An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator

Tianhao Ren[©], Mian Zhang, Cheng Wang, Linbo Shao, Christian Reimer, Yong Zhang[©], Oliver King, Ronald Esman, Thomas Cullen, and Marko Lončar

Abstract—Electro-optic phase modulators are critical components in modern communication, microwave photonic, and quantum photonic systems. Important for these applications is to achieve modulators with low half-wave voltage at high frequencies. Here, we demonstrate an integrated phase modulator, based on a thin-film lithium niobite platform, which simultaneously features small on-chip loss (\sim 1 dB) and low half-wave voltage over a large spectral range (3.5–4.5 V at 5–40 GHz). By driving the modulator with a strong 30-GHz microwave signal corresponding to around four half-wave voltages, we generate an optical frequency comb consisting of over 40 sidebands spanning 10 nm in the telecom L-band. The high-electro-optic performance combined with the high-RF power-handling ability (3.1 W) of our integrated phase modulator is crucial for future photonics and microwave systems.

Index Terms—Integrated optics device, lithium niobite, modulators.

I. INTRODUCTION

LECTRO-OPTIC (EO) phase modulators are fundamental building blocks in photonics and microwave systems. Possible applications include photonic radio-frequency (RF) front ends for radio-over-fiber systems [1], telecommunication systems [2]–[5], EO frequency combs [6], temporal imaging systems [7] and quantum photonics [8]. Among various material platforms explored, including Si [9], InP [10], AlN [11],

Manuscript received March 19, 2019; revised April 4, 2019; accepted April 13, 2019. Date of publication April 19, 2019; date of current version May 15, 2019. This work was supported in part by the Collins Aerospace, National Science Foundation (NSF) under Grant ECCS-1740296, in part by the DARPA SCOUT Program under Grant W31P4Q-15-1-0013, in part by the City University of Hong Kong (Start-up Funds), and in part by the Program of China Scholarships Council. (Corresponding authors: Mian Zhang; Marko Lončar.)

- T. Ren is with the John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA, and also with the School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China (e-mail: ren_tian_hao@163.com).
- M. Zhang is with the John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA, and also with HyperLight Corporation, Cambridge, MA 02139 USA (e-mail: mianzhang@g.harvard.edu).
- C. Wang is with the John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA, and also with the Department of Electronic Engineering and the State Key Laboratory of THz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong, China.
- L. Shao, C. Reimer, and M. Lončar are with the John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA (e-mail: loncar@seas.harvard.edu).
- Y. Zhang is with the John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA, and also with the School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
- O. King, R. Esman, and T. Cullen are with Collins Aerospace, Advanced Technology, Cedar Rapids, IA 52402 USA.

Digital Object Identifier 10.1109/LPT.2019.2911876

plasmonics [12], graphene [13] and polymers [14], lithium niobate (LN) has been the most widely used for high-end phase modulator applications. This is due to LN's outstanding material properties, including good temperature stability, wide transparency window and most importantly highly efficient linear EO (Pockels) effect [15]. Commercially available LN phase modulators today are generally based on bulk LN crystals, where a weak optical index contrast is created by ion indiffusion or proton exchange technologies [16]. The low index contrast results in low optical confinement and high half-wave voltage (V_{π}) , the latter of which is defined as the voltage required to switch the phase of light by 180°. For example, the V_{π} of a typical commercial phase modulator operating at 1525 - 1605 nm is 7.5 V at 30 GHz [17]. Thin-film lithium niobate on insulator (LNOI) platform. Reference [18] has recently emerged as a promising approach to realize integrated EO modulators with stronger optical confinement and high EO efficiencies while occupying a smaller footprint [4], [19]–[22]. For example, LNOI phase modulators with relatively low V_{π} (3.8 V at DC) have been demonstrated [23], albeit at the expense of a high on-chip optical loss of ~ 10.5 dB. Here we demonstrate a dual channel phase modulator using a thin-film LNOI platform with low on-chip optical loss (\sim 1 dB/channel) and low RF V_{π} (4.5 V at 40 GHz) that is relatively constant (less than 28% variation) over wide frequency range (from 5 to 40 GHz). The low RF V_{π} , high RF power-handling capability and low optical losses together allow us to generate an EO frequency comb with over 40 sidebands using a single modulator, instead of cascading multiple devices [24].

