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Summary

English

Decentralized research data management (dRDM) systems handle digital research objects 
across participating nodes without critically relying on central services. We present four 
perspectives in defense of dRDM, illustrating that, in contrast to centralized or federated RDM 
solutions, a dRDM system based on heterogeneous but interoperable components can offer a 
sustainable, resilient, inclusive, and adaptive infrastructure for scientific stakeholders: An 
individual scientist or lab, a research institute, a domain data archive or cloud computing 
platform, and a collaborative multi-site consortium. All perspectives share the use of a common, 
self-contained, portable data structure as an abstraction from current technology and service 
choices. In conjunction, the four perspectives review how varying requirements of independent 
scientific stakeholders can be addressed by a scalable, uniform dRDM solution, and present a 
working system as an exemplary implementation.

Deutsch

Dezentrale Forschungsdatenmanagement (dFDM) Systeme verwalten digitale Forschungsdaten 
mit mehreren Teilnehmern, ohne dabei von einem zentralen Service abhängig zu sein. Zur 
Verteidigung von dFDM präsentieren wir vier Perspektiven: Einzelne Wissenschaftler, 
Institutionen, Datenarchive, Analyse-Plattformen und Konsortien, die zeigen, dass heterogene 
aber auf interoperablen Komponenten basierenden dFDM Systeme, im Gegensatz zu 
zentralisierten oder föderierten Lösungen, eine nachhaltige, resiliente, offene und 
anpassungsfähige Infrastruktur für wissenschaftliche Interessensgruppen sein können. Allen ist 
die Verwendung einer einheitlichen, portablen Datenstruktur gemein, die als Abstraktion von 
aktuell verwendeten Technologien zum Einsatz kommt. Zusammengenommen zeigen diese 
Perspektiven beispielhaft anhand eines in der Praxis verwendeten Systems, wie vielfältige 
Anforderungen unterschiedlicher Interessengruppen durch eine skalierbare dFDM Lösung 
adressiert werden können.



Introduction

Research data management (RDM) is an increasingly important topic for individual scientists, 
institutions, infrastructure providers and large-scale research collaborations. This shift in 
attention is driven by ethical considerations, threats to the trustworthiness of research outputs, 
and the desire to maximize the impact of publicly funded research. Generic, large-scale storage 
and computing infrastructure has existed internationally for a considerable time. Yet, the 
apparent lack of fit for domain-specific, or regionalized data exchange and publication use 
cases has motivated a large number of localized, domain-specific developments or deployments 
of RDM solutions. These emerging solutions address some of the immediate needs, in part 
motivated by the increasing enforcement of minimum RDM standards by funding agencies. Yet 
as of today, the lack of infrastructure allowing interoperability across RDM systems still limits the 
potential impact that the research data can make to science and society.

This problem can be addressed by establishing a network of interoperable, but independently 
governed and funded services that jointly form a decentralized research data management 
system (dRDM). Such a system makes digital research objects available across a network of 
participating institutions and investigators for publication, query, retrieval, backup or archive, 
and collaborative evolution. Importantly, this is achieved without critically relying on central 
services, thereby offering a high level of resilience against any failure of individual network 
components, including technical errors, but also institutional failure like discontinued funding.

Two primary models of decentralization can be distinguished: (1) A federation, where a single 
technology is utilized across partner sites, to provide a homogeneous solution, and (2) 
interoperability, where multiple technologies are used across partner sites but integrated into a 
single but heterogeneous set of components. On the one hand, the federation model 
dramatically simplifies the technical challenges. Simplicity comes at a cost though, as it 
constrains all partner sites to the deployment and maintenance of a single (homogeneous) 
software solution that might be suboptimal for many partners; a “one-size-must-fit-all” problem 
that can limit the type of partners involved in the federation. On the other hand, the 
interoperability model allows decentralization based on a network of heterogeneous software 
solutions. Each participant site is free to employ the optimal, site-specific solution avoiding the 
challenges and limitations of a “one-size-must-fit-all” approach. In such a system though the 
challenge is shifted to establishing effective interoperability between the different technologies 
employed.

