On Matching Log Analysis to Source Code: A Systematic

Vincent Bushong
Computer Science, Baylor University
Waco, Texas, USA
vincent_bushongl@baylor.edu

Mark Du
Computer Science, Baylor University
Waco, Texas, USA
Mark_Dul@baylor.edu

Miroslav Bures
miroslav.bures@fel.cvut.cz
CS, FEE, Czech Technical University
Prague, Czech Republic

Mapping Study

Russell Sanders
Computer Science, Baylor University
Waco, Texas, USA
Russell_Sanders1@baylor.edu

Tomas Cerny
tomas_cerny@baylor.edu
Computer Science, Baylor University
Waco, Texas, USA

Pavel Tisnovsky
ptisnovs@redhat.com
Red Hat
Brno, Czech Republic

Jacob Curtis
Computer Science, Baylor University
Waco, Texas, USA
Jacob_Curtis1@baylor.edu

Karel Frajtak
frajtak@fel.cvut.cz
CS, FEE, Czech Technical University
Prague, Czech Republic

Dongwan Shin
Computer Science, New Mexico Tech
Socorro, New Mexico, United States
dongwan.shin@nmt.edu

ABSTRACT

Logging is a vital part of the software development process. De-
velopers use program logging to monitor program execution and
identify errors and anomalies. These errors may also cause un-
caught exceptions and generate stack traces that help identify the
point of error. Both of these sources contain information that can
be matched to points in the source code, but manual log analysis
is challenging for large systems that create large volumes of logs
and have large codebases. In this paper, we contribute a systematic
mapping study to determine the state-of-the-art tools and methods
used to perform automatic log analysis and stack trace analysis
and match the extracted information back to the program’s source
code. We analyzed 16 publications that address this issue, summa-
rizing their strategies and goals, and we identified open research
directions from this body of work.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools;
Maintaining software.

KEYWORDS

log analysis, log mining, anomaly detection, program slicing, static
code analysis

ACM Reference Format:

Vincent Bushong, Russell Sanders, Jacob Curtis, Mark Du, Tomas Cerny,
Karel Frajtak, Miroslav Bures, Pavel Tisnovsky, and Dongwan Shin. 2020.
On Matching Log Analysis to Source Code: A Systematic Mapping Study.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RACS 20, October 13-16, 2020, Gwangju, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8025-6/20/10...$15.00
https://doi.org/10.1145/3400286.3418262

181

In International Conference on Research in Adaptive and Convergent Systems
(RACS °20), October 13-16, 2020, Gwangju, Republic of Korea. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3400286.3418262

1 INTRODUCTION

Program logging is one of the oldest methods for providing devel-
opers and users feedback on what is happening in an application.
Logs range from simple progress reports in console applications to
health checks, request status, and error reports in large distributed
systems. These logs represent a rich source of information about
the internal workings of an application. Developers usually place
logging statements at critical junctures in their application, indi-
cating the success or failure of certain operations and reporting
abnormalities that occur.

For all the information contained within them, however, logs
present challenges in extracting that information. Manual analysis
of logs is possible, but the task quickly becomes unfeasible for large
programs that produce many logs [7]. Making sense of distributed
logs is even harder: if several modules each have their own output,
the ordering of anomalous events may have to be reconstructed
across several series of log messages matched with different code
bases.

This is the problem space where automatic log analysis fits in.
Logs give information programmatically, and automated log analy-
sis seeks to recover that information. However, logs present several
challenges to automated analysis. The biggest is that of formatting:
while there are some common logging practices, logs are written
in natural language by different people, almost guaranteeing there
will not be a single, common format for all logs even within an
application. As a result, creating generalized tools to parse logs
from diverse applications is a non-trivial task that has generated
much research interest in multiple directions.

A subset of log analysis work focuses on using a program’s
source code as an extra input into the analysis. Instead of using
the logs solely, certain aspects of the log information is matched to
locations in the source code. Including source code in the analysis

https://doi.org/10.1145/3400286.3418262
https://doi.org/10.1145/3400286.3418262

RACS 20, October 13-16, 2020, Gwangju, Republic of Korea

could improve the quality of log analysis itself since analysis tools
do not need to make assumptions on how the logs were generated;
they can instead use the actual logging statements in the code. In
addition to making the analysis easier, using both logs and source
code could also improve the final quality of the analysis: the use of
source code provides a potentially more useful analysis than the
logs alone could reveal. Using log analysis can also narrow down
the areas of code that need to be analyzed to a more feasible number,
allowing developers to identify bugs more quickly.

