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On Inference of Network Topology and Confirmation
Bias in Cyber-Social Networks

Yanbing Mao and Emrah Akyol

Abstract—This article studies topology inference, from agent
states, of a directed cyber-social network with opinion spread-
ing dynamics model that explicitly takes confirmation bias into
account. The cyber-social network comprises a set of partially
connected directed network of agents at the social level, and a set of
information sources at the cyber layer. The necessary and sufficient
conditions for the existence of exact inference solution are charac-
terized. A method for exact inference, when it is possible, of entire
network topology as well as confirmation bias model parameters
is proposed for the case where the bias mentioned earlier follows a
piece-wise linear model. The particular case of no confirmation bias
is analyzed in detail. For the setting where the model of confirma-
tion bias is unknown, an algorithm that approximates the network
topology, building on the exact inference method, is presented. This
algorithm can exactly infer the weighted communication from the
neighbors to the non-followers of information sources. Numerical
simulations demonstrate the effectiveness of the proposed methods
for different scenarios.

Index Terms—Confirmation bias, cyber-social networks,
directed communication, social networks, topology inference.

I. INTRODUCTION

THE inference of network topology from observed state data
in dynamical systems is a key problem in several fields

ranging from bioinformatics [1] to communication [2] and social
networks [3], see e.g., [4] for a comprehensive overview. We
categorize the prior approaches to this problem into two groups:
approximate and exact inference.

In several practical scenarios, data to infer the network topol-
ogy is only partially available or it is stochastic (e.g., noisy),
which transforms the network inference problem into an in-
stance of well-studied estimation problems, with assumptions
on network dynamics. For example, in [5], this problem is
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studied in the context of structural equation models, while in [6],
autoregressive models are employed. The solution approaches in
the literature utilize tools from Bayesian analysis and estimation
theory [7], [8], adaptive feedback control [9], [10], compressed
sensing [11], or more generally optimization methods with
sparsity constraints [12], [13].

In various other settings, exact topology inference is possible.
For example, in [14], a “node knockout” method is proposed
where selected nodes are grounded (set to zero) to identify the
network structure. In [15], this approach is coupled with power
spectral analysis with the knowledge of eigenvalue-eigenvector
of matrix that describes network structure. We note that while
these methods [14], [15] provide exact topology inference, they
require the capability of altering (controlling) every node value
in the network, which is difficult in practice, if not impossi-
ble, for several realistic scenarios, including the case of social
networks.

Perhaps closest to the proposed approach here, in [16], an
exact topology inference strategy is presented, primarily for
continuous-time consensus dynamics, by transforming the prob-
lem into a solution of Lyapunov equation whose numerical
solutions are well studied, see e.g., the [17], [18]. This approach,
unlike the ones in [5]–[10], [14], [15], does not require the
capability of external stimulation for every node in the network,
hence it is potentially applicable to social networks. However, as
we demonstrate later in this paper, this approach is not sufficient
for exact inference in the directed network topologies that we
consider here.

In this paper, we focus on topology inference of social net-
works. Mathematical models of opinion evolution over social
networks have gathered significant interest from different disci-
plines, ranging from computer science, control theory to social
science, see e.g., [19]–[24]. Notably, in [19], every individual
updates her belief as an average of her network neighbors.
In [21], the model further involves innate opinions determined
by socio-economic conditions in which that individual lives in.
Recently, several variations have been proposed based on these
seminal works to more realistically model capture today’s social
networks, see e.g., the excellent overviews [25]–[27] and the ref-
erence therein. In this paper, we focus on the topology inference
problem of networks with known information dynamics such as
the ones in [19], [21], with the important explicit consideration
of a key cognitive bias, known as the confirmation bias.

Confirmation bias of an individual refers to favoring informa-
tion which confirms her previously existing beliefs [28]. This
bias plays a key role in creating so called “echo chambers” in
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social media, where individuals are exposed to only their side of
the story [29]. This is partly due to wide use of machine learning
algorithms that filter news on social media newsfeeds, such as the
ones in Twitter and Facebook. These algorithms automatically
utilize and foster this bias, i.e., present the user only the news
that they would like to see, hence contribute to the polarization
of public opinion [30]–[33]. Partly due to its role in the spread of
misinformation, confirmation bias has recently gained a revived
interest [29], [30], [34]. This constitutes our primary motivation
to study the specific impact of confirmation bias on several
aspects of social networks. We consider this work as a part
of a comprehensive exploration of mathematical underpinnings
of the misinformation spread and polarization, among other
complementary studies from our lab, see e.g., [35]–[40].

In [38], opinion dynamics in social networks is studied with
a particular focus on confirmation bias. Here, the cyber-social
network comprises a social layer (individuals) and a cyber
layer (information sources or “stubborn individuals” who do
not change their opinions). The confirmation bias is modeled as
a function of the distance between the opinions of individuals
and information sources, explicitly taken into account in the
dynamics model. We note that the well-known Hegselmann-
Krause model [22] and its recent variations [41] also address
this bias, where an individual completely ignores the opinions
that are “too far” from hers. This model seems less amenable
to detailed analysis than that in [38], which is adopted in this
paper.

In this paper, building on the opinion dynamics model in [38]
and our preliminary analysis reported in [40], we investigate
the problem of network topology inference in conjunction with
confirmation bias. To the best of our knowledge, this is the first
work in the literature (in social sciences as well as in engineer-
ing and computer science) that considers the challenges that
confirmation bias brings into the problem of network topology
inference, as well as to the problem of joint inference of network
topology and bias parameters from opinion observations. Our
contributions are summarized as follows.! We characterize the necessary and sufficient conditions for

solvability of exact inference of network topology and bias
parameters, in the case of piece-wise linear bias model with
controlled information sources.! Building on the aforementioned characterization, we pro-
vide procedures to obtain! the exact inference of network topology and bias param-

eters when the information sources are controlled;! the exact inference of network topology when the infor-
mation sources are uncontrollable and there is no bias.! We provide an approximate inference methodology for
the case where the information sources are uncontrol-
lable and the bias model is unknown. The proposed
method exactly infers partial network topology.

This paper is organized as follows. In Section II, we present
the notation, a detailed analysis of the relevant prior work, as well
as three inference problem formulations. In Sections III, IV and
V, we study inference problems I, II and III respectively. We next
present our numerical results in Section VI. We finally discuss
our conclusions and future research directions in Section VII.