Arguably, the interoperability model is more flexible and inclusive as it allows a more diverse set 
of partner sites to participate. More importantly, the interoperability model can improve the 
widespread application and resilience of dRDM. For example, established analysis and 
deployment workflows at each site can stay working while interoperability with other sites can be 
established in parallel, for those projects requiring it, rather than requiring disruptive 
infrastructural changes that can simultaneously impact multiple laboratories or researchers. In 
the following we present four perspectives on the utility of this type of dRDM. All four share a 
common principle: the use of a uniform data structure as a common denominator that facilitates 
independent development of software adaptors to instruments and services that enable 
interoperability and data flow between all relevant infrastructure components and participants. 
While various standards and implementations of such data structures exist (e.g. BagIt, Kunze et 
al., 2018; Frictionless Data Package, Walsh et al., 2017; or Dat, McKelvey et al, 2020), all 
presented perspectives share the use of DataLad’s datasets (Hanke et al., 2020) as key 
technology choices. This particular implementation is a domain-agnostic lightweight data 
structure that offers joint version control capabilities for code and data (based on the industry 
standard Git, git-scm.com), supports arbitrarily structured metadata, and via the git-annex 
software (Hess, 2020) is capable of tracking the identity and availability of dataset components 
without requiring universal data access or actually containing the file content. This makes it 
possible to construct a dataset as a standardized overlay data structure which references 
content in heterogeneously organized data portals or databases. Moreover, it does not hide or 
bypass existing institutional access protection mechanisms, and leaves authorization 
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procedures in the responsibility of the data owners.

Figure 1: A common, portable data structure allows establishing interoperability between diverse participant 
sites. Left: A common data structure can serve as a uniform abstraction layer to interface any number of commercial 
or institutional storage services, which may be centralized or federated systems. Right: The portable nature of the 
data structure facilitates data exchange between archive and compute services, as well as collaboration among 
individual researchers or formal consortia. Moreover, it provides institutions with the flexibility to evolve their 
infrastructure without needlessly impacting scientific workflows.

dRDM perspective: one lab, or researcher

From the perspective of individual researchers, their labs and collaborators, dRDM can improve 
day-to-day operations and make them robust against disruptive infrastructural changes. If data 
are uniformly accessible regardless of their storage location, scientists can orchestrate 
collaborative workflows and access not only to the data collected locally, but also that from 
external (public) resources in a streamlined fashion. Moreover, researchers utilizing a dRDM 
model can ensure consistent and robust data management across local and institutional IT 
environments. For example dRMD makes it trivial to deploy a processing script from a local 
copy of data within the lab to a larger-scale version of the data hosted in a datacenter. And as 
most researchers, in particular at early career stages, frequently move their workplace to 
different institutions (Guthrie et al., 2017), the benefits of this feature extend beyond a single 
workplace. When research agendas comprise a longer time frame, such that an employment 
change does not necessarily imply a fresh start and the discontinuation of previous projects, the 
potentially substantial and disruptive transition to a new institution and IT environment can be 
alleviated or prevented by a dRDM-based system. 

Without dRDM, and depending on the magnitude of the differences between IT systems and 
policies, the necessary changes can be severe. Consider, for example a transition from an 
environment with ample storage and shared computing resources, to a workplace with minimal 
local resources, but an institutional cloud storage service account. Before, all data holdings 
were accessible with low-latency as if stored on a single big harddrive. Computing resources 
had direct data access, and analysis scripts could reference the desired data by (hardcoded) 
paths. After the transition, scripts cease to work, because there is no local storage resource 
large enough to hold all data for analysis. Instead, additional, service-specific software has to be 
used to pull required data from the cloud, and deposit results into the cloud. Essentially all 
analysis implementations of the past have to be manually adjusted to work in the new 
environment, an error-prone process that in itself is a threat to the reproducibility of results.

