Semantic Code Clone Detection for Enterprise Applications

Jan Svacina

Jonathan Simmons

Tomas Cerny

Computer Science, Baylor University — Computer Science, Baylor University Computer Science, Baylor University

Waco, Texas
jan_svacinaZ@bayloredu

ABSTRACT

Enterprise systems are widely adopted across industries as methods
of solving complex problems. As software complexity increases, the
software’s codebase becomes harder to manage and maintenance
costs raise significantly. One such source of cost-raising complexity
and code bloat is that of code clones. We proposed an approach to
identify semantic code clones in enterprise frameworks by using
control flow graphs (CFGs) and applying various proprietary simi-
larity functions to compare enterprise targeted metadata for each
pair of CFGs. This approach enables us to detect semantic code
clones with high accuracy within a time complexity of 0{n®) where
n is equal to the number of CFGs composed in the enterprise appli-
cation {usually around hundreds). We demonstrated our solution

on a blind study utilizing a production enterprise application.
CCS CONCEPTS

» Software and its engineering — Reusability; Software ver-
ification and validation; Software mainfenance tools; » Theory
of computation — Graph algorithms analysis;

KEYWORDS

Source Code Analysis, Code Clone Detection, Semantic Clone, En-
terprise Software, Software Engineering

ACM Reference Format:

Jan Svacina, Jonathan Simmons, and Tomas Cerny. 2020. Semantic Code
Clone Detection for Enterprise Applications. In The 35th ACM/SIGAFP

Symposium on Applied Computing (SAC "20), March 30-April 3, 2020, Brno,
Czech Republic. ACM, New York, NY, USA, 3 pages. https://doiorg/10.1145/
3341105.3374117

1 INTRODUCTION
Enterprise applications are ubiquitous and essential for the modern
world as they address numerous complex problems. These com-
prehensive problems require complex solutions using enterprise
frameworks 1, 8], typically involving service-oriented architec-
tures [8]. Due to such complexity, corporations pay up to 25% of
the total costs for maintenance [7, 13]). Reducing the complexity of
a codebase by lowering the saturation of code duplication incidents
would speed up the bug fixing process.

We pose that semantic code clone detection can provide mean-
ingful insights and results in the engineering of large enterprise

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted withoot fee provided that copies are not made or distributed
for profit or commerrial advantage and that copies bear this notice and the full citation
om the first page. Copyrights for thind-party components of thiswork must be honored.
For all other uses, contact the owner//fauthon(s).

SAC 20, March 30Agpril 3, 2030, Brno, Crech Republic

& 3020 Copyright held by the mwner/anthor(s).

ACM [SEN 978-1-4503-6866-T/20/03.

https://doiong/10.1145/3341105.3374117

Waco, Texas
john_simmons2@baylor.edu

129

Waco, Texas
tomas_cerny@bayloredu

applications and their respective costs. We propose a method in
which we represent an enterprise system as a set of control flow
graphs (CFG), where nodes are method statements and edges are
calls between methods. Each CFG is associated with its semantic
meaning in the system. These CFGs are compared with one another
by a global similarity function, which runs in O(n). Hence, compar-
ing each CFG pair results in O(n®) combinations. This method keeps
both the time complexity and the number of CFGs n low. Lastly,
we conducted a blind study on a production enterprise application
and verified the method's usability.

2 RELATED WORK

Code clones are blocks of code that have been copied from some
source and pasted elsewhere, not necessarily always from the parent
system [17). There are 4 code clone types: type 1 - exact clones,
type 2 - parameterized clones, type 3 - near-miss clones, and type 4
- semantic code clones [5, 12, 16, 17). Our focus is on type 4 with
the same behavior but different structure or method of approach.

The research into developing tools focused on enterprise systems
with regards to code clone detection is underdeveloped and well
needed. There are many semantic code clone detection tools [10,
14, 19]; however, they are scoped for single methods and cannot
provide program-wide analysis nor provide enterprise metadata.
These tools also are purely academic, making them unusable in
real-world applications. Machine Learning tools exist [6, 18, 20, 21],
but due to the need to train, the models are made useless in the
real-world with radically changing enterprise application and fluid
business logic needs. Due to the need to train the model before
running them, run times exponentially increase on large codebases.

Some top of the line applications such as [11] works great for
types 1 through 3; However, they fail to capture type 4 clones and
lack in the ability to parse inter-method flows - when a method calls
another method in the same program. Similarly, it fails to produce
enterprise-specific context and information such as ours.