Analyzing program logs is useful for different purposes. A com-
mon goal is that of anomaly detection [11]. If the program behaves
differently than expected, the log output will often indicate this,
either directly by logging a message describing the problem or indi-
rectly by showing a different composition or ordering of messages
than during successful program execution. Fault localization takes
this a step further by searching for the root cause of the anomaly
within the program’s source code, for example, an erroneous value
assignment [20]. Log analysis, combined with source code analysis,
can be used to assist this process. In case of an unexpected pro-
gram output or crash, logs can contain information that indicates
the program’s state, and they also implicitly show the program’s
execution path. If a message appears in the log, there had to be a
logging statement in the code that generated it and, by extension,
the execution path through the program’s code had to contain that
logging statement. Using this approach, the possible locations of
the error can be narrowed down. Reducing the possible execution
paths is known as program slicing, and it is a common technique
to assist with fault localization [21].

Stack traces are even more conducive to program slicing since
they provide execution path information explicitly by showing all
functions on the stack at the time of the exception. These stack
traces are generated and put into the programs log by the execution
engines when runtime exceptions occur. While the error may have
originated in a function that has since been popped off the stack
(e.g., a problematic value was returned by a function), the stack
trace provides a good starting place for fault localization through
program slicing. Stack traces also adhere to a consistent format for a
given programming language, making them easier to automatically
parse than other forms of log output.

Our goal in this mapping study is to analyze the methods iden-
tified by the research literature for extracting information from
program logs and stack traces and matching it back to information
in the source code. We also identify the goals that such analysis and
matching have been applied toward, as well as its current limita-
tions and open research directions. We found that the current body
of literature surrounding mapping information from logs to source
code is quite small and open for expansion. The rest of the paper is
organized as follows. In Section 2, we discuss our research method.
Section 3 details our analysis of the literature and our answers to
our research questions. We discuss threats to validity in Section 4,
and section 5 concludes our work.

2 RESEARCH METHOD

In our mapping study, we followed simplified guidelines for map-
ping studies in software engineering, as suggested by Petersen et
al. [13]. First, we defined research questions to guide the study.

182

V. Bushong et al.

Next, we created a query to find existing works on the topic. We
then filtered out results that were not relevant to our specific topic.
Finally, we analyzed the remaining works to identify their methods
and goals.

We defined the following research questions:

RQ1 What methods have been used to extract and map informa-
tion from logs to source code?

RQ2 What other techniques can be improved by log-to-source
matching?

RQ3 What are the problems or opportunities that have been ad-
dressed by log-to-source mapping?

RQ4 What other sources of information are combined with logs
to give insight into the source?

RQ5 What are the open problems and future research directions?

Next, we crafted our search query. To find those sources related
to log analysis, we used the portion "log mining” OR "log analysis"
OR "log extraction" OR "log parsing” OR "log parser", and to narrow
that down to sources that used the source code alongside the logs,
we included "program slicing” OR "code" OR "fault localization". To
broaden our results to include more general works on program
slicing (which implicitly involves the source code), we included
"program slicing" AND ("fault localization" OR "data flow analysis"
OR "runtime exception" OR "stack trace"). The complete query is as
follows:

(("program slicing" OR "code" OR "fault localization")
AND ("log mining" OR "log analysis" OR
"log extraction" OR "log parsing" OR "log parser"))
OR
("program slicing" AND
("fault localization" OR "data flow analysis" OR
"runtime exception” OR "stack trace"))

We used this query in searching four major research databases:
the ACM Digital Library, IEEE Xplore, SpringerLink, and ScienceDi-
rect. The query was adapted to local specifics of the particular
database search engine.

Table 1: Search results on major indexing sites

Indexer Found results Used results
ACM DL 39 8
IEEE Xplore 39 5
SpringerLink 492 1
ScienceDirect 18 2
Total 588 16

The results of the search query are shown in Table 1. We then
filtered these results, removing works that were not related to our
topic. Specifically, we eliminated those results that did not use either
program log output or a stack trace as a source of information. We
also eliminated those that did not use the source code in their
analysis. In filtering the results, we first discarded irrelevant papers
based on their titles and abstracts, followed by a more thorough
analysis of the full text.