II. PRELIMINARIES

A. Notation

We let Rn and Rm×n denote the set of n-dimensional real
vectors and the set of m× n-dimensional real matrices, respec-
tively. N stands for the set of natural numbers, and N0 = N

⋃
0.

Given a vector x ∈ Rn and a matrix A ∈ Rn×m, inequalities
x # 0 and A # 0 indicate element-wise inequalities. We define
I andO as the identity and zero matrices with proper dimension,
respectively. Moreover, we let 1 and 0 denote the vectors of
all ones and all zeros with proper dimension, respectively. The
superscript ‘$’ stands for the matrix transposition. For a matrix
W ∈ Rn×n, [W]i,j and [W]i,: denote the element in row i
and column j and the ith row, respectively. A ∈ Rn×n is a row
stochastic matrix if

[A]i,j ≥ 0 and
n∑

j=1

[A]i,j = 1,

for i, j = 1, . . . , n. Other important notations are highlighted as
follows:

Ni : neighbors of individual vi;
ker(S) : set {y : Sy = 0,S ∈ Rn×n};
A−1O : set {x : Ax ∈ O};
EU (·) : expectation over uniform distribution U(0, 1);
| · | : (element-wise) modulus of a real (matrix) number.

The network considered in this paper is composed of n
individuals (the social part of the network) and m information
sources (the cyber part of the network). The interaction among
the individuals is modeled by a digraph G = (V ,E), where V
= {v1, . . . , vn} is the set of vertices representing the individuals
and E ⊆ V × V is the set of edges of the digraphG representing
the influence structure. We assume that the social network has no
self-loops, i.e., for anyvi ∈ V , (vi, vi) /∈ E. The communication
from information sources to individuals is modeled by a bipartite
digraph H = (V

⋃
K,B), where K = {u1, . . . ,uf} is the set of

vertices representing the information sources and B ⊂ V × K is
the set of edges of the digraph. I denotes the set of followers of in-
formation sources, i.e., I = {vi|(vi, ud) ∈ B, vi ∈ V , ud ∈ K}.

B. Social Network Model

In this paper, we use the opinion dynamics in [38]:

xi(k+1)= αi(xi(k))si +
∑

j∈V

wi,jxj(k)+
∑

d∈K

ŵi,d(xi(k))ud

(1)

where
1) xi(k) ∈ [0, 1] is individual vi’s opinion at time k, si is her

fixed innate opinion, ud ∈ [0, 1] is the information source
ud’s opinion;

2) wi,j represents the fixed weighted influence of individual
vj on individual vi,

wi,j

{
> 0, if (vi, vj) ∈ E

= 0, otherwise;
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3) ŵi,d(xi(k)) is the weighted influence of information
source ud on individual vi with

ŵi,d(xi(k)) =

{
gi,d(|xi(k)− ud|), if (vi, ud) ∈ B

0, otherwise;
(2)

where gi,d(·) : R → R is a strictly decreasing function
that models confirmation bias: an individual tends to seek
out, and consequently be influenced more by, an informa-
tion source who reflects beliefs closer to hers. We assume
that gi,d(·) satisfies 1 > gi,d(|xi(k)− ud|) > 0.

4) αi(xi(k)) is the “resistance parameter” of individual vi,
determined in such a way that it satisfies

αi(xi(k)) +
∑

j∈V

wi,j +
∑

d∈K

ŵi,d(xi(k)) = 1, i ∈V .

(3)

Remark 1: We make a common assumption, similarly made
in several related work, see e.g., [42], as the individual innate
opinion is regarded as her initial opinion, i.e.,

si = xi(0), i ∈ V . (4)

C. Related Prior Work

The most relevant prior work is the approach in [16], where
an exact inference procedure for undirected network topology
in conjunction with the continuous-time consensus dynamics
is proposed. The discrete-time version of consensus dynamics
considered therein is

x̃(k + 1) = L̃x̃(k), (5)

where L̃ ∈ Rn×n is a symmetric row stochastic matrix. The
exact inference procedure of L̃ is based on the well-known
numerical solutions of the constrained Lyapunov equation:

L̃U+UL̃ = V, L̃ ∈ Rn×n, L̃1 = 1, [L̃]i,j ≥ 0 (6)

where V !∑m−1
k=0 (x̃(k + 1)x̃$(k) + x̃(k)x̃$(k + 1)) and

U !∑m−1
k=0 x̃(k)x̃$(k). However, this exact inference method

works only for undirected communication topologies, i.e., this
method cannot generate a unique inference solution for directed
communication topologies when n > 3, as demonstrated as
follows.

In the context of directed communication, i.e., [L̃]i,j *= [L̃]j,i
for some i *= j ∈ V , the relation (6) would be

L̃U+UL̃$ = V, L̃ ∈ Rn×n, L̃1 = 1, [L̃]i,j ≥ 0. (7)

For the directed communication graph withn agents, there are
n2 − n weighted communication links (variables) [L̃]i,j , i *= j,
that need to be inferred. In (7), both the matrices L̃U+UL̃$ and
V are symmetric. Thus, (7) contains, at most, (n+1)n

2 distinct
linear equations that are related to one or some [L̃]i,j , i *= j.
Moreover, we note that the constraint conditions L̃1 = 1 and
[L̃]i,j ≥ 0 in (7) only reduce the number of linear equations
while do not affect the number of variables to be inferred. This
implies that if (n2 − n)− (n+1)n

2 = (n−3)n
2 > 0 if n > 3 i.e.,

if the network includes more than three agents, then the number

of unknown weights that need to be inferred is larger than
the number of equations included in (7). Hence, the procedure
in [16] cannot be applied to the directed communication graph
when n > 3.

D. Problem Formulation

In this paper, we first investigate the setting where all infor-
mation source opinions are under control and confirmation bias
follows a piece-wise model, i.e., the function gi,d(·) in (2) is
described by

gi,d(xi(k)) = βi − γi|xi(k)− ud|. (8)

We next study the case without confirmation bias and infor-
mation source opinions are not controlled. We finally analyze
perhaps the most realistic setting where the model of confirma-
tion bias is unknown and the information sources are not under
control. For this setting, we only infer an approximate topology.
The studied problems in the three different cases are formally
stated as follows.

Inference Problem I: For the opinion evolution with confir-
mation bias (γi *= 0 for some i ∈ V ), given controlled opinions
of information sources and measured evolving opinions x(k) at
some time, exactly infer the network topology and the confir-
mation bias.