Program Representation: We aim to show that to effectively
identify semantic code clones of an enterprise system, the optimal
choice is to use Control-Flow Graphs (CFG) to represent the code
segments in question. Our CFG represents the methods of a system
where the edges are calls to other methods within the system. Our
preference toward this method of program representation over
others [2-4, 9] is to capture more meta-information regarding the
context of the code clones or methods with regards to enterprise
architecture.

3 PROPOSED METHOD

We examine the properties of each graph by applying a global
similarity function in the Definition 3.1. Properties of the CFG
bring higher value to identifying code clones because programs

Method Similarity | Weight Properties
Type NAMmE

Controller cir 3 arguments, return type,
HTTP method, security
Services fc 1 arguments, return type

Message calls e TP, port, hitp type,
arguments, returm entity
Repository y1] 2 Arguments, Return type,

Dratabase operation

Table 1: Classification of properties

Figure 1: Schema of the algorithm

in enterprise systems tend to be repetitive in their structure but

differ in meaning of the data in the input and output of the program

Our approach consists of four stages: graph transformation, graph

quantification, similarity comparison, and classification (Figure 1).
Definition 3.1 (Global similarity).

k k
GA.B)=) wix simi(ag b))) wi
i=1 =1
Where k is the number of attributes, wy is the weight of importance of an
attribute i, sim{ay, b;) is a local similarity function taking attributes i of
cases A and B, and w is a weight coefficient corresponding to the importance
of the method type in the system.

In the first phase, we transform Java source code into a CFG.
We scan the code for declared methods and internal method calls
using Java Reflection and Javassist. Through the depth-first search
we construct a graph for each method without a parent method
call. Such a method is an entry-point to the enterprise application.
Consider Listing 1 with an example system, where an endpoint
method create in the PosControfler that calls savePos method in
the service PosService. Next, PosService makes two procedure calls,
first to a third-party APL and the second to a repository.

Mext, we quantify each declared method by associating a set
of properties P. The set of properties varies by the type of the
method, as shown in the Table 1. Each method type a has set of
associated properties that correspond to its role in the system. All
types share argument types, return types, and metadata associated
with the methods. The metadata is used to describe the purpose of
the method in the system and associated properties.

In the next phase, we apply a global similarity function on prop-
erties P of two arbitrary CFGs, as shown in the Definition 3.1. The
global similarity function G applies the similarity function for each
Method type and multiplies the result by the weight coefficient
that corresponds to the importance of a particular method type in
the system, as shown in Table 1. Method type Confroller has the
highest significance because it denotes the input, output, and type
of operation of a particular entry point. These properties tend to be
unique in the system and therefore have a weight of 3. Method type
Repository persists data to stable storage, and Message calls triggers
actions usually via HTTP calls on some third party. Both of them

130

Classification | Global Characteristics
Type similarity
A 1.0 - 0.91 | Same or differs in one function
B 0.9 -0.81 Differs in 1-2 functions
C 0.8 -0.71 Differs in 2-3 functions

Table 2: Classification of code clones

@Controller
public class PosController{
@Preauthorize("haskole (' USER")")
ERequestMapping{value = "/pos”, method =
RequestMethod. POST)
public POS create (@RequestBody Pos pos) {
return service.save(pos);

& W oW om

1
: Listing 1: Source code example

have a significant impact on the system and thus have a weight of
2. Method type Services have the least importance; service methods
are usually rensed within the system and thus weigh around 1.

We also provide definitions for various other local similarity
functions as shown in Definition 3.2. The function takes as input
properties of each method and evaluates each attribute. The sim-
ilarity function for a controller method evaluates its arguments,
return type, and HTTP method.

The similarity function cfr targets controller methods, which isa
pattern for the method that handles input from the user. These meth-
ods are usually in REST formats and thus accept HTTP requests,
hence the HT TP method type. Endpoints typically restrict access
based on the roles of individual users within an enterprise system.
We include the definition of permission roles into the metadata and
thus include it in the similarity function.

The similarity function r fc compares all method calls from one
system to another system, eg., HTTP calls from CFG A to B are
retrieved and proportioned into a ratio. When comparing two func-
tion calls, similarity function r fc takes into account IP, port, HTTP
type, argument type, and return type. The similarity function fc
does the same as r fc, but for method calls in the system.