On Matching Log Analysis to Source Code: A Systematic Mapping Study

After we filtered the results, only a small number of works re-
mained. Out of the 588 works initially found, 16 were deemed
relevant to the topic. The chosen works are listed in Table 2.

3 ANALYSIS OF RESULTS

In this section, we analyze the existing works, enumerating different
methods of extracting information from logs and stack traces and
matching it to source code, as well as the problems addressed in
the current literature.

3.1 Log analysis and mapping methods

The first step many works take is creating log templates that match
log messages to the line of source code that generated them. The
most common approach is to parse the source code. For example, by
creating and traversing an Abstract Syntax Tree (AST). It is common
to find all logging function calls, and create a regular expression
that matches the format of the logging function’s parameters. This
takes into consideration both the static message and the variables
in it. That regular expression is then associated with its line of
source code and stored. The regular expressions are then compared
against future log messages to determine their origin point in the
code. This approach is taken by [2, 5, 8, 9, 12, 14, 15, 22, 23, 25].

There are a few variations on this basic approach. In [5], the au-
thors augment the regular expression to detect logs that originated
in looping or conditional code. In [15], the regular expressions for
log templates are associated with the larger source code unit (class
or method) they are contained in, instead of a source line. A more
sophisticated template was generated in [25]; in addition to differen-
tiating between the static message portion and passed-in variables,
the variables themselves were classified by the probability their
values would remain unchanged between requests, determined by
data flow analysis. Variables unlikely to change were used as keys
to differentiate individual requests.

Using the log messages usually consists only of matching the
messages to their lines of code. Some works, however, applied
further processing. In both [2] and [5], the logs were partitioned by
the ID of the thread that generated them. The ordered, partitioned
log sequence was then used in the next stages of their analysis.
In [25], the logs were partitioned by individual requests using the
variables that were determined to be invariant within a request.
In [14], the log templates were also indexed in the database to
reduce the number of regular expression comparisons that must
be performed. Logs can be clustered by similarity, measured by
weighted edit distance [8]. This can be used to match logs with
parameters not detected in the creation of the original regular
expression.

Another direction is to use statistical analysis on incoming logs
to detect anomalous log sequences [9]. In this case, a series of log
points represents a task, and a statistical analyzer detects anomalous
tasks by detecting outliers among the log point series.

3.2 Execution traces

A common technique we found is using the log output to assist in
building a graph representing the program’s execution flow. In such
a Control-Flow Graph (CFG) or function call graph, the number of
paths can be reduced using information extracted from the log, a

183

RACS 20, October 13-16, 2020, Gwangju, Republic of Korea

technique known as program slicing. This approach is seen in a
number of studies [1, 2, 5, 10, 16, 17, 23-25].

A typical example of this approach is detailed by Chen et al. [5].
The authors narrow down the execution path by labeling statements
with "may", "must-have", and "must-not" labels that show for any
particular run of a function which statements could have been
executed to get to that point in the code. Logging statements are
used as checkpoints to indicate whether the program executed a
certain line of code. The analysis depends on conditional branches
in the code; a branch of a conditional that contains a log statement
can be labeled "must-have" if that log is found, and "must-not" if the
log was not found. Similar technique and labels are used in [24],
this time calling the statements "might-execute”, "partial-execute",
and "not-executed". The authors of [23] used combinatorics and a
Boolean satisfiability (SAT) solver to rule out infeasible execution
paths given conditional constraints encountered. By removing the
unused functions, these techniques improve the accuracy of the
program slice.

Once an execution trace has been created, it can be used as the
basis for further analysis. In [10, 16, 24], stack traces used to slice
programs. Since the exception gives a definite endpoint for the slice,
backward data-flow analysis is used to find the erroneous statement.
The authors of [17] generate a call graph from a stack trace, which
they enhance by mining similar stack traces from external sources
and including edges from the new traces in the call graph.

After building the execution trace, the authors of [1] utilize
predicate switching to determine the location of variables critical
to the execution at the time of the fault, then uses backward slicing
in order to gather more relevant variables that may have affected
the outcome of the predicate that led to the fault.

Additional analysis was applied in [2] to help with anomaly de-
tection between separate executions. A reachability graph between
log statements was generated from the program’s CFG. Then, or-
dered log sequences partitioned by thread were used to generate
different execution traces from the reachability graph. The execu-
tion traces were analyzed together and each was assigned a trace
anomaly index, a measure of similarity between it and other traces.
Assuming that anomalous executions are rarer than normal ones,
and therefore more likely to have a different log sequence, execu-
tion traces with a drastically lower similarity value are more likely
anomalous.