Inference Problem II: For the opinion evolution without
confirmation bias (γi = 0 for any i ∈ V ), given uncontrolled
information sources and measured evolving opinions x(k) at
some time, exactly infer social network topology.

Inference Problem III: With unknown confirmation bias
model, given uncontrolled opinions of information sources and
measured evolving opinions x(k) at some time, approximately
infer social network topology.

Remark 2: In order to obtain the exact inference, we need
a “global capability”: measure all of the individuals’ evolving
opinions for some time period. As also mentioned in Remark 2 of
[16], such a global capability is necessary in the exact topology
reconstruction with consensus-seeking dynamics.

III. INFERENCE PROBLEM I

In this problem, information source opinions are control vari-
ables, hence, to simplify the inference procedure, we set them
to “zero”:

u1 = u2 = · · · = um = 0. (9)

Since the information sources express the same opinion,
we mathematically treat them as one information source u. It
follows from (3) and (1) that xi(k) ∈ [0, 1], ∀i ∈ V , ∀k ∈ N,
and hence:

ŵi,d(xi(k)) = βi − γixi(k). (10)

We note here that the communication from information source
u to individuals is incorporated into the parameters βi and γi:

βi

{
> 0, (vi, u)∈B,

= 0, otherwise,
, γi

{
> 0, (vi, u)∈B,

= 0, otherwise;
. (11)
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The resistance parameters are obtained from (3) as

αi(xi(k)) = 1−
∑

j∈V

wi,j − βi + γixi(k), i ∈ V . (12)

Under the settings of (4) and (9), it follows from (10) and (12)
that (1) can equivalently be expressed as

x(k + 1) = Ax(0) +Wx(k), (13)

where we define:

x(k) ! [x1(k), x2(k), . . . , xn(k)]
$, (14a)

A ! diag




1−
∑

j∈V

w1,j−β1, . . . , 1−
∑

j∈V

wn,j−βn




 ,

(14b)

[W]i,j !
{
γixi(0), i = j ∈ V

wi,j , i *= j ∈ V .
(14c)

A. Solvability of Inference Problem I

We now consider the following dynamics

x(k + 1) = Ãx(0) + W̃x(k), (15)

where Ã andW̃ are inferred matrices ofA andW, respectively.
These matrices are defined as

Ã ! diag




1−
∑

j∈V

w̃1,j−β̃1, . . . , 1−
∑

j∈V

w̃n,j−β̃n




 ,

(16a)

[W̃]i,j !
{
γ̃ixi(0), i = j ∈ V

w̃i,j , i *= j ∈ V .
(16b)

Based on (13) and (15), we now define the solvability of exact
inference problem.

Definition 1 (Solvability): Given the measurements of opin-
ions x(k), k = 0, 1, . . ., m, the exact inference problem is said
to be solvable if and only if two following two conditions are
satisfied:

C1: x(k) is evolving according to both (13) and (15) for time
k = 0, 1, . . . ,m;

C2: W̃ = W, β̃i = βi and γ̃i = γi, i ∈ V .
Remark 3: We note that if C2 had required only Ã = A

and/or W̃ = W, by (14c) we could only infer the network
topology: wi,j = [W̃]i,j , i *= j ∈ V . However, the inference of
bias parameters would not be unique, as implied by: [W̃]i,i =
γ̃ixi(0) = γixi(0) = [W]i,i, i ∈ V , when xi(0) = 0.

We next continue analyzing the conditions of solvability,
which paves the way for derivations of (exact and approximated)
inference procedures.

Proposition 1: x(k) is evolving according to both (13) and
(15) for k = 1, . . . ,m, if and only if

x(0) ∈ L−1 ker(Ô) ∩ ker(Â+ Ŵ), (17)

where

L ! A+W − I, (18a)

Â ! Ã−A, Ŵ ! W̃ −W, (18b)

Ô ! [Ŵ$, (ŴW)$, . . . , (ŴWm−1)$]$. (18c)

Proof: See Appendix A. "
Based on Proposition 1, we directly obtain the necessary and

sufficient condition on the solvability of the inference problem.
Corollary 1: Consider the social dynamics (13) with (14),

and (15) with (16). The inference of network topology and
confirmation bias is solvable for (13), if and only if

x(0) /∈ L−1 ker (Ô) ∩ ker (Â+ Ŵ)

holds for anywi,j *= w̃i,j , i *= j ∈ V , orβi *= β̃i, i ∈ V , or γi *=
γ̃i, i ∈ V .

We note that Corollary 1 requires the knowledge of unavail-
able inference errors of encoded matrices, i.e., Â and Ŵ. In
the following, we provide a sufficient condition which does not
require these matrices.

Theorem 1: The exact inference problem for the social dy-
namics (13) is solvable if

xi(0) *= 0, for ∀(vi, u) ∈ B, (19)

rank([Lx(0),WLx(0), . . . ,Wn−1Lx(0)]) = n. (20)

Proof: See Appendix B. "

B. Exact Solution to Inference Problem I

We note that while (19) and (20) guarantee a unique inference
solution, in practice we cannot use these to device an algorithm
to solve exact inference problem, since the matrices W and L
are unavailable. Towards designing a practical algorithm, we
now consider the following measurement matrix:

P !
m−1∑

k=0

(x(k + 1)−x(k))(x(k + 1)−x(k))$,m ∈ N.

(21)

The following auxiliary lemmas, whose proofs appear in
Appendices C and D, we present properties of P which will
be used in the derivation of the proposed inference procedures.

Lemma 1: Consider the matrix (21). For the social dynamics
(13), we have

WP = Q, (22)

where

Q !
m−1∑

k=0

(x(k + 2)− x(k + 1))(x(k + 1)− x(k))$. (23)

Lemma 2: Consider the matrix (21). For the social dynamics
(13), we have

ker(P) = ker([Lx(0),WLx(0), . . . ,Wm−1Lx(0)]$), (24)

where L is given by (18a).

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on December 01,2020 at 02:09:46 UTC from IEEE Xplore.  Restrictions apply. 



MAO AND AKYOL: ON INFERENCE OF NETWORK TOPOLOGY AND CONFIRMATION BIAS IN CYBER-SOCIAL NETWORKS 637

In (22), P and Q are known since they are computed from
the available measurements x(k), k = 0, 1,m− 1. If the en-
coded matrix W can be uniquely obtained from (22), we can
uniquely infer network influence weights wi,j = [W]i,j , with
i *= j, which describe the network topology ((vi, vj) ∈ E if

wi,j *= 0), and the bias parameters γi =
[W]i,i
xi(0)

that contain the
information of communication from information source u to
individuals ((vi, u) ∈ B if γi *= 0). With the obtained W, the
remaining parameters βi can be obtained as follows.

