaces are formed, one on either side of the crack plane.16 Surface
energies for (AlxGa1−x)2O3 are linearly interpolated between the end
compounds.

III. RESULTS AND DISCUSSION
A. Surface energies and relative stability of surfaces

The conventional 20-atom unit cell of β-Ga2O3, with space
group C2/m, is shown in Fig. 1(a). The correspondence between

FIG. 1. (a) The 20-atom conventional unit cell of monoclinic β-Ga2O3. The
inequivalent Ga sites are labeled: tetrahedrally coordinated Ga(I) in green and
octahedrally coordinated Ga(II) in purple and similarly for the O sites, threefold-
coordinated O(I) in red, threefold coordinated O(II) in purple, and fourfold-
coordinated O(III) in gray. The (100) and (001) surface cuts are depicted by black
and blue dashed lines, respectively. “A” and “B” indicate different surface termi-
nations. (b) The (010) surface cut (black dashed line). (c) The (2̄01) surface cut
(black dashed line).
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FIG. 2. Atomic relaxations for (a) (100)B, (b) (010), (c) (001)B, and (d) (2̄01) sur-
faces of β-Ga2O3. The unrelaxed (left panel) and relaxed (right panel) surfaces are
shown for each surface. Atomic displacements d⃗ relative to the ideal lattice sites
are indicated in the left panels. For ease of visualization, the displacements are
magnified by the factor listed in each panel. The blue circle in (d) depicts a newly
formed tetrahedron after relaxation.

the conventional cell and the primitive cell was discussed in Ref. 24.
Half of the Ga atoms are tetrahedrally coordinated Ga(I) and the
other half are octahedrally coordinated Ga(II), as labeled in Fig. 1(a).
Ga2O3 also has three types of O atoms: threefold coordinated O(I)
(on a shared corner of two edge-sharing GaO4 octahedra and one
GaO6 tetrahedron), threefold coordinated O(II) (on the shared cor-
ner of one GaO6 octahedron and twoGaO4 tetrahedra), and fourfold
coordinated O(III).

Figure 1 illustrates the six different surfaces considered here:
(100)A, (100)B, (010), (001)A, (001)B, and (2̄01). The surface ori-
entations are defined with respect to the conventional cell. The
labeling and definitions are consistent with those in Ref. 14.
As will be discussed below, the unreconstructed surfaces are
particularly stable because they satisfy electron counting. While
surface reconstructions could occur on some surfaces under non-
stoichiometric conditions during growth, they are not relevant
for the crack-formation problem that is the focus of the current
paper.

Atomic relaxations of the surface atoms are illustrated in Fig. 2.
The magnitudes of atomic displacements drop dramatically for
atoms away from the surface, showing that bulk-like positions are
attained within a few atomic layers.

Table I lists the calculated surface energies for β-Ga2O3 and
θ-Al2O3. Increasing the thickness of the slabs by including more
atomic layers only changes the calculated surface energies by less
than 0.01 J/m2. Results from two previous calculations are included
for comparison.14,15 In general, our values agree reasonably well
with those of Hinuma et al.;15 differences can be attributed to
the fact that we use a more accurate functional. Differences with
Ref. 14 are somewhat larger. Bermudez14 used a completely dif-
ferent computational approach (including functional, pseudopoten-
tials, and basis set), which makes a detailed accounting for the
differences difficult.

The surface energies are remarkably low—for instance, in com-
parison with GaN,25 where even for the lowest-energy surface orien-
tation [the (101̄0)m plane], the surface energy is still 1.94 J/m2. This
high degree of stability for the β-Ga2O3 surfaces can be understood
from the electron-counting rule.26 For all surfaces considered here,
the electrons transferred from dangling bonds on the Ga cations
compensate the missing charges in the dangling bonds on the O
anions, fulfilling the electron-counting rule and thereby lowering the
surface energy.

We will be able to explain the relative stability of the various
surfaces based on the following rules:

1. the nature of the broken bonds: softer bonds are easier to cut,
2. the dangling-bond density: lower densities of broken bonds

reduce the surface energy, and
3. surface relaxation: atomic displacements can lower the energy

by reducing strain and allowing rebonding.

TABLE I. Surface energies Esurf (J/m2) for different surface orientations and terminations of β-Ga2O3 and θ-Al2O3 with and without atomic relaxations. Other calculations14,15

are listed for comparison.