The approach in [25] is unique because it is designed to analyze
distributed systems. Every top-level method of each node is ana-
lyzed to determine what logging methods can be reached from it,
as well as what other nodes it calls. The resulting call graph is less
granular than other examples, but it covers an entire distributed
system and tracks the origin of the logs within the distributed nodes.
Observed log messages are grouped by request, and the resulting
sequence is applied to the call graph to determine which nodes the
request traversed. The logs are then used to create a summary of
the requests across nodes, for example, giving performance data
using the log timestamps.

3.3 Stack trace analysis

Stack traces are unique from other logs since they specify the exact
location of an exception as well as a chain of functions that led to

RACS 20, October 13-16, 2020, Gwangju, Republic of Korea

V. Bushong et al.

Table 2: Selected papers

Reference Title Year
[5] An Automated Approach to Estimating Code Coverage Measures via Execution Logs 2018
[15] Bridging the divide between software developers and operators using logs 2012
[22] Detecting Large-Scale System Problems by Mining Console Logs 2009
[8] Execution Anomaly Detection in Distributed Systems through Unstructured Log Analysis 2009
[2] Execution anomaly detection in large-scale systems through console log analysis 2018
[12] Industry Practices and Event Logging: Assessment of a Critical Software Development Process 2015
[25] Lprof: A Non-Intrusive Request Flow Profiler for Distributed Systems 2015
[23] SherLog: Error Diagnosis by Connecting Clues from Run-Time Logs 2010
[9] Stage-aware anomaly detection through tracking log points 2014
[14] Tracing Back Log Data to Its Log Statement: From Research to Practice 2019
[1] Fault localisation for WS-BPEL programs based on predicate switching and program slicing 2018
[17] On the Use of Mined Stack Traces to Improve the Soundness of Statically Constructed Call Graphs 2017
[16] Fault Localization and Repair for Java Runtime Exceptions 2009
[19] Boosting Bug-Report-Oriented Fault Localization with Segmentation and Stack-Trace Analysis 2014
[24] An improved static program slicing algorithm using stack trace 2011
[10] A Debugging Approach for Java Runtime Exceptions Based on Program Slicing and Stack Traces 2010

it. They are also more consistently structured than human-defined
logs. While they are not available in all circumstances, stack traces
contain valuable information about a program’s execution in the
situations where they are generated (e.g., during a runtime excep-
tion). The information contained in a stack trace can be used to
recreate a representation of a program’s execution [10, 16, 17, 24].

In [10, 16, 24], logged stack traces are used to create a program
slice that can be analyzed for fault localization, as described above.
In a different approach, the authors of [17] create the initial call
graph from a stack trace, and then mine similar stack traces from
internet sources, including Stack Overflow and GitHub issues. They
use these similar stack traces to create more call graphs, which they
combine with the original to create a more comprehensive view of
the program execution.

3.4 Other sources of information

While most of the works we found solely used the log and source
code, three notable exceptions used information from external
sources to enhance analysis. For example, in [19], stack traces were
used to augment a traditional information retrieval approach to
bug report-based fault localization. Additional weight was given to
files mentioned in stack traces, improving the accuracy over textual
analysis alone. In [17], the authors mined stack traces from GitHub
issues and Stack Overflow that involved the class of interest from
the stack trace generated from local program execution. These stack
traces were used to enhance the analysis done from the original
stack trace. In [15], log templates are linked to bug reports that
contain messages fitting those templates. Log templates changes
are tracked, and when a template changes, system operators can
be alerted that a bug report is no longer up to date.

3.5 Problems addressed

Regardless of the methods used, we found several overarching goals
the current research seeks to address. The main goals we found
were that of fault localization using program slicing [1, 10, 16, 19,

184

23, 24] and performance analysis using timing information from
logs [8, 25].

Other goals were found, as well. Sometimes, anomaly detection
(as opposed to localizing a known fault) is the aim. The authors
of [2] compare similarity between executions to determine which
ones are likely anomalous. In [22], the goal is to detect anomalies in
executions of distributed systems, as well as demonstrate sufficient
performance of log analysis on such systems. The results show they
have the ability to handle large scale systems involving millions of
console log lines. In [9], the goal is to show that anomaly detection
in real-time is possible by tracking points in logs.