Corollary 2: Consider social dynamics (13). Given W, x(0),
x(k) and x(k + 1), the parameters βi of bias are :

βi=1−
∑

j *=i∈V

[W]i,j−
xi(k+1)−

∑
j∈V [W]i,jxj(k)

xi(0)
, i∈V .

(25)

Proof: See Appendix E. "
In the following theorem, whose proof is presented in Ap-

pendix F, we present our results on the exact inference problem.
Theorem 2: The exact inference problem is solvable for (13),

if and only if (19) holds and there exists a unique W̃ ∈ Rn×n

such that

W̃P = Q, (26)

where P and Q are defined in (21) and (23), respectively.
The solvability of inference problem should be checked before

the computation (26). However, the solvability condition pre-
sented in Theorem 1 requires the knowledge ofL = W +A− I
that is unavailable, which makes this result unusable in practice.
As a remedy, in the following theorem (whose proof is presented
in Appendix G), we present a new method that makes use of the
available P instead of L to check the solvability, and then solve
the inference problem.

Theorem 3: Consider the matricesP andQ given by (21) and
(23), respectively. If the condition (19) holds and rank(P) = n,
the network topology and bias parameters are exactly inferred
as

wi,j = [QP−1]i,j , i *= j ∈ V (27)

γi =
[QP−1]i,i
xi(0)

, i ∈ V (28)

βi = 1−
∑

j *=i∈V

[QP−1]i,j

−



xi(k+1)−
∑

j∈V

[QP−1]i,jxj(k)



 1

xi(0)
, i∈V .

(29)

Remark 4: Using the inferred matrices W and A and the
available data x(0), the steady state of evolving opinions is
exactly inferred from Ax(0) +Wx∗ = x∗:

x∗ = (I−W)−1Ax(0).

IV. INFERENCE PROBLEM II

In this section, we consider the scenario with no confirmation
bias, which is described by (8) with γi = 0, ∀i ∈ V . If the
opinions of information sources are still controlled, (27) and
(29) generate the exact topology inference, hence the problem
is trivial. Therefore, in this scenario, we investigate whether the
topology can still be exactly inferred even if the opinions of
information sources are not under control but still known to the
inference algorithm designer.

We consider the dynamics that is slightly modified from (1):

xi(k+1) = αisi +
∑

j∈V

wi,jxj(k) +
∑

d∈K

ŵi,dud, i∈V (30)

where ŵi,d represents the fixed weighted influence of informa-
tion source ud on individual vi, the fixed resistance parameter
αi of individual vi is determined in such a way that it satisfies

αi +
∑

j∈V

wi,j +
∑

d∈K

ŵi,d = 1, ∀i ∈ V . (31)

Under the setting of (4), it follows from (31) that (30) can be
equivalently expressed as the following.

x(k + 1) = Ax(0) +Wx(k), (32)

where we define

A ! diag

{
1−

∑

j∈V

w1,j −
∑

d∈K

ŵ1,d +
∑

d∈K

ŵ1,dud

x1(0)
, . . . ,

1−
∑

j∈V

wn,j −
∑

d∈K

ŵn,d +
∑

d∈K

ŵn,dud

xn(0)

}
, (33)

[W]i,j !
{
0, i = j ∈ V

wi,j , i *= j ∈ V .
(34)

We note that the dynamics (13) and (32) have the same
form. Therefore, the analysis method in deriving the inference
procedure for (13) can be employed for (32).

Corollary 3: Consider the matricesP andQgiven by (21) and
(23), respectively. If rank(P) = n, network topology associated
with dynamics (32) is exactly inferred as

W = QP−1. (35)

Remark 5: We obtain from (32) that
∑

d∈K

ŵi,d(ud − xi(0))

= xi(k+1)−
∑

j∈V

[W]i,jxj(k)−



1−
∑

j∈V

[W]i,j



xi(0),

(36)

whose right-hand side is known, since the evolving and innate
opinions xi(k) and xi(0), i ∈ V , are available measurement
data, and W is obtained from (35). When the network has
multiple information sources, i.e., |K| ≥ 2, the left-hand side
of (36) has more than one variables ŵi,d, d ∈ K, to be inferred
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from one equation. In this case, topology cannot be uniquely
inferred without controlling information sources.

V. INFERENCE PROBLEM III

In Problem I, the solution is based on the assumption that the
bias function follows a piece-wise linear model. In this section,
we explore what can be obtained when this assumption is re-
moved. We show that Theorem 3 can still be used to approximate
the inference solution, however an exact inference of network
topology cannot be obtained.

Here, we make use of the Lipschitz approximation on the
state-dependent bias functions. It is well understood that many
nonlinear terms can be regarded as, at least locally, Lipschitz to
facilitate the analysis.

Assumption 1: The bias function gi,d in (2) satisfies

|gi,d(z1)− gi,d(z2)| ≤ µi|z1 − z2|, ∀i ∈ V (37)

for some fixed µi ∈ R.
Under (4), following (3), we re-express (1):

x(k + 1) = Ă(k)x(0) + W̆x(k), (38)

where we define:

Ă(k)!diag

{
1−
∑

j∈V

w̆1,j−
∑

d∈K

(
w̆1,d(x1(k))+

w̆1,d(x1(k))ud

x1(0)

)
,

. . . , 1−
∑

j∈V

w̆n,j−
∑

d∈K

(
w̆n,d(xn(k))+

w̆n,d(xn(k))ud

xn(0)

)}
,

(39)

[W̆]i,j !
{
0, i = j ∈ V

w̆i,j , i *= j ∈ V .
(40)

We next consider the following symmetric matrix:

P̆m,p!
p∑

k=m

(x(k+1)−x(k))(x(k+1)−x(k))$,m∈N. (41)

Lemma 3: Consider the matrix (41). For (38), we have

W̆P̆m,p = Q̆m,p + R̆m,p, (42)

where

Q̆m,p !
p∑

k=m

(x(k+2)−x(k+1))(x(k+1)−x(k))$, (43)

R̆m,p !
p∑

k=m

(Ă(k+1)−Ă(k))x(0)(x(k+1)−x(k))$. (44)

Proof: See Appendix H. "
The key idea here is the following. Due to the unknown

model of confirmation bias, Ă(k + 1)− Ă(k) is unavailable.
Therefore, (42) cannot be used for exact inference. However,
(42) withP replaced by P̆m,p can be used to exactly infer partial
network topology. This idea is stated formally in the following
theorem.