β-Ga2O3 θ-Al2O3

Unrelaxed Relaxed Unrelaxed Relaxed

Surfaces This work Reference 14 Reference 15 This work Reference 14 Reference 15 This work Reference 15 This work Reference 15

(100)B 0.60 0.96 0.61 0.34 0.68 0.38 1.06 0.74 0.62 0.45
(100)A 1.39 1.68 1.28 0.85 1.13 0.80 2.07 1.68 1.26 1.06
(010) 2.52 2.78 2.23 1.67 2.03 1.49 3.28 3.09 2.27 2.23
(001)B 2.37 2.65 . . . 1.17 1.40 . . . 3.36 . . . 1.61 . . .
(001)A 2.98 3.35 . . . 1.95 . . . . . . 3.78 . . . 2.56 . . .
(2̄01) 2.67 . . . 2.16 0.96 . . . 0.75 3.52 2.94 1.28 1.04
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1. Unrelaxed surfaces
The relative stability of the unrelaxed surfaces follows roughly

the same trend in both β-Ga2O3 and θ-Al2O3. In β-Ga2O3, we
have, in order of increasing surface energy, E(100)Bsurf < E(100)Asurf

< E(001)Bsurf ⪅ E(010)surf ⪅ E(2̄01)surf < E(001)Asurf . In θ-Al2O3, (001)B and (010)
are interchanged, but their energies are close, anyway.

The most stable surface for both β-Ga2O3 and θ-Al2O3 is
(100)B. This is consistent with the fact that the (100) plane is the
easy cleavage plane in β-Ga2O3.27 The low surface energy is mainly
due to the fact that the (100)B surface cuts through easily broken
Ga(II)–O(III) bonds in the GaO6 octahedron (rule A). This can be
quantified by inspecting the calculated bond-stretching force con-
stants Φ∥ listed in Table II. The table also provides information
about the nature and density of bonds broken for each surface orien-
tation. Table II shows that the bond-stretching force constantΦ∥ for
the Ga(II)–O(III) bond, with a value of 3.5 eV/Å2, is much smaller
than that for any of the other bonds.

The (100)A surface also cuts Ga(II)–O bonds within a GaO6
octahedron, producing the same dangling-bond density as the
(100)B surface. However, while the (100)B surface cuts through
soft Ga(II)–O(III) bonds, the (100)A surface cuts through stiffer
Ga(II)–O(II) bonds (see Table II), resulting in a higher surface
energy.

Similar to the (100)B surface, the (001)B surface also breaks
soft Ga(II)–O(III) bonds. However, the dangling-bond density on
the (001)B surface is twice as large as on (100)B (Table II), thus
explaining the much higher surface energy (rule B).

On the other surfaces [i.e., (010), (2̄01), and (001)A], bonds in a
Ga(I)O4 tetrahedron need to be broken. Since the Ga(I)–O bond in
a GaO4 tetrahedron is stronger than that in a Ga(II)O6 octahedron
(see Table II), this leads to higher surface energies (rule A).

2. Relaxed surfaces
When atomic relaxation is allowed, the relative stability of

the relaxed surfaces follows the same trend in both β-Ga2O3 and
θ-Al2O3. We have, in order of increasing surface energy, E(100)Bsurf

< E(100)Asurf ⪅ E(2̄01)surf < E(001)Bsurf < E(010)surf < E(001)Asurf . This trend agrees
with the previous calculations,14,15 although (as pointed out above)
some numerical differences are evident.

TABLE II. Bond-stretching force constants (Φ∥, eV/Å2) in β-Ga2O3 between different
cation–anion bonds. The number of bonds broken and the dangling-bond density
(ρdb, Å−2) for different surfaces are also listed.

Φ∥ (100)B (100)A (010) (2̄01) (001)B (001)A

Ga(I)–O(I) 13.4 0 0 0 0 0 4
Ga(I)–O(II) 13.1 0 0 4 0 0 0
Ga(I)–O(III) 10.5 0 0 0 2 0 0
Ga(II)–O(I) 6.0 0 0 4 0 0 0
Ga(II)–O(II) 5.9 0 2 0 0 0 0
Ga(II)–O(III) 3.5 2 0 4 0 8 0