The main goal of [5] is to achieve high-accuracy code coverage
estimates through the use of log statements. The labeling of state-
ments based on the existence of logs for a particular run helps the
developers determine over multiple runs the average code coverage
estimates for a particular test case.

The authors in [15] aim to inform system operators of code
changes that are relevant to them since they are not as familiar
with the code base as the developers. They enhance bug reports
by detecting when they become outdated by changes to the logs
contained in them.

Some works aim to demonstrate improvements in existing tech-
niques. The goal of [17] is to expand the call graph for a given
stack trace using additional information about similar stack traces
mined from the internet. The goal of [14] is to demonstrate that
an analysis algorithm for log-to-log statement matching is efficient
and ready for use. The goal of [24] is to improve the accuracy of
creating program slices using stack trace information and filtering
possible execution paths.

3.6 Future research directions

The relative lack of research in this area indicates that the field is
open for innovation. One gap we noticed within the existing work
is that utilizing stack traces and using other logging output have
been analyzed separately. General logs and stack traces have both

On Matching Log Analysis to Source Code: A Systematic Mapping Study

been shown to improve program analysis, especially in program
slicing and fault localization. Using both sources of information
could create an analyzer that is more general than one that solely
uses stack traces, and more accurate than one that only uses general
logging output when stack traces are available.

We also believe external sources could be utilized to a greater de-
gree. For example, in one instance, logging statements were linked
to bug report issues [15]. The proposed analysis was to track which
logs (and bug reports) were impacted by changes in the source
code. We believe that if logs from widely-used third party libraries
could be collected, they could be linked to publicly known issues
with that library to automatically find solutions to common prob-
lems. For example, if a GitHub issue or Stack Overflow question is
opened for an open source project describing an error associated
with a series of log lines, these logs could be compared for similarity
with user-generated logs, automatically recommending solutions
to encountered problems

Improving the quality of log templates is another area of in-
terest. Xu et al. mention the problem of logging objects using a
toString method in object-oriented languages [22]. Their solution
is to generate a log template that matches the toString method
of the object passed into the log, as well as up to 100 descendant
subclasses of that class. Not only does this cause an exponential
increase in the number of templates, the authors mention that in
certain cases, more subclasses than this may need to be considered.
An alternative solution may be needed.

3.7 Discussion

To answer RQ1 (methods of extracting and mapping log informa-
tion to source), we found the primary method of extracting and
mapping information from logs to source code is regular expres-
sion templates. These templates contain the static portion of the
log message as well as the matching interpolated variable values
[2,5,8,9,12, 14, 15, 22, 23, 25]. To aid in extraction beyond simply
matching to a single location in source code, we found log clustering
methods. Clustering can be done by edit distance between logs [8],
a thread or request identifier [2, 5], and by finding request-specific
values in logs using data flow analysis [25].

Table 3: Extraction/mapping methodsR®?!

Method References Total
Regular expression [2,5,8,9,12, 14, 15, 22,

10
templates 23, 25]
Edit distance clustering [8] 1
Request clustering [2,5, 25] 3

For RQ2 (techniques improved by log-to-source mapping), we
found program slicing was frequently addressed. Matching a stack
trace to locations in the code can be used to generate a program slice
[10, 16, 17, 24], and existing program slices can be further narrowed
down using the locations of logging statements [2, 5, 23, 24]. For
certain kinds of logging runtimes, an entire program slice can be
rebuilt from the logs alone [1]. Another technique enhanced by log
matching was data flow analysis. In the presence of log-to-source

185

RACS 20, October 13-16, 2020, Gwangju, Republic of Korea

matching, data flow analysis can be used to recreate a sequence of
events [25] or in backtracking from an exception’s throw point to
its root cause [10, 16].

Table 4: Techniques improved by log-source mappingR<Q?

Technique References Total
Program slicing 9
Program slicing (by stack trace) [10, 16, 17, 24] 4
Program slicing (by logs) [1,2,5, 23, 24] 5
Data flow analysis 3
Data flow analysis (backtracking) [10, 16] 2
Data flow analysis (sequence [25] 1

reconstruction)

In addressing RQ3 (problems addressed by log-to-source map-
ping), the main goal we found was that of fault localization, using
stack traces or general logs to narrow down a program slice to the
location of the fault [1, 10, 16, 19, 23, 24]. Analyzing log sequences
was also used for anomaly detection [2, 9, 22]. Performance analy-
sis can be performed using the timestamps inherent in many logs
[8, 25]. Other goals include estimating code coverage [5], bug report
change detection [15], and improving another technique, such as
improving program slice accuracy [24], call graph expansion [17],
or simply efficient log-to-source matching itself [14].

