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We argue that chaotic power-law interacting systems have emergent limits on information propagation,
analogous to relativistic light cones, which depend on the spatial dimension d and the exponent α governing
the decay of interactions. Using the dephasing nature of quantum chaos, we map the problem to a stochastic
model with a known phase diagram. A linear light cone results for α ≥ dþ 1=2. We also provide a Lévy
flight (long-range random walk) interpretation of the results and show consistent numerical data for 1D
long-range spin models with 200 sites.
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Introduction.—Quantum information cannot propagate
faster than light. However, in many laboratory settings,
the speed of light is effectively infinite, since the natural
dynamical timescales are long compared to the light-
crossing time. Hence, these systems can sometimes be
modeled as having instantaneous long-range interactions,
for example, electric and magnetic dipolar interactions.
Such nonlocal interactions potentially allow rapid informa-
tion transfer between distant locations [1–5], making them
attractive for quantum information processing.
Remarkably, short-range interaction enforces an emer-

gent speed limit [6], even when the speed of light is
effectively infinite. We study the analogous possibility of
emergent limits on information propagation in long-range
interacting systems. We refer to these limits as effective
light cones even though their spacetime shape may not be
that of a cone. Our focus is on power-law interactions that
fall off with distance r as r−α since these systems are
common in the lab and their emergent light cones have been
intensely studied [7–21]. Using the concepts and tools
recently developed from the study of many-body quantum
chaos [18,22–24], we argue that chaotic power-law inter-
acting systems have a generic emergent light cone structure
which depends only on α and the spatial dimension d.

We diagnose emergent light cones by studying the
commutator of two operators, where one acts as the
perturbation and the other probes whether the perturbation
has spread beyond a given spacetime point. Such a
commutator would exactly vanish outside the light cone
in a relativistic model, whereas for quantum lattice systems
without manifest Lorentz invariance, the commutator may

still be nonzero for arbitrarily small times. Furthermore, for
long-range interacting systems, the region outside of which
the commutator is small cannot in general be bounded by a
simple, linear contour; the notion of a light cone is still
applicable here, however, since information can hardly
spread beyond the contour at a given point in time.
The key quantity is the expectation value of the squared

commutator (closely related to the out-of-time-ordered
correlator [25–27], or OTOC) defined (in our lattice setting,
at infinite temperature) as

Cðx; tÞ ¼ Trð½WðtÞ; V�†½WðtÞ; V�Þ=TrðIÞ; ð1Þ

FIG. 1. The light cone (LC) contours of Cðx; tÞ in Model 1
[48,49]. The α axis marks the transition exponents in one
dimension (d-dimensional data in the parenthetical). In order
of increasing α, the light cone transitions from logarithmic to
power law to linear. The scaling functions for tLCðxÞ in each
phase as well as the marginal scalings at α ¼ d=2 and d are
displayed. The exponents ζ and 1=η are given by ζ ¼ 2α − 2d,
η ¼ log2ðd=αÞ. The power-law and linear light cone regimes are
also numerically verified in chaotic long-range spin chains.
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where WðtÞ ¼ eiHtWe−iHt is the Heisenberg form of the
local operator W and V is another local operator a distance
x away from W. Happily, these objects can be measured in
experiment [28–39], including in large-scale systems with
power-law interactions [40].
The emergent light cone is defined in terms of the

spacetime contours determined by C ¼ constant, as these
track the effective spread of the perturbation in spacetime.
For local quantum chaotic systems, one typically finds that
the contours are asymptotically straight, independent of the
precisely chosen contour, although in general there is a rich
shape structure in the nonasymptotic regime. In the power-
law case, Ref. [18] provided a systematic study of the light
cone structure for systems with time-dependent random
couplings. By random averaging, those authors gave strong
numerical evidence for a complex light cone structure
depending on α.
In this work, we propose that the phase diagram in

Ref. [18] is generic for chaotic power-law interacting
systems even without randomness. Specifically, we exclude
systems with gauge or intrinsic constraints (see, e.g.,
Refs. [41,42]) that prevent ergodicity. Our theoretical pic-
ture is that dephasing in such systems due to quantum
chaos leads to an effective stochastic description of the
emergent light cone. The resulting effective model falls into
the “long-range dispersal” class for which a universal phase
diagram is known. We rigorously locate the phase boun-
daries that delineate the regions of ballistic, superballistic,
and exponential growth (Fig. 1). Furthermore, we develop
a novel numerical scheme for operator spreading using
time-dependent variational principle in the matrix product
representation (TDVP-MPO) [43–47]. As far as we know, it
is the most efficient method to study the operator dynamics
of large scale long-range systems so far, which enables
us to simulate chaotic spin chains of up to 200 sites. The
results are consistent with the phase diagram in Fig. 1.
Operator spreading.—In general, chaotic time evolution

will increase the support and complexity of WðtÞ, a pro-
cess known as operator spreading. We propose that due
to dephasing, such processes can be approximated by a
stochastic model that generates a universal phase diagram.
Weuse a height representation introduced inRefs. [18,24]

to describe the operator spreading, but there are many other
approaches [50–54]. In a 1D chain of spin-1