II. DESIGN AND EXPERIMENTAL RESULTS

We first fabricate the optical waveguide using electron-beam lithography (EBL) followed by reactive-ion etching with argon (Ar⁺) ions [4]. Then a cladding layer (SiO₂) with the thickness of 800 nm is uniformly deposited by plasma enhanced chemical vapor deposition (PECVD). Next, gold RF electrodes are placed along the waveguides using an evaporation and lift-off process. In contrast to our previous work [4], where a second EBL was used to define the electrodes, here we use direct-write laser lithography (Heidelberg MLA150). This allows us to pattern the electrodes more than 30 times faster than EBL, while maintaining a good alignment accuracy. In order to achieve low RF V_{π} and high optical bandwidths, a 50 Ohm impedance-matched traveling-wave RF transmission line is used, where the optical and RF group velocities are matched (group index is \sim 2.23) [4]. To achieve this, we employ coplanar waveguide geometry with ground-signalground (GSG) configuration, where the electric fields in the

Fig. 1. (a) Schematic of the phase modulator. Sections (1) and (3) are used as the input and output contact pads for RF probes, section (2) is the modulation section; (b) SEM image of the optical waveguide before cladding; (c) microscope image of device showing the input section of the RF electrodes; (d) and (e) SEM images showing the alignments between waveguides and electrodes at different positions; (f) numerically simulated RF electric field distribution and (g) electric field intensity around the gap area in the cross-section view. The coordinates in (a) and (f) indicate the LN crystal direction.

two gaps have opposite directions (Fig. 1). The input and output sections are designed to have signal width of 100 μ m, ground width of 200 μ m, gap width of 50 μ m and length of 0.8 mm (each) for RF probes contacting purposes, since the 30- μ m-wide signal line in the modulation section is too narrow for the probes. The optical signal is equally split into two paths, which are modulated separately. The push-pull phase modulator design can reduce the V_{π} by a factor of 2 and is of interest for fiber-optic gyroscopes where differential phase shift can be useful [25] and phase-modulated optical links [26]. For other applications the y-splitter can be removed to reduce the associated 3 dB loss. Our numerical modeling indicates that the majority of the electric field is focused around the gap area (Fig. 1 (f) and (Fig. 1 (g)), indicating a good overlap between optical and microwave fields. The microwave electrode is placed such that the major field component is aligned with the z direction of our x-cut LN crystal in order to make use of the strongest EO coefficient r_{33} .[5]. The strong optical confinement in our structures (index contrast ~ 0.67) allows for a small electrode-waveguide gap (5 μ m) resulting in a high EO modulation efficiency. The rib waveguide has a top width of 700 nm, which allows single-mode operation for transverse-electric (TE) polarization [27]. The total thickness of the LN layer is 600 nm, with top 300 nm etched to form the rib waveguide. The high-quality etching is confirmed by a scanning electron microscope (SEM) examination before cladding (Fig. 1 (b)), showing smooth sidewalls of the optical waveguide.

Longer metal electrodes are preferred for minimizing the driving power (voltage) since they can induce more phase shift at a given driving voltage. In practice, however, longer electrodes result in higher microwave losses, which reduces the bandwidth of the phase modulator. Moreover, minor misalignment in the electrode fabrication (visible in Fig. 1 (d) and Fig. 1 (e)) can result in optical absorption due to adjacent metal electrodes. Here, we choose a trade-off with the modulation section length being 2 cm long (Fig. 1 (a)). To reduce the microwave transmission losses, electrodes thickness should be larger than the skin depth at the frequency of interest. We fabricate 1.6- μ m thick microwave electrodes, which is about 1.5 times the skin depth at 5 GHz and about 4 times the skin depth at 40 GHz.

To characterize the modulators, light from a tunable telecom laser (Santec TSL-510) is launched into the device using a lensed fiber. The transmitted light is collected using another lensed fiber and detected using an InGaAs photodetector (New focus 1811). The overall transmission loss from the input fiber to one of the output fibers is measured to be 16.9 dB, with 3 dB originating from the Y-splitter. The remaining 13.9 dB loss is largely due to input and output coupling losses at chip facets, which is measured to be 6±0.5 dB/facet. This is accomplished using a cut-back method by comparing the insertion losses of several devices with similar waveguide geometry but different total lengths. The coupling loss could be reduced by employing mode-converters, such as tapered waveguides, to improve the overlap between the fiber and waveguide modes [28]. Finally, we estimate the total on-chip loss including the splitter to be \sim 4 dB and the waveguide propagation loss to be ~ 1 dB, which is comparable with our previous work [4]. The small waveguide propagation loss allows advanced architectures such as cascaded modulators to be added without inducing a large increase in insertion loss [29].