Table 5: Problems addressed by log-source mappingR<3

Problem References Total
L [1, 10, 16, 19,
Fault localization 23, 24] 6
Anomaly detection [2,9,22] 3
Performance analysis (8, 25] 2
Code coverage [5] 1
Bug report change detection [15] 1
Program slice accuracy [24] 1
Call graph expansion [17] 1
Improved log-to-source matching [14] 1

For RQ4 (external sources used), three external sources were
found to be combined along with logs and source code. Stack Over-
flow and GitHub issues were mined for stack traces similar to the
one encountered locally [17], and bug reports were combined with
changes to logging statements to detect when they may be affected
by code changes [15].

Table 6: External sources used?<3

Source References Total
Stack Overflow [17] 1
GitHub [17] 1
Bug reports [15] 1

RACS 20, October 13-16, 2020, Gwangju, Republic of Korea

For RQ5 (future research directinos), we found that an approach
that combined analyzing stack traces and general logs together to
improve program slicing has not yet been addressed. There are
also open issues in more fully utilizing external sources in the
code analysis, as well as in generating log templates that are more
comprehensive in the presence of complex logging parameters.

4 THREATS TO VALIDITY

The primary threat to the validity of our work is omitting relevant
research from our review. To ensure we found all related work in
our initial search, we designed our query to be as broad as possible.
To reduce the threat of dismissing a relevant work, we had multiple
researchers review each search result, beginning with a permissive
analysis of the works’ title, abstract, and keywords, followed by a
more scrutinous examination of the full text.

Another concern is that in our study, we employed four ma-
jor research databases, namely ACM Digital Library, IEEE Xplore,
SpringerLink, and ScienceDirect. Potentially, more papers can be
published by other publishers, which we did not include.

5 CONCLUSION

Program logs contain a wealth of information about how a program
is behaving. Harnessing this information through automated anal-
ysis and connecting it to source code locations has the potential to
improve developers’ abilities to find bugs, detect anomalies, and
analyze the performance of their code. In this study, we selected
16 works out of an initial search of 588 results in an effort to as-
sess the current literature on the techniques and uses of mapping
information from logs to source code.

We examined the works to determine the methods they used
in extracting and mapping information from logs, as well as the
techniques this mapping was meant to improve. Next, we identified
the problems these works addressed using these techniques. We
discussed open research areas including an approach that combines
logs and stack traces, the need for improved log templates, and the
potential for inclusion of data from external sources.

Our long term goal is an automated method for software archi-
tecture reconstruction of distributed systems. Towards this end, we
have performed other studies laying the foundation for this goal
[3, 4, 6, 18]. The future work for this study will contribute by using
logs to gain insight into a system’s architecture.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1854049 and Red Hat, Inc.

REFERENCES

[1] Chang ai Sun, Yufeng Ran, Caiyun Zheng, Huai Liu, Dave Towey, and Xiangyu
Zhang. 2018. Fault localisation for WS-BPEL programs based on predicate switch-
ing and program slicing. Journal of Systems and Software 135 (2018), 191 - 204.
https://doi.org/10.1016/].jss.2017.10.030

Liang Bao, Qian Li, Peiyao Lu, Jie Lu, Tongxiao Ruan, and Ke Zhang. 2018.
Execution anomaly detection in large-scale systems through console log analysis.
Journal of Systems and Software 143 (2018), 172 - 186. https://doi.org/10.1016/j.
j5s.2018.05.016

Tomas Cerny, Jan Svacina, Dipta Das, Vincent Bushong, Miroslav Bures, Pavel
Tisnovsky, Karel Frajtak, Dongwan Shin, and Jun Huang. 2020. On Code Analysis
Opportunities and Challenges for Enterprise Systems and Microservices. IEEE
Access (2020), 1-22. https://doi.org/10.1109/ACCESS.2020.3019985

&

=

186

[4]

[11

[12

=
&

(14

[15

[16

(17]

[18

[21

[22

V. Bushong et al.

Tomas Cerny, Andrew Walker, Vincent Bushong, Dipta Das, Karel Frajtak,
Miroslav Bures, and Pavel Tisnovsky. 2020. Mapping Study on Constraint Con-
sistency Checking in Distributed Enterprise Systems. In International Conference
on Research in Adaptive and Convergent Systems(RACS °20) (RACS "20). ACM, New
York, NY, USA, 1-8. https://doi.org/10.1145/3400286.34182571