2
particles of

length L, we expand WðtÞ into Pauli string basis fBμg:

WðtÞ ¼
X
μ

aμðtÞBμ: ð2Þ

With the normalization tr½W†ðtÞWðtÞ� ¼ 1, the coefficients
jaμðtÞj2 give anormalizedprobabilitydistributionoverfBμg.
Each basis operator has a height as follows: the ith

component hi for operator Bμ is 0 if Bμ is identity on site i
and 1 otherwise. Together these hi form an L-component
vector h ∈ f0; 1gL. The height representation does not
distinguish different Pauli operators, so many operators

have the same height. If the distribution over operators of a
given height h is more-or-less random, then the chaotic
operator dynamics is succinctly represented by the height
probability distribution fðh; tÞ ¼ P

heightðBμÞ¼h jaμðtÞj2.
Since the commutator ½WðtÞ; V� can only be nonzero if
WðtÞ is not the identity at the location of V, it follows that
Cðx; tÞ is proportional to the mean height of WðtÞ at site x
(again provided the distribution over operators of a given
height is uniform).
The distribution f is defined on the space of 2L height

states. We refer to sites with hi ¼ 1 as occupied, and
otherwise as unoccupied. Initially, a simple local operator
Wð0Þ only has one site occupied and the distribution f is
concentrated on that height vector. Time evolution gen-
erally expands the operator, and the height distribution is
correspondingly spread over more height configurations.
Because of the decaying strength of the interaction, sites
closer to Wð0Þ are more likely to increase their height
earlier. As a result, the dynamics of the height distribution
encodes the light cone structure.
The height picture is particularly useful for chaotic

systems because their pseudorandom character implies
that the evolution of fðh; tÞ is often approximately
Markovian. This observation has been made in local
systems [23,50–53], where an additional site can become
occupied only if it is next to an occupied site.
We postulate the following effective Markovian transi-

tion rates for the f dynamics. For definiteness, suppose
the Hamiltonian is H ¼ P

ν JνHν, where the Hν are Pauli
strings with nonidentity elements on only two sites a
distance rðHνÞ apart and the couplings Jν scales as
rðHνÞ−α. If the model is chaotic, then it will exhibit an
effective loss of coherence on a timescale τcoh. The
Markovian transition rates are then estimated to be of
order J2ντcoh ∝ r−2α, which leads to a probability of jumping
from the top to the bottom configuration in Fig. 2(a).
Hence, the stochastic height dynamics of Model 1 is
(1) Initially only one site is occupied. (2) Each occupied
site contributes a transition rate proportional to r−2α to
occupy an empty site a distance r away.
The effective dephasing and the stochastic rate estimate

above are our key assumptions to understanding the
light cone structure. The resulting Model 1 can be exactly
realized in an idealized model called a Brownian circuit
[18,24,54], where the couplings are Brownian motions.
Here, we believe the assumed randomness of chaos can
effectively do the same job leading to Model 1.
As discussed above, we define the light cone structure by

studying its level sets of the squared commutator. The curve
parametrized by t ¼ tLCðxÞ with C½x; tLCðxÞ� ¼ ϵ defines
the light cone contour with threshold ϵ, which is expected
to depend strongly on α. In the local limit, α → ∞, the
leading behavior is tLCðxÞ ∼ x, i.e., a linear light cone.
When α ¼ 0, Model 1 completely loses locality, and
tLCðxÞ → 0 in an infinite chain. The general phase diagram
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has been obtained exactly in Refs. [48,49]; translating it to
our setting yields Fig. 1.
There are four different phases characterized by different

light cone scalings. In one dimension, α < 0.5 is the
completely nonlocal phase. The transition occurs at he
threshold below which the jump rate ∼r−ð2×0.5Þ in Model 1
becomes un-normalizable in an infinite chain. On a finite
chain, the operator spreading is similar to that of the
Sachdev-Ye-Kitaev model [18,24,26,55,56]. As α increases,
one finds a phase with tLCðxÞ ∼ ðlog xÞ1=η (0 < η ≤ 1) for
0.5 ≤ α < 1 and a power-law light cone phase for 1 <
α < 1.5. Finally, when α ≥ 1.5, a linear light cone emerges.
A faster model: Model 1þ.—To better understand these