Theorem 4: Consider the social dynamics (38) with unknown
confirmation bias model and unknown bound µi in (37). If an

individual is not a follower of information sources, its weighted
communication topology from its neighbors can be exactly
inferred from

WP̆m,p = Q̆m,p,with rank(P̆m,p) = n, (45)

and we have

w̆i,j=[Q̆m,pP̆
−1
m,p]i,j , if i /∈ I, j∈Ni, (46)

where P̆m,p and Q̆m,p are given by (41) and (43), respectively.
Proof: See Appendix I. "
Finally, based on Theorem 4, we propose Algorithm 1 that

generates approximated network topology.
Remark 6: We note that increasing the length of the observed

data of evolving opinions does not necessarily yield smaller ap-
proximation error for this approximation. In fact, in our analysis,
we have observed the opposite after some critical length. One
intuitive explanation for this observation is that: as the length
increases, x(k) approaches the steady state, and consequently,
x(k) and x(k + 1) are more correlated and P̆m,p is more likely
to be not full-rank.

VI. SIMULATIONS

In this section, we start with the exact topology inference of
an example network, we then study the approximate topology
inference in the context of a real social network which is known
as the Krackhardt’s advice network [43].

A. Exact Inference

We consider the network with n = 12 individuals in
Fig. 1. The innate opinions are randomly generated as x(0) =
[0.7513, 0.2551, 0.506, 0.6991, 0.8909, 0.9593, 0.5472, 0.1386,
0.1493, 0.2575, 0.8407, 0.2543]$. We let the information source
I express opinion ud = 0. Then, following the model (8), we
describe the confirmation biases of the four followers of I by

g1,d(x1(k)) = 0.5− 0.3x1(k), (48)

g2,d(x2(k)) = 0.4− 0.2x2(k), (49)

g3,d(x3(k)) = 0.3− 0.1x3(k), (50)

g4,d(x4(k)) = 0.2− 0.1x4(k). (51)
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Fig. 1. Twelve individuals with one information source I.

We take the weighted adjacency matrix B ! [wij ] as

B =





0 0 0 0 0 0 0 0 0 0 0 0.4
0.5 0 0 0 0 0 0 0 0 0 0 0
0 0.6 0 0 0 0 0 0 0 0 0 0
0 0 0.7 0 0 0 0 0 0 0 0 0
0 0 0 0.1 0 0 0.2 0 0 0.3 0 0
0 0 0 0 0.2 0 0.3 0 0 0 0 0
0 0 0 0 0 0.5 0 0 0 0 0.2 0
0 0 0 0 0 0 0.1 0 0 0.7 0 0
0 0 0 0 0 0 0 0.8 0 0 0 0
0 0 0 0 0 0 0 0 0.6 0 0 0
0 0 0 0 0 0 0 0 0 0.9 0 0
0 0 0 0 0 0.2 0 0 0 0 0.5 0





.

We observe and collect the data of involving opinions until the
data matrixP is full-rank. The two data matrices constructed via
(21) and (23) are obtained as (52) and (53), shown at the bottom
of this page, respectively, by which we obtain W̃ from (26),
i.e., W̃ = QP−1,

W̃ =




0.2254 0 0 0 0 0 0 0 0 0 0 0.4
0.5 0.051 0 0 0 0 0 0 0 0 0 0
0 0.6 0.0506 0 0 0 0 0 0 0 0 0
0 0 0.7 0.0699 0 0 0 0 0 0 0 0
0 0 0 0.1 0 0 0.2 0 0 0.3 0 0
0 0 0 0 0.2 0 0.3 0 0 0 0 0
0 0 0 0 0 0.5 0 0 0 0 0.2 0
0 0 0 0 0 0 0.1 0 0 0.7 0 0
0 0 0 0 0 0 0 0.8 0 0 0 0
0 0 0 0 0 0 0 0 0.6 0 0 0
0 0 0 0 0 0 0 0 0 0.9 0 0
0 0 0 0 0 0.2 0 0 0 0 0.5 0





.

Through comparing the off-diagonal entries of W̃ and B, we
conclude that [W̃]i,j = [B]i,j = wij , ∀i *= j, which indicates
that the network topology is exactly inferred. Moreover, since
xi(0) *= 0 for i = 1, 2, 3, 4, by (28) and [W̃]i,i, i = 1, 2, 3, 4,
we have γ1 = 0.2254

0.7513 = 0.3, γ2 = 0.0510
0.2551 = 0.2, γ3 = 0.0506

0.5060 =
0.1, γ4 = 0.0699

0.6990 = 0.1. Thus, the parameters γi of confirmation
bias model (8) in (48)–(51) are exactly inferred. Finally, the
remaining parameters are obtained via (29): (β1,β2,β3,β4) =
(0.5, 0.4, 0.3, 0.2). These computation results demonstrate
the effectiveness of exact inference procedure presented in
Theorem 3.

P =





0.1816 −0.0818 0.1296 0.0725 0.1185 0.0628 −0.1209 −0.0511 0.0132 0.0207 0.2066 −0.1974
−0.0818 0.0667 −0.0634 0.0097 −0.0488 −0.0274 0.0770 0.0211 −0.0209 −0.0070 −0.0745 0.1248
0.1296 −0.0634 0.0970 0.0399 0.0850 0.0455 −0.0879 −0.0327 0.0112 0.0108 0.1420 −0.1418
0.0725 0.0097 0.0399 0.1031 0.0564 0.0248 −0.0214 −0.0282 −0.0180 0.0186 0.1266 −0.0373
0.1185 −0.0488 0.0850 0.0564 0.0814 0.0411 −0.0761 −0.0324 0.0034 0.0145 0.1469 −0.1231
0.0628 −0.0274 0.0455 0.0248 0.0411 0.0221 −0.0402 −0.0169 0.0044 0.0059 0.0703 −0.0652