Using a common data structure as an abstraction of an analysis environment has the potential 
to substantially ease such transitions. In the case of a DataLad dataset, it is possible to 
comprehensively include all components of a compute- or data-intensive analysis in a single, 
version-controlled unit. This includes input data of any number and size, analysis code in any 
programming language, and even complete computational environments in the form of software 
container images. The dataset offers an intuitive API for data access that hides the peculiarities 



of a particular IT environment, and enables the development of analysis code with improved 
portability properties. For example, a particular input file for an analysis can be referenced using 
a simple local path, relative to the root path of the analysis dataset: input/datasetA/file1.dat. 
An analysis script that requires this file can ensure this by executing the shell command datalad 
get input/datasetA/file1.dat. Importantly, the analysis script does not need to reflect that 
datasetA, which contains the file of interest, is a different modular data unit that is presently 
hosted on a particular storage service. Consequently, the analysis script does not need to be 
adjusted whenever the availability of datasetA changes, because it has been transferred to a 
different institution. Instead, the DataLad software can be centrally configured to look for 
datasets, identified by a globally unique identifier and a precise version, at a different or 
additional locations. Given that the data structure also allows for change tracking, it is possible 
to retrospectively discover how data was manipulated, improving the transparency and 
reproducibility of conducted projects.

For an individual researcher or lab, the barrier of entry into such a system is low. With no 
confinement to external services or file types, a scientist can transition new or existing projects 
into a common data structure independently, and can typically achieve this without assistance, 
additional infrastructure, or project structure change. Nevertheless, the adoption of a common 
data structure such as DataLad’s datasets implies the necessity to acquire additional expertise, 
e.g., from documentation, user training, or tutorials, and also an individual’s interest in doing so. 
Efforts such as ReproNim’s (repronim.org) webinars, teaching resource collections, and 
teaching fellowships, or in-depth, user-focused documentation formats such as the DataLad 
Handbook (Wagner et al., 2020) facilitate this.

dRDM perspective: a research institute

Like individual labs or researchers, research institutes also exist in a volatile environment. It is in 
their best interest to provide their scientists with the latest technologies to maximize their 
competitive advantage, boost research efficiency, and consequently increase the attractiveness 
and reputation of a research environment. However, the desire to quickly adopt new 
technologies has to be counterbalanced with the need to keep the cumulative cost of legacy 
infrastructure and procedures at a manageable level. This is compounded by the fact that 
institutions are generally responsible for guaranteeing a certain level of longevity for all research 
outputs, for example, the retention of research data, typically for at least a decade.

For the same reason as for individual researchers or labs, readiness for future infrastructure 
transitions, it makes sense for research institutions to utilize a portable, common data structure 
as an abstraction layer for RDM operations. The key feature of data structures, like DataLad’s 
datasets, is that they present researchers with a familiar view, a project directory on a 
filesystem, and internally translate requests for data by location (i.e. a file path) into requests for 
data by identity (i.e. a UUID or a checksum). This represents a powerful paradigm shift, as it 
enables future modifications of the content lookup and retrieval without changing the 
user/research-facing data representation.

The Institute of Neuroscience and Medicine Brain & Behaviour (INM-7) of the Research Center 
Jülich uses DataLad datasets not only to manage access to large-scale neuroimaging datasets, 
like the UKBiobank (Miller et al. 2016), or the Human Connectome Project (HCP, van Essen et 
al. 2013), but also as a system to archive completed projects. Institute members can discover all 
managed datasets via a collection that is maintained as a DataLad super-dataset (a dataset 
comprising a versioned collection of datasets) hosted on a local GitLab (gitlab.com) instance. 
Independent of the hosting choice of the original data provider, institute members can access 
any data file by requesting it through the institutes dataset collection, as described above. File 
access permissions are either managed directly by the respective data owners (e.g. each HCP 
user obtains their own credentials from the HCP consortium), or by controlled access to local 
downloads of restricted datasets (e.g. dedicated access group for signatories of the UKBiobank 
data usage agreement). Importantly, data access procedures remain uniform and fine-grained, 



regardless of whether an analysis is developed on a student’s laptop, or is computed on the 
institute’s cluster system. This RDM setup also facilitates the ad hoc usage of resources at the 
Jülich Supercomputing Center (JSC). Institute staff can stage individual data resources on the 
JSC storage systems and the DataLad software can transparently obtain dataset content on this 
independently operated resource without requiring individual adjustments of datasets, or 
analysis scripts. When a study is completed and archived, its DataLad dataset, including the 
incorporated study metadata, remains fully discoverable and accessible through the institute’s 
dataset collection. However, file content can be administratively moved from fast and expensive 
“hot” storage, to higher latency bulk storage, and eventually onto tape backup systems, all 
without structurally impacting dataset access for institute members. Combined with data access 
statistics, this flexibility allows institute staff to maintain an optimal compromise of data access 
latency and storage demands without individual user negotiations.