results, and to learn more about the shape of the contours,
we study an even simpler model that still captures much
of the physics. We dub it “Model 1þ” and illustrate in
Fig. 2(b). Its modified transition rule is 20 Make a transition
(as in Model 1) and then fill in all the empty sites “behind”
the newly occupied site.
Clearly, Model 1þ spreads faster than Model 1, so its

value for Cðx; tÞ will upper bound that of Model 1.
However, Model 1þ is simpler to analyze because its state
is completely determined by the motion of the outermost
point, thus reducing it to a single particle problem. In one
dimension, the dynamics can be sped up by taking all
the sites with x ≤ 0 to be occupied in the initial height
state. The motion of the outermost point becomes
Markovian, and the rate to move forward r sites is
then

P
r
r0¼−∞ðr0Þ−2α ∼ r1−2α.

Such a long-range random walk is called a Lévy flight
(see Refs. [57–59]), where the displacement of each jump

Xt (at time t) is an independent random variable with
distribution fjumpðxÞ that scales as x−ð1þαLévyÞ when x → ∞.
According to the generalized central limit theorem [60], the
total displacement will converge to a Lévy stable distri-
bution LαLévy;βLévy

, with parameter αLévy¼2α−2 and βLévy¼1 for

the present case. The distribution for the right-most
occupied site ρðr; tÞ scales as

ρðx; tÞ ∼

8>><
>>:

L2α−2;1ðx=t1=ζÞ 1 < α ≤ 1.5;

L2α−2;1ððx − vBtÞ=t1=ζÞ 1.5 < α < 2;

exp ð−ðx − vBtÞ2=2DtÞ 2 ≤ α;

ð3Þ

where Lα;β is the Lévy stable distribution ζ ¼ 2α − 2 and
vB and D are the first and second moments of fjumpðxÞ
when they exist. The probability for site x to be occupied is
equal to

R
∞
x ρðx0; tÞdx0 in Model 1þ, which leads to the light

cones in the second column of Table I:
The transition points α ¼ 1, 1.5 and 2 are the critical

values above which the jump distribution fjumpðxÞ of Model
1þ starts to be normalizable and acquires mean velocity vB
and variance D, respectively. In the following, we review
the quantitative predictions onModel 1 byModel 1þ. Aside
from the light cone scalings and characteristic width, we
also study the wavefronts’ spatial dependences at fixed
time. We refer to the large-x limit of Cðx; tÞ at fixed t as the
tail. For small t in Model 1, the tail should be roughly equal
to the probability of a rare jump from the initial seed at site
0, i.e., as x−2α. The tails we discuss are for large t.
From Table I, all the scalings about the light cones are

identical for both models when α ≥ 1.5. In this regime,
Model 1þ has a linear light cone and since it spreads faster
than Model 1, the later must also have a linear light cone.
We would further expect Model 1 to form a domain of
occupied sites within the light cone, rendering the two
models qualitatively similar. In particular the widths of
t1=ð2α−2Þ and

ffiffi
t

p
have been verified in the classical simu-

lation of Model 1 [60].
When 1 < α < 1.5, Model 1þ has a power-law light

cone, whereas that of Model 1 could potentially be more
restrictive. But suppose Model 1 were to have a linear light
cone; then a domain of occupied sites would form, so that

(a)

(b)

FIG. 2. Model 1 and a faster Model 1þ. Filled rectangles are
occupied sites. (a) Each of them (red on the top) contributes a rate
proportional to r−2α to occupy an empty site (red on the bottom)
with distance r. (b) Make the same transition and then fill all the
sites on its left.

TABLE I. Scalings of light cone, its broadening (width), and
tail of Model 1þ and comparison with Model 1.

Model 1þ Model 1

α LC Width Tail LC Width Tail
[0.5, 1) N=A N=A N=A et

log2ð1=αÞ N=A x−2α

ð1; 3
2
� t1=ð2α−2Þ N=A x−ð2α−2Þ t1=ð2α−2Þ N=A

ð3
2
; 2Þ vBt t1=ð2α−2Þ vBt t1=ð2α−2Þ x−ð2α−2Þ

2 ðt ln tÞ1=2 Gaussian ðt ln tÞ1=2 Gaussian
ð2;∞Þ t1=2 t1=2
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the light cone of Model 1 would be identical to that of
Model 1þ. But the latter has faster-than-linear propagation,
leading to a contradiction. In practice, Model 1 has the
same light cone scaling as Model 1þ [48,49], but the gaps
between filled sites in Model 1 gives a different tail scaling
than Model 1þ. Within a mean-field approximation [60],
we find the tail scaling to be x−2α, which is further
numerically verified in Model 1 and a long-range spin
chain discussed below.
Finally, when α < 1, the long-range jumps of Model 1

create large gaps between the occupied sites. The approxi-
mation of a solid domain as in Model 1þ does not work,
and the problem is many body in nature.
We briefly comment on the situation in higher

dimensions. The transition rate r−α is normalizable in d
dimension only when α > d=2. When we consider the
corresponding Model 1þ, the outermost point jumps with
rate