−0.1209 0.0770 −0.0879 −0.0214 −0.0761 −0.0402 0.1010 0.0350 −0.0188 −0.0162 −0.1303 0.1658
−0.0511 0.0211 −0.0327 −0.0282 −0.0324 −0.0169 0.0350 0.0183 −0.0037 −0.0097 −0.0613 0.0591
0.0132 −0.0209 0.0112 −0.0180 0.0034 0.0044 −0.0188 −0.0037 0.0118 −0.0012 −0.0025 −0.0309
0.0207 −0.0070 0.0108 0.0186 0.0145 0.0059 −0.0162 −0.0097 −0.0012 0.0085 0.0334 −0.0284
0.2066 −0.0745 0.1420 0.1266 0.1469 0.0703 −0.1303 −0.0613 −0.0025 0.0334 0.2823 −0.2118

−0.1974 0.1248 −0.1418 −0.0373 −0.1231 −0.0652 0.1658 0.0591 −0.0309 −0.0284 −0.2118 0.2741





(52)

Q =





−0.0380 0.0315 −0.0275 0.0014 −0.0225 −0.0119 0.0391 0.0121 −0.0094 −0.0067 −0.0382 0.0651
0.0866 −0.0375 0.0616 0.0367 0.0568 0.0300 −0.0565 −0.0245 0.0055 0.0100 0.0995 −0.0923

−0.0425 0.0368 −0.0331 0.0078 −0.0250 −0.0142 0.0418 0.0110 −0.0120 −0.0037 −0.0375 0.0677
0.0958 −0.0437 0.0707 0.0352 0.0634 0.0336 −0.0630 −0.0249 0.0066 0.0088 0.1082 −0.1018

−0.0107 0.0143 −0.0103 0.0116 −0.0052 −0.0038 0.0132 0.0013 −0.0059 0.0012 −0.0034 0.0209
−0.0125 0.0133 −0.0094 0.0049 −0.0066 −0.0038 0.0151 0.0040 −0.0050 −0.0020 −0.0097 0.0251
0.0727 −0.0286 0.0512 0.0377 0.0499 0.0251 −0.0462 −0.0207 0.0017 0.0097 0.0916 −0.0750
0.0024 0.0028 −0.0012 0.0109 0.0025 0.0001 −0.0012 −0.0033 −0.0027 0.0043 0.0104 −0.0033

−0.0408 0.0169 −0.0262 −0.0225 −0.0259 −0.0135 0.0280 0.0146 −0.0030 −0.0078 −0.0490 0.0473
0.0079 −0.0126 0.0067 −0.0108 0.0020 0.0026 −0.0113 −0.0022 0.0071 −0.0007 −0.0015 −0.0186
0.0186 −0.0063 0.0097 0.0168 0.0130 0.0053 −0.0146 −0.0087 −0.0011 0.0076 0.0301 −0.0256
0.1159 −0.0427 0.0801 0.0683 0.0817 0.0396 −0.0732 −0.0340 −0.0004 0.0179 0.1552 −0.1189





(53)
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Fig. 2. Krackhardt’s advice network [43] in the presence of one information
source I.

B. Approximate Inference

1) Approximation Errors: We now study the approximate
inference in the well-known Krackhardt’s advice network [43].
Its communication structure is shown in Fig. 2 where the gray
nodes represent 21 managers and the red node denotes the
information source I.

We take wijs as follows: if manager i is not the follower
of I and asks for advise from neighbor j, wij =

1
Γi

, where Γi

is manager i’s in-degree; if manager i is the follower of I and
asks for advise from neighbor j,wij =

1
1.125Γi+0.155 ; otherwise,

wij = 0. We assume that the information source value is u1 =
0.5 and the bias models (unknown to the inference algorithm)
of the four followers are:

ŵ3,d(x3(k)) = 0.13− 0.13 sin(|x3(k)− u|),

ŵ4,d(x4(k)) = 0.125− 0.125 sin(|x4(k)− u|),

ŵ19,d(x19(k)) = 0.14 log(2− x19(k)),

ŵ20,d(x20(k)) = 0.125 log(2− x20(k)).

To quantify the topology inference error, we define

eij ! EU (|w̆i,j − wi,j |), (54)

where w̆i,j = [Qm,qP−1
m,q]i,j .

We set the observation start time in (41) and (43) as m = 2.
We plot w̆i,j averaged over 1000 runs of innate opinions, ran-
domized uniformly in [0, 1] in Fig. 3. We make two observations
from Fig. 3.! Proposed approximate topology inference algorithm infers

the topology from the neighbors to the non-followers of
information source, as expected from the theoretical results
in Theorem 4;! the approximation error of weighted topology from the
neighbors to the non-followers of information source are
significantly smaller than those of the followers.

The significant approximation errors of followers of informa-
tion source can be explained by two facts:

Fig. 3. Average approximation errors of topology.

Fig. 4. (a) Trajectories of average evolving opinions, (b) approximation error
e(m,p) versus p.

! The confirmation bias model is unknown to the inference
algorithm.! The information source has a direct influence in the resis-
tance parameters of her followers, which then influence the
approximate errors.
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2) Length of Recorded Data of Evolving Opinions: To ana-
lyze the influence of length of recorded data, i.e., p−m, on the
approximation errors, we define the metric:

e(m, p) !
∑

i*=j∈V

[EU (|W̆m,p − W̆|)]i,j . (55)

where W̆m,p = Q̆m,pP̆−1
m,p. With 1000 random samples of in-

nate opinions, we present the average opinion trajectories in
Fig. 4(a).

To guarantee that the matrix (41) satisfies rank(Pm,p) = 21,
m and p must satisfy p−m ≥ 21 and m ≥ 2. We fix m = 2.
The approximation error e(m, p) in term of recorded length p
are given in Fig. 4(b), which shows that increasing the length
of recoded data of evolving opinion does not necessarily result
in more accurate approximation, and as the recorded length in-
creases, the approximate errors measured by (55) do not change
significantly. This can be explained by the average opinion tra-
jectories in Fig. 4(a) that after timek = 500, the dynamics nearly
reaches its steady state. Therefore, x(k + 1)− x(k) ≈ 0 for
k ≥ 22, which with the definition (41) implies that the recorded
data around the equilibrium point has insignificant contribution
to P2,p for p ≥ 500.

VII. CONCLUSION

In this paper, we have analyzed the problem of joint inference
of network topology and confirmation bias parameters from
opinion dynamics. We have analyzed three inference problems:
i) piece-wise bias with controlled information sources (stubborn
individuals) ii) no bias and no controlled information sources iii)
unknown bias model with uncontrolled information sources. We
have characterized conditions for exact inference, when possible
(for the first two cases) and approximate it when not (for the final
case). Numerical simulations performed over a toy network as
well as the well-known Krackhardt’s advice network suggest the
effectiveness of the obtained theoretical results.