B. Chen, J. Song, P. Xu, X. Hu, and Z. M. J. Jiang. 2018. An Automated Approach to
Estimating Code Coverage Measures via Execution Logs. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE). 305-316. https:
//doi.org/10.1145/3238147.3238214

Dipta Das, Micah Schiewe, Elizabeth Brighton, Mark Fuller, Tomas Cerny,
Miroslav Bures, Karel Frajtak, Dongwan Shin, and Pavel Tisnovsky. 2020. Failure
Prediction by Utilizing Log Analysis: A Systematic Mapping Study. In Interna-
tional Conference on Research in Adaptive and Convergent Systems(RACS "20) (RACS
"20). ACM, New York, NY, USA, 1-7. https://doi.org/10.1145/3400286.3418263
Diana El-Masri, Fabio Petrillo, Yann-Gaél Guéhéneuc, Abdelwahab Hamou-Lhadj,
and Anas Bouziane. 2020. A systematic literature review on automated log
abstraction techniques. Information and Software Technology 122 (2020), 106276.
https://doi.org/10.1016/j.infsof.2020.106276

Q.Fu,]J.Lou, Y. Wang, and J. Li. 2009. Execution Anomaly Detection in Distributed
Systems through Unstructured Log Analysis. In 2009 Ninth IEEE International
Conference on Data Mining. 149-158. https://doi.org/10.1109/ICDM.2009.60 ISSN:
2374-8486.

Saeed Ghanbari, Ali B. Hashemi, and Cristiana Amza. 2014. Stage-aware anomaly
detection through tracking log points. In Proceedings of the 15th International
Middleware Conference on - Middleware '14. ACM Press. https://doi.org/10.1145/
2663165.2663319

S. Jiang, H. Zhang, Q. Wang, and Y. Zhang. 2010. A Debugging Approach for
Java Runtime Exceptions Based on Program Slicing and Stack Traces. In 2010
10th International Conference on Quality Software. 393-398. https://doi.org/10.
1109/QSIC.2010.23 ISSN: 2332-662X.

Meenakshi, A. C. Ramachandra, and Subhrajit Bhattacharya. 2020. Literature
Survey on Log-Based Anomaly Detection Framework in Cloud. In Computational
Intelligence in Pattern Recognition, Asit Kumar Das, Janmenjoy Nayak, Bighnaraj
Naik, Soumi Dutta, and Danilo Pelusi (Eds.). Springer Singapore, Singapore,
143-153.

Antonio Pecchia, Marcello Cinque, Gabriella Carrozza, and Domenico Cotroneo.
2015. Industry Practices and Event Logging: Assessment of a Critical Software
Development Process. In Proceedings of the 37th International Conference on
Software Engineering - Volume 2 (ICSE ’15). IEEE Press, 169-178. https://dlLacm.
org/doi/abs/10.5555/2819009.2819035

Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update.
Information and Software Technology 64, Supplement C (2015), 1 — 18. https:
//doi.org/10.1016/j.infs0f.2015.03.007

Daan Schipper, Mauricio Aniche, and Arie van Deursen. 2019. Tracing Back Log
Data to Its Log Statement: From Research to Practice. In Proceedings of the 16th
International Conference on Mining Software Repositories (MSR °19). IEEE Press,
545-549. https://doi.org/10.1109/MSR.2019.00081

W. Shang. 2012. Bridging the divide between software developers and operators
using logs. In 2012 34th International Conference on Software Engineering (ICSE).
1583-1586. https://dl.acm.org/doi/10.5555/2337223.2337490

Saurabh Sinha, Hina Shah, Carsten Gorg, Shujuan Jiang, Mijung Kim, and
Mary Jean Harrold. 2009. Fault Localization and Repair for Java Runtime Ex-
ceptions. In Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis (ISSTA '09). Association for Computing Machinery, New
York, NY, USA, 153-164. https://doi.org/10.1145/1572272.1572291

L. Sui, J. Dietrich, and A. Tahir. 2017. On the Use of Mined Stack Traces to Improve
the Soundness of Statically Constructed Call Graphs. In 2017 24th Asia-Pacific
Software Engineering Conference (APSEC). 672-676. https://ieeexplore.ieee.org/
document/8306000