R
ddrr−2α ∼ r−2αþd. The existence of the zeroth, first,

and second moments gives the general transition points
marked in Fig. 1.
Numerical results.—We test the dephasing mechanism

and other predictions mentioned above in a long-range
mixed field Ising model with Hamiltonian

H ¼ −
X
r;r0

J
jr − r0jα σ

z
rσ

z
r0 −

X
r

hzσzr −
X
r

hxσxr; ð4Þ

where J is set to 1 as the energy unit, and the fields hz and
hx are set to 0.5 and 1.05, respectively.
We implement the TDVP algorithm in operator space,

which treats the operator as a matrix-product state and
optimizes within the space of matrix-product representa-
tions [43,44,61]. The “super” Hamiltonian H ¼ H ⊗ I −
I ⊗ H� of the long-range interaction is explicitly con-
structed and fed into the state-based TDVP algorithm [44].
We expect that information far ahead of the wave front can

be extracted with relatively low bond dimension, enabling
us to simulate up to 200 sites.
In Fig. 3, we present the contour plots of Cðx; tÞ for

α ¼ 2.2 and α ¼ 1.2, which demonstrate the linear and
power-law light cones, respectively. The insets show the
contours for different values of the threshold, ϵ.
Equation (3) predicts that the contours will follow the
relations ðx − vBtÞ=

ffiffi
t

p
∼ const and x ∼ t1=ζ for the linear

and power-law light cones, respectively. The former gives
convex curves that become parallel asymptotically, while
the latter gives concave curves that disperse. These features
are reflected in Figs. 3(a) and 3(b).
A precise verification of the phase boundary is com-

putationally challenging. We instead measure the spatial
dependence of the power-law tail to verify the proposed
dephasing scheme. Figure 4(a) shows the tail of the front
for a point initial condition with α ¼ 1.2. The decay
exponent remains close to 2α even at late times, consistent
with the mean field argument [60]. In contrast, a domain
wall initial condition with h ¼ 1 for x < 0 will generate a
tail that scales as x−2α−1 at early times. In Fig. 4(b), we fit
the decay while taking into account the finite size of the
domain and show that the fitting parameter αfitted is fairly
close to α.
Discussion and conclusion.—We studied information

propagation in chaotic long-range interacting systems via
an analysis of the light cone structure of the squared
commutator. Invoking a dephasing mechanism, we pro-
posed a general phase diagram for such chaotic systems
that generalizes the one proposed in Ref. [18] that exhibits
logarithmic, power-law, and linear light cone regimes. In
particular, we analytically compute and numerically con-
firm the emergence of a linear light cone when the power-
law exponent of the interaction strength α ≥ 1.5. The
powerful TDVP-MPO algorithm allows us to simulate
systems with 200 sites, so that pertinent results at late
times can be explicitly verified.

(a) (b)

FIG. 3. The light cone of the long-range mixed-field Ising
model for (a) α ¼ 2.2 and (b) α ¼ 1.2. Contours of Cðx; tÞ at
threshold ϵ ¼ e−7 are the main figures and other thresholds in the
insets. Various system sizes and bond dimensions confirm
convergence.

(a) (b)

FIG. 4. Tail of the front for (a) a point and (b) domain wall
initial conditions. (a) At α ¼ 1.2, the decay fits x−2α at long times.
(b) The short time decay fits C ¼ aðx1−2αfitted − ðxþ x0Þ1−2αfittedÞ,
where x0 is the domain wall length. αfitted ≈ α, confirming the
Lévy flight prediction.
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A further simplification of the model yields a simple
Lévy flight picture (Model 1þ) that describes the operator
spreading in generic long-range interacting systems. It is
remarkable that we can determine all the phase transition
points at where the moments of Lévy flight diverge, as well
as the OTOC scaling close to the light cone. Both Model 1
and the associated arguments are also generalizable to
systems with a large number of on-site degrees of freedom,
which we leave to future work.
Recently, Ref. [20] proved a general Lieb-Robinson-type

bound with a linear light cone for α > 3 in one dimension.
We here have a smaller threshold at α ¼ 1.5. This is in
accordance with folklore that chaos usually prevents an
optimal rate of propagation. Thus, we anticipate that the
critical α for the systems we consider will generally be
smaller than those of theoretical bounds.
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