ρdb 0.11 0.11 0.17 0.09 0.22 0.11

Overall, the relative stability trend is very similar to that for
unrelaxed surfaces, with one striking difference: the (2̄01) surface
is stabilized more than other surfaces, i.e., the relaxation energy for
(2̄01) is significantly larger than that for the other surfaces. This ren-
ders the energy of the relaxed (2̄01) surface quite low, despite that
bonds in Ga(I)O4 tetrahedra need to be broken. Along the [2̄01]
direction, the material is comprised of alternating layers of GaO6
octahedra and GaO4 tetrahedra [Fig. 1(c)]. The surface is formed by
slicing through Ga–O bonds in the GaO4 tetrahedra. Its unexpect-
edly low energy can be attributed to sizable atomic displacements,
as visualized in Fig. 2(d); in fact, the relaxation energy is the largest
among all of the investigated surfaces. The Ga(I) atom at the sur-
face moves deeper into the layer, while the near-surface O(I) atom
moves toward the surface. As a result, a new GaO4 tetrahedron
forms, with the original surface Ga(I) at its center; this tetrahedron is
edge-sharing (instead of corner-sharing) with the neighboring GaO6
octahedron. This dramatic structural relaxation (also noted in Ref.
15) greatly reduces the surface energy (rule C), as can be seen from
the values in Table I.

B. Elastic energy of tensile-strained (AlxGa1−x )2O3
films

Next, we calculate the elastic energy stored in the tensile-
strained (AlxGa1−x)2O3 films based on Eelastic = 1/2∑ijϵiCijϵj. For a
monoclinic structure with the C2/m space group, there are 13 inde-
pendentCij constants.28 The calculated values are summarized in the
supplementarymaterial; they compare reasonably well with previous
calculations29 and with experiment.29

We can now determine the elastic energy density in a thin
film. First, we focus on pure θ-Al2O3 pseudomorphically grown on
a β-Ga2O3 substrate (which could be either bulk Ga2O3 or a fully
relaxed buffer layer). For a particular growth orientation, the in-
plane components of the strain tensor are determined by the ratio
of the in-plane lattice parameters of β-Ga2O3 and θ-Al2O3, while
the out-of-plane components are obtained by minimizing the elas-
tic energy. The resulting strains in θ-Al2O3 are listed in Table III for
different growth orientations. The vanishing of the ϵ4 and ϵ6 com-
ponents reflects the fact that for the growth scenarios discussed here,
the unit cell remains monoclinic.10

For the growth of (AlxGa1−x)2O3 alloys, we follow the same
procedure using linear interpolation between the end compounds
to determine the in-plane components of ϵ and the elastic constants
Cij. Minimizing the elastic energy density at an Al fraction x then
results in out-of-plane components of ϵ that are very nearly linear in
x, indicating that they could equally be well directly linearly interpo-
lated based on the strain tensor determined above for Al2O3 growth.
As expected, the minimized elastic energy is quadratic in x.

TABLE III. Strain components for θ-Al2O3 grown on β-Ga2O3 substrates with [100],
[010], and [001] orientations.

Film orientation ϵ1 (%) ϵ2 (%) ϵ3 (%) ϵ4 (%) ϵ5 (%) ϵ6 (%)

[100] −3.8 4.5 3.6 0 −2.1 0
[010] 3.7 −1.7 3.6 0 1.3 0
[001] 3.7 4.5 −2.0 0 0.6 0
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C. Critical thickness of (AlxGa1−x )2O3 films on Ga2O3

We have presented all the information necessary to cal-
culate the brittle fracture toughness and the elastic energy for
(AlxGa1−x)2O3 films grown on a Ga2O3 substrate.We can now apply
Eq. (1) to estimate a lower bound for hc for each growth direction.
The plane intersecting with the film surface that has the lowest sur-
face energy is chosen to be the crack plane. The surface energy used
in the Griffith theory should be the value for the unrelaxed surface,
since the newly formed crack surfaces are infinitesimal portions of
cleavage surfaces from the bulk crystal.30 This affects the choice of
crack plane. For example, for [100]-oriented film growth, both (2̄01)
and (001)B planes are possible crack planes. For relaxed surfaces, the
energy of (2̄01) is lower than that of (001)B (see Table I). However,
we determine (001)B to be the proper crack plane, since its unre-
laxed surface energy is lower than that of (2̄01). For the [100], [010],
and [001] film growth, the corresponding crack planes are (001)B,
(100)B, and (100)B, respectively.