We consider this work as a part of a comprehensive explo-
ration of several interesting but challenging research problems
in this area. Admittedly, proposed methods in this paper are not
designed to work for large-scale networks (e.g., ones in the scale
of billion nodes) since we use matrix computations regularly in
our algorithms. Designing computationally efficient inference
algorithms with a focus on large-scale networks is left as a part
of future work.

Another future research direction is the analysis of the impact
of an adversary (or competitor) who is controlling a subset of
information sources on the topology inference. This considera-
tion is expected to bring a trade-off between the performances
of the topology inference and opinion evolution control. Some
preliminary results in this direction can be found in [39].

APPENDIX A
PROOF OF PROPOSITION 1

The trajectory x(k) is obtained from (13):

x(k) =

(
Wk +

k−1∑

l=0

WlA

)
x(0), k = 1, . . . ,m. (56)

We note that (15) can equivalently be expressed as

x(k + 1) = Ax(0) +Wx(k) + Âx(0) + Ŵx(k), (57)

where Â and Ŵ are defined in (18b). We conclude from (13)
and (57) that x(k) is the solution to both (13) and (15) if and
only if Âx(0) + Ŵx(k) = 0, ∀k = 0, 1, . . . ,m− 1, which, in
conjunction with (56), is equivalent to

(Â+ Ŵ)x(0) = 0, (58)
(
Â+ Ŵ

(
Wk +

k−1∑

l=0

WlA

))
x(0) = 0, k = 1, . . . ,m− 1.

(59)

With the consideration of the definitions (18b) and (18a), the
condition (17) is equivalently described by (58) and

ÂAlLx(0)

= ŴWl(A+W − I)x(0) = 0, l = 0, 1, . . . ,m− 1. (60)

Adding (60) with l = 0 to (58) yields

(Â+ Ŵ(W +A))x(0) = 0. (61)

Adding (60) with l = k to (61) results in
(
Â+ Ŵ

(
Wk+1 +

k∑

l=0

WlA

))
x(0) = 0,

k = 0, . . . ,m− 1

which is equivalent to (59).

APPENDIX B
PROOF OF THEOREM 1

We first note that there exist matrices Â ∈ Rn×n and Ŵ ∈
Rn×n, see e.g., Â = Ŵ = O (which cannot guarantee the
unique inference solution of the parameters of confirmation bias,
that is demonstrated in Remark 3), such that (17) holds for any
x(0) ∈ Rn.

We let x(k) be the evolving opinion to both (13) and (15) for
k = 1, 2, . . . , n. By the relation x(0) ∈ L−1 ker(Ô) implied by
Proposition 1, we have ŴWkLx(0) = 0, k = 0, 1, . . . , n− 1,
which follows from the definition of Ŵ in (18b):

Wk+1Lx(0) = W̃WkLx(0), k = 0, 1, . . . , n− 1. (62)

We note that (62) implies WkLx(0) = W̃Wk−1Lx(0),
k = 1, 2, . . . , n, substituting which back into (62) yields
Wk+1Lx(0) = W̃2Wk−1Lx(0). Following the same analysis,
we have WkLx(0) = W̃kLx(0), k = 1, . . . , n, by which we
obtain

W[Lx(0),WLx(0), . . . ,Wn−1Lx(0)]

= W̃[Lx(0),W̃Lx(0), . . . ,W̃n−1Lx(0)]

= W̃[Lx(0),WLx(0), . . . ,Wn−1Lx(0)]. (63)
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Condition (20) implies that [Lx(0), . . . ,Wn−1Lx(0)] is in-
vertible. Thus, from (63) we obtain

W = W̃[Lx(0), . . . ,Wn−1Lx(0)]

× [Lx(0), . . . ,Wn−1Lx(0)]−1

= W̃. (64)

Let us denote the weighted adjacency matrix of social network

by [M]i,j !
{
0, i = j ∈ V

wi,j , i *= j ∈ V .
Hence, the encoded matrix

W in (14c) can be rewritten as

W = M+ diag {x1(0)γ1, . . . , xn(0)γn} . (65)

Similarly, W̃ can equivalently be expressed as

W̃ = M̃+ diag {x1(0)γ̃1, . . . , xn(0)γ̃n} . (66)

Since [M]i,i = 0 for ∀i ∈ V , (64), in conjunction with (65) and
(66), implies

M = M̃, (67a)

xi(0)γi = xi(0)γ̃i, ∀i ∈ V . (67b)

Under the condition (19), (67b) implies γi = γ̃i, ∀i ∈ V . There-
fore, we conclude from (67) that if the conditions (20) and (19)
hold, the weighted network topology encoded in the weighted
adjacency matrix M, and the communication topology from
information source u to individuals, and the bias parameters γi
encoded in the matrix diag{x1(0)γ1, . . . , xn(0)γn} are inferred
uniquely.

We next infer the bias parameters βi encoded in the ma-
trix A. We note that the other condition implied by (17) is
(Â+ Ŵ)x(0) = 0. Due to (18b), we have (A+W)x(0) =

(Ã+ W̃)x(0), which follows from (64) and (14b) that
βixi(0) = β̃ixi(0), ∀i ∈ V . Thus, the parameters βi can be
inferred uniquely via considering (19).

Finally, we conclude that under the conditions (20) and
(19), wi,j = w̃i,j , i *= j ∈ V , and βi = β̃i and γi = γ̃i, i ∈ V .
Conversely, if there exists any wij *= w̃i,j , i *= j ∈ V , or βi *=
β̃i, i ∈ V , or γi *= γ̃i, i ∈ V , such that x(0) /∈ L−1 ker(Ô).
Consequently, x(0) /∈ L−1 ker(Ô) ∩ ker(Â+ Ŵ). By Corol-
lary 1, the inference problem is not solvable in this scenario.

APPENDIX C
PROOF OF LEMMA 1

It follows from the trajectory (56) that

x(k + 1)− x(k) = WkLx(0), k ∈ N0, (68)

where L is given by (18a). Equality (22) is obtained via consid-
ering the definition (21) and the relation (68):

WP =
m−1∑

k=0

Wk+1Lx(0)(x(k + 1)− x(k))$

=
m−1∑

k=0

(x(k + 2)− x(k + 1))(x(k + 1)− x(k))$.