One of the most useful figures of merit for EO phase modulators is the frequency dependency of RF V_{π} [30]. We measure it by driving our phase modulator with sinusoidal electrical signals from an RF signal generator (Hittite HMC-T2240) through a RF probe. The other side of the electrodes are contacted to a 50 Ω resistive load, also through a RF probe. The modulated optical signal is analyzed by an optical spectrum analyzer (OSA) (Yokogawa AQ6370). Fig. 2 (a) shows the measured spectra when driving the modulator at RF frequencies from 5 GHz to 40 GHz, where a pair of symmetrical sidebands are generated in the frequency domain [31], [32]. We note that reflections between the end-facets of the waveguide give rise to residual intensity modulation (\sim 6% of total transmitted power). This was measured by driving a modulator with a 100-kHz triangular wave with a voltage exceeding V_{π} . This intensity modulation, however, quickly drops off at GHz frequencies due to the lifetime (\sim 300 ps) of the Fabry-Perot resonance formed between the waveguide facets and velocity mismatch between the RF signal and the resonant standing wave. Therefore, we conclude that sideband generation that we observe is mostly due the phase modulation. RF signals below 5 GHz are not measured since the generated sidebands could not be well separated from the carrier light, due to the limited spectral resolution of the OSA. The EO roll-off of the first sidebands is estimated to be \sim 2.1 dB in the 5 to 40 GHz range (inset of Fig. 2 (a)). This value is obtained by subtracting the RF cable losses from the measured data, indicating a flat frequency response of RF V_{π} over a wide frequency range. For increased RF driving



Fig. 2. (a) Optical spectra of the phase-modulated signals when the modulator is driven by a RF signal of ~8 mW at different frequencies (from 5 to 40 GHz, in steps of 5 GHz). The inset shows the normalized powers of the first sidebands as a function of frequency, after subtracting the RF cable losses. (b) Optical spectra of the phase-modulated signals with increasing RF powers of 2.5 mW, 8 mW, and 25 mW at 30 GHz. Each offset is 50 dBm.

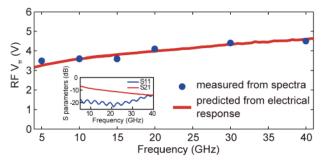


Fig. 3. Experimental RF V_{π} values obtained from the modulated optical spectra and theoretical RF V_{π} values predicted from the electrical response of the RF electrodes. The inset shows the measured S parameters of the RF electrodes.

powers, high-order sidebands are generated (Fig. 2 (b)). The power ratio between the modulated sidebands and the carrier band from the measured spectra can be used to determine RF V_{π} [31], [32]. Fig. 3 shows the extracted RF V_{π} values at different frequencies. We find that RF V_{π} only increases very slowly, ranging between 3.5 V to 4.5 V in the range of 5 to 40 GHz, which corresponds to an increase of only 28% over a very broad spectral range. The relative EO roll-off is \sim 2.2 dB, which is consistent with the roll-off calculated from the first sidebands powers (Fig. 2 (a)).

We further confirm the measured EO roll-off by calculating the RF V_{π} values from the measured electrical responses of the RF electrodes, as shown in the inset of Fig. 3. Assuming velocities of RF and optical fields are matched, the dominant origin of EO roll-off arises from the performance of the RF transmission line. The extracted RF V_{π} using this method is in excellent agreement with the optical measurement (Fig. 3), confirming that the RF and optical velocities are well matched. Note that all V_{π} values cited in this work are measured from

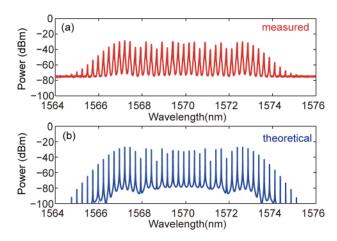


Fig. 4. (a) Measured and (b) theoretical optical spectra of our phase modulator when driven at RF power of \sim 3.1 W at 30 GHz (equivalent to \sim 4 V_{π}).

one single optical path, therefore being roughly twice compared with the Mach-Zehnder interferometer architecture [4]. In general, V_{π} is directly proportional to the width of the gap and inversely proportional to the length of the electrode. Therefore, smaller gaps and longer electrodes will give rise to a lower V_{π} . However, reduced electrode gap increases optical loss due to metal absorption, while longer electrodes contribute to larger RF loss, and smaller bandwidth. Importantly, even with this trade-off taken into account, our modulator's performance exceeds that of the commercial counterparts in both optical losses and V_{π} with an overall shorter device length due to the high confinement of the optical mode [17], [33], [34]. Moreover, our RF V_{π} is flat over a large frequency band due to the reduced metal electrode length.