Lastly, the similarity function rp compares methods working
with databases by evaluating database operations (as in Table 1).

Definition 3.2.

sim{ay, by) = ctr(ay, b;) + fe(ag, by) +r fe(ay, by) +rplayg, by)

The last stage is applying classification of the similarity between
CFGs in the system. We classify graphs based on their global simi-
larity into three categories as shown in Table 2. In the first category
are the pairs of CFGs that are similar in all local similarity groups
or differ in only one; these correspond to an interval of global simi-
larity within [1.0, 0.91). Category B has a larger tolerance, thus it
encompasses code clones with one or two different local functions.
Finally, category C has global similarity within the range [0.8, 0.71]
and refers to pairs that differ in 2 to 3 functions.

4 CASE STUDY

We used the Central Texas Computational Thinking, Coding and
Tinkering Enterprise Application (EA) for managing and evaluating
test questions. This multilayered EA uses microservice architecture
and Spring Boot [15]. It has a set of API methods using standard
technology, controllers, services, repositories, and role-based access
control. We analyzed the application in a blind study to detect

o B oW

CFGy CFGR
Controller - ctr
Arguments ExamDTCO ExamDTO
Retum type Exam Exam
HTTF method POST POST
Security Admin User
Service methods - fr 3 3
Rest methods - rfc 2 2
Repository - rp
Database Operation create create
Arguments Exam Exam
Retum type Exam Exam

Table 3: Example of properties of CFG4 and CFGg

semantic code clones across the application. We present an example
of derived properties from two CFGs, CFG 4 and CFGg derived from
the EA in the Table 3. CFGy4 and CFGpg have the same input (object
ExamDT0O), output {(an object Exam), use the same HTTP method
POST, use a function with the same inputs and outputs, and persist
the same object type via create database operation.

Properties of both praphs CFG4 and CFGg from the Table 3
were evaluated by local similarity functions as described in the
Table 4. Similarity functions fc, rfc, rp give a full match result,
whereas the similarity function cf r shows a lower match value due
to the different signatures of RBAC security.

The Table 4 shows total similarity 3.75 and weight 7.25. The
graphs CFGy4 and CFGg have a similarity 0.908. This value falls
into category A on our scale from Table 2, thus, this is an example
of two strongly semantically similar CFGs. We weighed all of the
similarities in order to reflect their importance in the system as
described in the proposed method.

Table 5 shows that we derived 20 CFGs from this EA, which
comes out to 190 combinations in total. After applying similarity
functions on each pair, & pairs had a similarity index above 0.71.
They thus fell into respective categories as shown in Table 6, which
shows that one pair of CFGs was strongly similar and 5 were fairly
similar - which account for 3% of all combinations.

A low percentage is cansed by having a high sensitivity or weight
based on input/output types. Types of arguments and returns are
important as the same constructs intended for other data types will
tend to have the same behavior; both are necessary and cannot be
removed from the application due to semantic similarity alone. This
sensitivity with the weights avoids including structurally identical
but semantically different CFGs as semantic clones in our results.

Threats to Validity: Experiments were not executed under var-
ious settings to optimize our experimental weights. Semantic clones
require a low threshold to detect, thus the classification classes were
set within the first third of our scale.

5 CONCLUSION

Our method for semantic code clone detection targets enterprise
applications; an area of this field that has barely been studied. We
utilized a blind study on a production enterprise application to
confirm our method in finding the clones.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant Mo. 1854049,

131

Similarity Weight Weighed SIM
ctr 075] 225
fc 1 1 1
rfc 1 2 2
m 1 2 2
total 3.75 7.25

Table 4: Example of results of similarity function

Totals Count Category Count
number of pairs & A 1
number of CFG 20 B 3
number of combinations 190 C 2

Table 5: Results summary Table 6: Found clones

REFERENCES

[1] 2019. Java Flatform, Enterprise Edition (Java EE) | Oradle Technology Network |
Oracle. hitps:/fww w.omacle.com/jamytschnologies/jora-ee- glance himl

[2] A- Agapitos, M. O'Meill, and Anthomy Brabezon. 2011, Stateful program repre-
sentations for evaolving technical trading rules. 195-200.