dRDM perspective: a domain data archive, or computing platform

Domain data archives seek to provide high-reliability dataset access to all authorized 
researchers, with a secondary mandate to ensure that publicly funded data is findable via 
internal search or external indexing. Archives treat datasets as a natural unit of organization, 
and the necessary considerations are ingress, validation and metadata extraction, storage, 
publication and egress. By adopting common data standards coupled with ingress and egress 
validation mechanisms, an archive team can focus development efforts on the key tasks of 
ensuring data access, availability and findability.

To take an example, OpenNeuro (Gorgolewski et al, 2017) is a public neuroimaging data 
repository. Rather than imposing its own schema to which submitters must adapt their data, the 
archive adopted the community-developed Brain Imaging Data Structure (BIDS) standard for 
data organization and metadata (Gorgolewski et al, 2016). To assure reliable data access, and 
to serve the wide community of users, the archive relies on commercial infrastructure and uses 
Amazon Web Services to host the web interface and the Simple Storage Service (S3) to host 
the data. However, to ensure the long-term availability of the data, it requires a data model that 
is not tied to any specific vendor, hosting platform or technology. In addition to the data model, 
OpenNeuro also desired making data available through generalized, stable interfaces 
independent of a particular storage platform or vendor. Consequently, the archive adopted 
DataLad to represent datasets internally (within the archive). This choice enables data change-
tracking and a common protocol for data egress (i.e., Git combined with git-annex). Data 
ingestion is also facilitated by DataLad. When a dataset is submitted to the archive a DataLad 
dataset is created, and binary files with imaging data are annexed. The dataset owner makes at 
least one "snapshot" to mark the dataset as complete, and then publishes it in the archive. 
When the dataset is published, all files are uploaded to S3, and the URLs provided by S3 are 
associated with the annexed files. Finally, the DataLad dataset is published to a GitHub 
repository, to allow findability by other researchers even beyond the OpenNeuro Archive. The 
use of high-availability, permissive, third-party services ensures data is accessible even if the 
primary website suffers from downtime. At the same time, the data model does not depend on 
either service, and can be ported to other services as new technologies emerge.

Version control and persistent identifiers are central features of the OpenNeuro data model. 
Datasets may change over time as new data are added or metadata is updated, and analyses 
of a dataset depend critically on the state of the dataset at the time of analysis. Dataset 
snapshots are represented as Git tags, allowing analyses to refer to the version of the dataset 
used via its version number (as opposed to by checksum). In addition, data object identifiers 
(DOIs) are issued for each snapshot of the dataset, ensuring that the particular version of the 
dataset may be cited in publications and facilitate the reproduction of analyses.

The use of DataLad and the published datasets on GitHub allow OpenNeuro datasets to be 
available beyond the archive. A variety of computational systems even without direct interaction 
with OpenNeuro can reference and access the datasets. For example, a researcher interested 



in developing a new analysis method might test the code during development on their personal 
computer by fetching an OpenNeuro dataset for testing or validation. The same researcher can 
then run a scaled-up version of the analysis on a high-performance computing cluster, which 
may host OpenNeuro datasets in a centralized location within a datacenter with minimal effort, 
simply reusing the data model and DataLad version tracking mechanisms. Finally, a cloud-
based computational platform may expose OpenNeuro datasets to its users to increase data 
availability and enhance the general utility of the services offered.