One particularly important application of phase modulators is EO comb generation, which is of interest for telecommunication [35], ultra-fast optics [36], and so on. The main challenge to realize this is the requirement of a low RF V_{π} and high RF power handling ability. For this reason, past realizations of EO combs by a single phase modulator are relatively narrow [37]. Alternative configurations that can generate broader combs use multiple modulators (commonly three or four) [24], which requires multiple high power RF drives and introduces additional optical insertion loss. Due to the low RF V_{π} of our phase modulator, we are able to generate a broad EO comb with over 40 spectral lines spanning 10 nm in frequency domain, with a single phase modulator. This is accomplished by driving the modulator by a 30 GHz RF signal amplified to \sim 3.1 W, corresponding to a total acquired phase shift of $\sim 4 V_{\pi}$. We observed minor drift of optical coupling due to heating from the RF source, which is compensated by adjusting the positions of fibers. The device is otherwise intact, as the driving voltage is far below experimentally measured D.C. breakdown voltage of > 60 V. The measured optical spectrum (III (a)) is in good agreement with the theoretical prediction (III (b)) further confirming the capability of our devices to handle high RF powers without introducing significant signal distortions. For comparison, using modeling we estimate that the same RF power applied to a commercial phase modulator (model LN27S-FC with V_{π} of 7.5 V at 30 GHz) [17]

would result in \sim 6 nm wide comb, with 28 lines. This clearly illustrates the positive role of lower V_{π} on EO comb bandwidth.

III. CONCLUSION

In conclusion, we have demonstrated a high-performance phase modulator based on LNOI platform, featuring low on-chip optical losses and low half-wave voltages. The measured RF V_{π} values remain relatively constant over a broad frequency range. The flatness of the frequency response indicates that the device could also perform well at very high frequencies exceeding 100 GHz [4], [23], showing high potential for millimeter-wave and terahertz applications. Further reducing the electrode gap and the RF loss could lead to even lower RF V_{π} and broader EO combs. Many phase modulator applications require the modulators to be driven at voltages far exceeding the half-wave voltage [5]. These applications are consequently limited by the required high voltages and low power-handling ability, which we overcome with the herepresented modulators. Our work shows that phase modulators made from thin-film LN outperform conventional bulk modulators simultaneously in half-wave voltage, optical propagation loss, size and EO bandwidth. Our work therefore enables new ventures in EO signal processing, as well as microwave and terahertz photonics.

ACKNOWLEDGMENT

The authors thank R. Morandotti for providing an RF amplifier. Device fabrication was performed at the center for nanoscale systems (CNS) at Harvard University (1541959).

REFERENCES

- [1] T. R. Clark and R. Waterhouse, "Photonics for RF front ends," IEEE Microw. Mag., vol. 12, no. 3, pp. 87-95, May 2011.
- [2] D. Janner, D. Tulli, M. García-Granda, M. Belmonte, and V. Pruneri, "Micro-structured integrated electro-optic LiNbO3 modulators," Laser Photon. Rev., vol. 3, pp. 301-313, Apr. 2009.
- [3] D. A. B. Miller, "Attojoule optoelectronics for low-energy information processing and communications," J. Lightw. Technol., vol. 35, no. 3, pp. 346–396, Feb. 1, 2017.
- [4] C. Wang et al., "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, vol. 562, pp. 101-104, Sep. 2018.
- [5] E. L. Wooten et al., "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 1, pp. 69-82, Jan./Feb. 2000.
- [6] M. Zhang et al.. (2018). "Broadband electro-optic frequency comb generation in an integrated microring resonator." [Online]. Available: https://arxiv.org/abs/1809.08636
- [7] B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron., vol. 30, no. 8, pp. 1951-1963, Aug. 1994.
- [8] M. Kues et al., "On-chip generation of high-dimensional entangled quantum states and their coherent control," Nature, vol. 546, pp. 622-626, Jun. 2017.
- [9] P. Dong et al., "Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator," Opt. Express, vol. 17, pp. 22484-22490,
- [10] Y. Li, R. Wang, A. Bhardwaj, S. Ristic, and J. Bowers, "High linearity InP-based phase modulators using a shallow quantum-well design," IEEE Photon. Technol. Lett., vol. 22, no. 18, pp. 1340-1342, Sep. 15, 2010.
- [11] C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, "Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics," New J. Phys., vol. 14, no. 9, Sep. 2012, Art. no. 095014.
- [12] A. Melikyan et al., "High-speed plasmonic phase modulators," Nature Photon., vol. 8, pp. 229-233, Feb. 2014.