[3] Hamid Abdul Basit, Simon | Puglisi, William F. Smayth, Andrew Torpin, and Stan
Jarmbek. 2007. Efficient Token Based Clone Detection with Flexible Tokenization.
In The tth Joint Mesting on Furopean Software Engineering Conference and the
ACM SGSOFT Symposium on the Foundations of Software Engineering: Companion

(ESEC: FSE companion "07) ACM, New York, NY, USA, 513-516.

[4] L D Baxter, A Yahin, L. Moom, M. Sant’Anna, and L. Bier. 1998. Clone detection
using ahstract syntme trees. In Proceedings. International Conference on Soff ware
Muintenarce (Cat. No. 88CEXITI). 368-377.

[5] 5 Bellon, B Koschke, G Antoniol, J. Krinke, and E Merlo 2007. Comparison and
Evaluation of Clone Detection Tools. IEE Transactions on Software Enginesring
33, 9 (Sept B007), 5T7-591.

[6] L. Buch and A. Andrzejak. 2019, Learning-Based Recursive Aggregation of
Abstract Syntax Trees for Code Clone Detection. In 2019 IEEE 26 th Intermational
Conference an Software Analysis, Evolution and Reengineering (SANEEL 95104

[7] Chris Doig 2015 Calculating the total cost of ownership for
enterprise software. https:/ fwww.cio.com/article/ 3005705/
calrulating- the- total- cost- of- vwnership-for- enterprise-softwrare himl

[8] Wu He and Li D Xu 2014, Integration of Distributed Enterprise Applications: A
Survey. IEEE Transactions oa Industrial Informatics 10, 1 (Feb. 2014), 3542

[5] Y.Higo and 5 Kusumoto. 2009, Enhancing Quality of Code Clone Dietection
with Program Dependency Graph In 2009 f6th Working Conference on Reverse

Engineering. 315-314.
[10] T. Kamiya. 2013. Agec: An execution-semantic clone detection tool. In 2013 21

International Confereace on Frogram Comprehension (JCPC)L 227-229.

[11] T. Kamiya, 5. Knsumoto, and K. Inowse. 2000. A Token based Code Clone Detection
Technique and Its Evaluation. (Jan. 2001}

[12] B Koschke I Baxter, M. Conradt, and J. Cordy. 2002, Software Clone Management
Towards Industrin]l Application (Dagstuhl Seminar 12071). Dagstukl Beports 2, 2
(2012}, 21-57. http/drops dagstuhl defopusprolltexte fRI12/3477

[13] Michael Krigsman 2019 Danger zonec Enterprise main-
tenance and support. hitps:fwww zdnet com/articls/
danger-zone- enterprise-maintenance-and- support/

[14] H. Masirloo and F. Azimzadeh 2018, Semantic code clone detection using ab-
stract memaory states and program dependency graphs. In 2048 dth Intermational
Conference on Web Research (TCWER) 19-27.

[15] Pivotal 2019, Spring Framework. Retrieved Dec, 2019 from hitps://spring.io/
[16] C.Komar Roy and James B Cordy. 2007. A Survey on Software Clone Detection
Research School of Computing TR 2007-541, Queea s Uniwersity 115 (2007).

[17] M. Saini, 5. Singh, and Suman. 2018 Code Clones: Detection and M anagement.
Procedia Computer Science 132 (Jan. 2008), T18-727. httpywww sciencedirect.
comy/science/article/pii/s 18T 7050918308123

[18] A Sheneamer and J. Kalita. 2016, Semantic Clone Detection Using Machine
Lenrning,. In 2016 15th IEEE International Conference on Machine Learning and
Applications (JOMLA]. 1024-1025.

[19] Rajkumar Tekchandani, Rajesh Bhatia, and Maninder Singh. 2018. Semantic Code
Clone Detection for Internet of Things Applications Using Reaching Definition
and Liveness Analysis. T Supercomput. T4, 9 (Sept. 2018), 41954226

[20] M. White, M. Tofanc, C. Vendome, and D Poshyvanyk 2006, Desp Learning
Code Frogments for Code Clone Detection. In The 315t IEEEACM Infernational
Conference on Automated Soff ware Engineering. ACM, New York, NY, LSA 57-08.

[21] H ¥u W. Lam, L Chen, G. Li, T. Xie, and {1 Wang_ 2019, Meural Detection
of Semantic Code Clones Via Tree-Based Comvolution. In 2019 IEEEACM 27th
International Confereace on Frogram Compreheasion (JCACL 70-50.