Figure 3 shows the calculated lower bound of critical thickness
(hc) as a function of Al concentration. Solid lines correspond to hc
using the surface energies for unrelaxed crack planes. Figure 3 shows
that the [100] growth orientation gives rise to the largest hc values
for (AlxGa1−x)2O3 films; at x = 0.2, hc is 157 nm. Critical thickness
values for [010]- and [001]-oriented film growth are lower, yield-
ing 34 nm and 27 nm at x = 0.2. The reduction of hc for [010]- and
[001]-oriented films is mainly due to the lower surface energy of the
associated crack plane—(100)B, in both cases—in both β-Ga2O3 and
θ-Al2O3.

We observe that critical layer thicknesses for (AlxGa1−x)2O3
films on β-Ga2O3 substrates are much smaller than those for
AlxGa1−xN films on GaN substrates.36 This is mainly due to
the much lower surface energies for β-Ga2O3 and θ-Al2O3 com-
pared with wurtzite GaN and AlN.36 Additionally, while the elastic

FIG. 3. Calculated lower bound of the critical thickness (hc , nm) for (AlxGa1−x )2O3
grown on β-Ga2O3 as a function of Al concentration. (100) (blue), (010) (black),
and (001) (red) orientated films are considered. Symbols denote the thickest
uncracked films that have been reported for (010) growth: open black squares
are from the study of Hilfiker et al.,31 the open black triangles and star are from
the study of Bhuiyan et al.,32,33 the open circle is from the study of Ranga et al.,34

and the open diamond is from the study of Zhao.35

constants of β-Ga2O3 and θ-Al2O3 are comparable in magnitude to
those of wurtzite GaN and AlN,37 the lattice mismatch between the
oxides is greater than that between the nitrides,38 thus giving rise to
larger elastic energies stored in (AlxGa1−x)2O3 films as resulting in
smaller hc.

To the best of our knowledge, for [010]-oriented uncracked
(AlxGa1−x)2O3 film growth, the largest reported film thicknesses in
samples grown by molecular beam epitaxy are from Ref. 31 and in
samples grown by metal–organic chemical vapor deposition from
Refs. 32–35 (see symbols in Fig. 3). While the calculated hc at x = 0.4
is in excellent agreement with Ref. 35, the hc at x ≤ 0.2 is under-
estimated compared to experiment.31–33 We attribute this under-
estimation to the approximation made by replacing the fracture
toughness Γ by brittle fracture toughness Γb in Eq. (1), i.e., the neglect
of the energy of plastic deformation at the crack tip. This amounts
to ignoring the atomistic nature of interactions at the crack tip. It
has been shown based on a one-dimensional model39 and atomistic
simulations30,40,41 that the discrete character of the lattice may lead
to an increased force necessary to break a bond at the crack plane.
This effect, known as “lattice trapping,” is neglected in our approx-
imation using Γb. Lattice trapping contributes an additional energy
barrier to propagate the crack andmay lead to a higher critical thick-
ness, particularly at lower Al concentrations where the elastic energy
[denominator in Eq. (1)] is small.

IV. CONCLUSION
In summary, we have calculated the surface energies of six sur-

faces of β-Ga2O3 and θ-Al2O3 and inferred the surface energies for
(AlxGa1−x)2O3 alloys based on linear interpolation. We identified
trends in the relative stability of various surfaces and explained these
trends by considering (a) the nature of the broken bonds, (b) the
dangling-bond density, and (c) the effect of relaxation. The (2̄01)
surface exhibits a pronounced atomic relaxation accompanied by a
large reduction of the surface energy.

Employing the Griffith theory, the critical thickness for
(AlxGa1−x)2O3 grown on Ga2O3 at different Al concentrations was
calculated based on the elastic energy and the brittle fracture tough-
ness. For (AlxGa1−x)2O3 films grown on Ga2O3 substrates, the crack
planes identified to possess the lowest unrelaxed surface energy are
found to be (001)B for [100] growth, (100)B for [010] growth, and
(100)B for [001] growth. Our calculated values provide a lower
bound to the actual critical thickness due to the neglect of lat-
tice trapping (plastic deformation at the crack tip). Still, the num-
bers are in good agreement with the experiment. Our study pro-
vides insight into the physical mechanisms for crack formation in
(AlxGa1−x)2O3 films grown on Ga2O3 substrates and the differences
between various growth orientations.

SUPPLEMENTARY MATERIAL

See the supplementary material for details about structure of
bulk β-Ga2O3 and θ-Al2O3, the slabs used in the surface calculations,
and the calculated elastic constants.
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