APPENDIX D
PROOF OF LEMMA 2

We let w ∈ ker(P). From (21), we have

w$Pw =
m−1∑

k=0

w$(x(k + 1)− x(k))(x(k + 1)− x(k))$w

= 0,

by which we obtain

(x(k + 1)− x(k))$w = 0, ∀k = 0,m− 1. (69)

We conclude from the trajectory (68) that (69) equals

x$(0)(WkL)$w = 0, ∀k = 0,m− 1. (70)

We note that (70) is equivalent to

w ∈ ker([Lx(0),WLx(0), . . . ,Wm−1Lx(0)]$),

by which, we obtain (24).

APPENDIX E
PROOF OF COROLLARY 2

For i ∈ V , with the consideration of (14b) and (14c), (13) can
be written as

xi(k+1) =



1−
∑

j *=i∈V

[W]i,j−βi



xi(0)+
∑

j∈V

[W]i,jxj(k),

which directly yields (25).

APPENDIX F
PROOF OF THEOREM 2

We first prove the necessary condition. We assume that there
exists a matrix W *= W̃ ∈ Rn×n such that

WP = Q. (71)

Combining (26) and (71) we arrive at

(W − W̃)P = O. (72)

Since the matrix (21) is symmetric, there exists an orthogonal
matrix V such that P = V∆V$, where

∆ =

[
Λ O
O O

]
, s ≤ n. (73)

with Λ being a full-rank diagonal matrix. Then, (72) is written
as (W − W̃)V∆V$ = O, pre-and post-multiplying which by
V$ and V, respectively, yields

V$(W − W̃)V∆ = O. (74)

Without loss of generality, we let V$(W − W̃)V =

[
X11 X12

X21 X22
], substituting which into (74) with the consideration

of (73) results in
[
X11Λ O
X21Λ O

]
= O,
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which implies X11 = O and X21 = O, since Λ is a diagonal
matrix. Thus,

V$(W − W̃)V =

[
O X12

O X22

]
.

Then, it can be verified from (73) that ∆(V$(W − W̃)$V) =
O, pre-and post-multiplying which by V and V$, respectively,
yields P(W − W̃)$ = O, which implies that the columns
of matrix (W − W̃)$ belong to ker(P). By Lemma 2, we
have

[Lx(0),WLx(0), . . . ,Wm−1Lx(0)]$(W − W̃)$ = O,

which is equivalent to x$(0)(WkL)$(W − W̃)$ = 0$, k =
0, 1, . . . ,m− 1, which further implies that

(W − W̃)WkLx(0) = 0, k = 0, 1, . . . ,m− 1. (75)

We note that (75) can be equivalently expressed as
x(0) ∈ L−1 ker(Ôm). Moreover, we can set Â = −Ŵ, such
that x(0) ∈ ker(Â+ Ŵ) holds. Here, we conclude x(0) ∈
L−1 ker(Ô) ∩ ker(Â+ Ŵ), which follows from Corollary 1
that the inference problem is not feasible.

To prove the sufficient condition, we assume the
inference problem is not feasible. By Corollary 1,
we have x(0) ∈ L−1 ker(Ô) with Ô given by (18c),
which, in conjunction with the (18b), results in
(W̃ −W)[Lx(0),WLx(0), . . . ,Wm−1Lx(0)] = O. Then,
by Lemma 2 we have (W̃ −W)P = O. Consequently,
W̃P = WP. Thus, the matrix W̃ in (26) is not unique.

APPENDIX G
PROOF OF THEOREM 3

By Lemma 2, rank(P) = n implies (20). Since (19) is as-
sumed to hold as well, by Theorem 1 the inference problem
is solvable. Moreover, by Theorem 2 there exists a unique W̃,
which follows from (26) as: W̃ = QP−1 = W. Furthermore,
the computation of network topology (27), and the bias param-
eters γi (28) follows from (14c). The remaining parameters βi

follows from Corollary 2 with the consideration of (19), which
determines its uniqueness.

APPENDIX H
PROOF OF LEMMA 3

From (38), we obtain

x(k + 1) =

(
W̆k+1 +

k∑

z=0

W̆zĂ(k − z)

)
x(0), k ∈ N0

by which we have

x(k + 1)− x(k) = (Ă(k)− Ă(k − 1))x(0)

+ W̆(x(k)− x(k − 1)) (76)

and

x(k + 2)− x(k + 1) = (Ă(k + 1)− Ă(k))x(0)

+ W̆(Ă(k)− Ă(k − 1))x(0)

+ W̆2(x(k)− x(k − 1)), k ∈ N.
(77)

Pre-multiplying (76) by W̆ and considering (77) yields

W̆(x(k + 1)− x(k))

= W̆(Ă(k)− Ă(k − 1))x(0) + W̆2(x(k)− x(k − 1))

= x(k + 2)− x(k + 1)− (Ă(k + 1)− Ă(k)))x(0). (78)

It can be verified from (41) that (42) follows from (78).

APPENDIX I
PROOF OF THEOREM 4

Subtracting WP̆m,p = Q̆m,p from (42) yields

(W̆ −W)P̆m,p = R̆m,p. (79)

If an individual vi is not an follower of information sources,
i.e., w̆i,d(xi(k)) = 0 for ∀d ∈ K, from matrix (39) we have

[Ă(k)]i,: = diag




1−
∑

j∈V

w̆1,j , . . . , 1−
∑

j∈V

w̆n,j




 ,

by which, [Ă(k + 1)− Ă(k)]i,: = 0$ for ∀t ∈ N0, which, in
conjunction with (44), yields

[Rm,p]i,: =
p∑

t=m

0$x(0)(x(k + 1)− x(k))$ = 0$. (80)

We note that (42) is a necessary condition of the uniqueness
of inference solution of network topology and confirmation
bias. With rank(P̆m,p) = n, we obtain from (79) with (80) that
[W̆ −W]i,: = [R̆m,p]i,:P−1

m,p = 0$, thus,

[W̆]i,: = [W]i,:. (81)

WP̆m,p = Q̆m,p implies W = Q̆m,pP̆−1
m,p, thus, (46) is ob-

tained.
If the individual vi is a follower of an information source

but holds no confirmation bias, from (40) and (14c) we have
[W̆]i,i *= [W]i,i, which implies that (81) does not hold.
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