As datasets are published and accumulate in one or several accessible repositories, new 
opportunities emerge for data aggregation and reuse across datasets (Avesani et al, 2019). 
Common metadata standards are essential to effectively harmonize data from multiple sources 
and enable research questions at scales previously impracticable. Furthermore, a common data 
standard can facilitate the aggregation of data from multiple sources. The effective separation of 
metadata (Git) and data (git-annex) is a key feature of the DataLad model that ensures that the 
metadata can be made accessible even when there are legal and ethical barriers to openly 
sharing data. It is thus becoming possible to develop tools to aggregate data from multiple 
providers without requiring an explicit effort from those providers. The dRDM model breaks 
some of the barriers and facilitates aggregation, curation and upcycling data, allowing central 
archives such as OpenNeuro to act as stewards rather than gatekeepers.

Key partners that can be effectively served by the proposed dRDM model are cloud-computing 
platforms. BrainLife (brainlife.io) is one of the most recent open and publicly funded platforms 
developed with the goal to serve researchers facilitating access, sharing or re-use of data 
processing methods. The code implementing the data processing method can be submitted to 
BrainLife and registered as a web service (an App). The BrainLife platform allows automated 
tracking of the analyses execution and orchestrates data processing on diverse compute 
resources via a convenient graphical web interface or command line interfaces. BrainLife is not 
meant to be a data archive but a registry for reusable processing methods used in published 
scientific articles. The computational platform is compliant with the BIDS data standard so as to 
facilitate users’ data ingress and egress. Recently, the BrainLife team has used DataLad to 
connect the platform users with hundreds of BIDS-compliant datasets that are made publicly 
available as DataLad datasets. BrainLife uses DataLad to offer automated import “with the push 
of a button” of datasets that users have published on a variety of public archives. BrainLife 
benefits from the dRDM standardization in two ways: (1) Metadata standardization enables 
automatic identification of relevant dataset components, extraction of key data properties and 
match-making of applicable analysis implementation against available data types, and (2) the 
abstraction of data transport logistics provided by DataLad’s datasets enables BrainLife to 
automatically obtain (pull) data files from the original providers, for example from OpenNeuro, 
avoiding manual access to each data archive. Taken together, BrainLife is an example of a 
highly accessible computing platform that translates the potential of a dRDM system to the 
immediate computing needs of researchers, by connecting to independent standardization 
efforts without suffering from the need to continuously adjust to implementation changes in a 
large number of data portal and metadata access APIs.

dRDM perspective: a collaborative multi-site consortium, the Canadian Open 
Neuroscience Platform

The need for data sharing across institutions and states is fueled by the requirement of large 
sample sizes to enable well powered and generalizable studies, and for distributing the cost of 
data acquisition across sites. These large consortia generally opt for centralized data hosting, 
which simplifies data harmonization and management. However, large numbers can also be 
achieved through many independently acquired datasets that have the potential to better 
represent a more diverse population, an important factor for the construction of biomarkers. The 
Canadian Open Neuroscience Platform (CONP) is a consortium aiming for this goal and was 
funded in part to share neuroscience datasets across Canada within a comprehensive ethical 
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and legal framework, establishing a repository of data implementing the FAIR principles 
(Wilkinson et al., 2016). 
While the central CONP data portal (portal.conp.ca) could have been only a set of links pointing 
to original infrastructures, this would not have given direct data access across datasets and 
would have been of limited utility for information aggregation. On the other extreme, centralizing 
data would have been infeasible. Critically, ethical or institutional policy requirements would 
have prevented transferring data to a central data storage for a number of datasets that are 
presently accessible on the platform. To keep the governance of datasets local, CONP needed 
to adopt a distributed solution, while still making the data accessible directly through a single 
portal.   
Adopting a portable, common data structure, like DataLad’s dataset, as an abstraction provided 
CONP a shared and centralized space for distributing the metadata, while keeping the links to 
the original data locations. Metadata descriptors implemented using the DATS model (Sansone 
et al., 2017) are incorporated in the centrally hosted dataset Git repositories, while original raw 
data are hosted on diverse platforms (OSF.io, Zenodo.org, Loris.ca, Braincode.ca, and others). 
CONP uses a crawler to discover datasets on external services, like OSF or Zenodo, and builds 
a minimal DATS model for each dataset to make these data findable and accessible through the 
CONP portal. This offers a simple procedure for researchers who both want to share data in a 
general repository but also make these data discoverable in a neuroscience specialized portal. 
Presently, CONP users must access datasets exclusively using the DataLad software. This 
imposes requirements, such as the necessity to deploy the software for any consumer. 
However, not all data consumption scenarios require that each participant operates a full-
featured node of the dRDM system. Consequently, CONP is working on convenient export 
functionality, such as an in-browser dataset downloader, to lower the technical threshold for 
interaction with its users. Because such a solution relies on standardized data access records, it 
can also be used by any other project using the data structure for dRDM.