- [13] M. Mohsin et al., "Experimental verification of electro-refractive phase modulation in graphene," Sci. Rep., vol. 5, Jun. 2015, Art. no. 10967.
- [14] M. Lee et al., "Broadband modulation of light by using an electro-optic polymer," Science, vol. 298, no. 5597, pp. 1401-1403, Nov. 2002.
- L. Arizmendi, "Photonic applications of lithium niobate crystals," Phys. Status Solidi (A), vol. 201, pp. 253-283, Jan. 2004.
- M. Bazzan and C. Sada, "Optical waveguides in lithium niobate: Recent developments and applications," Appl. Phys. Rev., vol. 2, no. 4, Sep. 2015, Art. no. 040603.
- [17] Thorlabs. 40 GHz Phase Modulator Without Polarizer, FC/PC Connectors. Accessed: Apr. 23, 2019. [Online]. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3948
- [18] A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, "Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits," Laser Photon. Rev., vol. 12, no. 4, Apr. 2018, Art. no. 1700256.
- [19] A. Rao et al., "High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz," Opt. Lett., vol. 41, no. 24, pp. 5700-5703, 2016.
- S. Jin, L. Xu, H. Zhang, and Y. Li, "LiNbO3thin-film modulators using silicon nitride surface ridge waveguides," IEEE Photon. Technol. Lett., vol. 28, no. 7, pp. 736-739, Jul. 1, 2016.
- [21] J. Macario et al., "Full spectrum millimeter-wave modulation," Opt.
- Express, vol. 20, no. 21, pp. 23623–23629, Oct. 2012.
 [22] P. O. Weigel et al. (2018). "Hybrid silicon photonic-lithium niobate electro-optic mach-zehnder modulator beyond 100 GHz." [Online]. Available: https://arxiv.org/abs/1803.10365
- [23] A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, "Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth," Opt. Express, vol. 26, no. 11, pp. 14810-14816,
- [24] S. B. Papp et al., "Haye, F. Quinlan, H. Lee, K. J. Vahala, "Microresonator frequency comb optical clock," Optica, vol. 1, no. 1, pp. 10-14, Jul. 2014.
- S. Y. Huang, K. Toyama, P.-A. Nicati, L. Thevenaz, B. Y. Kim, and H. J. Shaw, "Brillouin fiber optic gyro with push-pull phase modulator and synthetic heterodyne detection," Fiber Opt. Laser Sensors X, Mar. 1993, pp. 48-59.
- [26] V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of Microwave Photonics. Hoboken, NJ, USA: Wiley, 2015.
- C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, "Nanophotonic lithium niobate electro-optic modulators," Opt. Express, vol. 26, no. 2, pp. 1547-1555, Jan. 2018.
- [28] O. Mitomi, K. Kasaya, and H. Miyazawa, "Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling," IEEE J. Quantum Electron., vol. 30, no. 8, pp. 1787-1793, Aug. 1994.
- [29] T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, "10-80-Gb/s highly extinctive electrooptic pulse pattern generation," IEEE J. Sel. Topics Quantum Electron., vol. 2, no. 3, pp. 643-649, Sep. 1996.
- [30] G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, "Performance and modeling of broadband LiNbO3traveling wave optical intensity modulators," J. Lightw. Technol., vol. 12, no. 10, pp. 1807-1819, Oct. 1994.
- T. Kawanishi, S. Sakamoto, and M. Izutsu, "High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect," IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 1, pp. 79-91, Jan./Feb. 2007.
- [32] Y. Shi, L. Yan, and A. E. Willner, "High-speed electrooptic modulator characterization using optical spectrum analysis," J. Lightw. Technol., vol. 21, no. 10, pp. 2358-2367, Oct. 2003.
- eospace. A Low-Loss and Wideband Phase Modulator for Chirp Control or Coherent Optical Applications. Accessed: Apr. 23, 2019. [Online]. Available: https://www.eospace.com/phase-modulator
- [34] iXblue. Lithium Niobate Electro Optic Modulator MPZ-LN-40. Accessed: Apr. 23, 2019. [Online]. Available: https://photonics. ixblue.com/fr/store/lithium-niobate-electro-optic-modulator/phasemodulators#notes
- T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, "Microresonatorbased optical frequency combs," Science, vol. 332, no. 6029, pp. 555-559, Apr. 2011.
- C. Gohle et al., "A frequency comb in the extreme ultraviolet," Nature, vol. 436, pp. 234-237, Jul. 2005.
- T. Sakamoto, T. Kawanishi, and M. Izutsu, "Optoelectronic oscillator using a LiNbO₃ phase modulator for self-oscillating frequency comb generation," Opt. Lett., vol. 31, no. 6, pp. 811–813, Mar. 2006.