Jan Svacina, Jackson Raffety, Connor Woodahl, Stone Brooklynn, Tomas Cerny,
Miroslav Bures, Karel Frajtak, Dongwan Shin, and Pavel Tisnovsky. 2020. On
Vulnerability and Security Log analysis: A Systematic Literature Review on
Recent Trends. In International Conference on Research in Adaptive and Convergent
Systems(RACS °20) (RACS °20). ACM, New York, NY, USA, 1-6. https://doi.org/10.
1145/3400286.3418261

C. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei. 2014. Boosting Bug-
Report-Oriented Fault Localization with Segmentation and Stack-Trace Analysis.
In 2014 IEEE International Conference on Software Maintenance and Evolution.
181-190. https://doi.org/10.1109/ICSME.2014.40

W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. 2016. A Survey on Software
Fault Localization. IEEE Transactions on Software Engineering 42, 8 (2016), 707—
740.

Baowen Xu, Ju Qian, Xiaofang Zhang, Zhonggiang Wu, and Lin Chen. 2005. A
Brief Survey of Program Slicing. SIGSOFT Softw. Eng. Notes 30, 2 (March 2005),
1-36. https://doi.org/10.1145/1050849.1050865

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. 2009.
Detecting Large-Scale System Problems by Mining Console Logs. In Proceedings

https://doi.org/10.1016/j.jss.2017.10.030
https://doi.org/10.1016/j.jss.2018.05.016
https://doi.org/10.1016/j.jss.2018.05.016
https://doi.org/10.1109/ACCESS.2020.3019985
https://doi.org/10.1145/3400286.34182571
https://doi.org/10.1145/3238147.3238214
https://doi.org/10.1145/3238147.3238214
https://doi.org/10.1145/3400286.3418263
https://doi.org/10.1016/j.infsof.2020.106276
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1145/2663165.2663319
https://doi.org/10.1145/2663165.2663319
https://doi.org/10.1109/QSIC.2010.23
https://doi.org/10.1109/QSIC.2010.23
https://dl.acm.org/doi/abs/10.5555/2819009.2819035
https://dl.acm.org/doi/abs/10.5555/2819009.2819035
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1109/MSR.2019.00081
https://dl.acm.org/doi/10.5555/2337223.2337490
https://doi.org/10.1145/1572272.1572291
https://ieeexplore.ieee.org/document/8306000
https://ieeexplore.ieee.org/document/8306000
https://doi.org/10.1145/3400286.3418261
https://doi.org/10.1145/3400286.3418261
https://doi.org/10.1109/ICSME.2014.40
https://doi.org/10.1145/1050849.1050865

On Matching Log Analysis to Source Code: A Systematic Mapping Study

[23]

of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP ’09).
Association for Computing Machinery, New York, NY, USA, 117-132. https:
//doi.org/10.1145/1629575.1629587

Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. 2010. SherLog: Error Diagnosis by Connecting Clues from Run-
Time Logs. In Proceedings of the Fifteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
XV). Association for Computing Machinery, New York, NY, USA, 143-154.
https://doi.org/10.1145/1736020.1736038

187

[24]

[25]

RACS 20, October 13-16, 2020, Gwangju, Republic of Korea

H. Zhang, S. Jiang, and Rong Jin. 2011. An improved static program slicing
algorithm using stack trace. In 2011 IEEE 2nd International Conference on Software
Engineering and Service Science. 563-567. https://doi.org/10.1109/ICSESS.2011.
5982378 ISSN: 2327-0594.

Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo, Ding
Yuan, and Michael Stumm. 2014. Lprof: A Non-Intrusive Request Flow Profiler for
Distributed Systems. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14). USENIX Association, USA, 629-644.
https://dl.acm.org/doi/10.5555/2685048.2685099

https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1145/1736020.1736038
https://doi.org/10.1109/ICSESS.2011.5982378
https://doi.org/10.1109/ICSESS.2011.5982378
https://dl.acm.org/doi/10.5555/2685048.2685099

	Abstract
	1 Introduction
	2 Research Method
	3 Analysis of Results
	3.1 Log analysis and mapping methods
	3.2 Execution traces
	3.3 Stack trace analysis
	3.4 Other sources of information
	3.5 Problems addressed
	3.6 Future research directions
	3.7 Discussion

	4 Threats to validity
	5 Conclusion
	Acknowledgments
	References