Conclusions

As illustrated by the four perspectives presented here, dRDM, built on a common, portable data 
structure that enables uniform access to all relevant commercial and institutional data services, 
is a flexible model that can scale from personal computing environments, to individual 
institutions, all the way to large-scale collaborations in multi-site consortia. The inclusive nature 
of this RDM approach that avoids one-size-must-fit-all prescription of centralized or federated 
services is suitable for introducing RDM standards and procedures in heterogeneous fields of 
endeavour. Consequently it has also been selected as a strategic component of the NFDI 
Neuroscience initiative, a consortium that aims to consolidate neuroscience RDM in Germany 
along these lines.

Using the DataLad software and its datasets, as an exemplary implementation of a common 
portable data structure, it is possible to curate and maintain unified data distributions collating 
data from the wide range of data providers. One such distribution is datasets.datalad.org, which 
currently provides a single point of entry for public or authenticated access to over 5,000 
DataLad datasets covering over 200 TBs of neuroscience research data from hundreds of 
archives, initiatives, or individual laboratories. Among others, this collection also includes the 
super-datasets for CONP and OpenNeuro, and through them provides access to all datasets 
managed by the respective entities. In turn, this collection is used by BrainLife to automatically 
discover datasets that can be processed on its platform.

Standardizing on a technology implies a substantial risk and installs a single-point-of-failure in a 
complex system. However, standardization of core components also limits the variability that 
subsequent developments need to consider, and ultimately enables more progress to be made 
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with the same finite resources. In the case of DataLad, risks are introduced by three 
components: Two small scale developments (DataLad, git-annex) and the version control 
system Git. Git is a globally adopted industry standard. The chance of a technology failure 
without an adequate mitigation opportunity can be considered minimal. Both DataLad and git-
annex build on Git, adding only documented, plain-text data structures to the content managed 
by Git. In the case of catastrophic failure (discontinuation of the development) the interpretability 
of data contained in these structures is unimpaired. Moreover, both software components are 
openly developed (public code history, issue tracker, support channels), and are available under 
recognized free software licenses (MIT, Affero GPL), such that continued maintenance by a 
third party can be considered feasible. This use of general purpose protocols and technologies 
makes it possible to present scientific data in readily usable form on platforms and forums, such 
as GitHub, that are used by a large audience of non-researchers, thereby dramatically 
increasing the exposure of publicly funded research output, and successfully utilizes them for 
improve the capabilities and resilience of global dRDM.
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Glossary

API

An application programming interface (API) defines interactions between multiple software 
intermediaries. An API can be entirely custom, specific to a component, or it can be designed 
based on an industry-standard to ensure interoperability.

Checksum

A checksum is a small-sized datum derived from a block of digital data for the purpose of 
detecting errors that may have been introduced during its transmission or storage.

UUID

A universally unique identifier (UUID) is a 128-bit number used to identify information in 
computer systems.

Version control

Version control (also known as revision control) is a class of systems responsible for managing 
changes to computer programs, documents, or other collections of information.



Figure legend

Figure 1: A common, portable data structure as means to establish interoperability between all 
participants of the research process and the services employed for this purpose. Left: A common data 
structure can serve as a uniform abstraction to interface any number of commercial or institutional storage 
services, which may be centralized or federated systems. Right: The portable nature of such a structure 
facilitates data exchange between archive and compute services, as well as collaboration among 
individual researchers and within formal consortia. Moreover, it provides institutions with the flexibility to 
evolve their infrastructure without needlessly impacting scientific workflows.
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